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ABSTRACT

CONG ZHAO. Non-nested model selection via empirical likelihood. (Under the
direction of DR. JIANCHENG JIANG)

In this dissertation we propose an Empirical Likelihood Ratio (ELR) test to conduct

non-nested model selection. It allows for heteroscedasticity and it works for any two

supervised statistical learning methods under mild conditions. We establish asymp-

totic properties for the ELR test-statistics in selection between two linear models, a

time-varing coefficient model and a non-parametric model, and two general statistical

learning methods. Simulations demonstrate good finite sample performance of our

hypothesis testing. A real example illustrates the use of our methodology.
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CHAPTER 1: INTRODUCTION

In this paper, we develop an Empirical Likelihood approach to non-nested model

selection via hypotheses testing. Many existing popular model selection criterion

used Penalized Likelihood or Least Square approach, e.g. AIC, BIC, LASSO, etc.

They are widely used in academic and industry area but unfortunately they can not

be applied to every model due to some limitations. The first limitation is that if

we want to make a model selection between two non-nested models, we can not use

the classical approach mentioned above. For instance, a model selection between

Cox’s model and the additive hazard model, which are two commonly used model

in Biostatistics and Econometrics, simply cannot be solved through likelihood or

least square approach. Neither do a model selection between non-parametric model

and time-varying coefficient model, which are heavily studied to determine the co-

integration relationship among financial assets. Another limitation is that the classical

Penalized Likelihood or Least Square approach does not use a hypotheses testing to

compare the performances of different models, so we may have some circumstances

under that we can not make a sufficient decision on which model to select. Say we

have 3 candidate models, whose AIC values are 100, 102 and 120. Model 1 is preferred

since it has the minimum AIC value. However we are not confident to say Model 1 is

definitely better than Model 2 because their AIC values are too close to each other.

Some existing literatures implied hypothesis testing in model selection. Cox(1961,
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1962) introduced a likelihood ratio test when one of competing models is correctly

specified. White (1982) Used the Kullback-Leibler Information Criterion (KLIC),

established the existence, identification, consistency and the asymptotic normality

of the quasi-maximum likelihood estimator (QMLE), and performed several tests for

parametric model misspecification.

Vuong (1989) also used KLIC to measure the closeness of a model to the truth,

introduced a likelihood ratio test for the cases where the competing parametric mod-

els are non-nested, overlapping or nested and whether both, one, or neither contain

the true law generating observations. He showed the asymptotic distribution of the

likelihood ratio statistic is a weighted sum of chi-square distribution or a normal dis-

tribution depending on whether the distributions in the competing models closest to

the truth are observationally identical. The procedure was motivated by the fact that

KLIC measures the distance between a given distribution and the true distribution.

So if the distance between a specified model and the true distribution is defined as

the minimum of the KLIC over the distributions in the model, then the ”best” model

among a collection of competing models is defined to be the model that is closest to

the true distribution. This approach in Vuong (1989) has the desirable property that

it coincides with the usual classical testing approach when the models are nested.

Some other literature introduced a possible extension to the likelihood ratio test.

Fan, Zhang and Zhang (2001) proposed generalized likelihood ratio (GLR) tests and

showed that the Wilks type of results hold for a variety of useful models, including

univariate non-parametric model and varying-coefficient model and their extensions.

The nonparametric maximum likelihood estimate (MLE) usually does not exist, or



3

not optimal even it does exist. So the idea is to replace MLE by a nonparametric

estimate GLR tests. Fan et al. (2001) showed that the GLR tests achieved the

optimal rates of convergence and are adaptively optimal by using a simple choice of

adaptive smoothing parameter. Inspired by this, Fan and Jiang (2005) developed

GLR test for the additive model based on local polynomial fitting and a backfitting

algorithm. A bias reducted version of GLR test was introduced, and a conditional

bootstrap method for approximating the null distributions was conducted. A choice

of optimal bandwidth was also seriously explored. Fan and Jiang (2005) along with

Fan et al. (2001) showed the generality of the Wilks phenomenon and enriched the

applicability of the GLR tests.

In our paper, we use a more natural approach to model selection, the prediction

error (PE) criterion, it allows us to compare any two statistical learning methods

(parametric or nonparametric) under mild conditions. In practice, a statistical learn-

ing procedure is usually preferred if the average prediction error (APE) is smaller.

A natural question may arise, what if the APEs are close among competing models?

In this case how do we judge the closeness and further determine which model is

better? To answer these questions and perform an accurate model selection, inspired

by Owen (1988, 1989, 2001), Zhang and Gijbels (2003), Fan and Zhang (2004), Xue

and Zhu (2006) and Chen and Keilegom (2009), we introduce an empirical likelihood

ratio (ELR) test. It is a nonparametric approach so we don’t necessarily need a

specific parametric structure. Further more it works for any two statistical learning

procedures for the cases where the competing models are non-nested, overlapping

or nested and whether both, one, or neither is misspecified. Because the process of
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ELR test needs no assumptions on the variance of the error term, this test allows for

heteroscedasticity. And we successfully derived a chi-square distribution under the

null hypothesis.

The rest of this dissertation is organized as follows. In Chapter 2 we consider the

model selection between two parametric models. In Chapter 3 we consider the case

where two nonparametric models are compared. In Chapter 4 we show the structure

and asymptotic result of ELR test for two general statistical models. In Chapter 5 we

run simulations for two linear models with homoscedasticity and heteroscedasticity,

and for time-varying coefficient model vs nonparametric model. In Chapter 6 we

consider a real example. Concluding remarks are presented in Chapter 7. Proofs are

contained in the Appendix.



CHAPTER 2: SELECTION OF PARAMETRIC MODELS

2.1 Empirical Likelihood Ratio

Parametric model selection is heavily studied, and many methodologies were in-

troduced. Most of them are conducted on nested models, and nested models means

that one model is included by another. Sometimes we are interested in not just two,

but a family of parametric models’ performances, and a lot of penalized likelihood or

least square approaches are very efficient, e.g. AIC, BIC, LASSO, etc. However, not

so many of them could be applied to non-nested model selection problems. Vuong

(1989) used the Kuillback-Leibler Information Criterion (KLIC), and established the

quasi-maximum likelihood estimator (QMLE). In that paper, the existence, identifi-

cation, consistency and the asymptotic distributions of the QMLE were discussed for

nested, non-nested or overlapping cases.

We want to extend Vuong’s work to a more general model selection problem. But

for nonparametric models, KLIC is not applicable, so we consider a more natural

criterion, the prediction error (PE) criterion. For any statistical learning method, we

can use PE as a measurement of performance, intuitively, one always prefers a model

with smaller average prediction error (APE). Now we need a technique to carry out

the PE criterion model selection.

Empirical likelihood (EL) is a nonparametric technique for constructing confidence
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intervals and hypothesis test. It was introduced by Owen (1988), and the properties

of EL in i.i.d. settings were described in Owen (1988, 1989, 1990), Hall (1990) and

DiCiccio, Hall and Romano (1991), its properties on semi-parametric and nonpara-

metric settings were studied in Zhang and Gijbels (2003), Fan and Zhang (2004), Xue

and Zhu (2006) and Chen and Keilegom (2009). The book written by Owen (2001)

made a great summary of the applications and possible extensions of EL. EL is an

ideal platform to perform our PE criterion model selection. It is a nonparametric

approach so we can apply it to any statistical learning method. To use EL, one must

specify the estimating equations for the parameter of interest, but need not specify

explicitly how to construct standard errors for them. The latter property saves us

from the sensitivity of estimating some variability of a quantity like σ2, and opens up

a chance to study the cases of heteroscedasticity or asymmetric errors.

In this chapter, we only construct and study the asymptotic properties of a empiri-

cal likelihood ratio (ELR) test for a model selection between two linear models. Since

linear model is the very basic and fundamental parametric model, and most of the

parametric models are generalized from linear model. So the asymptotic properties

of ELR on linear model can be easily extended to other parametric models.

Let’s first consider a very simple linear models selection, to determine the response

variable follows a linear model with predictor either X or Z. So we have the two

models,

Yi = αZi + εi (Model 1)
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and

Yi = βXi + εi (Model 2)

Choose one positive integers m, for example, m = b0.9nc. We divide the data into

2 subseries according to the time order, with the first subserie having m observations

and the second having n −m observations. Train the models with the 1st subserie

and compute the prediction errors (PE) for the second subserie.

So mathematically we calculate the average prediction error (APE) in the two

models as

APE1 =
1

n−m

n∑
j=m+1

[Yj − Zjα̂]2,

APE2 =
1

n−m

n∑
j=m+1

[Yj −Xjβ̂]2,

where α̂ and β̂ are the corresponding least square estimators.

