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ABSTRACT

SHAOXIN HONG. Interval Estimation for Semiparametric Predictive Regression.
(Under the direction of DR. JIANCHENG JIANG)

Predictive regression is an important research topic in financial econometrics. Var-

ious estimation methods have been proposed for it, but they suffer from complicated

asymptotic limits which depend on whether or not the predicting variable is station-

ary. This makes inference for the predictability difficult. In this paper we employ

a nonlinear projection to deal with endogeneity of the state variable which results

in a new semiparametric predictive regression model for describing the relationship

between the state variables and the asset return. We propose a weighted profile esti-

mation equation method to estimate the parameters and an empirical likelihood ratio

test to examine the predictability of state variables. We establish the asymptotic

normality of the proposed estimator and show the Wilks theorem holds for the test

statistic regardless of predicting variables being stationary or not. This provides a

unifying method for constructing confidence regions of the coefficients of state vari-

ables. Simulations demonstrate favorable finite sample performance of the proposed

method over some existing approaches. Real examples illustrate the value of our

methodology.
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CHAPTER 1: INTRODUCTION

As an important research topic in economics and finance, the predictability of stock

returns has been studied in decades. In many financial applications, for example, the

conditional capital asset pricing, the mutual fund performance, and the optimal asset

allocations, the predictability problem is routinely examined. An enormous amount of

empirical research effort demonstrates the predictability of stock returns using various

lagged financial variables, such as the book-to-market ratio, the dividend yield, the

dividend-price (d-p) ratio, the earning-price (e-p) ratio, the interest rates, and the

term spread and default premia, among others. An essential question is often asked

about whether the returns are predictable in a specific financial application. Because

many of the predictive financial variables are highly persistent and even nonstationary,

it is challenging to answer this question.

In the literature, many works have been devoted to addressing the above question

through predictive regression. Let yt be the predictable variable, say excess stock

returns, in period t, and let xt−1 be the state variable, say log d-p ratio, in period

t− 1. A nice framework of the predictive regression is

yt = β0 + β1 xt−1 + εt, xt = ρ xt−1 + ut, 1 ≤ t ≤ n, (1.1)

where E(ut|xt−1) = 0, but E(εt|xt−1) may be nonzero. In many applications, the

correlation between innovations εt and ut is nonzero ( Table 1 in Torous et al., 2004;



2

Table 4 in Campbell and Yogo, 2006), which brings the nonzero correlation between

xt−1 and εt and creates the so-called “endogeneity”. Hence, directly regress yt on

xt−1 may yield a biased ordinary least squares (ols) estimator of β. The parameter

ρ is the unknown degree of persistence of variable xt. When |ρ| < 1, xt is stationary

(Viceira, 1997; Amihud and Hurvich, 2004; Amihud et al., 2009); when ρ = 1, it is

first order integrated (I(1) for short); when ρ = 1+ c/n with c < 0, it is local-to unity

or nearly first order integrated (NI(1) for short); when ρ = 1 + c/n with c > 0, it is

mildly explosive. See Elliott and Stock (1994), Cavanagh, Elliott, and Stock (1995),

Phillips (1988), Torous, Valkanov, and Yan (2004), Campbell and Yogo (2006), Polk,

Thompson, and Vuolteenho (2006), Rossi (2007), and Cai and Wang (2014), etc.

These references validate that predictor xt can be stationary or nonstationary and

highly persistent. This brings much difficulty in modeling. In the following let us

first review three common estimation strategies for model (1.1) and then introduce

our new methodology for alleviating the modeling difficulty.

The first one is the bias correction approach using information conveyed by the

AR(1) process of xt. For example, Kothari and Shanken (1997) and Stambaugh

(1999) suggested the first order bias-corrected ols estimation, Amihud and Hurvich

(2004) proposed the second order bias-correction method, and Lewellen (2004) studied

the conservative bias-correction vehicle which assumes the true autoregressive coeffi-

cient of AR(1) to be close to one. The second approach is the maximum likelihood

estimation in Campbell and Yogo (2006), which assumes that innovations {(εt, ut)}

are independently distributed bivariate normal N(0,Σ). The third one is based on

linear projection and least squares in Amihud and Hurvich (2004), Amihud et al.
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(2009), and Cai and Wang (2014). In such a way, the endogeneity may be removed

from the model by the projection of εt onto ut. For |ρ| < 1, using the linear projection

of εt onto ut, εt = γ ut + vt, Amihud and Hurvich (2004) reexpressed model (1.1) as

yt = β0 + β1xt−1 + γut + vt, (1.2)

where vt is white noise independent of xt and ut at all leads and lags. If ut were

known, the error in model (1.2) would satisfy the classical assumption of ols without

endogeneity. They applied the two-stage least squares regression (tsr) method as

follows: first obtain the ols estimator ρ̂ of ρ, then calculate the fitted residuals ût,

and finally regress yt on xt−1 and ût to obtain an estimate of β. For ρ = 1 + c/n with

c ≤ 0, Cai and Wang (2014) investigated the tsr method and established its limiting

distribution. These works show that the limiting distributions of the estimator of

β are different for I(0), I(1) and NI(1) cases, which makes inference for β difficult,

since one has to decide which limiting distribution is used for inference. In particular,

when ρ is close to one, the variance estimate of the limiting distribution behaves

erratically (Chan, Li and Peng, 2012; Zhu, Cai and Peng, 2014). Hence, it is desired

to establish a unifying inference tool for β. In addition, the above works cannot

assess joint predictability of multiple state variables and thus may suffer from severe

under-fitting problems.

To surmount the above difficulty and to cope with multiple predictive variables

simultaneously, in this paper we employ a nonlinear projection of εt onto ut, which

results in a new semiparametric predictive regression model. This model contains the

above models and incorporates multiple state variables. As indicated above, it is de-
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sired to develop a unifying inference tool which does not need to choose which limiting

distribution to use. To this end, we propose a weighted estimation equation method

for the proposed model. This approach gives us a unifying limiting distribution of

the resulting estimators no matter if the state variables are stationary, I(0), I(1),

NI(1), or slightly explosive. Theoretically, we will establish the asymptotic normality

distribution of the proposed estimator.

Similar weighted estimation was previously studied in the literature, including the

Cauchy estimator in So and Shin (1999), the weighted absolute deviation estimation in

Ling (2005) and Chan and Peng (2005), the weighted least squares estimation in Chan,

Li and Peng (2012) and Zhu, Cai and Peng (2014). However, these works can deal with

linear predictive regression with only one predictor. Further, the resulting estimator

is not efficient for I(0) or stationary processes because of the effect of weights. Our

weighted method borrows the strength of the previous techniques which provide a

unifying limiting distribution, but is different from them. On one hand, our method

can deal with multiple state variables (see Theorems 1-2 and Example 5.3). On the

other hand, it leads to the most efficient estimator with probability going to one when

the state variable is I(0) or stationary under the mixing condition.

Since our aim is to check predictability of state variables, we have to construct

confidence region of β. Our asymptotically normal distribution furnishes us a Wald

type of statistic for the confidence region, but it requires estimating the asymptotic

variance matrix of our estimator. In our experience and also noted in the literature

(Chan, Li, Peng, 2012; Fu, Cai and Peng, 2014), this variance estimator behaves irreg-

ularly for nonstationary cases. This motivates us to propose an empirical likelihood
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method for constructing the confidence region, based on our weighted estimation

equations. The empirical likelihood was initially introduced by Owen (1988). It

has been demonstrated as a powerful nonparametric tool for interval estimates. See

Owen (2001) for an overview. This method has many advantages over the normal

approximation-based method and the bootstrap method for constructing confidence

intervals, such as the transformation respecting, the range of parameter respecting,

and no predetermined shape requirement (Hall and La Scala, 1990; Hall, 1992).

The remainder of this article is organized as follows. In Section 2, we introduce our

semiparametric predictive regression model and the corresponding estimation proce-

dures. In Section 3, we establish our unified asymptotic distribution of the proposed

estimator. In Section 4, we present the empirical likelihood ratio for constructing

confidence region and derive the Wilks theorem. In Section 5, we conduct extensive

simulations to compare finite sample performance of our method with others. In Sec-

tion 6, real examples are used to illustrate the value of the proposed methodology.

Proofs of our theorems are relegated to the Appendix.



CHAPTER 2: SEMIPARAMETRIC PREDICTIVE MODELS

The linear projection method for motivating model (1.2) assumes that E[εt |ut] =

γut. This may not hold in general. Using nonlinear projection εt = φ(ut) + vt, we

extend model (1.2) to

yt = βxt−1 + φ(ut) + vt, (2.1)

where φ(·) is an unknown function. However, ut is not observed. To estimate the

parameters, one needs to use observed residual ût = xt − ρ̂xt−1 to replace ut, and

then estimate the parameters in the model. However, the resulting estimators of

parameters are difficult to study, because their distributions depend on that of ût.

