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ABSTRACT

ARTEM HULKO. Estimates For the Number of Eigenvalues of Non-self-adjoint
Operators. (Under the direction of DR. OLEG SAFRONOV )

In this dissertation we find estimates for the total number of eigenvalues of non-

self-adjoint operators. We consider five different operators, three of them discrete

and two continuous. Discrete operators are as follows: Schrödinger operator defined

on Z+ with a complex potential, Schrödinger operator defined on Z with a complex

potential, and a Dirac operator defined on Z, also with a complex potential. The latter

of which we will also define in this dissertation, as, to the best of our knowledge, it

has not yet been defined. Then we also consider a continuous Biharmonic operator

on R3, and then a Polyharmonic operator of order 2l on Rd, both perturbed by

a complex potential. For each of these operators we will find uniform bounds for

the total number of eigenvalues located outside of their continuous spectrums. By

‘uniform bounds’ we mean bounds which depend on the potential only through some

simple quantities like Lp norms.
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CHAPTER 3: DISCRETE SCHRÖDINGER OPERATOR ON Z+ 10

3.1 Introduction and Main Results . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Zeros of analytic functions . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Resolvent bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 18

CHAPTER 4: DISCRETE SCHRÖDINGER OPERATOR ON Z 20
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CHAPTER 1: INTRODUCTION

In this chapter, we will discuss the general ideas of spectral theory and its applications.

We will not go into details, but rather just give the reader some understanding of the

basic background of the field.

1.1 Historical note

When we say the word ‘spectrum’ to regular people (people who are not experts in

the fields of Physics, Mathematics or Chemistry) the first thing that usually comes

to their minds is one of two things. They either think “a band of colors, as seen in a

rainbow, produced by separation of the components of light by their different degrees

of refraction according to wavelength” or “wide range” of something. However, when

mathematicians hear the word quite often they start thinking of Hilbert spaces, and

operators on them. Very often the first thing that comes to their minds is eigenvalues.

It is very common for a mathematician to study such concepts separately, without

thinking about their physical interpretations. As a result, some students studying

these topics, or maybe even some mathematicians might have a false impression that

such concepts are completely unrelated to the common meaning of the term that

everyone uses. At some point in time it might have been the case, as the study

of a vibrating string seems to not have anything to do with the spectrum of light.

However, deeper study reveals that they are, in fact, related.

As L.A. Steen once said: “Not least because such different objects as atoms,

operators and algebras possess spectra, the evolution of spectral theory is one of the

most informative chapters in the history of contemporary mathematics.” When we
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study the origins of the word ‘spectrum’ in mathematics we realize that indeed it

does have to do with the spectrum of light. The word “spectrum” means “vision”

in Latin. Newton used this word to describe the colors of the rainbow produced on

white paper when a beam of light is dispersed by a glass prism. Later, in nineteenth

century, infrared and ultra-violet extensions of the spectrum were discovered. By

the end of nineteenth century scientists were able to tell, based on the spectrum of

the sun and stars (dark rings around them) many of their properties, such as the

composition of their atmosphere. This led to a discovery of the chemical unity of the

Universe. Similar observations in spectroscopy also appear on a much smaller level

in study of atoms and molecules. This gave scientists an ability to find some very

interesting results pertaining to atoms and their properties [22].

In the beginning of twentieth century many scientists started deriving results in

physics, using some mathematical approaches. In 1930 Norbert Wiener developed a

mathematical approach to analyze the spectrum of white light. With the development

of quantum mechanics it became evident that the two ‘different spectrums’ are indeed

connected. Quantum theory gave a huge push to the development of the spectral

theory for unbounded linear operators. In the past one hundred years the study of

spectrum by mathematicians and physicists working hand-in-hand became essential

to the development of Quantum mechanics and had a huge impact on many other

aspects of our lives.

1.2 Spectrum in Mathematics and Known Results

As discussed in the previous section, spectral theory was very intensively studied in

the past 80-90 years. In the words of Dr. Stanislav Molchanov “spectral analysis is

a very well respected field in mathematics.” This is partly due to the vast amount

of applications of the results in the fields of physics and chemistry as well as some

others. M. Zworski once said: “Eigenvalues of self-adjoint operators describe, among
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other things, the energies of bound states, states that exist forever if unperturbed.

These do exist in real life[...]. In most situations however, states do not exist for

ever, and a more accurate model is given by a decaying state that oscillates at some

rate.[...] Eigenvalues are yet another expression of humanity’s narcissistic desire for

immortality.” [22]

Self-adjoint operators have been widely studied in the past 50 years or so. Con-

sequently, some very interesting results have been obtained. The following two nice

results are well known and pertain to the continuous self-adjoint case.

Theorem 1.1 (Lieb-Thirring). Consider −∆ + V where the potential is real valued.

If one of the following is satisfied:

γ ≥ 1

2
, n = 1

γ > 0, n = 2

γ ≥ 0, n ≥ 3

then one can find a constant Lγ,n such that

∑
j≥1

|λj|γ ≤ Lγ,n

∫
Rn

[V (x)]γ+n
2 dx

where V (x) := max(−V (x), 0).

Theorem 1.2 (Cwikel-Lieb-Rozenblum). The number of negative eigenvalues, count-

ing multiplicities, of the operator −∆ + V in L2(Rd), d ≥ 3 satisfies

N(V ) ≤ Cd

∫
Rd

[V (x)]
d
2 dx

for some Cd which depends only on the dimension d.

The non-self-adjoint case, however, has not been studied as much, nor has been
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the discrete case. As mentioned above, the eigenvalues of the self-adjoint (also called

hermitian) operators describe energies of bound states of a quantum system which

remain forever if unperturbed, also called physical observables. For example in quan-

tum mechanics, the Schrödinger (Hamiltonian) operator H = −∆ + V (x) specifies

the energy levels and time evolution of a quantum system. While such systems exist

in the real word and are most often considered in experiments, due to having real

eigenvalues, non-hermitian operators also exist and are also useful. For example in

the scattering theory describing an effect of common non-elastic processes on the

elastic channel (the optic potential approach). Another thing they are useful for is in

a number of pure theoretical investigations of different relations between the physical

quantities (e.g., at the conclusion of the Heisenberg uncertainty relations from the

basic notions of Quantum Mechanics).