Let ε̂1j ≡ Yj − Zjα̂, ε̂2j ≡ Yj −Xjβ̂, ξj = ε̂2
1j
− ε̂2

2j
.

Following Owen (1988), we define the log empirical likelihood ratio as

Rn = −2 log sup
{ n∏
j=m+1

(n−m)pj : pj ≥ 0,
n∑

j=m+1

pj = 1,
n∑

j=m+1

pjξj = 0
}
.

Using the Lagrange multiplier technique, we obtain that pj = 1
n−m

1
1+λξj

,

where λ satisfies
n∑

j=m+1

ξj
1 + λξj

= 0. (2.1)

Then the log empirical likelihood ratio becomes

Rn = 2
n∑

j=m+1

log(1 + λξj). (2.2)

Denote the average prediction error for Model 1 as APE1 and the average prediction
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error for Model 2 as APE2, notice that ξ̄ ≡ 1
n−m

∑n
j=m+1 ξj = APE1 - APE2, is the

measurement of the performance difference between Model 1 and Model 2. The

asymptotic properties of Rn is described in the next section.

2.2 Asymptotic theorems

For a random sample {Yi, Zi, Xi}ni=1, let Ui = (Yi, Zi, Xi)
T .

And for any prediction point U , define

ξ(U) = ε̂2
1(U)− ε̂2

2(U) = h(Fm, U),

where Fm is the empirical distribution of the training sample {U1, · · · , Um}.

Denote µξ = E[ξ(U)], σ2
ξ = V ar[ξ(U)].

Given the pair of competing models Model 1 and Model 2, it is natural to select

the model which has a smaller APE. Notice that even though a model is selected, it

may not be correctly specified. So given the above measure of distance, we consider

the following hypotheses and definitions,

H0 : µξ = 0

meaning that Model 1 and Model 2 are equivalent, against

H1 : µξ < 0

meaning that Model 1 is better that than Model 2, or

H2 : µξ > 0

meaning that Model 1 is worse than Model 2.
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To present the asymptotic distribution of ELR test statistic Rn, we first introduce

the following lemma.

Lemma 2.1. In the two models above, at any prediction point U , for dependent

variable Y under an unknown distribution,

µξ ≡ E[h(Fm, U)] = Σ−1
X µ2

XY − Σ−1
Z µ2

ZY +O(
1

m
),

σ2
s ≡ V ar[E[h(Fm, U)|U ]] = Σ−4

Z µ4
ZY V ar(Z

2) + Σ−4
X µ4

XY V ar(X
2) + 4Σ−2

Z µ2
ZYE(Z2Y 2)

+ 4Σ−2
X µ2

XYE(X2Y 2)− 2Σ−2
Z Σ−2

X µ2
ZY µ

2
XYCov(Z2, X2)− 4Σ−3

Z µ3
ZYE(Z3Y )

− 4Σ−3
X µ3

XYE(X3Y ) + 4Σ−2
Z Σ−1

X µ2
ZY µXYE(Z2XY ) + 4Σ−1

Z Σ−2
X µZY µ

2
XYE(ZX2Y )

− 8Σ−1
Z Σ−1

X µZY µXYE(ZXY 2) + o(1),

σ2
ξ ≡ V ar[h(Fm, U)] = σ2

s +O(
1

m
),

σ2
t ≡ V ar[E[h(Fm, U)]|Fm]] = O(

1

m2
),

where ΣZ ≡ E[Z2
i ], ΣX ≡ E[X2

i ], µZY ≡ E[ZiYi], µXY ≡ E[XiYi].

Thus for Model 1 and Model 2 discussed in this chapter, we have the following

asymptotic theorem for ELR test statistic Rn.

Theorem 2.1. If there exists a small δ > 0 such that E[ξ2+δ(U)] <∞,

(I)Under H0,

Rn → χ2
1.

(II)Under H1 or H2,

Rn → +∞.

From Theorem 2.1, given a significant level α, we can conduct a model selection
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procedure based on the following decision rule.

If Rn < χ2
1(α), then we can not reject H0 : µξ = 0, we say the two models are

asymptotically equivalent.

If Rn > χ2
1(α), so one model is sufficiently better than another one.

Further more, if Rn > χ2
1(α) and APE1−APE2 < 0, Model 1 is better than Model

2.

If Rn > χ2
1(α) and APE1 − APE2 > 0, Model 2 is better than Model 1.

To give an insight of Lemma 2.1 and Theorem 2.1, let’s consider that the true value

of Y is generated from a mixture of Model 1 and Model 2. i.e.

Yi = θαZi + (1− θ)βXi + εi,

where 0 6 θ 6 1, εi is independent of Zi and εi is independent of Xi.

With some simple algebra, we can show that µXY = θαµXZ + (1− θ)βΣX ,

µZY = θαΣZ + (1− θ)βµXZ . So

µξ = Σ−1
X µ2

XY − Σ−1
Z µ2

ZY +O(
1

m
)

= −θ2α2ΣZ(1− Σ−1
Z Σ−1

X µ2
XZ) + (1− θ)2β2ΣX(1− Σ−1

Z Σ−1
X µ2

XZ) +O(
1

m
)

Furthermore, for two centered variables X and Z, let ρ be the correlation coefficient

between X and Z, ρ = Cov(X,Z)√
V ar(X)V ar(Z)

= µXZ√
ΣXΣZ

. Apply the above result,

µξ = −θ2α2ΣZ(1− ρ2) + (1− θ)2β2ΣX(1− ρ2) +O(
1

m
) (2.3)

If θ increases within (0, 1), intuitively, Y is more affected by Model 1, so Model

1 should make a better prediction thus Model 1 is preferred. Mathematically, if θ
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increases, from equation (3.3), µξ decreases and eventually µξ will be less than 0. So

Applying Theorem 2.1, Rn → +∞, and APE1 − APE2 → µξ < 0. we are confident

to say Model 1 is better than Model 2. If θ decreases within (0, 1), follow the same

argument, intuitively and mathematically, Model 2 is better than Model 1.

We can also see from equation (2.3), if ρ is closer to 0, which means that X and Z

are less correlated, then µξ is more distinguished from 0. Using Theorem 2.1, Model

1 and Model 2 are more likely to be distinguished. But if ρ is closer to 1 or -1,

which means that X and Z are more correlated, then µξ gets closer to 0. Again using

Theorem 2.1, we might not be able to distinguish Model 1 and Model 2.

Numerical studies of this example are in Chapter 5, Example 1 through Example

4.



CHAPTER 3: SELECTION OF NONPARAMETRIC MODELS

3.1 Empirical Likelihood Ratio

In this chapter we extend the ELR test to selection of nonparametric models.

Especially we are interested in the selection between time-varying coefficient linear

regression and nonparametric regression inspired by the folllowing situation.

Cointegration relationship widely exists in the financial area, for instance Consump-

tion and Income, Interest Rate and Money Demand. The definition of cointegration

is that if two or more time series are individually integrated (in the time series sense)

but some linear combination of them has a lower order of integration, then the series

are said to be cointegrated. So studying the cointegration relationship is critical in

financial area for the reason that we can estimate the relationship of non-stationary

financial assets, and once the cointegrating relationship is identified, it can be used in

a form of error-correction. Two popular families of models used to estimate the coin-

tegration are time-varying coefficient linear regression and nonparametric regression.

Let’s now consider that we have a random sample {Yi, Xi}ni=1 and have found that

there exists some in-sample significant evidence of ”nonlinearity” between Yi and Xi.

We are interested in further investigating whether the documented ”nonlinearitry”

is the true nonlinearity under the stationarity condition or the documented ”nonlin-

earity” is due to the time-varying parameter in a linear regression model, which of
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course is nonstationary (or locally stationary).

For this reason we conduct a model selection between a time-varying linear regres-

sion model,

Yi = β(Zi)Xi + εi, (Model 3)

and a non-parametric model,

Yi = m(Xi) + εi, (Model 4)

where {Xi} and {Zi} are independent.

Following Jiang (2014), we introduce the following training and testing procedure.

Choose two positive integers l and q such that n > lq, for example, l = b0.1nc and

q = 4. Divide the data into q+ 1 subseries according to the time order, with the first

subseries having m ≡ n−ql observations and each of the remaining q sebseries having

l observations. Compute the one-step prediction errors for each of the remaining q

subseries using the estimated model, based on the historical data.

