- 1. Find the product $(x-3)(x^2+3x+9)$
- (a) $x^3 + 6x^2 + 9x + 27$ (b) $x^3 x^2 + 3x + 27$ (c) $x^3 + 6x 27$ (d) $x^3 27$ (e) $x^3 + 27$

- 2. Simplify the expression $(16a^4b^{-2})^{\frac{1}{2}}(a^3b)^{-2}$
- (a) $\frac{4}{a^4b^3}$
- (b) $\frac{ab^3}{8}$

- (e) 4*ab*
- 3. Solve the equation 4x 2(1+x) = 3(2x+1) 5
- (a) -2
- (b) 0
- (c) 1
- (d) 2
- (e) 4
- 4. Factor the polynomial completely $x^3 3x^2 16x + 48$
- (a) (x+2)(x-2)(x-3)
- (b) (x+4)(x-4)(x-3)
- (c) (x+2)(x-2)(x+3)
- (d) (x+4)(x-4)(x+3)
- (e) $(x^2 + 16)(x + 3)$
- 5. Find the slope of the line that goes through the points (6, -4) and (3, -2)
- (a) $-\frac{3}{2}$
- (b) $-\frac{2}{3}$
- (c) $-\frac{1}{2}$
- (d) -2
- (e) Undefined
- 6. Find f(-3) + f(3) for the given function $f(x) = \begin{cases} 2x 1 & \text{if } x \le -1 \\ x^2 + 1 & \text{if } x > -1 \end{cases}$
- (a) 15
- (b) 5

- (c) 3
- (d) 0
- (e) -5
- 7. Find the domain of the function $f(x) = \sqrt{12 3x^2}$
- (a) $x \ge 4$
- (b) $x \le -3$
- (c) $-2 \le x \le 2$
- (d) $-3 \le x \le 3$
- (e) $x \le -2, x \ge 2$
- 8. Which of following is an odd function?
- (a) f(x) = 1 x
- (b) $f(x) = 3x^2 5$
- (c) $f(x) = x^3 + 5x 11$
- (d) $f(x) = 2x^3 4x^5$
- (e) $f(x) = -\frac{1}{x^2 1}$
- 9. Perform the indicated operation and simplify: $\frac{2}{(x-3)(x-2)} \frac{1}{(x-3)(x+1)}$
- (a) $\frac{1}{(x+1)(x-2)(x-3)}$
- (b) $\frac{x+4}{(x+1)(x-2)(x-3)}$
- $(c) \frac{x}{(x-2)(x-3)}$
- (d) $\frac{4}{(x+1)(x-2)}$
- (e) x + 2
- 10. Solve the inequality $-5 \le 1 3x < 10$ and express the answer in interval notation
- (a) $\begin{bmatrix} -3, 2 \end{bmatrix}$
- (b) [-3, 2)
- (c) (-3, 2]
- (d) $\left(-\infty, -3\right] \cup \left(2, \infty\right)$
- (e) $\left(-\infty, -3\right) \cup \left[2, \infty\right)$
- 11. Which of following has its inverse function?
- (a) $x^2 + y^2 = 4$
- (b) y = x(x-1)(x+1)
- (c) $y = \frac{1}{x^2}$

- (d) y = |x + 2|
- (e) $y = \sqrt{x}$
- 12. How can the graph of $y = (x + 1)^3 2$ be obtained from the graph of $y = x^3$?
- (a) Shift to the left by 1 unit and down by 1 unit
- (b) Shift to the left by 1 unit and down by 2 units
- (c) Shit to the left by 2 units and up by 1 unit
- (d) Shift to the right by 1 unit and up by 2 units
- (e) Shift to the right by 2 units and down by 1 unit
- 13. What is the midpoint of the segment connecting (1, -4) and (3, 2)?
- (a) (-1, -3)
- (b) (-1, -1)
- (c) (0, 1)
- (d) (2, -3)
- (e) (2, -1)
- 14. Solve the equation $\left(\frac{1}{9}\right)^{x-1} = 3^{2x+6}$
- (a) -1
- (b) -2
- (c) -4
- (d) 3
- (e) 5
- 15. Which of following is definitely NOT a zero of the polynomial function

$$f(x) = 3x^5 - 2x^3 + 4x^2 - 6x + 7?$$

- (a) -1
- (b) $\frac{1}{3}$
- (c) $-\frac{3}{7}$
- (d) 1
- (e) 7
- 16. Solve the equation $x^{\frac{3}{2}} = 27$
- (a) $\frac{1}{3}$
- (b) 9
- (c) 18
- (d) $9\sqrt{3}$
- (e) $\sqrt[3]{27}$
- 17. For $f(x) = x^2 + 1$ and $g(x) = \sqrt{x 3}$, find $g \circ f(x)$?
- (a) $\sqrt{x^2 2}$
- (b) x 3
- (c) $\sqrt{x^2 3} + 1$
- (d) x 2
- (e) $x^2 + 3$

- 18. Let f(x) = (x-1)(x+3) and g(x) = x+2 Find the domain of $\frac{f}{g}(x)$
- (a) $(-\infty, \infty)$
- (b) $(0, \infty)$
- (c) $(-3, -2) \cup (-2, 1)$
- (d) $(-\infty, -2) \cup (-2, \infty)$
- (e) $(-\infty, -3) \cup (-3, \infty)$
- 19. Simplify the rational expression $\frac{\frac{3}{x} + \frac{1}{2}}{1 \frac{5}{x}}$
- (a) $\frac{3}{10}$
- (b) $\frac{3x+2}{5x-1}$
- $(c) \ \frac{2x+3}{5x-2}$
- $(d) \frac{x+6}{2x-10}$
- (e) $\frac{3x+1}{2x-1}$
- 20. Find the equation of the line that passes through the point (5, -9) and is perpendicular to the line 2x 3y + 5 = 0
- (a) x + y + 4 = 0
- (b) 2x 3y + 17 = 0
- (c) 2x + 3y 7 = 0
- (d) 3x 2y 6 = 0
- (e) 3x + 2y + 3 = 0
- 21. Find $f^{-1}(3)$ for $f(x) = \frac{x}{3x+4}$
- (a) $-\frac{3}{2}$
- (b) -1
- (c) $\frac{1}{3}$
- (d) $\frac{1}{2}$
- (e) 1
- 22. A quadratic function has its vertex at the point (-2, 5). If (1, 4) is also a point on the graph of the function, which of following is the equation of the function?
- (a) $y = \frac{1}{3}(x-2)^2 + 5$
- (b) $y = -\frac{1}{3}(x+2)^2 + 5$
- (c) $y = \frac{1}{4}(x+2)^2 + 1$
- (d) $y = \frac{1}{9}(x-2)^2 + 5$