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ABSTRACT. It is well known that the minimum crossing number of an alternating link equals the
number of crossings in any reduced alternating link diagram of the link. This remarkable result is an
application of the Jones polynomial. In the case of the braid index of an alternating link, Murasugi
had conjectured that the number of Seifert circles in a reduced alternating diagram of the link equals
the braid index of the link. This conjecture turned out to be false. In this paper we prove the next
best thing that one could hope for: we characterize exactly those alternating links for which their braid
indices equal to the numbers of Seifert circles in their corresponding reduced alternating link diagrams.
More specifically, we prove that if D is a reduced alternating link diagram of an alternating link L,
then b(L), the braid index of L, equals the number of Seifert circles in D if and only if Gg(D) contains
no edges of weight one. Here Gs(D), called the Seifert graph of D, is an edge weighted simple graph
obtained from D by identifying each Seifert circle of D as a vertex of Gs(D) such that two vertices
in Gg(D) are connected by an edge if and only if the two corresponding Seifert circles share crossings
between them in D and that the weight of the edge is the number of crossings between the two Seifert
circles. This result is partly based on the well known MFW inequality, which states that the a-span of
the HOMFLY polynomial of L is a lower bound of 2b(L) — 2, as well as a result due to Yamada, which
states that the minimum number of Seifert circles over all link diagrams of L equals b(L).

1. INTRODUCTION

In 1900, Tait made a few famous conjectures in knot theory [18], one of which states that reduced
alternating diagrams have minimal link crossing number, that is, if a link L admits a projection
diagram D that is reduced and alternating, then the number of crossings in D is the minimum number
of crossings over all projections of L. This conjecture remained open for nearly a century until the great
discovery of the Jones polynomial [7]. An important property of the Jones polynomial is that its span
(namely the difference between the highest power and the lowest power in the polynomial) is always
less than or equal to the number of crossings in the knot diagram used for its calculation. Using this
property, Kauffman (1987, [8]), Murasugi (1987, [13]) and Thistlethwaite (1987, [19]) independently
proved this conjecture by establishing an equality between the span of the Jones polynomial of a
reduced alternating link diagram and the number of crossings in the diagram. This is one of the
greatest applications of the Jones polynomial.

This paper deals with a different link invariant, namely the braid index of an oriented link (all links
in this paper are oriented links hence from now on we will only use the term links). It is well known
that any link can be represented by the closure of a braid. The minimum number of strands needed
in a braid whose closure represents a given link is called the braid index of the link. In the case of
braid index, the HOMFLY polynomial (a polynomial of two variables z and a that generalizes the
Jones polynomial [5, 16]) plays a role similar to that of the Jones polynomial to the minimal crossing
number. In [11], H. Morton showed that the number of Seifert circles of a link L is bounded from
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below by a-span/2 + 1 (which is called the Morton-Frank-Williams inequality, or MFW inequality for
short). Combining this with a result due to Yamada which states that the braid index of an oriented
link L equals the minimum number of Seifert circles of all link diagrams of L [20], it follows that the
braid index of L is bounded from below by a-span/2-+1. In analogy to the crossing number conjecture
for a reduced alternating link diagram, it would be natural for one to hope that equality in the ME'W
inequality would hold for reduced alternating links. This was indeed conjectured by Murasugi in [14].
This conjecture turned out to be false and counter examples are plentiful. The simplest knot that
serves as a counter example is 55: its minimum diagram has 4 Seifert circles but its a-span is only
4 (so a-span/2 + 1 = 3 < 4). In fact the braid index of 52 is also 3, not 4. Subsequent research
then focused on identifying specific link classes for which the equality in the MFW inequality holds.
Examples include the closed positive braids with a full twist (in particular the torus links) [4], the
2-bridge links and fibered alternating links [14], and a new class of links discussed in a more recent
paper [9]. For more readings on related topics, interested readers can refer to [1, 2, 3, 12, 15, 17].

The main result of this paper is the complete characterization of those reduced alternating links
for which the numbers of Seifert circles in their corresponding link diagrams equal to their braid
indices. More specifically, let D be a reduced alternating link diagram of a link L, define a simple and
edge weighted graph, called the Seifert graph and denoted by Gg(D), as follows. Every Seifert circle
corresponds to a vertex in Gg(D). Two vertices in Gg(D) are connected by an edge if (and only if)
the two corresponding Seifert circles in D share crossings. The weight of an edge in Gg(D) is the
number of crossings between the two Seifert circles corresponding to the two vertices in Gg(D). Our
main result is stated in terms of Gg(D) in a very simple way:

Theorem 1.1. Let L be a link with a reduced alternating diagram D, then the braid index of L equals
the number of Seifert circles in D if and only if Gg(D) is free of edges of weight one.

The proof of the theorem contains two parts. In the easier part, we show that if the link diagram
D of a link L contains an edge of weight one, then the braid index of L is less than the number of
Seifert circles in D. In this proof D does not have to be reduced nor alternating. In the harder part
of the proof, we show that if D is reduced, alternating and Gg(D) is free of edges of weight one, then
the equality in the MFW inequality holds hence the number of Seifert circles in D equals the braid
index of L.