Most of the cases considered by scientists and results obtained deal with the

continuous cases. However, as Dr. S. Molchanov stated, presently scientists start

realizing that discrete models reflect our universe better than the continuous models,

as everything in our universe is finite and discrete. Also, as Dr. Donald Jacobs stated,

many times physicists try to come up with a continuous model to solve a problem,

but then they have to discretize it in order to plug it into computers, and then try to

convert results back to continuous case. As a result many scientists get more and more

interested in the discrete operators to create simpler and more accurate models. In

this dissertation we will consider both, some discrete and some continuous operators.

1.3 Main influence for our work

In this section I would like to note a result obtained in 2016 by R. L. Frank, A.

Laptev, and O. Safronov [15] in which they estimated the total number of eigenvalues

of the Shcrödinger operator with a complex potential on Rn (n− odd). They proved

the following two nice theorems:
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Theorem 1.3. The number N of eigenvalues of − d2

dx2
+V in L2(R+) with a Dirichlet

boundary condition, counting algebraic multiplicities, satisfies, for any ε > 0,

N ≤ 1

ε2

(∫ ∞
0

eεx|V (x)|dx
)2

Theorem 1.4. Let d ≥ 3 be odd. Then the number N of eigenvalues of −∆ + V in

L2(Rd) counting algebraic multiplicities, satisfies, for any ε > 0,

N ≤ Cd
ε2

(∫
Rd
eε|x||V (x)|(d+1)/2dx

)2

with a constant Cd depending only on d.

This paper played a huge part in our decision to study this topic. We decided

to adopt the same trace formula approach used by them and use it to study other

operators. As a result, we get similar nice bounds for two discrete and two continuous

cases, which depend on the potential only through some simple quantities.



CHAPTER 2: SOME GENERAL CONCEPTS WHICH WILL BE USED

THROUGHOUT THE DISSERTATION

2.1 Some Interesting Results

In 1966 B. Pavlov [25] used the notion of quasi-analyticity to prove that the oper-

ator −d2/dx2 + V (x) on the half-line [0,∞) has finitely many eigenvalues if |V | ≤

C exp(−c
√
x) for some C, c > 0. . It was established that the eigenvalues cannot

accumulate to a point of the positive half- line, which is enough to conclude that the

set of all eigenvalues is finite.

On the other hand, In 1967 Pavlov proved another remarkable result (see [25],

[26]), which says that, for any 0 < p < 1/2, there exists a complex-valued potential

V satisfying |V | ≤ C exp(−c|x|p) and a complex number θ, such that the operator

−d2/dx2 + V (x) with the boundary condition ψ′(0) = θψ(0) has infinitely many

eigenvalues. Another interesting result was recently established by Bögli [2]. It was

shown that there exists a potential for which the eigenvalues accumulate to every

point on [0,∞).

2.2 Blaschke Product

Here we would like to very briefly introduce the notion of the Blaschke product, which

we will be using throughout the following chapters.

Later on in this dissertation we would like to consider a function ln(a(k)). How-

ever, the function a(k) contains zeros at some sequence of points aj. So before we can

consider the logarithmic function we need to remove all the zeros of a(k). This can be
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done with the use of, so called, Blaschke Product. In 1915 Austrian mathematician

Wilhelm Johann Eugen Blaschke proved a result that allowed to create a bounded

analytic function in open unit disc with a specific set of zeros. Namely he proved

the following: If the sequence {an} satisfies the condition
∑
n

(1− an) <∞ (Blaschke

Condition), then the function B(z) =
∏
n

B(an, z), where

B(an, z) =


|an|
an

an − z
1− anz

if an 6= 0

z if an = 0

is bounded and analytic in the unit disc, and has zeros (counting multiplicities) at

the points an exactly. This result can be extended to a disc of any radius R. Further-

more, it can be generalized to any simply connected domain, since it is conformally

equivalent to a disc. So in the later chapters we will apply this result to come up

with a Blaschke Product whose zeros coincide with the zeros of our function a(k).

As a result, after we divide a(k) by B(k), the quotient will be analytic and nonzero

everywhere in our circle of radius R.

2.3 Birman–Schwinger Principle

We will state the Birman–Schwinger Principle in the case where H0 is a bounded

self-adjoint operator and V = G∗G0. We will also assume that G0 and G are compact

operators. Now, set

H = H0 + V.

The Birman–Schwinger principle states that z ∈ ρ(H0) is an eigenvalue of H if

and only if −1 is an eigenvalue of the Birman–Schwinger operator G0(H0 − z)−1G∗.

Moreover, the corresponding geometric multiplicities coincide. And the operator

G0(H0 − ζ)−1G∗ is called Birman–Schwinger operator.

The following lemma says that even the algebraic multiplicities of eigenvalues of H
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can be characterizes in terms of a quantity related to the Birman–Schwinger operator.

Though before we do that, we would like to define the n− th regularized determinant

det n(I +K(k)), k /∈ σ(H0)

for n ≥ 2. The standard way to describe det n(I +K) in terms of eigenvalues zj of a

compact operator K ∈ Sn is to define it as

det n(I +K) =
∏
j

(1 + zj) exp
(n−1∑
m=1

(−1)mzmj
m

)
, n ≥ 2;

det(I +K) =
∏
j

(1 + zj), n = 1.

(Note that the geometric multiplicity of an eigenvalue λ corresponds to the di-

mension of the eigenspace corresponding to λ, whereas the algebraic multiplicity is

the number that eigenvalue repeats and corresponds to the dimension of the invariant

subspace corresponding to λ.)

Lemma 2.1. Let n ∈ N. Assume that G0(H0−ζ)−1G∗ ∈ Sn for all ζ ∈ ρ(H0). Then

the function ζ 7→ detn(1+G0(H0−ζ)−1G∗) is analytic in ρ(H0). A point z ∈ ρ(H0) is

an eigenvalue of H if and only if detn(1 +G0(H0− z)−1G∗) = 0. Moreover, the order

of the zero coincides with the algebraic multiplicity of the corresponding eigenvalue.

Analyticity of the function ζ 7→ detn(1+G0(H0−ζ)−1G∗) is well-known (see, e.g.,

[29]), as well as the result about the algebraic multiplicity in the case n = 1. The

result for the general n is essentially due to [20]; you may also refer to [13] for an

extension of the proof to the present setting.
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2.4 Classes of compact operators and determinants

Let 1 ≤ p <∞. We say that a compact operator T belongs to the Schatten class Sp

if its singular values sj(T ) satisfy

‖T‖pSp :=
∑
j

spj(T ) <∞.