Mathematically we define the average prediction error (APE) in Model 3 and 4 by

APE3 =
1

ql

q∑
k=1

n−kl+l∑
j=n−kl+1

(Yj − β̂k(Zj)Xj)
2,

APE4 =
1

ql

q∑
k=1

n−kl+l∑
j=n−kl+1

(Yj − m̂k(Xj))
2,

where β̂k(z) = [ 1
n−kl

∑n−kl
i=1 X2

iKh1(Zi− z)]−1[ 1
n−kl

∑n−kl
i=1 XiYiKh1(Zi− z)] is the local

linear estimator,

m̂k(x) = [ 1
n−kl

∑n−kl
i=1 Jh2(Xi−x)]−1[ 1

n−kl
∑n−kl

i=1 Jh2(Xi−x)Yi] is the Nadaraya-Watson

kernel estimator.

Moreover, Kh1(·) = 1
h1
K( ·

h1
) and Jh2(·) = 1

h2
J( ·

h2
) are kernel functions in Model 3
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and Model 4 respectively, h1 and h2 are the corresponding bandwidths.

Let ε̂3,k,j ≡ Yj − β̂k(Zj)Xj, ε̂4,k,j ≡ Yj − m̂k(Xj), ξk,j = ε̂2
3,k,j − ε̂2

4,k,j.

Following Owen (1988), we define the log empirical likelihood ratio as

Rn = −2 log sup
{ q∏
k=1

n−kl+l∏
j=n−kl+1

(qlpk,j) : pk,j > 0,
∑
k

∑
j

pk,j = 1,
∑
k

∑
j

pk,jξk,j = 0
}
,

Using the Lagrange multiplier technique, we obtain that pk,j = 1
ql

1
1+λξk,j

,

where λ satisfies
q∑

k=1

n−kl+l∑
j=n−kl+1

ξk,j
1 + λξk,j

= 0. (3.1)

Then the log empirical likelihood ratio becomes

Rn = 2

q∑
k=1

n−kl+l∑
j=n−kl+1

log(1 + λξk,j). (3.2)

Notice that ξ̄ ≡ 1
ql

∑q
k=1

∑n−kl+l
j=n−kl+1 ξk,j = APE3 - APE4, is the measurement of the

performance difference between Model 3 and Model 4. The asymptotic properties of

Rn are described in the next section.

3.2 Asymptotic theorems

The asymptotic results in this section are based on i.i.d. data, but they can be

easily extended to stationary time series data. Similar to Chapter 2, for a random

sample {Yi, Zi, Xi}ni=1, let Ui = (Yi, Zi, Xi)
T .

And for any prediction point U , define

ξ(U) = ε̂2
3(U)− ε̂2

4(U) = h(Fm, U),

where Fm is the empirical distribution of the training sample {U1, · · · , Um}.
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Denote µξ = E[ξ(U)], σ2
ξ = V ar[ξ(U)].

Given the pair of competing models Model 3 and Model 4, it is natural to select

the model which has a smaller APE. Notice that even though a model is selected, it

may not be correctly specified. So given the above measure of distance, we consider

the following hypotheses and definitions,

H0 : µξ = 0

meaning that Model 3 and Model 4 are equivalent, against

H1 : µξ < 0

meaning that Model 3 is better that than Model 4, or

H2 : µξ > 0

meaning that Model 3 is worse than Model 4.

The following lemma is introduced before we head to the asymptotic distribution

of ELR test statistic Rn.

Lemma 3.1. In the two models above, at any prediction point U , for dependent
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variable Y under an unknown distribution,

µξ ≡ E[h(Fm, U)] =
m+ 1

m
[µ2
Y − Σ−1

X µ2
XY ] +

1

mh1

Σ−1
X v(K)E[X2Y 2g(Z)−1]

− 1

mh2

v(J)E[Y 2f(X)−1] + o(
1

m
),

σ2
s ≡ V ar[E[h(Fm, U)|U ]] = Σ−4

X µ4
XY V ar(X

2) + 4µ2
Y V ar(Y ) + 4Σ−2

X µ2
XYE(X2Y 2)

− 4Σ−3
X µ3

XYE(X3Y ) + 4Σ−2
X µ2

XY µYE(X2Y ) + 4Σ−1
X µ2

XY µ
2
Y − 8Σ−1

X µXY µYE(XY 2) + o(1),

σ2
ξ ≡ V ar[h(Fm, U)] = σ2

s +O(
1

m
),

σ2
t ≡ V ar[E[h(Fm, U)]|Fm]] = o(

1

m
),

where ΣX ≡ E[X2
i ], µY ≡ E[Yi], µXY ≡ E[XiYi], f(·) and g(·) are the true densities

of X and Z variable respectively, and v(K) =
∫
K2(u)du, v(J) =

∫
J2(u)du.

Similar to parametric model selection, we have the following asymptotic results of

the ELR test under different hypotheses.

Theorem 3.1. If there exists a small δ > 0 such that E[ξ2+δ(U)] <∞,

(I)Under H0,

Rn → χ2
1.

(II)Under H1 or H2,

Rn → +∞.

From Theorem 3.1, given a significant level α, we can conduct a model selection

procedure based on the following decision rule.

If Rn < χ2
1(α), then we can not reject H0 : µξ = 0, we say the two models are

asymptotically equivalent.
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If Rn > χ2
1(α), so one model is sufficiently better than another one.

Further more, if Rn > χ2
1(α) and APE3−APE4 < 0, Model 3 is better than Model

4.

If Rn > χ2
1(α) and APE3 − APE4 > 0, Model 4 is better than Model 3.

The performance of Theorem 3.1 is mostly affected by the value of µξ, and for

Model 3 and Model 4, base on Lemma 3.1, the value of µξ is totally determined by

the true structure of dependent variable Y .

For instance, if

Yi = sin(πZi) + cos(2πZi)Xi + εi,

where Zi∼U [0, 1], Xi∼U [0, 2].

Intuitively, Y is generated from Model 3, so Model 3 should be preferred. Mathe-

matically, with simple calculation, we can get µξ = − 8
π2 . So Applying Theorem 3.1,

Rn → +∞, and APE3 − APE4 → µξ < 0. So we are confident to say Model 3 is

better than Model 4.

But if

Yi = exp(Xi)cos(Xi) + εi,

where Xi∼U [0, 2].

Intuitively, Y is generated from Model 4, so Model 4 should be preferred. Mathe-

matically, with simple calculation, we can get µξ ≈ 0.234. So Applying Theorem 3.1,

Rn → +∞, and APE3 − APE4 → µξ > 0. Thus we are confident to say Model 4 is

better than Model 3.

Lastly, if Y is generated from a model which is included in both Model 3 and Model
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4, that is a linear model with constant coefficients. For example

Yi = Xi + εi.

Intuitively, Y can be regarded as being generated from either Model 3 or Model 4,

so it’s hard for us to distinguish the two models. Mathematically, we can get µξ = 0,

so applying Theorem 3.1, Rn → χ2
1, it’s very likely that Model 3 and Model 4 can

not be distinguished.

A numeric study of these examples mentioned above is included in Chapter 5

Example 5.



CHAPTER 4: EMPIRICAL LIKELIHOOD RATIO TEST

4.1 Basic Framework

In this chapter we discuss the ELR test on model selection for two general sta-

tistical models. This is an original fundamental framework applied to parametric or

nonparametric, nested, non-nested or overlapping two statistical learning methods

with mild conditions. It benefits from the fact that prediction error (PE) criterion

can be applied to any models. Unlike AIC or BIC which are widely used in academic

and industry area, PE criterion does not have any limitations on the number of pa-

rameters included in models. It opens the door for us to consider more variety of

methodologies when we try to fit a model to a real problem, and gives a statistical

measurement for the ”distance” between any two models, therefore helps us to draw

a decision on which model would best fit the data.

Suppose we have two supervised statistical learning models M1, M2.

Yi = µ1(Ui) + εi (M1)

and

Yi = µ2(Ui) + εi (M2)

where Ui is a vector of response and predictive variables, for example, one response

variable Yi and two predictive variables Xi, Zi are involved in Model M1 and Model
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M2, then Ui ≡ {Yi, Xi, Zi}T .

We use the same simple process as in Chapter 2 to calculate prediction errors and

more importantly to illustrate the process. For a random sample {Ui}ni=1, Choose

one positive integers m, for example, m = b0.9nc. Divide the data into 2 subseries

according to the time order, with the first subserie having m observations and the

second having n−m observations. Train the models with the 1st part and compute

the prediction errors (PE) for the second part.