This paper is structured as follows. In Section 2, we introduce the HOMFLY polynomial and the
resolving trees. In Section 3, we introduce an important new concept called the intermediate Seifert
circles (IS circles for short) and the decomposition of a link diagram into the IS circles. In Section 4,
we introduce another important concept called the castle. This is actually a structure that exists
within any link diagram and it is similar to a braid locally. Based on the castle structure, we then
develop two algorithms that will provide us two special resolving trees which will play a crucial role
in proving our main theorem. The proof of our main theorem is given in Section 5. We end the paper
with some remarks and observations in Section 6.

2. HOMFLY POLYNOMIAL AND RESOLVING TREES

For the sake of convenience, from this point on, when we talk about a link diagram D, it is with
the understanding that it is the link diagram of some link L. Since we will be talking about the
link invariant such as braid index and the HOMFLY polynomial, it is safe for us to use D as a link
without mentioning L. Let Dy, D_, and Dy be oriented link diagrams of a link L that coincide except
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at a small neighborhood of a crossing where the diagrams are presented as in Figure 1. We say the
crossing presented in Dy has a positive sign and the crossing presented in D_ has a negative sign. The
following result appears in [5, 6].

Proposition 2.1. There is a unique function that maps each oriented link diagram D to a two-variable
Laurent polynomial with integer coefficients P(D, z,a) such that

(1) If D1 and Dy are ambient isotopic, then P(D1,z,a) = P(Da,z,a).
(2) aP(Dy,z,a) —a 'P(D_,z,a) = zP(Dy, z,a).
(3) If D is an unknot, then P(D,z,a) = 1.

XX

Dy _
F1GURE 1. The sign convention at a crossing of an oriented link and the splitting of
the crossing: the crossing in D4 (D_) is positive (negative) and is assigned +1 (—1)
in the calculation of the writhe of the link diagram.

The Laurent polynomial P(D, z,a) is called the HOMFLY polynomial of the oriented link D. The
second condition in the proposition is called the skein relation of the HOMFLY polynomial. With con-
ditions (2) and (3) above, one can easily show that if D is a trivial link with n connected components,
then P(D,z,a) = ((a —a~1)z=1)""! (by applying these two conditions repeatedly to a simple closed
curve with n — 1 twists in its projection). For our purposes, we will actually be using the following
two equivalent forms of the skein relation:

(2.1) P(Dy,z,a) = a 2P(D_,z,a)+a '2P(Dy, z,a),
(2.2) P(D_,z,a) = a*P(Dy,za)— azP(Dy,z,a).

A rooted and edge-weighted binary tree T is called a resolving tree of an oriented link diagram D
(for the HOMFLY polynomial) if the following conditions hold. First, every vertex of 7 corresponds
to an oriented link diagram. Second, the root vertex of 7 corresponds to the original link diagram D.
Third, each leaf vertex of T corresponds to a trivial link. Fourth, if we direct 7 using the directions
of the paths from the root vertex to the leaf vertices, then under this direction any internal vertex has
exactly two children vertices and the corresponding link diagrams of these three vertices are identical
except at one crossing and they are related by one of the two possible relations at that crossing as
shown in Figure 2, where the edges are weighted and the directions of the edges coincide with the
direction of 7.

If D admits a resolving tree 7T, then one can easily show that P(D, z,a) is a summation in which
each leaf vertex of T contributes exactly one term in the following way. Let U be the trivial link
corresponding to a leaf vertex in 7 and let Q) be the unique path from the root D to the leaf vertex U.
Then the contribution of the leaf vertex is simply ((a — a~')z~1)Y™~1 multiplied by the weights of
the edges in @, where (U) is the number of components in U. Let w(U) be the writhe of U, v(U) be
the number of components in U, ¢(U) be the number of smoothed crossings (in D in order to obtain U)
and t~(U) be the number of smoothed crossings that are negative. As shown in Figure 2, the degree
of a in the weight of an edge is exactly the change of writhe from the starting vertex of the edge
(remember that it is directed from the root to the leaf) to the ending vertex of the edge, whereas a z
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FIGURE 2. A pictorial view of how the edge weights are assigned by the skein relations
(2.1) and (2.2) to the edges connecting an internal vertex to the two vertices that it
precedes in the resolving tree.

term in the weight of the edge indicates that the ending vertex is obtained from the starting vertex
by a crossing smoothing and a negative sign in the weight indicates that the smoothed crossing is a
negative crossing. It follows that the total contribution of & in P(D,z,a) is

(2.3) (—1)t @) ) quth—w(D) (g — =1y, ~1)1U)~-1

hence

(24) P(D,z)a) — Z(_1)t_(u)zt(U)a’w(U)*w(D)((a_ a*l)zfl)’y(l/{)fl'
UueT

It follows that the highest and lowest a-power terms that U contributes to P(D, z,a) are

(2.5) (—1)F @) U= +1 qut)—w(D)+yU)-1
and

(2.6) (—1)t @O+ U1 U=y U)+1 qud)—w(D)=y(U)+1
respectively.

It is well known that resolving trees exist for any given oriented link diagram D. We will describe
two algorithms for constructing resolving trees with some special properties that we need at the end
of Section 4.

3. SEIFERT GRAPHS AND INTERMEDIATE SEIFERT CIRCLE DECOMPOSITIONS

For the purpose of this section, there is no need for us to specify the over and under passes at
crossings in a link diagram D. Thus in this section D is treated as a collection of oriented plane closed
curves that may intersect each other and may have self intersections, with the intersection points
being the crossings in the link diagram. So we will be using the term “crossing” and “intersection”
interchangeably.