The functional ‖ · ‖Sp is the norm on Sp.

The following property is well-known, but we include a proof for the sake of

completeness.

Lemma 2.2. Let n ∈ N and let K ∈ Sn. Then

ln |detn(1 +K)| ≤ Γn‖K‖nSn ,

where Γn is a positive constant independent of K. In particular,

Γ1 = 1 and Γ2 = 1/2 . (2.1)

Proof. To prove the lemma, let f(z) := (1 + z) exp

(
n−1∑
m=1

(−1)m

m
zm

)
. Then ln |f(z)|

can be bounded by a constant times |z|n for small |z| and by a constant times |z|n−1

for large |z|. Thus, ln |f(z)| ≤ Γn|z|n, and so

ln |detn(1 +K)| ≤ Γn
∑
j

|λj(K)|n

By Weyl’s inequality [28, Thm. 1.15], the sum on the right side does not exceed

‖K‖nSn . A simple computation shows that for n = 1 and n = 2 one can take Γ1 = 1

and Γ2 = 1/2, respectively (see [29]).



CHAPTER 3: DISCRETE SCHRÖDINGER OPERATOR ON Z+

In this chapter we look at the discrete Schrödinger operator with a complex potential.

We obtain bounds on the total number of eigenvalues in the case where V decays

exponentially at infinity.

3.1 Introduction and Main Results

Let H = `2(Z+) be the Hilbert space of square summable sequences on Z+ =

{1, 2, 3, . . . }. Let V : H 7→ H be the operator of multiplication by a bounded complex-

valued function on Z+. We study the spectral properties of the Schrödinger operator

H, defined in H by

(H u)j =
∑
|l−j|=1

ul + Vjuj, ∀j ≥ 2. (3.1)

Additionally, we set

(Hu)1 = u2 + V1u1.

Note that H is a bounded operator. The spectrum of the self-adjoint operator

H0 = H − V coincides with the interval [−2, 2] and is absolutely continuous. This

is due to the fact that the Schrödinger operator, as we defined it here, is uni-

tary equivalent to the operator on multiplication by the 2 cos(p) function on the

L2([−π, π)). That is H0 = F−1[2 cos(p)]F , where F is a unitary operator such that

F : `2(Z) → L2([−π, π)). Consequently, the range of the function 2 cos(p) will coin-

cide with the continuous spectrum of the free Schrödinger operator H0.
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Figure 3.1: Example of spectrum of discrete Schrödinger operator

Let λj denote the eigenvalues of the operator (3.1). We are interested in an

estimate of the total number N of eigenvalues λj in the case where the sequence Vj

decays exponentially fast at infinity. Refer to figure 3.1.

More precisely, we shall prove the following two theorems:

Theorem 3.1. The number N of eigenvalues of H in `2(Z+), counting algebraic

multiplicities, satisfies

N ≤ 1

2 ln Λ

(
2Λ2

Λ2 − 1

∞∑
n=1

Λ2n|Vn|

)2

,

for any Λ > 1.

A similar result for a continuous operator was proved in [15] by Frank, Laptev

and Safronov.

We also establish a slightly different estimate:

Theorem 3.2. The number N of eigenvalues of H in `2(Z+), counting algebraic
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multiplicities, satisfies

N ≤ 1

ln Λ

Λ2

(Λ2 − 1)

(
∞∑
n=1

Λn|Vn|1/2
)2

,

for any Λ > 1.

Note that the right hand sides of both estimates can be finite only in the case

where V is an exponentially decaying potential. Moreover, we choose Λ in such a way

that the summation converges. For example, if Vn = q2n, q ∈ (0, 1), then we choose

Λ in such a way that Λ|q| < 1. In this case the summations become the geometric

series and so our estimate in Theorem 3.1 will become:

N ≤ 1

2 ln Λ

(
2Λ2

Λ2 − 1

)2
(Λq)2

1− (Λq)2
.

Similarly our estimate in Theorem 3.2 will become:

N ≤ 1

ln Λ

Λ2

(Λ2 − 1)

Λ|q|
1− Λ|q|

.

Doing so will allow us to find Λmin for each q, which will give us the smallest estimate

for N . For example, if we consider the case q = 1/2, then from the estimate in

Theorem 3.2 we get Λmin ≈ 1.3351 and N ≤ 32. However, Theorem 3.1 gives us a

better estimate: Λmin ≈ 1.3765 and N ≤ 23.

It turns out that N might be finite even in the case when the potential decays

slower. For instance, as discussed in Section 2.1, the operator −d2/dx2 +V (x) on the

half-line [0,∞) has finitely many eigenvalues if |V | ≤ C exp(−c
√
x) for some C, c > 0.

3.2 Zeros of analytic functions

The following proposition gives a useful bound on the zeros of an analytic function

in the compliment of the disc of radius R > 0.
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Proposition 3.3. Let 0 < R < 1. Let a(·) be an analytic function in {k : |k| > R}.

Assume that a(·) is continuous up to the boundary and satisfies

a(k) = 1 +O(|k|−1) as |k| → ∞ in {k : |k| > R}. (3.2)

Assume also that for some A ≥ 1,

|a(k)| ≤ A, if |k| = R . (3.3)

Then the zeros kj of a(·) in {k : |k| > R}, repeated according to their multiplicities,

satisfy ∏
j

(
|kj|
R

)
≤ A. (3.4)

Figure 3.2: Zeros of analytic function outside of circle of radius R
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Proof. We introduce the Blaschke product

B(k) =
∏
j

k − kj
R−R−1kjk

.

Clearly, a(k)/B(k) is an analytic and non-zero in {k : |k| > R}. Consequently,

log(a(k)/B(k)) exists and is analytic in {k : |k| > R}. Let CR denote the circle

{k ∈ C : |k| = R}, traversed counterclockwise.