The average prediction error for Model M1 is defined as

APE1 =
1

n−m

n∑
j=m+1

ε̂2
1(Uj),

where ε̂1(Uj) = Yj − µ̂1(Uj) is the prediction error for a prediction point Uj based on

historic data {Ui}mi=1 under Model M1.

Similarly, we define the average prediction error for Model M2 is defined as

APE2 =
1

n−m

n∑
j=m+1

ε̂2
2(Uj),

where ε̂2(Uj) = Yj− µ̂2(Uj) is the prediction error for observation Uj based on historic

data {Ui}mi=1 under Model M2.

At a prediction point U , define ξ(U) = ε̂2
1(U)− ε̂2

2(U), and µξ = E[ξ(U)]. We use

µξ as the measurement of performance difference of the two learning procedures, since

µξ = E[APE1 − APE2].

Similar to Chapter 2 and Chapter 3, we consider the following hypotheses and

definitions,

H0 : µξ = 0
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meaning that Model M1 and Model M2 are equivalent, against

H1 : µξ < 0

meaning that Model M1 is better that than Model M2, or

H2 : µξ > 0

meaning that Model M1 is worse than Model M2.

Following Owen (1988), we define the log empirical likelihood ratio as

Rn = −2 log sup
{ n∏
j=m+1

(n−m)pj : pj ≥ 0,
n∑

j=m+1

pj = 1,
n∑

j=m+1

pjξj = 0
}
,

where ξj = ξ(Uj). Using the Lagrange multiplier technique, we obtain that pj =

1
n−m

1
1+λξj

, where λ satisfies
n∑

j=m+1

ξj
1 + λξj

= 0. (4.1)

Then the log empirical likelihood ratio becomes

Rn = 2
n∑

j=m+1

log(1 + λξj). (4.2)

4.2 Asymptotic theorems

For any prediction point U , define

ξ(U) = ε̂2
1(U)− ε̂2

2(U) = h(Fm, U)

where Fm is the empirical distribution of {U1, · · · , Um}.

Denote µξ = E[ξ(U)], σ2
ξ = V ar[ξ(U)].

Theorem 4.1. Under the following technical conditions:
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(1) ∃δ > 0 such that E[ξ2+δ(U)] <∞,

(2) V ar{E[h(Fm, U)|Fm]} = o( 1
n
)

(3) E{V ar[h(Fm, U)|U ]} = o(1)

Then we have the asymptotic distribution of ELR test statistics Rn:

(I)Under H0,

Rn → χ2
1.

(II)Under H1 or H2,

Rn → +∞.

From Theorem 4.1, given a significant level α, we can conduct a model selection

procedure based on the following decision rule.

If Rn < χ2
1(α), then we can not reject H0 : µξ = 0, we say the two models are

asymptotically equivalent.

If Rn > χ2
1(α), so one model is sufficiently better than another one.

Further more, if Rn > χ2
1(α) and APE1 − APE2 < 0, Model M1 is better than

Model M2.

If Rn > χ2
1(α) and APE1 − APE2 > 0, Model M2 is better than Model M1.

The ELR test procedure for two general statistical learning methods is the same as

what we described in Chapter 2 for two linear models and Chapter 3 for a time-varying

coefficient model and a nonparametric model. The differences are the necessary of

the three technical conditions.

To help people better understanding these conditions. Condition (1) implies the

existence of 4th moment of prediction errors, and adds a boundary to the difference
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of squared prediction errors. Recall that the average of ξ(U) is the difference of

the average prediction error of the two competing models, when E[ξ2+δ(U)] = ∞,

it means the two models are too much different. So we don’t need to consider this

model selection if Condition (1) is not satisfied. Condition (2) and (3) are technical

conditions to prove Theorem 4.1, they also give boundaries to the difference of squared

prediction errors like Condition (1). What’s more important is that for a lot of

statistical learning models, Condition (2) and (3) are satisfied. According to Lemma

2.1 and Lemma 3.1, linear model, time-varying coefficient model and nonparametric

model satisfy Condition (2) and Condition (3). And it’s not hard to check that many

generalized linear models like logistic regression and many other kernel regression

satisfy Condition (2) and (3). This gives a wide application of Theorem 4.1. There

might be more statistical learning procedures satisfying the conditions in Theorem

4.1 and it needs future work to discover.



CHAPTER 5: SIMULATIONS

5.1 Two Linear Models

The asymptotic result from Chapter 2 through Chapter 4 are based on i.i.d. data,

but our theorem result can be extended to time series data. In this chapter, all the

data we used were stationary time series. To show the performance of our ELR test,

from Example 1 to Example 4, we used the first 90% data in the time order as training

group, and the last 10% as test group.

Example 1:

We conducted a model selection between

Yi = α0 + α1Zi + εi (5.1)

Yi = β0 + β1Xi + εi (5.2)

Y is generated from model (5.1) with α0 = 0 and α1 = 4,

or model (5.2) with β0 = 0 and β1 = 4, where

Zi and δi ∼ AR(0.7), εi ∼ N(0, 1),

Xi = bZi + cδi.

Different values of (b, c) were used to make {Zi}, {Xi} have different correlation

coefficients ρ but the same variance.

Follow the notation in Chapter 2, we define false positive (FP) and false negatives
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(FN) as

FP={Model 5.1 and Model 5.2 are equivalent but either Model 5.1 or Model 5.2 is

preferred},

FN1={Model 5.1 is better but not preferred},

FN2={Model 5.2 is better but not preferred}.

500 simulations were conducted with different sample size n, significant level α =

5%. Following the time order, the first 90% of the data were used as training sample,

the last 10% were test sample.

You could see from Table 1 that as the correlation of random variable Z and X

increases, the ”distance” between Model 5.1 and Model 5.2 decreases, it gets harder

for us to distinguish these two models. However the percentage that we made a wrong

specification is still very low, the ELR testing was carried out very well.

Table 1: ELR for Two Linear Models

FN1 FN2

ρ2 n=200 n=500 n=1000 n=200 n=500 n=1000
0 0 0 0 0 0 0

0.5 0 0 0 0 0 0
0.95 0.084 0.002 0 0.078 0.002 0

Example 2:

Same setting as Example 1 but with heteroscedasticity in the true model: Y is

generated from Yi = Zi+Ziεi, or Yi = Xi+Xiεi. The simulation result is summarized

in Table 2.

From Table 2, we can see our ELR test works still well with heteroscedasticity, and

as sample size increases, the false negative rates get lower.
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Table 2: Two Linear Models with Heteroscedasticity

FN1 FN2

ρ2 n=200 n=500 n=1000 n=200 n=500 n=1000
0 0.002 0 0 0.004 0 0

0.5 0.098 0.01 0 0.094 0.012 0
0.95 0.238 0.048 0.014 0.244 0.052 0.014

Example 3: Same setting as Example 1 but Y is generated from a mixture of

Model 5.1 and Model 5.2:

Yi = (1− θ)Zi + θXi + εi,

where 0 6 θ 6 1.

In this set up, as we discussed in Chapter 2, if θ = 0.5, following simple algebra, we

can get µξ = 0, then Model 5.1 and Model 5.2 are equivalent. If 0 6 θ < 0.5, it’s not

hard to see that µξ < 0, so Model 5.1 is better than Model 5.2. And if 0.5 < θ 6 1,

following the same argument, we have µξ > 0, so Model 5.2 is better than Model 5.1.

In this simulation, we used θ = 0, 0.2, 0.5, 0.8 or 1. When θ = 0.5, since the two

models are equivalent, H0 is true, so we only report FP, in Table 3, as sample size

increases, FP gets closer to the significant level 0.05. When θ = 0 or 0.2, Model 5.1

is better, so we only consider FN1. And when θ = 0.8 or 1, Model 5.2 is better, so we

only consider FN2. From Table 3, as |θ| approaches 1, the power (Power = 1 - FN)

of EPL test gets higher and when sample size is large enough, the power = 1.

Example 4: We now consider a model selection between

Yi = α0 + α1Zi + εi (5.3)
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Yi = β0 + β1Zi + β2Xi + εi (5.4)

Y is generated from model 5.4 with β0 = 0, β1 = 1− θ and β2 = θ, where θ = 0, 0.2,

0.4, 0.6, 0.8 or 1.

Let Zi and Xi ∼ AR(0.7), Zi and Xi are independent, εi ∼ N(0, 1).

Since Model 5.3 is included in Model 5.4, this is a model selection between two

nested models. For this set up of dependent variable, we only need to consider FP

and FN2 defined in Example 1, because Model 5.4 is at least as good as Model 5.3

(with θ = 0 meaning two models are equivalent).