Instead of model (2.1) one may consider the model

yt = βxt−1 + φ(zt) + vt

with {zt} being an observable time series. In this model, the predicted variable xt is

one-dimensional, so it cannot be used to study joint effects of multiple predictors. In

theory and practice, it may be more sensible to incorporate multiple predictors for

correcting model misspecification and for the fact: the predicted variables are usually

correlated and as in multiple linear models a variable may not have predictability after

other useful correlated variables are taken into account. Therefore, in this paper we
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study the following semiparametric model:

yt = x>t−1 β + θ(zt) + vt, xt = (xt,1, . . . , xt,k)
>, (2.2)

where θ(·) is a unknown function, zt is a stationary time series, vt is white noise

uncorrelated with xt−1 and zt, and xt,i is a stationary process or an AR(1) process

satisfying that xt,i = ρi xt−1,i + ut,i, with ut,i being a martingale difference, and |ρi| <

1 or ρi = 1 + γi/n, γi ∈ R, for i = 1, . . . , k. When |ρi| < 1, xt,i is called an I(0)

process; when ρi = 1, it is an I(1) process in the sense that its first order differences

are I(0); when ρi = 1 + γi/n and γi < 0, it is NI(1); when ρi = 1 + γi/n and γi > 0,

it is slightly explosive, which is also called the NI(1) case to avoid abuse of notation

since ρi is nearly one. In this setting, xt has finite variance or infinite variance. The

interesting parameters are vector β.

Model (2.2) contains many existing models studied in the literature. When {xt, yt, zt}

are independent and identically distributed, it reduces to the semiparametric model

widely studied in statistics (Speckman, 1988; Carroll et al., 1997). When θ(·) = 0

and xt−1 = yt−1, it is the AR(1) model studied in Chan and Wei (1987), Phillips and

Han (2008), Chan and Zhang (2009), and Chan, Li and Peng (2012). For univariate

xt, when θ(·) is linear and zt = ût, it becomes the model studied in Cai and Wang

(2014). Since ut = xt − ρxt−1, model (1.2) is equivalent to

yt = γ0 + γ1xt−1 + γ2xt + vt. (2.3)

Hence, model (2.3), the equivalent of model (1.2) studied in Amihud and Hurvich

(2004), is also a special case of model (2.2) with θ(·) = 0. These indicate that our
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proposed model is an important family of predictive regression models.

2.1 Profile Least Squares Estimation

There are different approaches to estimating the unknown parameters in partly

linear regression model (2.2) in i.i.d. cases. The profile least squares method is a

useful one and is semiparametrically efficient (Carroll et al., 1997). We now employ

it in the current setting. Specifically, for any given β, model (2.2) becomes

y∗t = θ(zt) + vt, (2.4)

where y∗t = yt−x>t−1β. The local linear regression technique is then applied to estimate

the function θ(·) by minimizing

n∑
t=1

[y∗t − a− b(zt − z)]2Kh(zt − z)

over (a, b), where Kh(·) = h−1K(·/h) with K(·) being a kernel function and h being a

bandwidth used to control the amount of data in smoothing. The resulting estimate

of θ(z) admits the close form (Fan and Gijbels, 1996)

θ̂(z; β) = â =
n∑
t=1

wt(z)y∗t /
n∑
t=1

wt(z) ≡
n∑
t=1

ξt(z)y∗t ,

where wt(z) = Kh(zt− z){Sn,2(z)− (zt− z)Sn,1(z)} with Sn,j(z) = n−1
∑n

t=1Kh(zt−

z)(zt − z)j, and ξt(z) = wt(z)/
∑n

t=1wt(z). Note that
∑n

t=1 ξt(z) = 1. Substituting

θ̂(zt; β) into (2.2), we obtain

n∑
s=1

ξs(zt)(yt − ys) ≈ β>
n∑
s=1

ξs(zt)(xt−1 − xs−1) + vt, t = 1, . . . , n. (2.5)
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Let

x̃t−1 = xt−1 −
n∑
s=1

ξs(zt)xs−1 (2.6)

and ỹt = yt −
∑n

s=1 ξs(zt)ys. Then the final estimate of β is then the least-squares

estimate

β̂ = (
n∑
t=1

x̃⊗2t−1)
−1

n∑
t=1

x̃t−1ỹt, (2.7)

where a⊗2 = aa> for any matrix a. Function θ(z) can simply be estimated by θ̂(z; β̂).

It is interesting to investigate asymptotic properties of the above estimators, How-

ever, when {xt} is NI(1), I(1) or mildly explosive, the asymptotic behaviors should

be different from the traditional ones (see Cai, Li and Park, 2007). As expected, β̂i

should be n-consistent if xt,i is I(1) or NI(1) and
√
n-consistent for I(0) or stationary

cases (Cai and Wang, 2014), and θ̂(·) should be
√
nh-consistent. In classical settings

where {xt} is stationary, under the mixing condition, β̂ is also
√
n-consistent. This

again creates difficulty in statistical inference for β, since the above complicated lim-

iting properties of β̂ depend on whether the predicted variable is stationary or not. In

other words, it leads to different reference distributions for hypothesis testing prob-

lems about β. Hence, one needs to judge stationarity of each component of xt before

conducting hypothesis testing. Alternatively, one can use a bootstrap procedure to

obtain critical values, but the full sample bootstrap method is inconsistent in NI(1)

or infinite variance settings (Datta, 1996; Hall and Jing, 1998). This motivates us to

suggest a weighted estimation equation procedure for the proposed model.
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2.2 Weighted Profile Score Equation Estimation

The main idea of weighted estimation is to weigh down the contribution of those

observations according to the value of the corresponding predictor so as to eliminate

the effect of infinite variance and non-stationarity on the limiting distribution. To

illustrate our weighting scheme, we begin with the profile least squares score equations

for β.

Note that (2.5) can be rewritten as

vt ≈ yt − x>t−1β − θ̂(zt; β) = ỹt − x̃>t−1β. (2.8)

Then the score equations for the profile least squares estimation for β are

n∑
t=1

x̃t−1(ỹt − x̃>t−1β) = 0. (2.9)

Solving the above equations results in the least squares estimator β̂ in (2.7). How-

ever, as noted before, the limiting distributions of β̂ are different in stationary and

nonstationary cases.

For simple predictive regression with k = 1, it was shown that the weighted least

squares estimation could remove the effect of infinite variance of a predictor (Ling,

2005) and the effect of nonstationarity of a predictor (Chan, Li and Peng, 2012;

Zhu, Cai and Peng, 2014), but for model (2.2) with multiple predictors, the weighted

least squares estimation does not work. This motivates us to propose the following

weighted profile estimation equations:

n∑
t=1

Ωtx̃t−1(ỹt − x̃>t−1β) = 0, (2.10)
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where Ωt = diag(ωt,1, . . . , ωt,k) is a sequence of non-negative definite diagonal matrices

to be chosen and is used to weight down the contributions of data points to the score

equations in (2.9). Solving the above equations leads to our weighted profile score

equation estimator of β:

β̂ω = (
n∑
t=1

Ωtx̃
⊗2
t−1)

−1
n∑
t=1

Ωtx̃t−1ỹt. (2.11)

With the estimator of β at hand, we estimate θ(z) by θ̂ω(z) = θ̂(z; β̂ω).

It is worthy to point out that β̂ω is not any kind of weighted least squares estimator

of model (2.8) even though it is motivated from the score equations in (2.9). In

constructing β̂ω, we used the local linear estimator θ̂(z; β), which is not a weighted

one. This is very critical.

The above method requires specifying ωt,i for i = 1, . . . , k. When k = 1, one viable

choice for ωt is

ω∗t = (δ + x2t−1)
−1/2, (2.12)

where δ is a nonnegative constant, which was previously suggested by several authors.

So and Shin (1999) used ω∗t with δ = 0 and obtained the Cauchy estimators of AR(1)

models. Chan, Li and Peng (2012) employed the weight for united interval estimation

of AR(1) models and found that δ = 1 works well in general. Zhu, Cai and Peng

(2014) applied the weight with δ = 1 for united interval estimation of simple linear

predictive regression. When the underlying process xt is stationary and satisfies the

mixing condition, the weight sequence in (2.12) cannot lead to efficient estimation,

since the unweighted least squares principle is optimal. That is, for the stationary
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cases one should not employ the weighting scheme. This motivates us to propound

the following weights for i = 1, . . . , k:

ωt,i =
{ 1 if i ∈ I,

(1 + ‖x̃t−1,Ic‖2)−1/2 otherwise,

where I = {i : max1≤t≤n n
− 1

2 log(n)|x̃t−1,i| < c∗}, x̃t−1,Ic is the subvector of x̃t−1 with

indexes not in I, and c∗ is a positive constant chosen to maximize the efficiency of

β̂ω. See Section 3. When n−
1
2 log(n) maxt |x̃t−1,i| ≥ c∗, we set ωt,i like the one with

δ = 1 in (2.12), which is used to control the contribution of the ith score equation in

(2.10). For stationary cases with more than 2nd moments, given a positive constant

c∗, we generally have

P ( max
1≤t≤n

n−
1
2 log(n)|x̃t−1,i| < c∗)→ 1, as n→∞.