Definition 3.1. Let D be a link diagram and S be its Seifert circle decomposition. We construct a
graph Gs(D) from S by identifying each Seifert circle in S as a vertex of Gg(D). If there exist £k > 1
crossings between two Seifert circles C1 and Cy in S, then the two corresponding vertices (also named
by C1 and C3) are connected by an edge with weight k. Otherwise there will be no edges between the
two vertices. The edge-weighted (simple) graph Gg(D) is called the Seifert graph of D.
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Definition 3.2. Let D be a link diagram. A simple closed curve obtained from D by smoothing
some vertices in D is called an intermediate Seifert circle (which we will call an IS circle for short). A
decomposition of D into a collection of IS circles is called an IS decomposition of D.

Note: The IS circles may be linked to each other, but keep in mind that in this section we are
treating them as plane curves (that may intersect each other).

Definition 3.3. Let D be a link diagram. For a given point p on D that is not on a crossing, consider
the component of D that contains p. Let us travel along this component starting from p following the
orientation of the component. As we travel we ignore the crossings that we encounter the first time.
Eventually we will arrive at the first crossing that we have already visited (which is in fact the first
crossing involving strands of this component). Smoothing this crossing results in two curves: the part
that we had traveled between the two visits to this crossing, which is an IS circle since it does not
contain crossings in itself and it does not contain p, and the other part that still contains p (which is
now a new component in the new link diagram obtained after smoothing the loop crossing). We call
this crossing a loop crossing (since the IS circle obtained after smoothing it is “loop like”). For the
new link component containing p (obtained after smoothing the loop crossing), we will start from p
and continue this process and obtain new IS circles. This process ends when the new link component
containing p is itself an IS circle hence traveling along it will not create any new loop crossings. Thus,
by smoothing the loop crossings defined (encountered) this way, we can decompose the component of
D that contains p into a collection of IS circles. By choosing a point on each component of D and
repeat the above process, we obtain an IS circle decomposition of D.

FiGURE 3. The dot marks the starting point p on D. p;, p2 and p3 are the loop
crossings obtained in that order. In this case D is decomposed into four IS circles Cp,
C1, Cy and C3 as shown.

Remark 3.4. The loop crossings (hence the corresponding IS circles obtained by smoothing them)
on a link component are uniquely determined by p. See Figure 3 for an example. However, a different
choice of p may result in different loop crossings and different IS circle decompositions of D, and
certainly there are other ways to obtain different IS circle decompositions of D.

Remark 3.5. If two IS circles cross each other then they do so an even number of times. Smoothing
one crossing between two IS circles combines them into a closed curve with self crossings (hence not an
IS circle). More generally, if two oriented, closed plane curves (possibly with self crossings) intersect
each other transversely (not at their self crossing points), they must intersect each other an even
number of times. Smoothing only one such crossing will merge the two closed curves into one and
turn the other crossings between them into self crossings, and smoothing any two such crossings will
result in two new closed curves. On the other hand, smoothing one self crossing in a closed curve will
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split it into two closed curves, and smoothing two self crossings in a closed curve may result in one
or three closed curves. In general, smoothing an odd number of self crossings in a closed curve may
result in one or more closed curves, but smoothing an even number of self crossings will result in at
least two closed curves.

Lemma 3.6. Let I1(D) be any IS decomposition of D and Is(D) be an IS decomposition of D obtained
by smoothing some crossings in I1(D), then the number of IS circles in I1(D) is less than or equal
to the number of IS circles in Io(D). In particular, the number of IS circles in I1(D) is less than or
equal to the number of Seifert circles in D.

Proof. Let Q be the set of crossings smoothed in [;(D) in obtaining I5(D). Since I2(D) is uniquely
determined by the set €2, it does not matter in what order we smooth the crossings in it. Notice that
the observation above applies to the IS circles in I1(D). If I;(D) contains two IS circles with two
crossings between them and the crossings are in §2, we will smooth them and will obtain two closed
curves. Together with the other IS circles in I;(D) we obtain a new set of closed curves. If in the
set we find two closed curves with two crossings between them and the crossings are in 2, we will
smooth them and continue this process. When this process ends, we arrive at a set C of closed curves
such that if two closed curves in C intersect each other, then at most one of these crossings is in (2.
Furthermore, the number of closed curves in C is greater than or equal to the number of IS circles in
I (D). Now we will smooth the self crossings in the closed curves in C that are in Q. At the end of
this, we arrive at a new collection C’ of closed curves with the following properties: (1) the number of
closed curves in C’ is bigger than or equal to the number of IS circles in I;(D); (2) no closed curve in
C' contains any self crossing that is in ; (3) if two closed curves in C’ intersect each other, then at
most one of the crossings can be in Q.

We now claim that no two closed curves in C’' can have crossings in 2. If this is not the case, then
by (3) above, we can smooth these crossings one at a time. When we smooth the last one, we will
be merging two closed curves into one and turn some crossings (not in 2) into self crossing of the
resulting closed curve. This is not possible, since after we smooth this last crossing in §2, we arrive at
I>(D) which contain only IS circles (and they do not have self crossings). This means we do not have
any crossings in € left in C’. Hence C’ is in fact I3(D) already and cannot contain self crossings. The
conclusion now follows by (1) above. Replacing I>(D) by the Seifert circle decomposition of D yields
the last statement of the lemma. O

In an IS decomposition of D, notice that if an IS circle C' has no crossings with any other IS circles,
then it is itself a Seifert circle. If C' has crossings with other IS circles, then these crossings divide
C into arcs. As we travel along C, we travel along these arcs, say 71, 72, ..., 7% in that order and
7; belongs to Seifert circle C; (1 < j < k), and obtain a closed walk C;1Cy---CrCy in Gg(D). We
call this closed walk the Seifert circle walk of C'. Similarly we can define the Seifert circle walk of a
closed curve C that corresponds to the projection of a component of D obtained by smoothing some
crossings in D.