Different θ values were used to show the power of this hypothesis testing. For

θ > 0, Power = 1 - FN2. The simulation result is summarized in Table 3.

From Table 4, when θ = 0, Model 5.3 is equivalent to Model 5.4, as sample size

increases, the FP (Type I error) in the simulation gets very close to the significant

level α = 0.05. And when θ > 0, Model 5.4 is better than 5.3 since the data were

generated from Model 5.4. As θ increases, the ”difference” between Model 5.3 and

Model 5.4 gets larger, so does the power (Power = 1 - FN2) of the test, and the power

goes to 1.

Table 3: Dependent Variable is a Mixture of Two Models

θ n=200 n=500 n=1000
FN1

0 0.19 0.012 0
0.2 0.424 0.118 0.006

FP
0.5 0.106 0.064 0.054

FN2

0.8 0.406 0.13 0.008
1 0.178 0.018 0
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Table 4: ELR Type I Error and Power

FP
θ n=200 n=500 n=1000
0 0.098 0.058 0.052

FN2

θ n=200 n=500 n=1000
0.2 0.852 0.792 0.7
0.4 0.664 0.484 0.232
0.6 0.45 0.208 0.032
0.8 0.354 0.034 0
1 0.2 0.016 0

5.2 Time Varying Coefficient Model vs Non-parametric Model

Example 5:

Now we do a simulation of a model selection between time-varying coefficient model

and non-parametric model,

Yi = β0(Zi) + β1(Zi)Xi + εi (5.5)

Yi = m(Xi) + εi. (5.6)

Y is generated from

Yi = Zi + cos(10Zi)Xi + εi,

in this setting Model 5.5 is better than Model 5.6,

Yi = exp(Xi) cos(Xi) + εi,

in this setting Model 5.6 is better than Model 5.5, or

Yi = Xi + εi,

in this setting the two models are equivalent.
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Where Xi, Zi ∼ AR(0.7), Xi and Zi are independent, εi ∼ N(0, 1).

We divide the data into 5 subseries according to the time order, with the first

subseries having 60% observations and each of the remaining 4 sebseries having 10%

observations. Following the methods introduced in Chapter 3, compute the one-step

prediction errors for each of the remaining 4 subseries using Model 5.5 and Model

5.6, based on the historical data. It means that according to the time order, we use

the first 60% observations to predict and calculate the prediction errors on the data

lying from 60% to 70% of the whole data set. And use the first 70% observations

to predict and calculate the prediction errors on the data lying from 70% to 80% of

the whole data set and so on. With the above process, we follow the construction in

Chapter 3 to conduct the EPL test.

Follow the notation in Chapter 3, we define false positive (FP) and false negatives

(FN) as

FP={Model 5.5 and Model 5.6 are equivalent but either Model 5.5 or Model 5.6 is

preferred},

FN1={Model 5.5 is better but not preferred},

FN2={Model 5.6 is better but not preferred}.

500 simulations were conducted with different sample size n. Gaussian Kernel

were applied to both two models, but bandwidths in the two models were optimized

separately in the sense that the optimal bandwidth minimized the average prediction

error in its own model. The simulation result is summarized in Table 5.

We could see from Table 5 that FN1 and FN2 get lower and eventually equal to 0

as sample sizes increase, at the mean time, the power of this test is very high and
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equal to 1 when n = 1000. The false positive rate gets very close to the significant

lever 5% when the sample size is large enough.

Table 5: Time Varying Coefficient Model vs Non-parametric Model

n=200 n=500 n=1000
FN1 0.018 0.002 0
FN2 0.066 0.014 0
FP 0.138 0.078 0.058



CHAPTER 6: A REAL EXAMPLE

We consider a real application of ELR test here. We have a subset of the Coronary

Risk-Factor Study (CORIS) baseline survey, carried out in three rural areas of the

Western Cape, South Africa (Rousseauw et al., 1983, Hastie, Tibshirani and Friedman

2009). The data can be downloaded from the website

http://statweb.stanford.edu/ tibs/ElemStatLearn/datasets/SAheart.data. The aim

of the study was to establish the intensity of ischemic heart disease risk factors in

that high-incidence region. The data represent white males between 15 and 64, there

are 160 cases and a group of 302 controls. The response variable is the presence or

absence of coronary heart disease (chd) at the time of the survey. The risk factors

considered are systolic blood pressure (sbp), total lifetime tobacco usage in kilograms

(tobacco), low densiity lipoprotein cholesterol (ldl), family history of heart disease

(famhist), obesity, current alcohol consumption and age at onset.

Since the response variable chd is binary, it’s natural to fit a logistic regression

model by maximum likelihood, giving the results shown in Table 6. A insignificant

p-value (greater than 5%) suggests a coefficient can be dropped from the model. Each

of these correspond to a test of the null hypothesis that the coefficient is zero, while

all the others are not.

We found some surprises in the coefficients in Table 6. Neither systolic blood

pressure (sbp) nor obesity is significant. This confusion is a result of the correlation
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Table 6: Logistic Linear Regression Fit to the South African Heart Disease Data

Coefficient Z value P-value
(Intercept) -4.130 -4.285 0

sbp 0.006 1.023 0.306
tobacco 0.080 3.034 0.002

ldl 0.185 3.219 0.001
famhist 0.939 4.177 0
obesity -0.035 -1.187 0.235
alcohol 0.001 0.136 0.892
age 0.043 4.181 0

between the set of predictors, since on their own, both sbp and obesity are significant

with positive sign, but with many other correlated variables, they are no longer

needed.

Now we need to do some model selection, to find a subset of the variables that are

sufficient for explaining their joint effect on the dependent variable chd. As suggested

in Hastie, Tibshirani and Friedman (2009), one way is to drop the least significant

coefficient, and refit the model, this is done repeatedly until no further terms can be

dropped from the model. A better but more time consuming strategy is to refit each

of the models with one variable removed at a time, and then perform an analysis

of deviance to decide which variable to exclude. The residual deviance of a fitted

model is minus twice its log-likelihood, and the deviance between two models is the

difference of their individual residual deviances. The above two strategies gave the

same final model with predictive variables tabacco, ldl, famhist and age (Model

6.1) as shown in Table 7.

The second model we consider for this example is to explore the nonlinearities in

the functions using natural splines. As suggested in Hastie, Tibshirani and Friedman
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Table 7: Stepwise Logistic Regression Fit to the South African Heart Disease Data
(Model 6.1)

Coefficient Z value P-value
(Intercept) -4.204 -8.437 0
tobacco 0.081 3.163 0.002

ldl 0.168 3.093 0.002
famhist 0.924 4.141 0

age 0.044 4.521 0

(2009), we use four natural spline bases and three interior knots for each variable

in the model except for variable famhist. Since famhist is a two-level factor, it is

coded by a simple binary variable, and is associated with a single coefficient in the

fit of the model.

We carried out a backward stepwise deletion process, dropping terms from this

model while preserving the group structure of each term, rather than dropping one

coefficient at a time. The AIC was used to drop terms, in the sense that all the terms

remaining in the final model would cause AIC to increase if deleted from the model.

The final model (Model 6.2) is shown in Table 8. Notice that both sbp and obesity

are included in Model 6.2 while they are not in logistic linear Model 6.1.

Table 8: Logistic regression Model 6.2 after stepwise deletion of natural splines terms.
The column AIC is the AIC when that term is deleted from the full model (labelled
”none”).

Terms Df AIC P-value
none 502.09
sbp 4 503.16 0.059

tobacco 4 506.48 0.015
ldl 4 508.39 0.006

famhist 1 521.44 0
obesity 4 502.24 0.086
age 4 517.86 0

Model 6.1 and Model 6.2 are the ”best” model in their own approach, one is
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through logistic linear regression, the other is from backward stepwise deletion of

natural cubic splines. Their AICs are 495.44 and 502.09 respectively, so it’s hard to

distinguish these two models in AIC criterion. To make a further comparison between

Model 6.1 and Model 6.2, we consider the prediction error (PE) criterion and carry

out our empirical likelihood ratio (ELR) test.

Following the discussion in Chapter 2, we denote PE1 as the prediction error in

Model 6.1 and PE2 as the prediction error in Model 6.2. Define µξ = E[PE1−PE2].

Our aim is to make a hypothesis testing among:

H0 : µξ = 0

meaning that Model 6.1 and Model 6.2 are equivalent, against

H1 : µξ < 0

meaning that Model 6.1 is better that than Model 6.2, or

H2 : µξ > 0

meaning that Model 6.1 is worse than Model 6.2.