Hence, we set ωt,i be one if n−
1
2 log(n) maxt |x̃t−1,i| < c∗, so that it leads to the un-

weighted least squares score equation with probability going to one. If all components

of xt are stationary and mixing and have more than second moments, then with prob-

ability going to one all score equations in (2.10) become the profile score equations

in (2.9) and the resulting estimator should be semiparametrically efficient.

Our weight sequence involves constant c∗. Different values of c∗ lead to different

estimators. For a given sample, as c∗ gets small enough, it leads to the weight in

Ling (2005), Chan, Li and Peng (2012), and Zhu, Cai and Peng (2014) when k = 1;

as c∗ gets sufficiently large, all weights are equal to one, which results in unweighted

least squares estimator β̂. Therefore, our weighted score estimation bridges the gap
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between the previous weighting estimation and the ordinary least squares method. In

practice, one can choose c∗ to maximize efficiency of β̂ω. We will explore this choice

later. For the purpose of minimizing prediction errors, one can regard c∗ as tuning

parameter and choose it by cross validation.



CHAPTER 3: ASYMPTOTICS OF THE WEIGHTED ESTIMATION

Throughout the paper, “⇒”denotes weak convergence and “
D→” represents conver-

gence in distribution. Let Un,i(r) = n−1/2x[nr],i, where r = t/n and [x] denotes the

integer part of x. Then, under general conditions on ut,i, for example, the regularity

ones in Phillips (1988), it holds that

Un,i(r)⇒ Uγi(r) (3.1)

as n → ∞, where Uγi(r) =
∫ r
0

exp{(r − s)γi} dW (i)
u (s) is a diffusion process and

W
(i)
u (s) is a one-dimensional Brownian motion with variance σ2

u,i = Var(u1,i) +

2
∑∞

s=2E(u1,ius,i). As demonstrated in Lemma A.1, the weak convergence in (3.1)

can be strengthened to a strong one, which is key to the derivation of our theoretic

results.

The following notation and regularity conditions are needed for our asymptotic

results.

(A0) For i = 1, . . . , k, if xt,i is not an AR(1) process, then it is ρ-mixing with mixing

coefficients ρ∗i (s) satisfying
∑

` ρ
∗
i (`) <∞ or is α-mixing with mixing coefficients

α∗i (s) satisfying
∑

` `
a{α∗i (`)}b <∞, for some 0 < b < 1 and a > b.

(A1) For i = 1, . . . , k, if xt,i is an AR(1) process, then E(u0,i) = 0, E|ut,i|k1+k2 < ∞

for some k1 > 2 and k2 > 0, and {ut,i}∞t=0 is α-mixing with mixing coefficients
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αi(s) satisfying
∑∞

s=1{αi(s)}1−2/k1 <∞.

(A2) Bandwidth h satisfies that h→ 0 and nh→∞, as n goes to ∞.

(A3) Kernel function K(·) is a continuous density with bounded support [0, 1]. Let

µi =
∫ 1

−1 u
iK(u) du and νi =

∫ 1

−1 u
iK2(u) du.

(A4) Time series {zt} is stationary and has continuous stationarity density f(z) with

bounded support supp(f).

(A5) Function θ(z) has a continuous second order derivative θ′′(z) for z ∈ supp(f).

(A6) The errors {vt} are white noises with variance σ2
v = Var(vt) and satisfy that

E|vt|2+δ <∞ for some δ > 0.

(A7) If xt,i is stationary or an AR(1) process with|ρi| < 1 , then the condition expec-

tation αi(z) = E(xt−1,i|zt = z) has continuous second order derivative and the

conditional variance σi(z) = Var(xt−1,i|zt = z) is continuous on z ∈ supp(f).

Furthermore, E|xt,i|4 <∞.

Condition (A0) is very general for a stationary process and assumed in Jiang and

Mack (2001), condition (A1) was used in Phillips (1988), conditions (A2)-(A5) are

standard in local smoothing, and conditions (A6)-(A7) are mild. The finite fourth

moment in (A7) can be relaxed to a 2 + δ moment for achieving robustness but with

some efficiency loss as in traditional robustness estimation.

The following theorem sets up a unifying limit of the proposed estimator.
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Theorem 3.1. Suppose model (2.2) holds with xt,i being stationary or an AR(1)

process with |ρi| < 1 or ρi = 1 + γi/n for some γi ∈ R. Under the conditions of

(A0)-(A7), if nh4 → 0, then

{
n∑
t=1

(Ωtx̃t−1)
⊗2}−1/2(

n∑
t=1

Ωtx̃
⊗2
t−1)(β̂ω − β0)

D−→ N(0, σ2
vIk),

where β0 is the true value of β and Ik is a k × k identity matrix.

Corollary 1. For i = 1, . . . , k, if xt,i is a stationary process satisfying condition

(A0) and E(x2+δt,i ) < ∞, then n−
1
2 log(n) max1≤t≤n |x̃t−1,i| = op(1) and P{ωt,i =

1 for all t} → 1, as n → ∞. This indicates that, when all xt,i satisfy condition

(A0) and have more than second moments, with probability going to one, β̂ω becomes

the unweighted profile least squares estimator β, which is semiparametrically efficient

(Carroll et al., 1997).

Remark By Theorem 3.1, β̂ω is asymptotically unbiased. Its variance can be

approximated by

[{
n∑
t=1

(Ωtx̃t−1)
⊗2}−1/2(

n∑
t=1

Ωtx̃
⊗2
t−1)

2{
n∑
t=1

(Ωtx̃t−1)
⊗2}−1/2]−1σ2

v .

Since σ2
v does not depend on c∗, we choose c∗ to maximize the efficiency or equivalently

the generalized variance of β̂ω. Let ĉ∗ = arg max
c∗

Dn(c∗), where

Dn(c∗) = ‖{
n∑
t=1

(Ωtx̃t−1)
⊗2}−1/2

( n∑
t=1

Ωtx̃
⊗2
t−1
)
‖F ,

where ‖ · ‖F is the Hilbert norm of a matrix.

Using the limiting distribution in Theorem 3.1, one can construct a Wald type of

confidence region of β. This requires estimating σ2
v by the the standard error of the
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model

σ̂2
v = n−1

n∑
t=1

{yt − x>t−1β̂ω − θ̂ω(zt)}2.

However, in our experience and also as noted in Chan, Li and Peng (2012), such

an interval estimate of β has unacceptable coverage probabilities for NI(1), I(1) and

explosive cases, since σ̂2
v behaves erratically. As pointed out in Zhu, Cai and Peng

(2014), a bootstrap method may be used for the interval estimate, but the full sam-

ple bootstrap method is inconsistent for an NI(1) and infinite variance AR process.

The problem may be solved by employing the subsample bootstrap method, but the

subsample size is difficult to choose (Hall and Jing, 1998; Datta, 1996). For this

approach, theoretical justification seems difficult, and associated computational bur-

den is also heavy. This motivates us to consider the empirical likelihood confidence

interval (Owen, 2001) in the next section.



CHAPTER 4: TESTING PREDICTABILITY

As we discussed before, an important application of model (2.2) is testing pre-

dictability of xt−1. In the following we suggest an empirical likelihood method to

construct a confidence region for β or test H0 : β = β0. This approach avoids esti-

mating the asymptotic variance and works for stationary, non-stationary and infinite

variance cases.

For t = 1, . . . , n, let Zt(β) = Ωtx̃t−1(ỹt−β>x̃t−1). Then our weighted score equation

estimator β̂ω solves the weighted score equation
∑n

t=1 Zt(β) = 0. Following Owen

(1990) and Chan, Li and Peng (2012), we define the empirical likelihood ratio as

follows:

L(β) = sup
{ n∏
t=1

(npt) : p1 ≥ 0, . . . , pn ≥ 0,
n∑
t=1

pt = 1,
n∑
t=1

ptZt(β) = 0.
}

Using the Lagrange multiplier technique, we obtain that pt = n−1{1 +λ>Zt(β)}−1.

Then the log empirical likelihood ratio is

`(β) = −2 logL(β) = 2
n∑
t=1

log{1 + λ>Zt(β)},

where λ = λ(β) satisfies

n∑
t=1

Zt(β)/{1 + λ>Zt(β)} = 0. (4.1)

Note that the objective function `(β) is concave in λ, the computational cost to
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evaluate the log empirical likelihood ratio is not expensive. Our next theorem demon-

strates that the Wilks result holds for the above empirical likelihood ratio. This ex-

tends Owen’s (1988, 1990) empirical likelihood ratio to our semiparametric predictive

model.