From this point on, we will be using figures that contain Seifert circles to provide examples and to
explain our ideas in the proofs. To avoid possible confusion, let us point out how to read our drawings.
Although we always draw the Seifert circles as closed curves (mainly for the sake of convenience), when
we reconstruct the original link diagram from them, it is important to remember that parts of the
Seifert circles are not on the diagram as shown in Figure 4.
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FI1GURE 4. Left: The link diagram with the crossing being part of it; Right: The Seifert
circles after the crossing is smoothed.

Lemma 3.7. If an IS decomposition I(D) of D contains an IS circle C whose Seifert circle walk
contains a cycle of Gg(D), then the number of IS circles in 1(D) is strictly less than n, the number
of Seifert circles in D.

Proof. Let C1Cy---C;C1 be a cycle contained in the Seifert circle walk of C' and choose a crossing
c; between C; and Cj1; that is in the crossing set of I(D) (¢ is the crossing between Cj and C).
The existence of ¢; is guaranteed by the Seifert circle walk of C. Consider the IS decomposition I'(D)
obtained from (D) by smoothing all crossings in I(D) except ¢, ¢, ..., ¢k, which contain two IS
circles as illustrated in Figure 5 and all Seifert circles of D (not shown in the figure) other than Cf,
Cy, ..., Ck. That is, if n is the number of Seifert circles of D, then the number of IS circles in I'(D)
is at most n — 2 since k > 4. The result now follows from Lemma 3.6. O

FIGURE 5. An IS circle containing a cycle leads to two IS circles such that smoothing
the crossings in the IS circles will result in more than two Seifert circles.

4. CASTLES, FLOORS AND RESOLVING TREES

In this section, we describe a structure called a castle, which is like a braid in a local sense, and show
that such structure exists in any link diagram. We then use this structure to develop two algorithms
that will produce two special resolving trees for any given link diagram. The castle structure as well
as these resolving trees will provide us the necessary tools in proving our main result of this paper.

Definition 4.1. Let D be a link diagram. Consider three Seifert circles Cq, Co and C3 in Gg(D) as
shown in Figure 6. Notice that C3 is bounded within the topological disk created by arcs of Ci, Co
and the two crossings as shown in the figure, and that Cj5 is connected to Cy, but not to C; (it cannot
be connected to C due to orientation restriction). We say that Cj is trapped by Cy and Cs. Similarly,
Cy is trapped by Cy and C3 as shown in Figure 6.

It is apparent from the definition that if Cy traps C5, then C53 cannot trap Ci, in fact Cs, or any
Seifert circle bounded within C'3, cannot trap any Seifert circle outside the disk bounded by Cj5, Cy
and the two crossings as shown in Figure 6.
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FI1GURE 6. (5 is trapped by C; and Cy and Cy is trapped by Cs and Cs.

Definition 4.2. Seifert circles as illustrated in the left of Figure 7 are said to form a concentric
chain, Seifert circles as illustrated in the right of Figure 7 (from C to C5) are said to form a general
concentric chain. Notice that between two concentric Seifert circles we may have other Seifert circles
such as Cg shown in the right of Figure 7.

-

Cs

F1GURE 7. Concentric and general concentric Seifert circle chains.

Let D be a link diagram. Consider a Seifert circle C' of D that is inner-most, that is, C' does not
bound any other Seifert circles inside it. Choose a starting point on C' away from the places where
crossings are placed on C. Following the orientation of C', we are able to order the crossings along C'
as shown in Figure 8, where a clockwise orientation is illustrated and for the purpose of illustration
the part of C' from the first to the last crossing is drawn in a horizontal manner bounded between the
starting point pp and ending point gy marked on it. We call this segment of C' the ground (0-th) floor
(of the castle that is to be defined next). We now describe the procedure to build a structure on top
of the ground floor that we call a castle. If C' is connected to another Seifert circle C; in Gg(D), then
there exists crossings between C' and C; between pg and gg and they can be ordered by the orientation
of Cy (which is the same as that of C'). Let p; and ¢; be two points immediately before the first
crossing and after the last crossing (so no other crossings are between p; and the first crossing, and
between ¢; and the last crossing). The segment of C; between p; and ¢; is then called a floor of level
1. If C; has no crossings with other Seifert circles on this floor, then this floor terminates (for example
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if there is only one crossing between C' and C; then this floor will terminate). If C} shares crossings
with another Seifert circle C on this floor (which must be between p; and ¢;), then we can define a
second floor in a similar manner. We call the crossings between two floors ladders as we can only go
up or down from a floor to the next through these crossings. This process is repeated until we reach
a floor that terminates, meaning there are either no other floors on top or there are no ladders to
reach the floor above. The castle is the structure that contains all possible floors (and ladders between
them) constructed this way. Notice that there may be more than one separate floor on top of any
given floor. If F}, is a top floor, Fj_1 the floor below it, Fi_5 the floor below F}_1, and so on, then the
collection of floors Fy, Fi, ..., F}, including all crossings among them, is called a tower. Notice that
the Seifert circles corresponding to the floors in a tower form a general concentric Seifert circle chain
hence the height of a tower (the number of floors in it) is bounded above by the number of Seifert
circles in D. Finally, between two adjacent floors we may have trapped Seifert circles that may or
may not be part of the castle as shown in Figure 8. However if there exist other floors between two
adjacent floors, the Seifert circle corresponding to the top floor will not share any crossings with the
Seifert circles with floors between these two floors due to their opposite orientations.