Then, according to the residue calculus,

∫
CR

log
a(k)

B(k)

dk

k
= 2πi lim

k→∞
log

a(k)

B(k)
= 2πi

∑
j

log
k̄j
−R

,

and therefore ∫ π

−π
log

a(Reiϕ)

B(Reiϕ)
dϕ = 2π

∑
j

log
k̄j
−R

. (3.5)

We note that |B(Reiϕ)| = 1 if ϕ ∈ R and, therefore,

Re

∫ π

−π
log

a(Reiϕ)

B(Reiϕ)
dϕ =

∫ π

−π
ln
∣∣∣ a(Reiϕ)

B(Reiϕ)

∣∣∣ dϕ =

∫ π

−π
ln |a(Reiϕ)| dϕ. (3.6)

On the other hand,

Re
∑
j

log
k̄j
−R

=
∑
j

ln
|kj|
R
. (3.7)

We conclude from (3.5), (3.6) and (3.7) that

∫ π

−π
ln |a(Reiϕ)| dϕ = 2π

∑
j

ln
|kj|
R
. (3.8)

Finally, by (3.3),

∫ π

−π
ln |a(Reiϕ)| dϕ ≤ 2π lnA, . (3.9)
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Inequality (3.4) now follows from (3.8) and (3.9).

Corollary 3.4. Let 0 < R < 1. Let a(·) be an analytic function in {k : |k| > R}

satisfying (3.2). Assume that, for any R′ > R sufficiently close to R, condition (3.3)

holds with R replaced by R′. Then the number

N := #{j : |kj| ≥ 1}

of zeros kj of a(·) in {k : |k| ≥ 1}, repeated according to their multiplicities, satisfies

N ≤ lnA

ln 1/R
.

Proof. We apply Proposition 3.3 for every R′ > R sufficiently close to R and obtain

∑
j

(ln |kj| − lnR′)+ ≤ lnA

Clearly, we have

∑
j

(ln |kj| − lnR′)+ ≥ | lnR
′| ·# {j : |kj| ≥ 1} .

Consequently,

| lnR′| · N ≤ lnA.

The corollary follows by passing to the limit R′ → R.

3.3 Resolvent bounds

In this section we collect trace ideal bounds for the Birman–Schwinger operator

K(k) =
√
V (H0 − z)−1

√
|V |, z = k + k−1, |k| ≥ 1 . (3.10)
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We use the notation
√
V (x) = V (x)/

√
|V (x)| if V (x) 6= 0 and

√
V (x) = 0 if

V (x) = 0.

We remind the reader that H = `2(Z+), and H0 in (4.9) denotes the free Jacobi

operator on Z+. From the explicit expression of its matrix it is easy to see that, if V

has a compact support, then K(k) admits an analytic continuation to C \ {0}. The

following proposition gives a bound on the Hilbert–Schmidt norm.

Proposition 3.5. For any k ∈ C \ {0} with |k| < 1,

‖K(k)‖S2 ≤
2

1− |k|2
∞∑
n=1

|k|−2n|Vn| ,

Proof. The matrix of (H0 − z)−1 is given by

gk(n,m) =
k

k2 − 1

(
k−|n−m| − k−(n+m)

)
,

which satisfies

|gk(n,m)| ≤ 2

1− |k|2
|k|−(n+m) .

Combining this bound with the identity

‖K(k)‖2
S2

=
∞∑
1

∞∑
1

|Vn||gk(n,m)|2|Vm|

we obtain the claimed bound.

Proposition 3.6. For any k ∈ C \ {0} with |k| < 1,

‖K(k)‖S1 ≤
2

1− |k|2
( ∞∑
n=1

|k|−n|Vn|1/2
)2

,
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Proof. The matrix of (H0 − z)−1 is defined by

gk(n,m) =
k

k2 − 1

(
k−|n−m| − k−(n+m)

)
,

which satisfies

|gk(n,m)| ≤ 2

1− |k|2
|k|−(n+m) .

Combining this bound with the identity

‖K(k)‖S1 ≤
∞∑
1

∞∑
1

|Vn|1/2|gk(n,m)||Vm|1/2

we obtain the claimed bound.

3.4 Proof of Theorem 3.1

In this section we prove Theorem 3.1. Let us assume that V has compact support.

The bound in this case implies the bound in the general case by a simple continuity

argument.

As discussed in Section 4.2.1, the Birman–Schwinger operators K(k) from (4.9)

extends analytically to C\{0}. The same proof shows that they are not only analytic

with respect to the norm of bounded operators, but even with respect to the norm in

S2.

We will apply Corollary 4.4 to the function

a(k) := det2(1 +K(k))

with Λ = 1/R. Since K(k) is analytic with values in S2, the function a is analytic. It

is easy to see that assumption (3.2) is valid. Moreover, combining them with Lemma
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2.2, we see that assumption (3.3) holds with

lnA =
1

2

(
2Λ2

Λ2 − 1

∞∑
n=1

Λ2n|Vn|

)2

.

Thus, Corollary 4.4 implies that

#{j : Im kj ≥ 0} ≤ 1

2 ln Λ

(
2Λ2

Λ2 − 1

∞∑
n=1

Λ2n|Vn|

)2

.

It remains to use Lemma 2.1, which says that the kj + k−1
j , with |kj| > 1, coincide

with the eigenvalues of H, counting algebraic multiplicities. This proves Theorem

3.1.

3.5 Proof of Theorem 3.2

In this section we prove Theorem 3.2. Let us assume again that V has compact

support.

As discussed in Section 4.2.1, the Birman–Schwinger operators K(k) from (4.9)

extend analytically to C \ {0}. The same proof shows that they are not only analytic

with respect to the norm of bounded operators, but even with respect to the norm in

S1.

We apply Corollary 4.4 to the function

a(k) := det1(1 +K(k)) = det(1 +K(k))

with Λ = 1/R. Since K(k) is analytic with values in S1, the function a is analytic.

Assumption (3.3) holds with

lnA =
2Λ2

Λ2 − 1

(
∞∑
n=1

Λn|Vn|1/2
)2

.
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Thus, Corollary 4.4 implies that

#{j : Im kj ≥ 0} ≤ 1

ln Λ

2Λ2

Λ2 − 1

(
∞∑
n=1

Λn|Vn|1/2
)2

.

It remains to use Lemma 2.1, which says that the kj + k−1
j , with |kj| > 1, coincide

with the eigenvalues of H, counting algebraic multiplicities. This proves Theorem

3.2. �



CHAPTER 4: DISCRETE SCHRÖDINGER OPERATOR ON Z

In this chapter we estimate the number of eigenvalues for the discrete Schrödinger

operator with complex potential on Z. That is, we extend the result obtained in the

previous chapter to the whole Z. Many of the results we acquire in this section will

be very similar to those in Chapter 2.