Theorem 4.1. Suppose conditions in Theorem 3.1 hold and E|vt|3 <∞. Then `(β0)

converges in distribution to χ2(k), a chi squared distribution with degrees of freedom

k, as n goes to ∞.

Using Theorem 4.1, we construct a 100(1− α)% confidence region for β0 as

Iα = {β : `(β) ≤ χ2
k,α},

where χ2
k,α is the α-quantile of χ2(k).

For linear predictive regression, a similar unifying interval estimate was previously

proposed by Zhu, Cai and Peng (2014), based on the empirical likelihood. How-

ever, their method works only for simple predictive regression with a single predictor.

Our procedure allows for multiple predictors and nonlinearity, which provides us a

simultaneous inference tool for the coefficients of predictors. In addition, our empir-

ical likelihood is built upon more efficient score equation estimation than theirs (see

Section 2.2).



CHAPTER 5: SIMULATIONS

To investigate the finite sample performance of the proposed weighted estimation

and empirical likelihood (weel) method and to compare it with other procedures

while applicable, we run 1, 000 simulations for the model

yt = xTt−1 β + θ(zt) + vt, (5.1)

xt,i = ρi xt−1,i + ut,i, ut,i ∼ N(0, 1),

through the following examples, where β is a k-dimensional vector. We set θ(z) =

sin(πz) and consider three distributions of vt: v
(1)
t = N(0, 1), v

(2)
t = t(3), and

v
(3)
t = 0.95N(0, 1) + 0.05N(0, 32). Our estimation involves the choice of bandwidth h

and kernel function K(·). We use the Gaussian kernel and select the rule-of-thumb

bandwidth h = 1.06Sn−1/3 for estimation of β, where S is the sample standard de-

viation of {zt}. This is not optimal, but it works since Theorem 3.1 holds under a

large range of bandwidth. Note that such an h satisfies nh4 → 0 and nh→∞. With

the optimal bandwidth the weel should perform better.

Example 5.1. Generate data from model (5.1) with k = 1, β = 0.5, ρ = 1, and zt

equal to z
(1)
t = xt − xt−1 or z

(2)
t = 0.5z

(2)
t−1 + εt, where εt ∼ N(0, 1). This is I(1) case.

Example 5.2. The setting is the same as in Example 5.1 but with ρ = 0.99, an NI(1)

or I(0) case.
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Example 5.3. Generate data from model (5.1) with k = 3, β = (0.5, 1,−0.7)T , and

zt equal to z
(1)
t = xt,1 − xt−1,1 or z

(2)
t = 0.5z

(2)
t−1 + εt, where εt ∼ N(0, 1). Both xt,1

and xt,2 are AR(1) processes with ρ1 = 0.95 and ρ2 = 1, respectively, and xt,3 =

xt−1,3 + ut,3 + 0.5ut−1,3 is a nonstationary ARIMA(0,1,1) process. This is a mixing

case of one I(0) variable and two I(1) variables.

In each simulation we draw a sample of size n = 200 for Examples 5.1 and 5.2 and

size n = 400 for Example 5.3. Tables 1-2 present summarized results from simulations

for our method, including the average (ave) and standard deviation (std) of β̂ω and

the coverage probability (cp) of the 95% confidence interval among 1, 000 simulations.

It is evident that our weel procedure has very good performance in these examples

in terms of bias, standard deviation and coverage probability.

For the case of I(1) in Example 5.1 and for the case of I(0) or NI(1) in Exam-

ple 5.2, we also run simulations with unweighted profile least squares estimation for

comparison, and the results were almost same and thus omitted for saving space.

This exemplifies semiparametric efficiency of our estimation in the I(0) case, which

is consistent with the theoretical result in Corollary 1. For the I(1) case, the results

from the two estimation methods are also quite similar. This is also expected from the

fact that c∗ is chosen to maximize the efficiency of our estimator. Figure 1 displays

θ̂ω(·) for Example 5.3 with vt ∼ t(3). It is seen that the estimator captures the true

curve very well. For other scenarios, the estimated curves are quite similar and not

reported for saving space.

Example 5.4. To investigate if our weel method works for linear predictive models
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Table 1: Simulation results for estimators of β

Example 1 Example 2

zt = z
(1)
t zt = z

(2)
t zt = z

(1)
t zt = z

(2)
t

v
(1)
t ave 0.5000 .05001 0.4997 0.4993

std 0.0173 0.0165 0.0199 0.0198

cp 94.9% 95.5% 94.8% 95.5%

v
(2)
t ave 0.5002 0.5003 0.4982 0.5002

std 0.0288 0.0298 0.0356 0.0337

cp 93.6% 94.0% 93.9% 94.5%

v
(3)
t ave 0.5003 0.4998 0.4997 0.4996

std 0.0196 0.0198 0.0226 0.0234

cp 94.4% 94.7% 94.7% 94.2%

−1.0 −0.5 0.0 0.5 1.0

−
2

−
1

0
1

2

z

 

(a)

−1.0 −0.5 0.0 0.5 1.0

−
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−
1

0
1

2

z

 

(b)

Figure 1: Example 3 with vt ∼ t(3). (a) - zt = z
(1)
t , (b) - zt = z

(2)
t . Solid - true,

dashed - median curve, dotted - 2.5% and 97.5% pectentiles.
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Table 2: Simulation results for estimators of β in Example 3

zt = z
(1)
t zt = z

(2)
t

v
(1)
t ave (0.5007, 0.9997, -0.7002) (0.5009, 1.0000, -0.7002)

std (0.0190, 0.0100, 0.0072) (0.0189, 0.0099, 0.0067)

cp 94.1% 95.1%

v
(2)
t ave (0.5001, 0.9996, -0.7004) (0.5008, 1.0004, -0.7004)

std (0.0321, 0.0174, 0.0113) (0.0336, 0.0177, 0.0122)

cp 93.5% 93.9%

v
(3)
t ave (0.5002, 0.9999, -0.7002) (0.5006, 0.9997, -0.6998)

std (0.0233, 0.0116, 0.0077) (0.0230, 0.0120, 0.0082)

cp 94.1% 94.0%

and to compare with the two-stage regression (tsr) method in Cai and Wang (2014),

we generate data from model (5.1) with k = 1, β = 0.5, ρ = 1, zt = xt − xt−1,

and θ(z) = z, where εt ∼ N(0, 1). This is the I(1) case in Example 5.1 but with

θ(·) being linear so that the tsr can be used. Summarized results are reported in

Table 3. We also compare typical performance of the weel and the tsr, based

on two typical samples. Typical sample I leads to the estimate of β equal to the

median estimates in simulations by using the weel, and Typical sample II is the one

with median performance by using the tsr. Table 4 reports the typical estimates

and the 95% confidence intervals. Clearly both estimators have ignorable biases and

close variances. This again shows that our weel does not lose much efficiency in the

I(1) case, even though it is a linear predictive model that tsr works. However, the
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Table 3: Simulation results for estimators of β in Example 4

v
(1)
t v

(2)
t v

(3)
t

ave std cp ave std cp ave std cp

weel 0.5001 0.0165 95.2% 0.5002 0.0282 94.1% 0.5003 0.0194 94.5%

tsr 0.4999 0.0161 99.6% 0.5002 0.0280 99.5% 0.5004 0.0189 99.1%

Table 4: Estimates of β with two typical samples in Example 4

weel tsr

Typical samples β̂ω 95% CI β̂cw 95% CI

v
(1)
t I 0.5001 [0.4825, 0.5179] 0.4972 [0.4347, 0.5598]

II 0.4991 [0.4816, 0.5172] 0.5001 [0.4433, 0.5568]

v
(2)
t I 0.5007 [0.4332, 0.5633] 0.4752 [0.3547, 0.5957]

II 0.4969 [0.4689, 0.5263] 0.5008 [0.3867, 0.6149]

v
(3)
t I 0.4993 [0.4809, 0.5177] 0.4986 [0.4463, 0.5509]

II 0.4986 [0.4702, 0.5232] 0.5001 [0.4245, 0.5757]

advantage of our interval estimate over the tsr is substantial in terms of the length

and the coverage probability at 95% significance level. Since the standard error

of the estimator in Cai and Wang (2014) was hard to estimate, they suggested to

calculate the critical value for their confidence interval by simulation. This generated

erratic estimates of the standard error in simulations and led to unacceptable coverage

probability.