FIGURE 8. A castle built on top of an inner most Seifert circle C.

Lemma 4.3. For any link diagram D, there exists an inner most Seifert circle C such that a castle
built on it contains no trapped Seifert circles.

Proof. Start with any inner most Seifert circle Cp and build a castle on it. If it contains no trapped
Seifert circles, we are done. If not, let C’ be a Seifert circle trapped between floors F; and F; i1 (with
C; and Cj11 being their corresponding Seifert circles). Choose an inner most Seifert circle that is
contained inside C’ (use C” itself if it does not contain any Seifert circle within it) and build a castle
on it. This castle is bounded away from either F; or F;;1 depending on the orientation of the new base
Seifert circle. Since the base Seifert circle is contained in C’, if the new castle is not contained within
C' entirely, then C’ will contribute a floor to the new castle. In fact, the curves in the new castle can
only exit the region between F; and F;,1 that traps C’ through either F; (if C’ shares crossings with
F;) or F;;q (if C' shares crossings with Fj 1), but not both. It follows that the new castle is completed
contained within the towers that contain F; and Fj;; 1. If the castle built on this new Seifert circle
again contains trapped Seifert circles, we will repeat this process. Since this process starts with new
trapped Seifert circles that are bounded within the previous castles, the process will end after finitely
many steps and we reach a castle without trapped Seifert circles. U
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We now define two algorithms used to derive two special resolving trees for link diagrams. These
resolving trees will play a key role in proving our main result in the next section. First let us describe
the general approach to obtain a resolving tree.

We think of a resolving tree as graph of a branching process: at each internal vertex we take a
crossing of the current link diagram, and branch on smoothing or flipping the crossing. We are growing
our resolving tree by adding two children at a time to a vertex that was a leaf up until that point.
In order to maintain some control over this process, we select a starting point p; on a component
in D, and start traversing the component from p;, and consider branching on the crossings as we
encounter them during this traversing process. A crossing is called descending if during this process
we encounter it first through its overpass, otherwise it is called ascending. A descending operation
keeps a descending crossing unchanged (no branching happens when we encounter the crossing) and
branches on an ascending crossing by flipping or smoothing it. An ascending operation does just the
opposite: it keeps an ascending crossing unchanged and branches on a descending crossing by flipping
or smoothing it. We will divide the construction process of our resolving tree into several phases. In
a given phase we will apply one and only one of the two operations (ascending or descending) at all
crossings encountered in that phase. The first phase starts from the selection of the starting point pq,
continues as we traverse and branch at crossings and ends when we return to the starting point p;. At
the end of the first phase, we have a rooted binary tree in which each leaf node U is a link diagram
obtained from D by flipping and smoothing some crossings in it with the following properties: (1)
All crossings (of D) flipped and smoothed (in obtaining ;) are along the component containing the
starting point p1; (2) The component of U; containing p; is a trivial knot itself and is not linked with
the other components of U; (due to the fact that we applied one and only one of the descending or the
ascending operations). Thus we can remove this component from further consideration and proceed
as if it was not present any more. We can now select a new starting point to start the second phase,
and so on. The leaf vertices of the final tree will be unlinked unknots and we arrive at a resolving
tree. Notice that in different phases we can apply either the descending or the ascending operations.

Now, we will define two specific algorithms by choosing the starting point at the beginning of each
phase and assigning the appropriate descending/ascending operation for that phase.

Algorithm P: The starting point at the beginning of each phase is chosen to be the starting point
of the ground floor of a castle free of trapped Seifert circles. If the Seifert circle providing the ground
floor is clockwise, the descending operation is applied, otherwise the ascending operation is applied
throughout the entire phase.

Algorithm N: Exchange the descending and ascending operations in Algorithm P.

It is important to note that unlike the approaches used in our previous work [10], both the descending
and ascending operations are used in the same algorithm, depending on the starting point!

Following the notations used in our earlier work [10], we will use 7+ (D) and 7~ (D) to denote the
resolving trees obtained by applying Algorithms P and N respectively, and use F (D) and F~ (D) to
denote the set of leaf vertices of 77 (D) and 7 (D) respectively.

5. THE MAIN THEOREM AND ITS PROOF

In this section we will prove our main result Theorem 1.1. We will begin with some preparations.
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Let U be a leaf vertex in either 7 (D) or 7 (D). Since each component of U is obtained with a
fixed starting point, the loop crossings (if they exist) of the component are uniquely determined. Since
the components are stacked over each other by the way they are obtained, the sum of the crossing
signs between different components is zero. If we smooth the loop crossings, the resulting IS circles
are also stacked over each other so the sum of the crossing signs between these different IS circles is
also zero. It follows that w(Uf), the writhe of U, equals the sum of the signs of the loop crossings. Say
U contains k = y(U) components and the i-th component contains i; > 0 loop crossings. Smoothing
the loop crossings of the i-th component results in i; + 1 IS circles, so smoothing all loop crossings
of U results in k + Zlgjgk ij IS circles. By Lemma 3.6, we have k + Zlgjgk 1; < n where n is the
number of Seifert circles in D. Since w(U) equals the sum of the signs at the loop crossings of its
components, we have [w(U)| < 31 ;< 4;. It follows that £ <n—w(D)—1and e > —n—w(D)+1 by
(2.5) and (2.6), where E and e are maximum and minimum powers of a in P(D, z,a). Furthermore,
if U € FT(D) contains a negative loop crossing, then w(lf) is strictly less than the total number of
loop crossings in U and we will have v(U) + w(U) < n. Similarly, if Y € F~ (D) contains a positive
loop crossing, then v(U) — w(U) < n. We have proven the following lemma.