4.1 Introduction and Main Results

We consider the Hilbert space H = `2(Z,C). Let the Schrödinger operator H be

defined on H as follows:

(H u)j =
∑
|l−j|=1

ul + Vjuj, (4.1)

where H = H0 +V . The spectrum of the self-adjoint operator H0 = H −V coincides

with the interval [−2, 2] and is absolutely continuous. Moreover, the sequence Vj

decays exponentially fast. The following two theorems extend Theorems 3.1 and 3.2,

obtained in last chapter, to the whole Z.

Theorem 4.1. The number NS of eigenvalues of H in `2(Z), counting algebraic

multiplicities, satisfies

NS ≤
1

2 ln Λ

(
Λ2

Λ2 − 1

∞∑
n=−∞

Λ2|n||Vn|

)2

+ 2,

for any Λ > 1.

Theorem 4.2. The number NS of eigenvalues of H in `2(Z), counting algebraic
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multiplicities, satisfies

NS ≤
1

ln Λ

Λ2

(Λ2 − 1)

(
∞∑

n=−∞

Λ|n||Vn|1/2
)2

+ 2,

for any Λ > 1.

4.2 Preliminary Results

Before we can prove theorems above, however, we will need to prove a few preliminary

results. We consider space H = `2(Z), and let H0 denote the free Jacobi operator on

Z. The results we obtain in this section will be similar to those obtained in Chapter

3 and will be used in both, this chapter and Chapter 5 in estimating Schrödinger and

Dirac operators.

The first result will be very similar to Proposition 3.3 and next result will resemble

very closely Corollary 3.4 in previous Chapter.

Proposition 4.3. Let 0 < R < 1. Let a(·) be a function in the circle Ω := {k :

|k| > R} of the form a(k) = a0(k)e
ck

k2−1 , where a0(k) is meromorphic and has poles at

k = ±1 of order n, and c ∈ R. Also assume that a(·) and satisfies

a(k) = 1 +O(|k|−1) as |k| → ∞ in Ω = {k : |k| > R}. (4.2)

Assume also that for some A ≥ 1,

|a(k)| ≤ A, if |k| = R . (4.3)

Then the zeros kj of a(·) in Ω, repeated according to their multiplicities, satisfy

R2n
∏
j

(
|kj|
R

)
≤ A. (4.4)
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Proof. The idea of the proof of this Proposition will be similar to that of the proof

of Proposition 3.3 in Chapter 3. We want to look at the function log(a(k)) =

log
[
a0(k)e

ck
k2−1

]
= log[a0(k)] +

ck

k2 − 1
, but log[a0(k)] in not analytic in Ω. To make

it analytic we need to get rid of all zeros and poles in a0(k). To do so, as discussed

in Chapter 2, we introduce a Blaschke product as follows

B(k) =

(∏
j

k − kj
R−R−1kjk

)
(R−R−1k)n

(k − 1)n
(R +R−1k)n

(k + 1)n
.

As a result, the function log [a0(k)/B(k)] exists and is analytic in Ω, |B(k)| = 1 on

CR := ∂Ω = {k : |k| = R}. Then

log

[
a0(k)

B(k)

]
= α0 +

α1

k
+
α2

k2
+ · · · ⇒ 1

k
log

[
a0(k)

B(k)

]
=
α0

k
+
α1

k2
+
α2

k3
+ · · · .

By residue calculus we get the following:

∫
CR

log

[
a(k)

B(k)

]
dk

k
=

∫
CR

(
log

[
a0(k)

B(k)

]
+

ck

k2 − 1

)
dk

k
= 2πiα0 + 0 = 2πiα0, (4.5)

since

∫
CR

c

k2 − 1
dk = 0 for R < 1.

So to calculate the integral we just compute α0 as follows:

α0 = lim
k→∞

log

[
a(k)

B(k)

]
= lim

k→∞
log

[
a0(k)

B(k)

]
= log

[
lim
k→∞

a0(k)

B(k)

]
= log

[(∏
j

−kj
R

)
(−1)nR2n

] (4.6)

As a result, from 4.5 and 4.6, we get:

∫
CR

log

[
a(k)

B(k)

]
dk

k
= 2πi log

[(∏
j

−kj
R

)
(−1)nR2n

]
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After the change of variables k = Reiϕ the equation above becomes

∫ 2π

0

ln

∣∣∣∣ a (Reiϕ)

B (Reiϕ)

∣∣∣∣ dϕ = 2π ln

∣∣∣∣∣(−1)nR2n

(∏
j

−kj
R

)∣∣∣∣∣
= 2π ln

[
R2n

(∏
j

|kj|
R

)] (4.7)

On the other hand we have the following estimate

∫ 2π

0

ln

∣∣∣∣ a (Reiϕ)

B (Reiϕ)

∣∣∣∣ dϕ ≤ 2π lnA , (4.8)

since |B(k)| = 1 and |a(k)| ≤ A on CR.

Inequality 4.4 follows from 4.7 and 4.8.

Figure 4.3: Zeros of a(k) with poles of order n at ±1
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Corollary 4.4. Let 0 < R < 1. Let a(·) be a meromorphic function in {k : |k| > R}

with poles of order n at k = ±1 and satisfying (4.2). Assume that, for any R′ > R

sufficiently close to R, condition (4.3) holds with R replaced by R′. Then the number

N := #{j : |kj| ≥ 1}

of zeros kj of a(·) in {k : |k| ≥ 1}, repeated according to their multiplicities, satisfies

N ≤ lnA

ln 1/R
+ 2n .

Please refer to figure 4.3 for the help with visual presentation of this result.

Proof of this Corollary is analogous to the proof of Corollary 3.4 in Chapter 3.

4.2.1 Resolvent bounds

In this section we collect trace ideal bounds for the Birman–Schwinger operator

K(k) =
√
V (H0 − z)−1

√
|V |, z = k + k−1, |k| ≥ 1 . (4.9)

Where
√
V is defined as

√
V (x) =

V (x)√
|V (x)|

if V (x) 6= 0 and
√
V (x) = 0 if V (x) = 0.

Please recall that the space is H = `2(Z), and H0 in (4.9) denotes the free Jacobi

operator on Z. From the matrix representation of V it is easy to see that, if V is

compactly supported, then K(k) admits an analytic continuation to C \ {0}. The

following propositions give bounds on the Hilbert–Schmidt norm of K(k).

Proposition 4.5. For any k ∈ C \ {0} with |k| < 1,

‖K(k)‖S2 ≤
1

1− |k|2
∞∑

n=−∞

|k|−2|n||Vn| ,
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Proof. The kernel of (H0 − z)−1 is given by

gk(n,m) =
−k

k2 − 1

(
k−|n−m|

)
.