From the theorems in Chapter 2, given a significant level α, performing a ELR test,

we can conduct a model selection procedure based on the following decision rule.

If p− value > α, we say the two models work equivalently.

If p− value < α and APE1 − APE2 < 0, Model 6.1 is better than Model 6.2.

If p− value < α and APE1 − APE2 > 0, Model 6.2 is better than Model 6.1.

A 10 fold cross validation is used here to capture the prediction errors. The cross
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validation process is repeated 100 times for Model 6.1 and Model 6.2 (the selection

of fold is random in each cross validation process). The result of the ELR test is

summarized in Table 9. The average prediction error (APE) is 0.2776 for Model 6.1

and 0.2860 for Model 6.2.

Table 9: ELR Test between Model 6.1 and Model 6.2

’-2LLR’ P-value APE1 − APE2

43.70647 0 -0.008
AIC APE

Model 6.1 495.44 0.278
Model 6.2 502.09 0.286

The column ’-2LLR’ is the test-statistics in ELR test, which follows a chi-square

distribution with d.f. = 1 under H0. From Table 9 we can get, even though it’s

hard to distinguish Model 6.1 and Model 6.2 in AIC criterion, the ELR test gives a

sufficient conclusion that the logistic linear model 6.1 is far better than the logistic

natural cubic splines model 6.2 for the South African heart disease data in prediction

error criterion.

Model 6.2 is slightly more generous than Model 6.1 since both sbp and obesity

are included. And it captures the nonlinearity of predictive variables. However, there

are 1 + 1 + 4 * 5 = 22 splines are used in Model 6.2, in other words, 22 parameters

are included in Model 6.2, compared with 5 parameters in Model 6.1, Model 6.2 is

overfitting. It has poor predictive performance, as it overreacts to minor fluctuations

in a new training data.



CHAPTER 7: DISCUSSION

In this dissertation we propose an Empirical Likelihood Ratio (ELR) test to conduct

non-nested model selection. We showed the asymptotic properties for the ELR test-

statistics in selection between two linear models, a time-varing coefficient model and

a non-parametric model, and two general statistical learning methods under mild

conditions. It allows for heteroscedasticity in the error term. We would like to

mention two interesting future research topics related to this dissertation. First, there

might be softer technical conditions or more applicable methods to use the ELR test.

Second, we can consider a ELR test with variance of prediction errors taken into the

estimation equation, so the ELR would have two constrains. This might improve the

performance of the test on heteroscedasticity cases. We are currently exploring these

extension.
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APPENDIX A: SKETCH OF PROOFS

Lemma 2.1 and Lemma 3.1

Proof of Lemma 2.1.

For the two linear models

Yi = αZi + εi (Model 1)

and

Yi = βXi + εi (Model 2)

ξj = (Yj − Z̄2−1
ZY Zj)

2 − (Yj − X̄2−1
XYXj)

2

→ Σ−2
Z ZY

2
Z2
j − Σ−2

X XY
2
X2
j − 2Σ−1

Z ZY ZjYj + 2Σ−1
X XYXjYj

So h̃(Fm) = E[h(Fm, Uj)|Fm] = Σ−1
Z ZY

2 − Σ−1
X XY

2 − 2Σ−1
Z µZYZY + 2Σ−1

X µXYXY

and

µξ = Eh̃(Fm) = Σ−1
X µ2

XY − Σ−1
Z µ2

ZY +O(
1

m
).

Now to calculate σ2
t = V ar[h̃(Fm)], we need to calculate all the corresponding vari-

ances and covariances in the above expression of h̃(Fm).

V ar(ZY ) =
m(m− 1)(m− 2)(m− 3)

m4
µ4
ZY +

C4
2

m
µ2
ZYE(Z2Y 2)

− [
m− 1

m
µ2
ZY +

1

m
E(Z2Y 2)]2 +O(

1

m2
)

=
m− 6

m
µ4
ZY +

6

m
µ2
ZYE(Z2Y 2)− m− 2

m
µ4
ZY −

2

m
µ2
ZYE(Z2Y 2) +O(

1

m2
)

=
4

m
µ2
ZY V ar(ZY ) +O(

1

m2
).
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Follow the same argument, V ar(XY
2
) = 4

m
µ2
XY V ar(XY ) +O( 1

m2 ).

Cov(ZY
2
, XY

2
) =

m− 6

m
µ2
ZY µ

2
XY +

1

m
µ2
XYE(Z2Y 2) +

1

m
µ2
ZYE(X2Y 2)

+
4

m
µZY µXYE(ZXY 2)− m− 2

m
µ2
ZY µ

2
XY −

1

m
µ2
XYE(Z2Y 2)

− 1

m
µ2
ZYE(X2Y 2) +O(

1

m2
)

=
4

m
µZY µXYE(ZXY 2)− 4

m
µ2
ZY µ

2
XY +O(

1

m2
).

Cov(ZY
2
, ZY ) =

m− 3

m
µ3
ZY +

3

m
µZYE(Z2Y 2)− m− 1

m
µ3
ZY −

1

m
µZYE(Z2Y 2)

=
2

m
µZY V ar(ZY ) +O(

1

m2
),

follow the same argument, Cov(XY
2
, XY ) = 2

m
µXY V ar(XY ) +O( 1

m2 ).

Cov(ZY
2
, XY ) =

m− 3

m
µ3
ZY µXY +

1

m
µXYE(Z2Y 2) +

2

m
µZYE(ZXY 2)

− m− 1

m
µ2
ZY µXY −

1

m
µXYE(Z2Y 2) +O(

1

m2
)

=
2

m
µZYE(ZXY 2)− 2

m
µ2
ZY µXY +O(

1

m2
),

follow the same argument, Cov(XY
2
, ZY ) = 2

m
µXYE(ZXY 2)− 2

m
µZY µ

2
XY +O( 1

m2 ).
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Now plug in all the variances and covariances above to calculate σ2
t ,

σ2
t =

4

m
Σ−2
Z µ2

ZY V ar(ZY ) +
4

m
Σ−2
X µ2

XY V ar(XY ) +
4

m
Σ−2
Z µ2

ZY V ar(ZY )

+
4

m
Σ−2
X µ2

XY V ar(XY )− 8

m
Σ−1
Z Σ−1

X µZY µXYE(ZXY 2) +
8

m
Σ−1
Z Σ−1

X µ2
ZY µ

2
XY

− 8

m
Σ−2
Z µ2

ZY V ar(ZY )− 8

m
Σ−2
X µ2

XY V ar(XY ) +
8

m
Σ−1
Z Σ−1

X µZY µXYE(ZXY 2)

− 8

m
Σ−1
Z Σ−1

X µ2
ZY µ

2
XY +

8

m
Σ−1
Z Σ−1

X µZY µXYE(ZXY 2)− 8

m
Σ−1
Z Σ−1

X µ2
ZY µ

2
XY

− 8

m
Σ−1
Z Σ−1

X µZY µXYE(ZXY 2) +
8

m
Σ−1
Z Σ−1

X µ2
ZY µ

2
XY +O(

1

m2
)

= O(
1

m2
)

To calculate σ2
s = V ar[E[h(Fm, Uj)|Uj]], first of all, we can get

h∗(Uj) = E[h(Fm, Uj)|Uj]

= Σ−2
Z µ2

ZYZ
2
j − Σ−2

X µ2
XYX

2
j − 2Σ−1

Z µ2
ZYZjYj + 2Σ−1

X µ2
XYXjYj + o(1)
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So

σ2
s = V ar[h∗(Uj)] = Σ−4

Z µ4
ZY V ar(Z

2) + Σ−4
X µ4

XY V ar(X
2) + 4Σ−2

Z µ2
ZY V ar(ZY )

+ 4Σ−2
X µ2

XY V ar(XY )− 2Σ−2
Z Σ−2

X µ2
ZY µ

2
XYCov(Z2, X2)− 4Σ−3

Z µ3
ZY [E(Z3Y )− ΣZµZY ]

+ 4Σ−2
Z Σ−1

X µ2
ZY µXY [E(Z2XY )− ΣZµXY ] + 4Σ−1

Z Σ−2
X µZY µ

2
XY [E(ZX2Y )− ΣXµZY ]

− 4Σ−3
X µ3

XY [E(X3Y )− ΣXµXY ]− 8Σ−1
Z Σ−1

X µZY µXY [E(ZXY 2)− µZXµXY ] + o(1)

= Σ−4
Z µ4

ZY V ar(Z
2) + Σ−4

X µ4
XY V ar(X

2) + 4Σ−2
Z µ2

ZYE(Z2Y 2)

+ 4Σ−2
X µ2

XYE(X2Y 2)− 2Σ−2
Z Σ−2

X µ2
ZY µ

2
XYCov(Z2, X2)− 4Σ−3

Z µ3
ZYE(Z3Y )

− 4Σ−3
X µ3

XYE(X3Y ) + +4Σ−2
Z Σ−1

X µ2
ZY µXYE(Z2XY ) + 4Σ−1

Z Σ−2
X µZY µ

2
XYE(ZX2Y )

− 8Σ−1
Z Σ−1

X µZY µXYE(ZXY 2) + o(1).