Lemma 5.1. Let E and e be the mazimum and minimum powers of a in P(D,z,a), then E <
n—w(D)—1 and e > —n—w(D)+1. If a component of U € FT (D) contains a negative loop crossing,
then v(U) + w(U) < n. Similarly, if a component of V € F~ (D) contains a positive loop crossing,
then v(U) —w(lU) < n.

For any given component I' of a leaf vertex in either 71 (D) or 7 (D), as we travel along it from
its starting point (the starting point on the ground floor of the castle), we will eventually exit the
castle for the first time through the end point of some floor. The arc of I'" from its starting point
to this exiting point is called the mazimum path of I'. If the ending point I' is the end point on the
ground floor, it means that I' is completely contained within the castle and the base Seifert circle.
Notice that a maximum path consists of only three kind of line segments: ladders going up or down
(these are parts of crossings), and straight line segments parallel to the ground floor. In the case that
the base Seifert circle has clockwise orientation, the ladders going up or down are both from left to
right. Furthermore, on either side of a segment of the maximum path that is parallel to the ground
floor, there are no crossings (if there were crossings previously there in the original diagram, they
are smoothed in the process of obtaining I'). This means that if we travel along a strand of the link
diagram from a point outside the castle following its orientation, in order to enter a floor below this
maximum path, it is necessary for the strand to pass through the path through a ladder from the left
in the case of clockwise orientation for the base Seifert circle or from the right in the case of counter
clockwise orientation for the base Seifert circle.

Lemma 5.2. IfU € F* (D) contains a mazimum path that does not end on the ground floor, then the
mazximum a power in the contribution of U to P(D, z,a) is smaller than n —w(D) — 1. Similarly, if
any component of V € T (D) contains a mazimum path that does not end on the ground floor, then
the minimum a power in the contribution of V to P(D, z,a) is larger than —n — w(D) + 1.

Proof. Consider the case of U € T (D) first. Assume T is the first component of ¢ that contains such
a maximum path. Notice that a component that is bounded within the castle and its base Seifert
circle contains no loop crossings. So the components before I' are all IS circles of D. Say there are k
components before I', then by Lemma 3.7, there are at most n — k Seifert circles in D’ where n is the
number of Seifert circles in D and D’ is the link diagram obtained from D after the first ¥ components
are removed from it, since Seifert circles in D’ are IS circles of D. Let Cy be the base Seifert circle on
which the castle used to derive I' is built.
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LX X

p q

FIGURE 9. A component whose maximum path ends on a floor higher than the ground
floor either contains a loop crossing (case 1) or runs through a cycle of Seifert circles
(case 2).

Without loss of generality, we may assume that Cj has clockwise orientation. Let F; (of level i > 1)
be the floor where the maximum path of I' exits from its end point and let T7 be the tower that houses
the maximum path. If I" is to get back to Cy within 77, it will have to cross the maximum path from
the left side as shown in Figure 9 (case 1 marked in the graph), where the maximum path is drawn
in double lines, creating a negative loop crossing (since in this case we are applying a descending
algorithm). Hence v(U)+w(U) < n by Lemma 5.1 and it follows that the a-degree of the contribution
of U to P(D, z,a) is less than n —w(D) — 1 by (2.5). If I" does not go back to the base floor within 77,
then it has to do so through another tower 75. Let F}; be the highest common floor 77 and 75 share, it
is necessary that j < ¢ and it is also necessary that I" enters T3 at a floor F}, with floor level ' > j. So
a part of I runs from C (the Seifert circle corresponding to Fj), then Cj4q, ..., then C’;H (the Seifert
circle corresponding to F]' 41, the (j 4+ 1)-th floor in T3), and finally back to C;. That is, the Seifert
circle walk of I' is a closed walk of the form C;Cj1---C},Cj where C%; # Cj41, and a closed walk
of this form contains a cycle in S(D’). By Lemma 3.7, the total number of IS circles obtained by
smoothing all loop crossings in I' and in the components in U after I, is less than the total number of
Seifert circles in D’ (which is at most n — k, since there are k IS circles of D before I'). It follows that
the total number of components in U plus the total number of loop crossings in them is less than n,
so y(U) + w(U) < n again, and the maximum a power in the contribution of U to P(D, z,a) is also
less than n —w(D) — 1. The case of V € T (D) is similar and is left to our reader. O

Lemma 5.2 leads to the following two corollaries.

Corollary 5.3. If the contribution of U € FT(D) to P(D,z,a) contains an a"*P)=1 term, then
each component of U is an IS circle of D. Similarly, if the contribution of V € F~ (D) to P(D, z,a)

contains an a~"" P+ term, then each component of V is also an IS circle of D.