The equation above can be estimated as follows:

|gk(n,m)| ≤ 1

1− |k|2
|k|−(|n|+|m|) .

After plugging the estimation above into the identity

‖K(k)‖2
S2

=
∞∑
−∞

∞∑
−∞

|Vn||gk(n,m)|2|Vm|

we obtain the desired bound.

Proposition 4.6. For any k ∈ C \ {0} with |k| < 1,

‖K(k)‖S1 ≤
1

1− |k|2
( ∞∑
n=−∞

|k|−|n||Vn|1/2
)2

,

Proof. The kernel of (H0 − z)−1 is defined by

gk(n,m) =
−k

k2 − 1

(
k−|n−m|

)
.

The equation above can be estimated as follows:

|gk(n,m)| ≤ 1

1− |k|2
|k|−(|n|+|m|) .

After plugging the estimation above into the identity

‖K(k)‖S1 ≤
∞∑
−∞

∞∑
−∞

|Vn|1/2|gk(n,m)||Vm|1/2
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we obtain the desired bound.

Note that in the case of Z+ in Chapter 3 the kernel does not have poles at ±1.

This means that the det1(1 +K) does not have poles, and, as a result, Theorems 3.1

and 3.2 do not have the “+2” term.

4.3 Proofs of Theorems

Before proving the theorem we would like to note that the class of potentials for which

k = ±1 are poles of det1(1 + X) forms a dense subset of the space of potentials for

which ‖V ‖∞,q < ∞. This fact allows us to apply Proposition 4.3 to the functions

a(k) := det1(1 + K(k)) and a(k) := det2(1 + K(k)) in proofs of all the consequent

theorems in this chapter and chapter 5.

Proof. Suppose V is compactly supported. The Birman–Schwinger operators K(k)

from (4.9) can be extended analytically to C \ {0}, as discussed in Section 4.2.1. The

same proof shows that the operators are not only meromorphic with respect to the

infinity norm, but even with respect to the norm in S2.

We will apply Corollary 4.4 to the function a(k) := det2(1 + K(k)), then we get

the following estimates:

ln |a(K)| ≤ 1

2
‖K‖2

S2
by Lemma 2.2

≤ 1

2

(
1

1− |k|2
∞∑

n=−∞

|k|−2|n||Vn|

)
by Proposition 4.5

≤ 1

2

(
1

1−R2

∞∑
n=−∞

R−2|n||Vn|

)
since |k| > R

So plugging the estimate above into result in Corollary 4.4 for ln(A) and setting
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Λ = 1/R we get the following result

#{j : Im kj ≥ 0} ≤ 1

2 ln Λ

(
Λ2

Λ2 − 1

∞∑
n=−∞

Λ2|n||Vn|

)2

+ 2 .

Now, by Lemma 2.1 for |kj| > 1, the kj + k−1
j coincide with the eigenvalues of H,

counting algebraic multiplicities.

The established bound for compact V can be easily extended to the general case

with the use of the continuity argument. Hence the result in Theorem 4.1 holds.

The proof of Theorem 4.2 will be almost identical to the proof of Theorem 4.1

with the few slight differences. If we consider a(k) := det1(1+K(k)) = det(1+K(k))

instead of a(k) := det2(1+K(k)), substitute ‖K‖1
S1

for ‖K‖2
S2

, and apply Proposition

4.6 in place of Proposition 4.5, the result will follow.



CHAPTER 5: DISCRETE DIRAC OPERATOR ON Z

In this chapter we establish similar bounds for the discrete Dirac operator. Such

an operator is well known in the continuous case, however, in the discrete case it

has not been defined yet (or at least we do not know if it has). In this paper, we

define a discrete Dirac operator on the Hilber space H = `2(Z,C2). We then show

that the spectrum of the free Dirac operator coincides with [−
√

5,−1] ∪ [1,
√

5] and

is absolutely continuous. Moreover, we use results from Chapter 4 to establish the

upper bound for the number of eigenvalues ND of the operator in the case where the

potential V decays exponentially at infinity.

5.1 Introduction and Main Results

Let H = `2(Z,C2) be the Hilbert space of square summable sequences of two-dimensional

comples vectors on Z. Let V : H 7→ H be the operator of multiplication by a bounded

complex-valued function on Z. We define the free Dirac operator on H by

D0 =

 1 S − 1

S∗ − 1 −1

 .

Here the operator S is the shift operator in `2(Z,C) and is defined as follows:

(Su)n = un−1.

And finally we define the operator DV to be DV = D0 + V .

In this chapter we prove the following two theorems regarding the Dirac operator

on Z:
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Theorem 5.1. The number ND of eigenvalues of DV in `2(Z,C2), counting algebraic

multiplicities, satisfies

ND ≤

(
‖V ‖∞,q

(
4Λ1+ ε

2 + 2
√

2
)

+ ‖V ‖2
∞,q

)2

ln Λ

(
Λ2

Λ2 − 1

)2(
Λε + 1

Λε − 1

)2

+ 4,

where Λ is any constant greater than 1, q =
1

Λ2+ε
, and ‖V ‖∞,q = sup

−∞<n<∞
|Vnq−|n||.

Theorem 5.2. The number ND of eigenvalues of DV in `2(Z,C2), counting algebraic

multiplicities, satisfies

ND ≤
‖V ‖∞,q

(
4Λ1+ ε

2 + 2
√

2 + ‖V ‖∞,q
)

ln Λ

√
2Λ2

Λ2 − 1

(
Λε/2 + 1

Λε/2 − 1

)2

+ 4,

where Λ is any constant greater than 1, q =
1

Λ2+ε
, and ‖V ‖∞,q = sup

−∞<n<∞
|Vnq−|n||.

Here we keep in mind that Λ > 1 in such a way that the infinity-q norm is

finite. This means that in the case when the potential V is of the form Vn =
1

k
then

Λ ∈ (1, (k)
1

2+ε ).

Figure 5.4: Example of spectrum of a discrete Dirac operator
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Also note that the additional “+4” term is related to the number of edges of the

spectrum of the free Dirac operator. Under small perturbations of D0, the eigenvalues

of DV appear near the edges of the continuous spectrum (see Figure 5.4) .