CHAPTER 6: REAL EXAMPLES

In these examples, we apply our methodology to examine the predictability of

equity returns. We revisit the data in Campbell and Yogo (2006). We consider 4

log returns and 8 predictors. The 4 log returns are those for the annual S&P 500

index data (1880-2002) and the annual, quarterly and monthly NYSE/AMEX value-

weighted index data (1926-2002) from the Center for Research in Security Prices

(CRSP). The first two predictors are the S&P log d-p and log e-p ratios, and the

remaining six predictors are annual, quarterly, monthly CRSP log d-p and log e-p

ratios. For each series of the four log returns, there is a log d-p ratio series and a log

e-p ratio series associated with it.We calculate the excess return for each log return

according to Campbell and Yogo (2006). Through the following examples we analyze

the data using our methodology and compare it with those in Campbell and Yogo

(2006) and Cai and Wang (2014).

Example 6.1. Consider the predictability of the log e-p ratio for the corresponding

excess return. Campbell and Yogo (2006, Table 4) found that the 8 predictors are

highly persistent and some of them, such as the monthly log e-p ratio and the annual,

quarterly and monthly log d-p ratios, are I(1) processes. Campbell and Yogo (2006)

modeled the data using the predictive regression model

rt = α + βxt−1 + εt, (6.1)
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where rt is one of the 4 excess returns and xt−1 represents the associated log e-p ratio.

Denoted by ût the ols residuals from the AR(1) model, xt = γ+ρxt−1+ut, and ε̂t the

ols residuals from model (6.1). According to Table 4 of Campbell and Yogo (2006),

the sample correlation coefficients between the two innovations ε̂t and ût are all in

(−0.987,−0.957) for the four predictive models. These non-zero correlations imply

the existence of endogeneity, which may lead to biased estimates. In order to deal

with the endogeneity, we consider our semiparametric predictive regression model

rt = βxt−1 + θ(ût) + vt, (6.2)

which reduces to Cai and Wang’s (2014) model if θ(·) is linear. Table 5 reports the

point estimator of β, the 90% confidence intervals of β, and the corresponding stan-

dard error (se) of the model for each of the three estimation methods: our weighted

estimator β̂ω for model (6.2), Campbell and Yogo’s (2006) estimator β̂cy for model

(6.1), and Cai and Wang’s (2014) estimator β̂cw for model (6.2) with θ(ût) = ût.

Except for the S&P 500 excess return with the tsr method, all of the confidence

intervals lie above zero, indicating that the log e-p ratio has predictability for its

return. Our weel gives the shortest confidence intervals.

Example 6.2. In this example, we check the predictability of the log d-p ratio using

models (6.1) and (6.2). The endogeneity of all 4 log d-p ratio series was confirmed

by Table 4 in Campbell and Yogo (2006). It is expected that model (6.2) will provide

a better fit than model (6.1). The estimated β coefficients, 90% confidence intervals,

and the standard errors of the models are listed in Table 6. Unlike the other two

procedures, the weel identifies predictability of all predictors. Again, the lengths
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Table 5: Tests of Predictability with Log e-p Ratio

SP500 Annual Quarterly Monthly

weel β̂ω 0.127 0.164 0.049 0.014

90% CI [0.112, 0.141] [0.129, 0.195] [0.042, 0.055] [0.012, 0.015]

se 0.048 0.053 0.017 0.009

Campbell β̂ 0.131 0.169 0.049 0.014

and 90% CI [0.042, 0.224] [0.042, 0.277] [0.010, 0.066] [0.002, 0.018]

Yogo se 0.176 0.187 0.105 0.054

tsr β̂cw 0.127 0.162 0.047 0.013

90% CI [-0.002, 0.256] [0.041, 0.284] [0.025, 0.070] [0.008, 0.018]

se 0.048 0.054 0.018 0.009

of confidence intervals by weel are the smallest. To save space, we only report

the estimates of the excess stock return for quarterly CRSP series in Figure 3. The

estimated excess return r̂t by weel for model (6.2) is essentially better than that by

Campbell and Yogo (2006). This reflects existence of endogeneity and a poor fit of

model (6.1). The weel and tsr methods have similar estimates of the β parameter

and similar standard errors of the model, but the former is better than the latter

because of shorter confidence intervals.

Example 6.3. To illustrate the use of the proposed semiparametric predictive re-

gression, we inspect joint predictability of multiple predictors. The predictability of

the long-short yield spread has been widely discussed in empirical studies. Campbell

and Yogo (2006) showed that it has predictability to stock return in the sub time

period, 1952-2002. Following Campbell and Yogo (2006), we use Moody’s seasoned

Aaa corporate bond yield as the long yield and the one-month T-bill rate as the short
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Table 6: Tests of Predictability with Log d-p Ratio

SP500 Annual Quarterly Monthly

weel β̂ω 0.086 0.171 0.039 0.008

90% CI [0.030, 0.128] [0.125, 0.218] [0.028, 0.048] [0.006, 0.011]

se 0.092 0.129 0.034 0.016

Campbell β̂ 0.093 0.125 0.034 0.009

and 90% CI [-0.033, 0.114] [0.014, 0.188] [-0.009, 0.044] [-0.005, 0.010]

Yogo se 0.179 0.189 0.106 0.054

tsr β̂cw 0.083 0.162 0.034 0.008

90% CI [-0.134, 0.300] [-0.472, 0.787] [0.002, 0.066] [0.001, 0.016]

se 0.093 0.131 0.036 0.016

Figure 2: Estimated excess return for quarterly CRSP series, log d-p ratio



29

Table 7: Predictability of the log e-p ratio and yield spread

β̂1 β̂2 Ljung-Box Test ADF Test

0.846 -3.537 0.181 <0.01

yield. Using the ADF test (p-value= 0.1149), we found that long-short yield spread st

in the full-sample time period 1926-2002 is an I(1) process. Both CRSP log e-p ratio

xt and spread st are I(1) variables, but there is a cointegrating relationship between

them, i.e. there are constants a and b such that et = xt − (a + bst) is stationary.

Using the ols, we obtain estimators (â, b̂) of (a, b) and the residuals êt. Motivated by

the error-correction model in Engle and Granger (1987), we consider the predictive

model

rt = β1xt−1 + β2st−1 + θ(êt) + vt, (6.3)

where rt is the monthly CRSP excess return and θ(êt) is a nonlinear error-correction

term. The estimated coefficients and residual diagnostics are recorded in Table 7.

From the Ljung-Box test and the ADF test, we see that the residuals from model

(6.3) are stationary and there is no significant autocorrelation in the residuals. This

suggests that model (6.3) is appropriate. The 95% confidence region of β in Figure 3

does not include the origin, so we conclude that the return is predictable jointly with

the log e-p ratio and the yield spread.
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Figure 3: 95% confidence region of β in model (6.3)
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APPENDIX A: SKETCH OF PROOFS

Lemma

To facilitate our arguments for proofs, we first introduce three lemmas.

Lemma A.1. (Lemma A.1 of Cai, Wang and Wang, 2015) Assume ut,i is a sta-

tionary α-mixing process with mixing coefficient αi(n) satisfying that E(|ut,i|r) <

∞ and
∑∞

n=1 α
s
i (n) <∞, where s = 1/(2 + δ∗)−1/r, r > 2 + δ∗, and 0 < δ∗ ≤ 2. Let

θ∗ = 1/2− 1/(2 + δ∗) and λ∗ > 0 is a function of δ∗. Then the NI(1) or I(1) process

Un,i(r) = n−1/2x[nr],i for 0 ≤ r ≤ 1 admits the following strong approximation

sup
0≤r≤1

|Un,i(r)− Uγi(r)| = O[n−θ∗{log(n)}λ∗ ]

holds almost surely, where Uγi(·) is the diffusion process in (3.1).

Lemma A.2. Let θ̃(z) = θ(z)−
∑n

s=1 ξs(z)θ(zs). Suppose Conditions (A2)-(A5) hold.

Then supz∈supp(f) |θ̃(z)| = Op(h
2).

Proof. By using the nonparametric regression technique for mixing processes

(Proposition 6.2 in Fan and Yao, 2003; Lemma 7.2 in Jiang and Mack, 2001), it is

easy to obtain that

Sn,j(z) = µjf(z) +Op(h) (A.1)

and

n−1
n∑
t=1

wt(z) = Sn,0(z)Sn,2(z)− S2
n,1(z) = (µ0µ2 − µ2

1)f
2(z) + op(1), (A.2)
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uniformly for z ∈ supp(f). Note that the weights wt satisfy that

n−1
n∑
t=1

wt(z)(zt − z) = Sn,1(z)Sn,2(z)− Sn,2(z)Sn,1(z) = 0.

It follows that

n∑
s=1

ξs(z)θ(zs)− θ(z) =
n∑
s=1

ξs(z){θ(zs)− θ(z)}

=
n∑
s=1

ξs(z){θ(zs)− θ(z)− θ′(z)(zs − z)}.