Proof. This is direct from the proof of Lemma 5.2, since every such component has a maximum path
ending at the end point of the ground floor, so the component contains no loop crossings. O

The following result provides the proof for the only if part of Theorem 1.1. We feel that it is
significant enough on its own so we state it as a theorem. Notice that it implies the inequality in the
MFW inequality is strict: a-span/2 4+ 1 < n.

Theorem 5.4. Let D be a link diagram of a link L such that Gg(D) contains an edge of weight one
(L and D need not be alternating) and n be the number of Seifert circles in D, then we have b(L) < n.
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Proof. Let €' and C” be two Seifert circles sharing only one crossing between them. If C” shares
no crossings with any other Seifert circles, then the crossing between C’ and C” is nugatory and the
statement of the theorem holds. So assume that this is not the case and let C1, Cs, ..., C; be the

other Seifert circles sharing crossings with C”. The orientations of C1, Cs, ..., C; are the same as that
of C" and there are no crossings between any two of them. A case of j = 2 is shown in Figure 11. We
will reroute the overpass at the crossing between C’ and C” along Ci, Cy, ..., C; as shown in Figure

11 (keeping the strand over the crossings we encounter).
\X _7__/_.\./_._\

FiGURE 10. The local effect of rerouting the overpass to the Seifert circle structure:
the two original Seifert circles remain unchanged.

Rerouting the overpass this way will only create new crossings over some crossings between the C;’s
and its neighbors other than C”. The effect of this rerouted strand to the Seifert circle decomposition
structure locally is shown in Figure 10, which does not change the Seifert circles C1, Co, ..., Cj, but
the weights of the edges connecting to the vertices corresponding to them in Gg(D’) (where D’ is the
new link diagram after the rerouting) may have changed from those of in Gg(D). See Figure 12.

Cy

FiGURE 11. Left: The overpass at the single crossing to be rerouted; Right: The two
Seifert circles merge into one after the overpass is rerouted as shown.

FiGUrE 12. How the Seifert graph of the link in Figure 11 changed after the rerouting.

At the end, we arrive at a new link diagram D’ that is equivalent to D, but with one less Seifert
circle. The result then follows since the number of Seifert circles in D’ is an upper bound of the braid
index of D', hence D. O
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If D is a reduced alternating link diagram and Gg(D) contains no edges of weight one, then for any
pair of Seifert circles in D that are adjacent in Gg(D), they share at least two crossings and these
crossings are of the same signs (in fact all crossings on one side of any Seifert circle of D are of the
same sign). Let 71 be the total number of positive crossings in D, ot be the number of pairs of Seifert
circles in D that share positive crossings, and let 7~ be the total number of negative crossings in D,
0~ be the number of pairs of Seifert circles in D that share negative crossings. We are now ready to
prove our main theorem.

Proof of Theorem 1.1. “==" If the braid index of D is n then Gg(D) is free of edges of weight 1
by Theorem 5.4.

“«—=" We will prove this in two steps. In the first step, we construct a specific leaf vertex in
U € FH (D) whose contribution to P(D, z, a) contains a term of the form (—1)t @) zt)—n+1gn—w(D)-1
where t~(U) = 77 —20~ and t(U) = 77 +7~ —20~. Similarly we construct a specific leaf vertex in V €
F~ (D) whose contribution to P(D, z, a) contains a term of the form (—1)t” (M +n—1t0V)=nt1—n-w(D)+1
where t (V) =77 — 20" and t(V) = 7~ + 7" — 20" In the second step we show that if a leaf vertex
U € FH(D) makes a contribution to the a”®*(P)~1 term in P(D,z,a), then t~(U') < 7= — 20
Similarly, if a leaf vertex V' € F~(D) makes a contribution to the a="~“(P)*1 term in P(D, z,a),
then ¢~ (V') <77 — 207,

Combining the results of the these two steps will then lead to the conclusion of the theorem since
the result from the second step implies that t(U') < 77 +77 — 20~ and t(V') <77 + 77 —20T. So
7T 4+ 77 — 20~ is the maximum power of z in the coefficient of the ™ “(P)=! term in P(D, z,a) and
7= + 7t — 20" is the maximum power of z in the coefficient of the a="~*(P)*! term in P(D, z,a).
Furthermore, these maximum powers can only be contributed from U’ € F*(D) and V' € F~ (D)
that are obtained by smoothing all positive crossings of D and all negative crossings of D except two
between each pair of Seifert circles sharing negative crossings in the case of U’, and by smoothing all
negative crossings of D and all positive crossings of D except two between each pair of Seifert circles
sharing positive crossings in the case of V. Apparently any such &', V' will make exactly the same
contributions to P(D, z,a) as that of i and V. Thus E =n —w(D) —1 and e = —n —w(D) + 1. So
E—-e=2(n—1)and (F—e)/2+1=a-span/2 + 1 =n and the theorem follows.

Step 1. Choose a castle that is free of trapped Seifert circles. Let Cy be the base Seifert circle of
the castle with starting point p and ending point ¢ on its floor. Let us travel along D starting at p.

Case 1. The crossings between Cj and its adjacent Seifert circles are all positive. If Cy is clockwise,
then we need to apply the descending rule. We will encounter the first crossing from its under strand.
We will stay with the component obtained by smoothing this crossing. So we are still traveling on
Cy after this crossing is smoothed. We then encounter the next crossing from its under strand and
we can again smooth this crossing. Repeating this process, we arrive the first component of U by
smoothing all the crossings between Cy and its adjacent neighbors. If Cy is counter clockwise then
we will be applying the ascending rule and we can also obtain a component of &/ by smoothing all
crossings along Cy. It is apparent that after we remove this new component from the diagram, the
resulting new diagram is still alternating and has n — 1 Seifert circles left.