5.1.1 Independence of two results

One may claim that Theorem 5.2 implies Theorem 5.1, since the results are very

similar. At first glance we see that the numerator over the ln(Λ) in the Theorem 5.1

is squared, as opposed to it being linear in the Theorem 5.2. This may provide a false

impression to draw such a conclusion. However, after some analysis, it can be seen

that it is not the case. In other words, Theorem 5.1 does not imply Theorem 5.2,

nor does Theorem 5.2 imply Theorem 5.1. And so the two results are independent of

each other.

To demonstrate this we will look at the ratios of the two estimates. For the

simplicity of notation let C∗ = ‖V ‖∞,q , ND1 be the estimate in Theorem 5.1 and

ND2 be the estimate from Theorem 5.2. Then

ND1

ND2

=

√
2Λ2C∗(4Λ1+ε/2 + 2 + C∗)(Λ

ε + 1)2

(Λ2 − 1)(Λε/2 + 1)4

≤
√

2Λ2C∗(4Λ1+ε/2 + 2Λ1+ε/2 + C∗Λ
1+ε/2)(Λε + 1)2

(Λ2 − 1)(Λε + 1)2

=

√
2Λ3+ε/2C∗(6 + C∗)

Λ2 − 1

(5.1)

Note that if the last ratio is less than 1 then we get that the estimate in the Theorem

5.1 is better that the estimate from Theorem 5.2. So now we will find a condition for

C∗ which will guarantee this. In order for the ratio to be less than 1 we need to have

the following:

C2
∗ + 6C∗ <

Λ2 − 1√
2Λ3+ε/2

⇒ C2
∗ + 6C∗ −

Λ2 − 1√
2Λ3+ε/2

< 0
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Note that the left hand side of the inequality above is a quadratic function of C∗. This

means that in order for the inequality to be satisfied we get the following condition:

0 < C∗ < −3 +

(
9 +

Λ2 − 1√
2Λ3+ε/2

)1/2

So whenever the above condition is satisfied then the estimate in the Theorem 5.1 is

better that the estimate from Theorem 5.2.

Similarly we look at the ratio
ND2

ND1

:

ND2

ND1

=
(Λ2 − 1)(Λε/2 + 1)4

√
2Λ2C∗(4Λ1+ε/2 + 2 + C∗)(Λε + 1)2

≤ Λ2(Λε + 1)4

√
2Λ2C∗(4Λ1+ε/2 + 2 + C∗)(Λε + 1)2

=
(Λε + 1)4

√
2C∗(4Λ1+ε/2 + 2 + C∗)(Λε + 1)2

≤ (Λε + 1)2

√
2C∗(4Λ1+ε/2 + 2 + C)

≤ 4Λ2ε

√
2C∗(6 + C∗)

≤ 2
√

2Λ2ε

C∗(6 + C∗)

(5.2)

Now again we want to know when the ration is less than 1, as in that case the estimate

obtained by the Theorem 5.2 is better than the one given by Theorem 5.1. And so

again we will find a condition on C∗ which will make this to be true:

C2
∗ + 6C∗ > 2

√
2Λ2ε

⇒ C2
∗ + 6C∗ − 2

√
2Λ2ε > 0

And again we get the left hand side of the inequality to be a quadratic function of

C∗. So in order for the inequality to hold we get the following condition on C∗ :

C∗ >
−6 + (36 + 8

√
2Λ2ε)1/2

2
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So for all C∗ which satisfy the inequality above we get that the estimate given by

Theorem 5.2 is better than the estimate given by Theorem 5.1. (i.e. ND2 < ND1)

5.1.2 Correlation between the Dirac Operator to Schrödinger Operator

After we square the free Dirac Operator D0 we get the following:

D2
0 =

 1 S − 1

S∗ − 1 −1


 1 S − 1

S∗ − 1 −1

 =

3− (S + S∗) 0

0 3− (S + S∗)

 = 3−H0,

where H0 is the free discrete Schrödinger operator on Z.

5.1.3 Continuous spectrum of Dirac operator

We know from Chapter 3 that the absolutely continuous spectrum of the H0 is

σc(H0) = σc(−H0) = [−2, 2]. Then the continuous spectrum for 3 − H0 is σc(3 −

H0) = [1, 5]. As a result, the continuous spectrum of D0 then must correspond to

σc(D0) = [−
√

5,−1] ∪ [1,
√

5].

This can also be seen from the fact that the shift operator is unitary equivalent

to the operator of multiplication by the function e−ip on L2([−π, π)). That is, S =

F−1[e−ip]F , where F is a unitary operator mapping `2(Z) onto L2([−π, π)). Then

S∗ = F−1[eip]F . So we can express the free Dirac operator as follows:

 I S − I

S∗ − I −I

 = F−1

 1 e−ip − 1

eip − 1 −1

F
Then the characteristic equation of the multiplication operator is:

(1− λ)(−1− λ)− (e−ip − 1)(eip − 1) = 0

⇒ (1− λ2) + (1 + 1− 2 cos(p)) = 0

⇒ λ2 = 1 + (2− 2 cos(p)) = 3− 2 cos(p)
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⇒ λ1(p) =
√

3− 2 cos(p), λ2(p) = −
√

3− 2 cos(p)

So as p runs through [−π, π) the continuous spectrum of the Dirac operator runs

through [−
√

5,−1] ∪ [1,
√

5].

Next, if we look at the square of the operator DV , we will get

D2
V = (D0 + V )2 = D2

0 +D0V + V D0 + V 2 = (3−H0) +Q ,

where Q = D0V + V D0 + V 2.

5.2 Estimation for the Dirac Operator

In this section we will prove our estimations for the Dirac operator DV .

Let us first recall that D2
V = (3 − H0) + Q , where Q = D0V + V D0 + V 2. We

then apply the Birman-Schwinger principle in the regular case to conclude that the

number of eigenvalues, λ, of DV s.t. λ ∈ ρ(D0) corresponds to the number of zeros

of the function d(k) = detp(1 +Q(H0 − λ)−1), for any p ∈ N.