By Taylor’s expansion, we have

n∑
s=1

ξs(z)θ(zs)− θ(z) = 0.5h2
n∑
s=1

ξs(z)θ′′(ηs)h
−2(zs − z)2, (A.3)

where ηs is between z and zs. Since K has bounded support [0, 1], the weight ws(z)

and ξs(z) do not vanish only when |zs − z| ≤ h. Hence, for all non-vanishing terms

on the right hand side of (A.3), we have maxs |ηs − z| ≤ h→ 0. Let

Ln,j(z) = n−1
n∑
s=1

K
(j)
h (zs − z)θ′′(ηs),

where K
(j)
h (zs − z) = h−j(zs − z)Kh(zs − z). Then (A.3) becomes

n∑
s=1

ξs(z)θ(zs)− θ(z) = 0.5h2{n−1
n∑
t=1

wt(z)}−1{Sn,2(z)Ln,2(z)− Sn,1(z)Ln,3(z)}.

(A.4)

Similar to (A.1),

Ln,j(z) = f(z)µjθ
′′(z) +O(h), (A.5)

uniformly for z ∈ supp(f). Hence, by the definition of θ̃(z), (A.1-(A.2) and (A.4)-
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(A.5),

sup
z∈supp(f)

|θ̃(z)| = Op(h
2). (A.6)

Lemma A.3. Without loss of generality, assume that xt = (X>t,1, X
>
t,2)
>, where Xt,1

is a d × 1 vector of NI(1) or I(1) variables and Xt,2 is a (k − d) × 1 vector of sta-

tionary or I(0) variables (0 ≤ d ≤ k). Let α(z) = E(Xt−1,2|zt = z), Uγ(r) =

{Uγ1(r), . . . , Uγd(r)}>, B(r) =
∫ 1

0
{Uγ(r)−Uγ(s)} ds, and B∗(r) ≡ B(r)/‖B(r)‖. As-

sume conditions (A0)-(A7) and E|vt|3 <∞. Then, with probability going to one, we

have

(i) Vn ≡ n−1
∑n

t=1 Z
⊗2
t (β0)

p→ V , where V = diag(V1, V2), where V1 = σ2
v

∫ 1

0
B∗(r)⊗2 dr

and V2 = σ2
vE{Xt−1,2 − α(zt)}⊗2.

(ii) Z∗n = max
1≤t≤n

‖Zt(β0)‖ = op(n
1/2).

(iii) If nh4 = O(1), then ‖Z̄‖ = Op(n
− 1

2 ), where Z̄ = n−1
∑n

t=1 Zt(β0).

(iv) n−1
∑n

t=1 ‖Zt(β0)‖3 = op(n
1/2).

Proof. of Lemma A.3. For i = 1, . . . , d, xt,i is NI(1) or I(1). For (t− 1)/n ≤ r ≤

t/n, define Un,i(r) = Uni,t = n−1/2xt−1,i. Then

n∑
s=1

ξs(z)xs−1,i = n1/2{
n∑
t=1

wt(z)}−1
n∑
s=1

Kh(zs − z){Sn,2(z)− h−1(zs − z)Sn,1(z)}Uni,s

= n1/2{n−1
n∑
t=1

wt(z)}−1{Sn,2(u)Fn,0(z)− Sn,1(z)Fn,1(z)},

where for j = 0, 1, Fn,j(z) = n−1
∑n

s=1K
(j)
h (zs− z)Uni,s, with K

(j)
h (zs− z) = h−j(zs−

z)Kh(zs − z). Using the same argument as that for Fn,j,1 in equation (A.11) of Cai,
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Li and Park (2009), we obtain that Fn,j(z) = f(z)µjW
(i)
u + op(1), where W

(i)
u =∫ 1

0
Uγi(r) dr. By Bickel’s (1975) chaining argument, this result holds uniformly for

z ∈ supp(f). Therefore,

n∑
s=1

ξs(z)xs−1,i = n1/2W (i)
u + op(n

1/2),

uniformly for z ∈ supp(f). Then

x̃t−1,i = n1/2[Uni,t −W (i)
u ] + op(n

1/2) (A.7)

uniformly for t = 1, . . . , n. By the strong approximation in Lemma A.1, we have

Un,i(r)
a.s→ Uγi(r). Therefore,

n−1/2x̃[nr],i = Uγi(r)−W (i)
u + op(1)

or equivalently

n−1/2X̃[nr],1 = Uγ(r)−Wu + op(1) ≡ B(r) + op(1), (A.8)

uniformly for 0 ≤ r ≤ 1, where Wu = {W (1)
u , . . . ,W

(d)
u }> =

∫ 1

0
Uγ(r) dr. Thus,

B(r) =
∫ 1

0
{Uγ(r)− Uγ(s)} ds. Then, for i = 1, . . . , d,

P{ωt,i = (1 + X̃t−1,1)
−1/2, ∀t = 1, . . . , n} = P{max

1≤t≤n
n−1/2 log(n)‖X̃t−1,1‖ ≥ c∗}

→ P{ sup
r∈[0,1]

‖B(r)‖ ≥ 0} = 1. (A.9)

Let α(z) = E(Xt−1,2|zt = z) and σ2(z) = Var(Xt−1,2|zt = z). Then

Xt−1,2 = α(zt) + σ(zt)εt,
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where εt satisfies that E(εt|zt) = 0 and Var(εt|zt) = Ik−d. The local linear estimator

of α(z) is

α̂(z) =
n∑
s=1

ξs(z)Xs−1,2.

Since α(·) has a continuous 2nd order derivative and σ(z) is continuous, by Theo-

rem 6.5 in Fan and Yao (2003), we have

sup
z∈supp(f)

‖α̂(z)− α(z)‖ = Op[h
2 + {log(1/h)/(nh)}1/2].

It follows that

X̃t−1,2 = Xt−1,2 − α(zt) +Op[h
2 + {log(1/h)/(nh)}1/2], (A.10)

uniform for t = 1, . . . , n. Furthermore, n−1/2 log(n) max1≤t≤n ‖Xt,2‖ = op(1), if E‖Xt,2‖2+δ <

∞. Hence, for i = d+ 1, . . . , k,

P (ωt,i = 1, ∀t = 1, . . . , n) = 1− P ( max
1≤t≤n

n−1/2 log(n)|x̃t−1,i| ≥ c∗)

→ 1. (A.11)

Let Ωt,1 = (1 + ‖X̃t−1,1‖2)−1/2Id and Ωt,2 = Ik−d. It follows from (A.9) and (A.11)

that with probability going to one

Ωt = diag(Ωt,1,Ωt,2). (A.12)

We adopt Phillips’ (1988) notation and represent ρi = exp(γi/n) for γi ∈ R and for

i = 1, . . . , d. Without loss of generality, it is assumed that E(x0,i) = 0. By the
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definition of Zt(β) and (2.8), we have

Zt(β0) = Ωtx̃t−1(ỹt − β>0 x̃t−1)

= Ωtx̃t−1{yt − x>t−1β0 − θ̂(zt; β0)}

= Ωtx̃t−1vt − δt, (A.13)

where δt = Ωtx̃t−1{θ̂(zt; β0) − θ(zt; β0)}. For the model yt − β>0 xt−1 = θ(zt) + vt, the

local linear estimator θ̂(z; β0) satisfies that [see Theorem 6.5 in Fan and Yao (2003)]

sup
z∈supp(f)

|θ̂(z; β0)− θ(z; β0)| = Op[h
2 + {nh/ log(1/h)}−1/2]. (A.14)

By (A.13), we have

{Zt(β0)}⊗2 = (Ωtx̃t−1)
⊗2v2t − (Ωtx̃t−1δ

>
t + δ>Ωtx̃t−1)vt + δ⊗2t .

Then

Vn = n−1
n∑
t=1

(Ωtx̃t−1)
⊗2v2t − n−1

n∑
t=1

(Ωtx̃t−1δ
>
t + δ>Ωtx̃t−1)vt + n−1

n∑
t=1

δ⊗2t

≡ Wn1 −Wn2 +Wn3.

It is easy to see from (A.14) that Wn3 = op(Wn1). Then, by the Hölder inequality, Wn2

is also dominated byWn1. Hence, Vn = Wn1+op(1). LetW ∗
n1 = n−1

∑n
t=1 (Ωtx̃t−1)

⊗2σ2
v .

Then E(Wn1−W ∗
n1) = 0. By (A.10) and Condition (A7), we have Var(Wn1−W ∗

n1) =

o(1). Therefore, Wn1 = W ∗
n1 + op(1) and

Vn = σ2
vn
−1

n∑
t=1

(Ωtx̃t−1)
⊗2 + op(1) ≡ σ2

vV
∗
n + op(1). (A.15)

(i) The result can be proven through the following steps:
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Step 1. Let ξn1 = n−1
∑n

t=1(Ωt,1X̃t−1,1)
⊗2 and ξn2 = n−1

∑n
t=1(Ωt,2X̃t−1,2)

⊗2. Then

ξn1 = n−1
n∑
t=1

(1/n+ ‖n−1/2X̃t−1,1‖2)−1(n−1/2X̃t−1,1)
⊗2

= n−1
n∑
t=1

(‖n−1/2X̃t−1,1‖2)−1(n−1/2X̃t−1,1)
⊗2 + op(1).