And follow a similar approach, we can get E[V ar[h(Fm, Uj)|Uj]] = O( 1
m

). Thus from

law of total variance, σ2
ξ = V ar[E[h(Fm, Uj)|Uj]]+E[V ar[h(Fm, Uj)|Uj]] = σ2

s+O( 1
m

).

Proof of Lemma 3.1

For the time-varying coefficient linear regression model,

Yi = β(Zi)Xi + εi, (Model 3)

and the non-parametric model,

Yi = m(Xi) + εi. (Model 4)

By the definition in Chapter 3, let h∗(Fn−kl, Uj) = E[h(Fn−kl, Uj)|Uj], but since

h∗(Fn−kl, Uj) are i.i.d., the value of k won’t affect its distribution. We simply consider
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ξj = h(Fm, Uj), and h∗(Uj) = E[h(Fm, Uj)|Uj], where m = n− ql. So

ξj = (Yj − β̂(Zj)Xj)
2 − (Yj − m̂(Xj))

2

= (Yj −X2Kh1(Z − Zj)
−1
XYKh1(Z − Zj)Xj)

2

− (Yj − Jh2(X −Xj)
−1
Jh2(X −Xj)Y )2

→ Σ−2
X g(Zj)

−2XYKh1(Z − Zj)
2
X2
j − f(Xj)

−2Jh2(X −Xj)Y
2

− 2Σ−1
X g(Zj)

−1XYKh1(Z − Zj)XjYj + 2f(Xj)
−1Jh2(X −Xj)Y Yj.

So using change of variable,

h̃(Fm) = E[h(Fm, Uj)] = Σ−1
X

1

m2

∑
i 6=k

XiYiXkYk

∫
K(u)K(v)dudv

+ Σ−1
X

1

m2

∑
i

X2
i Y

2
i

∫
g(Zi + uh1)−1K2(u)

1

h1

du− 1

m2

∑
i 6=k

YiYk

∫
J(u)J(v)dudv

− 1

m2

∑
i

Y 2
i

∫
f(Xi + uh1)−1J2(u)

1

h2

du− Σ−1
X µXY

2

m

∑
i

XiYi

∫
K(u)du

+ µY
2

m

∑
i

Yi

∫
J(u)du

= Σ−1
X

1

m2

∑
i 6=k

XiYiXkYk + Σ−1
X v(K)

1

m2h1

∑
i

X2
i Y

2
i g(Zi)

−1 − 1

m2

∑
i 6=k

YiYk

− v(J)
1

m2h2

∑
i

Y 2
i f(Xi)

−1 − Σ−1
X µXY

2

m

∑
i

XiYi + µY
2

m

∑
i

Yi + o(
1

m
).

Taking another expectation,

µξ = E[h(Fm, U)] =
m+ 1

m
[µ2
Y − Σ−1

X µ2
XY ] +

1

mh1

Σ−1
X v(K)E[X2Y 2g(Z)−1]

− 1

mh2

v(J)E[Y 2f(X)−1] + o(
1

m
).
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To calculate σ2
t = V ar[h̃(Fm)], we firstly calculate all the corresponding variances

and covariances in the expression of h̃(Fm).

V ar(
1

m2

∑
i 6=k

XiYiXkYk) =
m− 6

m
µ4
XY +

4

m
µ2
XYE(X2Y 2)− m− 2

m
µ4
XY

=
4

m
µ2
XY V ar(XY )

V ar(
1

m2

∑
i 6=k

YiYk) =
m− 6

m
µ4
Y +

4

m
µ2
YE(Y 2)− m− 2

m
µ4
Y =

4

m
µ2
Y V ar(Y )

V ar(
1

m

∑
i

XiYi) =
1

m
V ar(XY )

V ar(
1

m

∑
i

Yi) =
1

m
V ar(Y )
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V ar( 1
m2h1

∑
iX

2
i Y

2
i g(Zi)

−1) = O( 1
m2h1

) = o( 1
m

),

V ar( 1
m2h2

∑
i Y

2
i f(Xi)

−1) = O( 1
m2h2

) = o( 1
m

).

Cov(
1

m2

∑
i 6=k

XiYiXkYk,
1

m2

∑
i 6=k

YiYk)

=
m− 6

m
µ2
XY µ

2
Y +

4

m
µXY µYE(XY 2)− m− 2

m
µ2
XY µ

2
Y =

4

m
µXY µYCov(XY, Y )

Cov(
1

m2

∑
i 6=k

XiYiXkYk,
1

m

∑
i

XiYi)

=
m− 3

m
µ3
XY +

2

m
µXYE(X2Y 2)− m− 1

m
µ3
XY =

2

m
µXY V ar(XY )

Cov(
1

m2

∑
i 6=k

XiYiXkYk,
1

m

∑
i

Yi)

=
m− 3

m
µ2
XY µY +

2

m
µXYE(XY 2)− m− 1

m
µ2
XY µY =

2

m
µXYCov(XY, Y )

Cov(
1

m2

∑
i 6=k

YiYk,
1

m

∑
i

XiYi)

=
m− 3

m
µXY µ

2
Y +

2

m
µYE(XY 2)− m− 1

m
µXY µ

2
Y =

2

m
µYCov(XY, Y )

Cov(
1

m2

∑
i 6=k

YiYk,
1

m

∑
i

Yi)

=
m− 3

m
µ3
Y +

2

m
µYE(Y 2)− m− 1

m
µ3
Y =

2

m
µY V ar(Y )

Cov(
1

m2

∑
i

XiYi,
1

m

∑
i

Yi)

=
m− 1

m
µXY µY +

1

m
E(XY 2)− µXY µY =

1

m
Cov(XY, Y ).

Follow a similar calculation, we can get that other covariances in the expression of

h̃(Fm) are o( 1
m

).
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Now we plug in all the variances and covariances to calculate σ2
t ,

σ2
t = V ar[h̃(f −m)] =

4

m
Σ−2
X µ2

XY V ar(XY ) +
4

m
µ2
Y V ar(Y ) +

4

m
Σ−2
X µ2

XY V ar(XY )

+
4

m
µ2
Y V ar(Y )− 8

m
Σ−1
X µXY µYCov(XY, Y )− 8

m
Σ−2
X µ2

XY V ar(XY )

+
8

m
Σ−1
X µXY µYCov(XY, Y ) +

8

m
Σ−1
X µXY µYCov(XY, Y )− 8

m
µ2
Y V ar(Y )

− 8

m
Σ−1
X µXY µYCov(XY, Y ) + o(

1

m
)

= o(
1

m
)

To calculate σ2
s = V ar[h∗(Uj)], first of all, using change of variable,

h∗(Uj) = E[h(Fm, Uj)|Uj]

= Σ−2
X g(Zj)

−2X2
j µ

2
XY

m− 1

m

∫
K(u)K(v)g(Zj + uh1)g(Zj + vh1)dudv

+ Σ−2
X g(Zj)

−2X2
jE(X2Y 2)

1

mh1

∫
K2(u)g(Zj + uh1)du

− µ2
Y

m− 1

m

∫
J(u)J(v)g(Xj + uh1)g(Xj + vh1)dudvf(Xj)

−2

− f(Xj)
−2E(Y 2)

1

mh2

∫
J2(u)f(Xj + uh2)du

− 2Σ−1
X XjYjg(Zj)

−1µXY

∫
K(u)g(Zj + uh1)du

+ 2f(Xj)
−1YjµY

∫
J(u)f(Xj + uh2)du

=
m− 1

m
Σ−2
X µ2

XYX
2
j +

1

mh1

Σ−2
X E(X2Y 2)v(K)g(Zj)

−1X2
j −

m− 1

m
µ2
Y

− 1

mh2

E(Y 2)v(J)f(Xj)
−1 − 2Σ−1

X µXYXjYj + 2µY Yj +O(h2
1 + h2

2)

= Σ−2
X µ2

XYX
2
j − µ2

Y − 2Σ−1
X µXYXjYj + 2µY Yj + o(1)
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So

σ2
s = V ar[h∗(Uj)] = Σ−4

X µ4
XY V ar(X

2) + 4Σ−2
X µ2

XY V ar(XY ) + 4µ2
Y V ar(Y )

− 4Σ−3
X µ3

XYCov(X2, XY ) + 4Σ−2
X µ2

XY µYCov(X2, Y )

− 8Σ−1
X µXY µYCov(XY, Y ) + o(1)

= V ar[h∗(Uj)] = Σ−4
X µ4

XY V ar(X
2) + 4µ2

Y V ar(Y ) + 4Σ−2
X µ2

XYE(X2Y 2)

− 4Σ−3
X µ3

XYE(X3Y ) + 4Σ−2
X µ2

XY µYE(X2Y ) + 4Σ−1
X µ2

XY µ
2
Y

− 8Σ−1
X µXY µYE(XY 2) + o(1).

