Final Exam

Math 1103, Fall 2010

1. Find the equation of the line that passes through the points (-2,3) and (-1,-1).

a.
$$4x - y + 5 = 0$$

b.
$$4x - y - 5 = 0$$

c.
$$-4x + y - 5 = 0$$

d.
$$4x + y + 5 = 0$$

- e. None of the above
- 2. Find the domain of the function $f(x) = \frac{1}{\sqrt{19x+16}}$.

a.
$$\left(-\infty, -\frac{16}{19}\right) \cup \left(-\frac{16}{19}, \infty\right)$$

b.
$$\left(-\infty, \frac{16}{19}\right]$$

c.
$$\left[\frac{16}{19},\infty\right)$$

d.
$$\left(-\frac{16}{19}, \infty\right)$$

e.
$$\left(\frac{16}{19}, \infty\right)$$

3. The point (2, -1) is on the graph of f(x) and f(x) is an **even function**. Find another point that must be on the graph of f(x).

1

a.
$$(-2, -1)$$

c.
$$(-2,1)$$

d.
$$(1,-1)$$

e.
$$(0,-1)$$

- 7. If (2, -5) is a point on the graph of f(x), which of the following points MUST be on the graph of $y = \frac{1}{3}f(x-1)$?
 - a. $(\frac{2}{3}, -4)$
 - b. (1, -5)
 - c. $(\frac{1}{3}, -5)$
 - d. $(1, -\frac{5}{3})$
 - e. $(3, -\frac{5}{3})$
- 8. Find the inverse function of $f(x) = 3^{x+2}$.
 - a. $f^{-1}(x) = \frac{1}{3^{x+2}}$
 - b. $f^{-1}(x) = -3^{x+2}$
 - c. $f^{-1}(x) = \log_3(x+2)$
 - d. $f^{-1}(x) = -2 + \log_3(x)$
 - e. None of the above
- 9. Which of the following properties are true of the function $f(x) = -2(x+4)^2 + 8$?
 - I. The vertex is (-4.8)
 - II. f(x) opens upwards
 - III. f(x) has been vertically stretched by a factor of 2.
 - IV. f(x) has x -intercepts at 2 and -6.
 - V. f(x) has y -intercept at -24.
 - a. Only I, III, IV, and V
 - b. Only I and II
 - c. Only I and III
 - d. Only III and V
 - e. Only I, III, and V

- 14. Find the exponential function $f(x) = Ca^x$ whose graph goes through the points $(0, \frac{1}{5})$ and $(-2,\frac{1}{125})$. The value of C and a are:
 - a. $C = \frac{1}{5}$; a = -2

 - b. $C = \frac{1}{5}$; a = 5c. $C = \frac{1}{5}$; $a = \frac{1}{5}$
 - d. C = 1; $a = \frac{1}{125}$
 - e. C = 1; a = 5
- 15. Convert the equation $2^3 = 8$ into logarithmic form
 - a. $\log_8 2 = 3$
 - b. $\log_8 3 = 2$
 - c. $\log_2 8 = 3$
 - d. $\log_2 3 = 8$
 - e. $\log_3 8 = 3$
- 16. Find the solution(s) to the following equation:

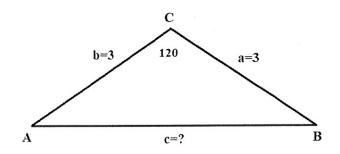
$$\ln(x-3) + \ln(x-2) = \ln(2x+24)$$

- a. x = 9; x = -2
- b. x = -2
- c. x = 9
- d. x = 2; x = 3; x = -12
- e. None of the above
- 17. Which of the following statements are true?
 - $(\ln x)^2 = 2\ln x$ I.
 - $\log_4(3x^4) = 4\log_4(3x)$ II.
 - III. $\log(x y) = \frac{\log x}{\log y}$
 - IV. $\log_3 \frac{9}{4} = 2 \log_3 4$
 - $\ln(x^2) = 2\ln x$ V.
 - a. I and II only
 - b. I, II, and III only
 - c. I and III only

22. Given the function $f(x) = x^2 - 3x + 3$, the value of $\frac{f(5+h)-f(5)}{h}$ is

- b. $14 + 7h + h^2$
- c. 7 + h
- d. $7h + h^2$ e. $28 + h + h^2$

23. Find the **exact** value of $\cos(-690^{\circ})$ a. $\frac{1}{2}$ b. $-\frac{1}{2}$ c. $\frac{\sqrt{3}}{2}$ d. $\frac{\sqrt{2}}{2}$ e. $-\frac{\sqrt{3}}{2}$


24. Use the appropriate sum or difference identity to find the exact value of $\cos(\frac{7\pi}{12})$

- a. $\frac{\sqrt{2}-\sqrt{6}}{4}$
- b. $\frac{\sqrt{2}+\sqrt{6}}{4}$
- $c. \quad \frac{\sqrt{6}-\sqrt{2}}{4}$
- d. $\frac{\sqrt{6}+\sqrt{2}}{4}$

e. None of the above

- 28. Find the exact value of $tan(sin^{-1}(\frac{1}{\sqrt{2}}))$.
 - a. $\frac{\pi}{4}$
 - b. $-\frac{\pi}{4}$
 - c. 1
 - d. 0
 - e. -1
- 29. A ladder with length L leans against a vertical wall. The foot of the ladder makes an angle of 70° with the ground when the foot of the ladder is 3 feet from the wall. Find the length of the ladder
 - a. $L = \frac{3}{\sin(70^\circ)} ft$
 - b. $L = 3 \sin(70^{\circ}) ft$
 - c. $L = \frac{3}{\cos(70^\circ)} ft$
 - d. $L = 3\cos(70^{\circ})ft$
 - e. $L = \cos(70^\circ) ft$
- 30. Simplify $\cos 2k \cos k + \sin 2k \sin k$ using an appropriate trigonometric identity.
 - a. $\cos 3k$
 - b. $\cos k$
 - c. $\sin k$
 - d. $\sin 3k$
 - e. None of the above

34. Find the length of the side c in the triangle ABC where a=3, b=3 and $\angle ACB=120^{\circ}$

- a. $\sqrt{27}$
- b. 27
- c. $\sqrt{18 9\sqrt{3}}$
- d. $\sqrt{18 + 9\sqrt{3}}$
- e. $\sqrt{10}$

35. Suppose that $\sin \theta = -\frac{2}{5}$ and θ is in Quadrant 4. Evaluate $\sec \theta$

- a. $\frac{-2}{\sqrt{29}}$
- b. $\frac{5}{\sqrt{21}}$
- c. $\frac{\sqrt{29}}{2}$
- d. $\frac{\sqrt{21}}{5}$
- e. $-\frac{5}{\sqrt{21}}$