Let B∗(r) = B(r)/‖B(r)‖. Using (A.8) and Theorem 1.2 in Berkes and Horváth

(2006), we establish that

ξn1 =

∫ 1

0

‖B(r)‖−2B(r)⊗2 dr + op(1) =

∫ 1

0

B∗(r)⊗2 dr + op(1).

By (A.10) and (A.12), with probability tending to one, we have

ξn2 = n−1
n∑
t=1

{Xt−1,2 − α(zt)}⊗2 + op(1)

= E{Xt−1,2 − α(zt)}⊗2 + op(1). (A.16)

Step 2. Let ξn,12 = n−1
∑n

t=1 Ωt,1X̃t−1,1(Ωt,2X̃t−1,2)
>. Then

ξn,12 = n−1
n∑
t=1

(1 + ‖X̃t−1,1‖2)−1/2X̃t−1,1{Xt−1,2 − α(zt)}> + op(1)

≡ n−1
n∑
t=1

U∗ntet + op(1),

where U∗nt = (1+‖X̃t−1,1‖2)−1/2X̃t−1,1 and et = {Xt−1,2−α(zt)}>. Using an argument

similar to that in Cai, Li and Park (2009, page 108), we obtain that

n−1
n∑
t=1

U∗ntet = op(1). (A.17)

Therefore, ξn,12 = op(1). In fact, for any δ ∈ (0, 1), let N = [1/δ], tk = 1 + [nk/N ],
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t∗k = tk+1 − 1, and t∗∗k = min(t∗k, n). Then, it can be rewritten that

‖n−1
n∑
t=1

U∗ntet‖ = ‖n−1
N−1∑
k=0

t∗∗k∑
t=tk

U∗ntet‖. (A.18)

By the triangle inequality, we have

‖n−1
N−1∑
k=0

t∗∗k∑
t=tk

U∗ntet‖ ≤ ‖n−1
N−1∑
k=0

U∗ntk

t∗∗k∑
t=tk

et‖+ ‖n−1
N−1∑
k=0

t∗∗k∑
t=tk

(U∗nt − U∗ntk)et‖

≤ n−1
N−1∑
k=0

‖U∗ntk ||
t∗k∗∑
t=tk

et‖+ n−1
N−1∑
k=0

t∗∗k∑
t=tk

‖U∗nt − U∗ntk‖|et|

≤ sup
0≤t≤1

‖U∗n(t)‖n−1
N−1∑
k=0

|
t∗k∑
t=tk

et|+ sup
|r−s|≤δ

‖U∗n(r)− U∗n(s)‖n−1
n∑
t=1

|et|.

Using (A.8) and the continuous mapping theorem, we obtain that U∗n(r)⇒ B∗(r) ≡

B(r)/‖B(r)‖ on [0, 1]. Hence, sup0≤t≤1 ‖U∗n(t)‖ = Op(1). It is trivial to verify that

n−1
∑n

t=1 |et| = Op(1), since et is a α-mixing stationary sequence. Therefore,

‖n−1
N−1∑
k=0

t∗∗k∑
t=tk

U∗ntet‖ = Op(1)n−1
N−1∑
k=0

|
t∗k∑
t=tk

et|+Op(1) sup
|r−s|≤δ

‖U∗n(r)− U∗n(s)‖. (A.19)

Note that sup|r−s|≤δ ‖U∗n(r)−U∗n(s)‖ D→ sup|r−s|≤δ ‖B∗(r)−B∗(s)‖
p→ 0 as δ → 0 and

E{n−1
N−1∑
k=0

|
t∗k∑
t=tk

et|} ≤ N/n sup
0≤k≤N−1

E|
t∗k∑
t=tk

et|

≤ sup
t≤n

E|(δn)−1
t+δn∑
i=t

ei| ≤ sup
t≤n

[
Var
{

(δn)−1
t+δn∑
i=t

ei
}]1/2

= O{(δn)−1} → 0.

as n→∞. It follows from (A.18)-(A.19) that (A.17) holds.
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Combining Steps 1 and 2 leads to

σ2
vV
∗
n = σ2

v

( ξn1 ξn12

ξ>n12 ξn2

) p→ V = diag(V1, V2). (A.20)

This, combined with (A.15), completes the proof.

(ii) The result requires 2+δ moment forXt,2. Note that Zt(β0) = {Z>t,1(β0), Z>t,2(β0)}>,

where Zt,j(β0) = Ωt,jX̃t−1,j{vt − [θ̂(z; β0) − θ(z; β0)]} for j = 1, 2. It suffices to show

that

ηnj ≡ n−1/2 max
1≤t≤n

‖Ωt,jX̃t−1,j‖ = op(1)

and

η∗nj ≡ n−1/2 max
1≤t≤n

‖Ωt,jX̃t−1,jvt‖ = op(1).

For j = 1, with probability tending to one, it is obvious that ηn1 ≤ n−1/2 = o(1) and

η∗n1 ≤ n−1/2 max1≤t≤n |vt| = op(1). For j = 2, since limn→∞ P (Ωt,2 = Ik−d)→ 1, using

(A.10) we obtain that

ηn2 = n−1/2 max
1≤t≤n

‖X̃t−1,2‖ = n−1/2 max
1≤t≤n

‖Xt−1,2 − α(zt)‖+ op(1) = op(1),

and

η∗n2 = n−1/2 max
1≤t≤n

‖X̃t−1,2vt‖ = n−1/2 max
1≤t≤n

‖{Xt−1,2 − α(zt)}vt‖+ op(1) = op(1).

(iii) By (A.13), we have

n1/2Z̄ = n−1/2
n∑
t=1

Zt(β0)

= n−1/2
n∑
t=1

Ωtx̃t−1vt − n−1/2
n∑
t=1

Ωtx̃t−1[θ̂(zt; β0)− θ(zt; β0)]. (A.21)
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By the definition of θ̂(·; β0), we have

θ̂(z; β0)− θ(z) =
n∑
t=1

ξt(z)vt +
n∑
t=1

ξt(z){θ(zt)− θ(z)},

where, by (A.6), the second term on the right hand is equal to −θ̃(z) = Op(h
2)

uniformly for z ∈ supp(f). Therefore,

θ̂(z; β)− θ(z) =
n∑
s=1

ξs(z)vs +Op(h
2),

which combined with (A.21) yields that

n1/2Z̄ = n−1/2
n∑
t=1

Ωtx̃t−1vt − n−1/2
n∑
s=1

{
n∑
t=1

Ωtx̃t−1ξs(zt)}vs +Op(
√
nh2)

≡ Mn1 −Mn2 +Op(
√
nh4). (A.22)

Note that E(Mn1) = 0 and Var(Mn1) = σ2
vE{(Ωtx̃t−1)

⊗2} = O(1). Then Mn1 =

Op(1). Let rs =
∑n

t=1 Ωtx̃t−1ξs(zt). Then it can be rewritten that

rs =
n∑
t=1

Ωtx̃t−1ws(zt)/
n∑
i=1

wi(zt) = (r>s1, r
>
s2)
>,

where

rs1 =
n∑
t=1

Ωt,1X̃t−1,1ws(zt)/
n∑
i=1

wi(zt)

and

rs2 =
n∑
t=1

Ωt,2X̃t−1,2ws(zt)/
n∑
i=1

wi(zt).
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By (A.1)-(A.2) and (A.10), with probability tending to one, we have

rs1 = {n−1
n∑
i=1

wi(zt)}−1n−1
n∑
t=1

X̃t−1,1(1 + ‖X̃t−1,1‖2)−1/2Kh(zs − zt)

×{Sn,2(zt)− h−1(zs − zt)Sn,1(zt)}

= Op(1).

and

rs2 =
n∑
t=1

X̃t−1,2ws(zt)/
n∑
i=1

wi(zt)

= {n−1
n∑
i=1

wi(zt)}−1n−1
n∑
t=1

{Xt−1,2 − α(zt)}Kh(zs − zt)

×{Sn,2(zt)− h−1(zs − zt)Sn,1(zt)}+ op(1)

= Op(1),

uniformly for s = 1, . . . , n, which is a random variable independent of vs. Since

Mn2 = n−1/2
∑n

s=1 rsvs has conditional mean zero and conditional variance r2s =

Op(1), Mn2 = Op(1). This, combined with (A.22), leads to n1/2Z̄ = Op(1).