Follow a similar calculation, we can get E[V ar[h(Fm, Uj)|Uj]] = O( 1
m

). Thus from

law of total variance,

σ2
ξ = V ar[E[h(Fm, Uj)|Uj]] + E[V ar[h(Fm, Uj)|Uj]] = σ2

s +O(
1

m
)

.
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APPENDIX B: SKETCH OF PROOFS

Theorem 4.1

Under the following technical conditions:

(1) ∃δ > 0 such that E[ξ2+δ(U)] <∞,

(2) V ar{E[h(Fm, U)|Fm]} = o( 1
n
)

(3) E{V ar[h(Fm, U)|U ]} = o(1)

Part (I) Under H0 : µξ = 0.

First of all, we derive the distribution of ξ̄ = 1
n−m

∑n
j=m+1 h(Fm, Uj).

Since Fm, Um+1, · · · , Un are independent, using Hajek Projection Principle, we obtain

that the Hajek projection of ξ̄ = 1
n−m

∑n
j=m+1 h(Fm, Uj) is

ξ̄∗ = E[ξ̄|Fm] +
n∑

j=m+1

E[ξ̄|Uj]− (n−m)E(ξ̄)

= h̃(Fm) +
n∑

j=m+1

E[
1

n−m

n∑
k=m+1

h(Fm, Uk)|Uj]− (n−m)µξ

Notice that

E[h(Fm, Uk)|Uj] =


h∗(Uj) if k = j

µξ if k 6= j

So

ξ̄∗ = h̃(Fm) +
1

n−m

n∑
k=m+1

h∗(Uj) +
(n−m)(n−m− 1)

n−m
µξ − (n−m)µξ

=
1

n−m

n∑
k=m+1

h∗(Uj) + h̃(Fm)− µξ

=
1

n−m

n∑
k=m+1

h∗(Uj) + h̃(Fm)
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The first term is the average of n−m i.i.d. random variables h∗(Uj), which has a mean

of E[h∗(U)] = E[E[h(Fm, U)|Fm]] = µξ = 0, and a variance of V ar[h∗(Uj)] = σ2
s .

The remainder h̃(Fm) is o( 1√
n
) by Condition (2) and Markov’s inequality. Thus by

the central limit theorem,

ξ̄∗ ∼ N(0, (n−m)−1σ2
s) (B1)

Calculation of V ar(ξ̄) is a bit more involved, but not too bad. For j 6= k,

Cov(ξj, ξk) = Cov[h(Fm, Uj), h(Fm, Uk)]

= E[(h(Fm, Uj)− µξ)(h(Fm, Uk)− µξ)]

= E[h(Fm, Uj)h(Fm, Uk)]− µ2
ξ

= E[E[h(Fm, Uj)h(Fm, Uk)|Fm]]− µ2
ξ

Because Uj, Uk are i.i.d given Fm, taking expectation of the conditional expectation

over Fm,the two terms in the conditional expectation are independent. So

Cov(ξj, ξk) = E[E[h(Fm, Uj)|Fm] · E[h(Fm, Uk)|Fm]]− µ2
ξ

= E[h̃(Fm)h̃(Fm)]− µ2
ξ

= σ2
t

Thus

V ar(ξ̄) =
1

(n−m)2

n∑
j=m+1

n∑
j=m+1

Cov(ξj, ξk)

=
1

(n−m)2
[
∑
j

V ar(ξj) +
∑
j 6=k

Cov(ξj, ξk)]

=
1

n−m
σ2
ξ + (1 +

1

n−m
)σ2

t .
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And σ2
t = o( 1√

n
) because of Condition (2).

Thus

V ar(ξ̄) =
1

n−m
σ2
ξ + o(

1√
n

). (B2)

From Condition (3), we can get σ2
ξ/σ

2
s → 1, and combine (B1), (B2), we have

V ar[ξ̄]/V ar[ξ̄∗]→ 1.

So using Hajek projection asymptotic theorem,

ξ̄ − E[ξ̄]√
V ar[ξ̄]

− ξ̄∗ − E[ξ̄∗]√
V ar[ξ̄∗]

P→ 0.

Therefore using (B2) again, we have the asymptotic distribution of ξ̄,

√
n−m ξ̄

σξ
∼ N(0, 1) (B3)

So when µξ = 0, and using (B3) and Markov’s inequality, we have ξ̄ = Op(n
− 1

2 ).

Under Condition (1) that E[ξ2+δ(U)] <∞ for a small δ > 0,

we can get V ar[h2(Fm, U)|Fm] <∞, and thus V̂ = Op(1).

From (4.1)

0 =
1

n−m
∑
j

ξj
1 + λξj

=
1

n−m
∑
j

ξj(1 + λξj)− λξ2
j

1 + λξj

= ξ̄ − λ 1

n−m
∑
j

ξ2
j

1 + λξj
6 ξ̄ − |λ|

1 + |λ|ξ∗
V̂

So|λ|(V̂ − ξ∗ξ̄) 6 ξ̄,

where ξ∗ = maxj |ξj| = op(n
1
2 ).

This is because P ((n−m)−
1
2 ξ∗ > ε) 6 E[(n−m)−

2+δ
2 ξ∗2+δ]

ε2+δ
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6 (n−m)−
δ
2 ε−(2+δ) 1

n−m
∑

j E(ξ2+δ
j )→ 0 for a small δ > 0 and δ satisfies E(ξ2+δ

j ) <∞.

And since ξ̄ = Op(n
− 1

2 ), V̂ = Op(1),

thus λ = Op(n
− 1

2 ).

Again from (4.1),

0 =
1

n−m
∑
j

ξj − λ
1

n−m
∑
j

ξ2
j (1 + λξj)

1 + λξj
+

1

n−m
∑
j

(λξj)
2ξj

1 + λξj

= ξ̄ − λV̂ +
1

n−m
∑
j

(λξj)
2ξj

1 + λξj

Since ξ∗ = op(n
1
2 ), λ = Op(n

− 1
2 ), we have max |λξj| = op(1). So the third term on the

right side of the equation is op(n
− 1

2 ).

Thus λ = V̂ −1ξ̄ + δ, where δ = op(n
− 1

2 ).

Plug this into (4.2), the log empirical likelihood ratio

Rn = 2
n∑

j=m+1

log(1 + λξj) = 2
n∑

j=m+1

[λξj −
1

2
λ2ξ2

j +Op(λ
3ξ3
j )]

= 2(n−m)V̂ −1ξ̄2 + 2(n−m)δξ̄ − (n−m)V̂ −1ξ̄2 − (n−m)δ2V̂ − 2(n−m)δξ̄

+ 2
∑
j

Op(λ
3ξ3
j )

= (n−m)V̂ −1ξ̄2 − (n−m)δ2V̂ + 2
∑
j

Op(λ
3ξ3
j )

The lead term tends to χ2
1 because of (B3) and V̂ → σ2

ξ , the second term is op(1)

because δ = op(n
− 1

2 ), and for some finite C > 0, the third term 6 C
∑

j(λ
3ξ3
j ) 6

qmC|λ|3ξ∗V̂ = op(1). Therefore

Rn → χ2
1.
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Part (II) When µξ 6= 0, without loss of generality, assume that µξ > 0.

Let µξ = τnσξn
− 1

2 , then τn > 0 and τn → +∞.

Follow the same proof of Part (I), it’s not hard to see that Rn ≈ χ2
1(τ 2

n). And since

τn → +∞, we have Rn → +∞.

Theorem 2.1 and Theorem 3.1

With Lemma 2.1 and Lemma 3.1, the technical conditions in Theorem 4.1 can be

easily verified. Thus Theorem 2.1 and Theorem 3.1 are simply proved by Theorem

4.1.