Case 2. The crossings between Cjy and its adjacent Seifert circles are all negative. If Cj is clockwise,
then we need to apply the descending rule. Let C be the first Seifert circle with which Cjy shares a
crossing as we travel along C from p. In this case we encounter the first crossing from its over strand.
Therefore we have no choice but to keep this crossing. This moves us to C';. Keeping in mind that
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by the given condition Cy and C share at least two crossings and all crossings between C7 and C
are on the floor of C'; above Fp, as we travel on F} toward the last crossing between Cy and Cy, we
encounter each crossing from an under strand as one can check. So we can smooth all crossings we
encounter (either between Cj and Cj or between F; and F, before we reach the last crossing between
C1 and Cy. We then flip the last crossing to return to Cy. If Cj is adjacent to more Seifert circles,
we repeat the same procedure. Finally we return to the ending point of Fjy and back to the starting
point. See Figure 13 for an illustration, where a case of two floors on top of Fj is shown.

\
P
T yal RV "\
_______ \ " N
<D
D

FiGUurE 13. How to construct a component starting from a base Seifert circle with
negative crossings with its neighbors.

Since smoothing crossings does not change the alternating nature of a diagram, removing this newly
created component will keep the resulting diagram alternating as one can easily see from Figure 13. In
fact, the new diagram is equivalent to the one obtained by smoothing all crossings encountered by the
maximum path of the new component (with the new component removed). So it contains n — 1 Seifert
circles. If Cy is counter clockwise, the above argument is the same after we replace the descending
algorithm by the ascending algorithm.

So in both cases we created a component and the remaining new diagram is still alternating and
contains one less Seifert circle than before. Thus this process can be repeated, at the end we obtain
U, which contains n components (each one is an IS circle). And by the way U is obtained, all positive
crossings have been smoothed, and between any pair of Seifert circles that share negative crossings, all
but two crossings are smoothed. V is obtained in a similar manner in which all negative crossings are
smoothed, and between any pair of Seifert circles that share positive crossings, all but two crossings
are smoothed. This finishes Step 1.

Step 2. Consider a leaf vertex U’ € FT(D) that makes a contribution to the a”~“(P)=! term in
P(D, z,a). By Lemma 5.2, the maximum path of each component of ¢’ is bounded within its defining
castle. Let I'; be the first component of ¢’. Consider a horizontal segment of the maximum path
that represents a local maximum. We leave it to our reader to verify that we will never encounter
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a negative crossing to the left side of I'j, and all crossings to the right of I'y are positive and are
smoothed. Thus, for a given pair of Seifert circles in D that share negative crossings, if I'; crosses
from one to the other, then at least two crossings between them are not smoothed. If I'; does not
cross from one to the other, then removing I'; may change parts of these two Seifert circles but will
not affect the crossings between these two Seifert circles. The same argument can then be applied
to the next component I's, and so on. It follows that for each pair of Seifert circles sharing negative
crossings, at least two crossings cannot be smoothed in ¢’. That is, T~ (') < 7~ — 20~. Similarly,
we have T- (V') <77 —207. O

6. FURTHER DISCUSSIONS

An immediate consequence of Theorem 1.1 is that if D is a reduced alternating link diagram and
Gg(D) is free of cycles (a tree in the case that link is non-splittable), then the braid index of D is
the number of Seifert circles in D since an edge of weight one corresponds to a nugatory crossing in
D which do not exist when D is reduced. From the point view of a Seifert graph, one can compare
the previously known results to our result. For example, in [14], Murasugi showed that if a reduced
alternating link diagram is a star product of elementary torus links (namely torus links of the form
(2, k) with k > 2), then the braid index of the link equals the number of Seifert circles in the diagram.
Links obtained this way include reduced alternating closed braids, for which we gave an alternative
proof in [10]. The Seifert graph of such a link diagram is a single path.

For two Seifert circles of a link diagram D sharing one single crossing, call them a mergeable pair since
the operation used in the proof of Theorem 5.4 merges them into one Seifert circle. Two mergeable
pairs are said to have distance k if the shortest path in Gg(D) from any vertex corresponding to
a Seifert circle in one mergeable pair to that a vertex corresponding to a Seifert circle in the other
mergeable pair contains k edges. Since the operation in the proof of Theorem 5.4 used to combine a
mergeable pair of Seifert circles does not affect the mergeable pairs that are of a distance k > 2 away,
this operation can be applied to these “far away mergeable pairs”, which gives us the following more
general result about a link diagram that is not necessarily alternating.

Theorem 6.1. If a link diagram D contains m mergeable pairs such that each pair is of a distance
at least 2 from the rest, then the braid index of D is at most n —m, where n is the number of Seifert
circles of D.

Corollary 6.2. If a link diagram D contains m mergeable pairs such that each pair is of a distance
at least 2 from the rest, then a-span/2+1 < n—m for the a-span of P(D, z,a) where n is the number
of Seifert circles of D. In particular, if the equality holds, then the braid index of D is equal to n —m.

Of course, a natural next step would be identify those alternating links whose reduced alternating
diagrams contain edges of weight one in their Seifert graphs, for which the equality in the above
generalized MFW inequality holds.
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