(iv) Since ‖Ωt,1X̃t−1,1‖ ≤
√
d and Ωt,2X̃t−1,2 = X̃t−1,2 with probability tending to

one and E|vt|3 <∞, the result holds from (A.13).
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APPENDIX B: SKETCH OF PROOFS

Theorem 3.1

Proof. of Theorem 3.1. Let an =
∑n

t=1(Ωtx̃t−1)
⊗2, bn =

∑n
t=1 Ωtx̃

⊗2
t−1, ṽt =

vt−
∑n

s=1 ξs(zt)vs, and θ̃(z) = θ(z)−
∑n

s=1 ξs(z)θ(zs). Then ỹt = β>x̃t−1 + θ̃(zt) + ṽt.

By the definition of β̂ω, we have

β̂ω − β = (
n∑
t=1

Ωtx̃
⊗2
t−1)

−1
n∑
t=1

Ωtx̃t−1θ̃(zt) + (
n∑
t=1

Ωtx̃
⊗2
t−1)

−1
n∑
t=1

Ωtx̃t−1ṽt.

Therefore,

a−1/2n bn(β̂ω − β) = a−1/2n

n∑
t=1

Ωtx̃t−1θ̃(zt) + a−1/2n

n∑
t=1

Ωtx̃t−1ṽt = Bn + Vn (A.23)

Using the Hölder inequality, we obtain that

‖
n∑
t=1

Ωtx̃t−1θ̃(zt)‖ ≤ (
n∑
t=1

‖Ωtx̃t−1‖2)1/2{
n∑
t=1

θ̃(zt)
2}1/2, (A.24)

where ‖ · ‖ denotes the Euclidean norm. It follows from (A.24) and Lemma A.2 that

‖
n∑
t=1

Ωtx̃t−1θ̃(zt)‖ ≤ (
n∑
t=1

‖Ωtx̃t−1‖2)1/2Op(
√
nh4) = op{(

n∑
t=1

‖Ωtx̃t−1‖2)1/2}, (A.25)

if nh4 → 0. Further, by (A.15) and (A.20),

n∑
t=1

‖Ωtx̃t−1‖2 = ntr(V ∗n ) = n{tr(V ) + op(1)} = Op(n), (A.26)

Combining (A.25) and (A.26) leads to

‖
n∑
t=1

Ωtx̃t−1θ̃(zt)‖ = op(
√
n).
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Then

‖Bn‖ ≤ ‖
n∑
t=1

Ωtx̃t−1θ̃(zt)‖max eig(a−1/2n ) ≤ op[{min eig(n−1an)}−1/2] = op[{min eig(V ∗n )}−1/2].

Applying (A.20), we obtain that

Bn = op[{min eig(V )}−1/2] = op(1). (A.27)

Note that

Vn = a−1/2n (Ω1x̃0, . . . ,Ωnx̃n−1)(ṽ1, . . . , ṽn)> ≡ a−1/2n cnṽ

and

ṽ = (In − S)v,

where v = (v1, . . . , vn)>, In is an n×n identity matrix, and S is the smoothing matrix

whose components are F ≡ σ(ut, t ≤ n) measurable and independent of v. Therefore,

E{ṽ|F} = 0 and E(ṽṽ>|F) = (In − S)(In − S)>σ2
v . Following Fan and Jiang (2005,

(B.11) and (B.21)), we establish that

E(ṽṽ>|F) = σ2
vIn{1 + o(1)}.

Hence, E(Vn|F) = 0 and

E(V ⊗2n |F) = σ2
va
−1/2
n

n∑
t=1

(Ωtx̃t−1)
⊗2a−1/2n {1 + o(1)} = σ2

vIk + o(1).

Since Vn = a
−1/2
n cn(In − S)v ≡ d>n v ≡

∑n
t=1 dni

vi, where dn = (dn1, . . . , dnn)>. Using

the martingale limit theorem (Hall and Heyde, 1980), we can show that, for any k×1

vector a,

a>Vn
D→ N(0, σ2

va
>a).
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Then, by the Wald device, we have Vn
D→ N(0, σ2

vIk). Applying the Slutsky theorem,

(A.23) and (A.27), we conclude the result of the theorem.
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APPENDIX C: SKETCH OF PROOFS

Theorem 4.1

Proof. of Theorem 4.1. Note that pt = 1
n

1
1+λ>Zt(β0)

, where λ satisfies that

g(λ) ≡ n−1
n∑
t=1

Zt(β0)

1 + λ>Zt(β0)
= 0.

It follows that

g(λ) = n−1
n∑
t=1

Zt(β0)[1−
λ>Zt(β0)

1 + λ>Zt(β0)
]

= n−1
n∑
t=1

Zt(β0)− n−1
n∑
t=1

Z⊗2t (β0)

1 + λ>Zt(β0)
λ

≡ Z̄ − Ṽnλ = 0.

That is,

Ṽnλ = Z̄. (A.28)

Let Vn = n−1
∑n

t=1 Z
⊗2
t (β0), which is non-negative definitive. Since every pt > 0, we

have 1 + λ>Zt(β0) > 0, and hence,

λ>Vnλ = λ>n−1
n∑
t=1

Z⊗2t (β0)

1 + λ>Zt(β0)

{
1 + λ>Zt(β0)

}
λ

≤ λ>n−1
n∑
t=1

Z⊗2t (β0)

1 + λ>Zt(β0)

{
1 + ‖λ‖ max

1≤t≤n
‖Zt(β0)‖

}
λ

= λ>Ṽnλ(1 + ‖λ‖Z∗n), (A.29)

where Z∗n = max
1≤t≤n

‖Zt(β0)‖. Let λ = ρθ, where ρ ≥ 0 and θ ∈ RK such that ‖θ‖ = 1.

Then ‖λ‖ = ρ. Combining (A.28) and (A.29), we establish that

0 ≤ ρθ>Vnθ ≤ ρθ>Ṽnθ(1 + ρZ∗n) = θ>Z̄(1 + ρZ∗n).
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Hence, by Lemma A.3(i),

θ>Z̄ ≥ ρ

1 + ρZ∗n
θ>Vnθ =

ρ

1 + ρZ∗n
{θ>V θ + op(1)}.

Then

ρ[min eig(V ) + op(1)− θ′Z̄Z∗n] ≤ θ′Z̄. (A.30)

By Lemma A.3, we have Z∗n = op(n
1/2) and ‖Z̄‖ = Op(n

− 1
2 ), Then, with probability

tending to one,

‖λ‖ = ρ = Op(n
− 1

2 ) (A.31)

and

max
1≤t≤n

|λ>Zt(β0)| ≤ ‖λ‖Z∗n = Op(n
− 1

2 ) · op(n−
1
2 ) = op(1).

Rewrite

0 = g(λ) = n−1
n∑
t=1

Zt(β0)

{
1− λ>Zt(β0) +

λ>Z⊗2t (β0)λ

1 + λ>Zt(β0)

}
= Z̄ − Vnλ+ n−1

n∑
t=1

λ>Z⊗2t (β0)λZt(β0)

1 + λ>Zt(β0)
. (A.32)

By Lemma A.3 and (A.31), the last term in (A.32) is bounded by

‖λ‖2n−1
n∑
t=1

‖Zt(β0)‖3

1− ‖λ‖Z∗n
= Op(n

−1) {1 + op(1)}n−1
n∑
t=1

‖Zt(β0)‖3

= Op(n
−1) {1 + op(1)} op(n

1
2 ) = op(n

− 1
2 ).

Hence, by (A.32),

λ = V −1n Z̄ + op(n
− 1

2 ). (A.33)
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Note that max
1≤t≤n

|λ>Zt(β0)| = op(1). By Taylor’s expansion, we have

log
{

1 + λ>Zt(β0)
}

= λ>Zt(β0)−
1

2

{
λ>Zt(β0)

}2
+ ηt, (A.34)

where for some finite B > 0,

P
{
|ηt| ≤ B|λ>Zt(β0)|3, 1 ≤ t ≤ n

}
→ 1, as n→∞. (A.35)

It follows from (A.34) that

l(β0) = 2
n∑
t=1

log
{

1 + λ>Zt(β0)
}

= 2
n∑
t=1

λ>Zt(β0)−
n∑
t=1

λ>Z⊗2t (β0)λ+ 2
n∑
t=1

ηt.

By Lemma 1, (A.31) and (A.35), with probability trending to one, we have

|
n∑
t=1

ηt| ≤ B‖λ‖3
n∑
t=1

‖Zt(β0)‖3

= Op(n
− 3

2 ) · op(n
3
2 ) = op(1).

Therefore,

l(β0) = 2
n∑
t=1

λ>Zt(β0)−
n∑
t=1

λ>Z⊗2t (β0)λ+ op(1).

Then, by (A.31) and (A.33),

l(β0) = nZ̄>V −1n Z̄ + op(1).

Applying the central limit theorem, we obtain that

√
nV
− 1

2
n Z̄ = V

− 1
2

n n−
1
2

n∑
t=1

Zt(β0)→ N(0, Ik),

where Ik is the K ×K identity matrix. Therefore, l(β0)
p→ χ2(K).