For our further estimations it will be usefull to define a new operator W as follows:

Wn = q
|n|
2 , for some q ∈ (0, 1). Another useful result is that for any operators A and B

the equality σp(AB) = σp(BA) holds. As a result, we can rewrite the equation as

follows:

Q(H0 − z)−1 =
1

W
Q(H0 − z)−1W

=
1

W
(D0V + V D0 + V 2)(H0 − z)−1W

=
1

W
D0V

1

W
W (H0 − z)−1W +

1

W
VD0

1

W
W (H0 − z)−1W

+
1

W
V 2(H0 − z)−1W

It is also known that for any two Schatten class operators S1 and S2, their Schatten

norm can be estimated by ‖S1S2‖Sp ≤ ‖S1‖∞ ‖S2‖Sp . Applying this property we get
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the following estimate:

∥∥Q(H0 − z)−1
∥∥
Sp

=

∥∥∥∥∥∥∥
1

W
D0V

1

W
W (H0 − z)−1W +

1

W
VD0

1

W
W (H0 − z)−1W

+
1

W
V 2(H0 − z)−1W

∥∥∥∥∥∥∥
Sp

≤
∥∥∥∥ 1

W
D0V

1

W

∥∥∥∥
∞

∥∥W (H0 − z)−1W
∥∥
Sp

+

∥∥∥∥ 1

W
VD0

1

W

∥∥∥∥
∞

∥∥W (H0 − z)−1W
∥∥
Sp

+

∥∥∥∥ 1

W
V 2 1

W

∥∥∥∥
∞

∥∥W (H0 − z)−1W
∥∥
Sp

=
∥∥W (H0 − z)−1W

∥∥
Sp


∥∥∥∥ 1

W
D0V

1

W

∥∥∥∥
∞

+

∥∥∥∥ 1

W
VD0

1

W

∥∥∥∥
∞

+

∥∥∥∥ 1

W
V 2 1

W

∥∥∥∥
∞

 (?)

Now, applying Proposition 4.5 while substituting V in the proposition with W 2, we

get the following:

∥∥W (H0 − z)−1W
∥∥
S2
≤ 1

1− |k|2
∞∑

n=−∞

|k|−2|n|q|n| (5.3)

Similarly, applying Proposition 4.6 while substituting V with W 2, we get

∥∥W (H0 − z)−1W
∥∥
S1
≤ 1

1− |k|2

(
∞∑

n=−∞

|k|−|n|q
|n|
2

)2

(5.4)

To estimate

∥∥∥∥ 1

W
D0V

1

W

∥∥∥∥
∞

we decompose the operator D0 into the sum of two

operators TS and T0:

D0 =

 1 S − 1

S∗ − 1 −1

 =

 0 S

S∗ 0

+

 1 −1

−1 −1

 = TS + T0

Then

∥∥∥∥ 1

W
D0V

1

W

∥∥∥∥
∞
≤
∥∥∥∥ 1

W
TSV

1

W

∥∥∥∥
∞

+

∥∥∥∥ 1

W
T0V

1

W

∥∥∥∥
∞

. Notice that the eigenvalues
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of T0 are ±
√

2 and T0 is self-adjoint, so ‖T0‖∞ =
√

2. As a result, since T0 does not

depend on W , we get the inequality,

∥∥∥∥ 1

W
T0V

1

W

∥∥∥∥
∞
≤ ‖T0‖∞

∥∥∥∥ VW 2

∥∥∥∥
∞

=
√

2

∥∥∥∥ VW 2

∥∥∥∥
∞

=
√

2 sup
n
|Vnq−|n|| :=

√
2 ‖V ‖∞,q .

The estimation of

∥∥∥∥ 1

W
TSV

1

W

∥∥∥∥
∞

, however, will be a little more complicated:

We remind the reader thatW = {Wn} is acting on the Hilbert space H = `2(Z,C2).

Then for every ξ =

αnβn

n∈Z

∈ H , Wξ =

Wnαn

Wnβn


n

=

q
|n|
2 αn

q
|n|
2 βn


n

.

Furthermore

TSWξ =

q
|n−1|

2 αn−1

q
|n+1|

2 βn+1


n

and
1

W
TSWξ =


q
|n−1|

2

q
|n|
2

αn−1

q
|n+1|

2

q
|n|
2

βn+1


n

.

As a result, we get the following estimate for

∥∥∥∥ 1

W
TSW

∥∥∥∥
∞

:

∥∥∥∥ 1

W
TSW

∥∥∥∥
∞
≤ sup

n

∣∣∣∣∣q
|n−1|

2

q
|n|
2

∣∣∣∣∣+ sup
n

∣∣∣∣∣q
|n+1|

2

q
|n|
2

∣∣∣∣∣ = q
−1
2 + q

−1
2 = 2q

−1
2 .

Similarly, we get the estimate for

∥∥∥∥WTS
1

W

∥∥∥∥
∞

to be

∥∥∥∥WTS
1

W

∥∥∥∥
∞
≤ sup

n

∣∣∣∣∣ q
|n|
2

q
|n−1|

2

∣∣∣∣∣+ sup
n

∣∣∣∣∣ q
|n|
2

q
|n+1|

2

∣∣∣∣∣ = q
−1
2 + q

−1
2 = 2q

−1
2 .

Hence

∥∥∥∥ 1

W
D0V

1

W

∥∥∥∥
∞

=

∥∥∥∥ 1

W
VD0

1

W

∥∥∥∥
∞

=

∥∥∥∥ VW 2

∥∥∥∥
∞

(∥∥∥∥ 1

W
TSW

∥∥∥∥
∞

+
√

2

)
(5.5)

= ‖V ‖∞,q
(

2q
−1
2 +
√

2
)

(5.6)
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The only thing left for us to do is to note that

∥∥∥∥ V 2

W 2

∥∥∥∥
∞
≤
∥∥∥∥ V 2

W 4

∥∥∥∥
∞
≤
∥∥∥∥ VW 2

∥∥∥∥2

∞
= ‖V ‖2

∞,q .

As a result, from all the estimates above, we get the following estimate for the

Schatten p-norm of the operator Q(H0 − z)−1:

∥∥Q(H0 − z)−1
∥∥
Sp
≤
∥∥W (H0 − z)−1W

∥∥
Sp


∥∥∥∥ 1

W
D0V

1

W

∥∥∥∥
∞

+

∥∥∥∥ 1

W
VD0

1

W

∥∥∥∥
∞

+

∥∥∥∥ 1

W
V 2 1

W

∥∥∥∥
∞


≤
(

2 ‖V ‖∞,q
(

2q
−1
2 +
√

2
)

+ ‖V ‖2
∞,q

)∥∥W (H0 − z)−1W
∥∥
Sp

(5.7)

5.2.1 Proof of Theorems 5.1 and 5.2

We will apply similar technique to the one we applied in the proof of Theorem 4.1.

Proof of Theorem 5.1. Suppose V is compactly supported. The Birman–Schwinger

operators K(k) from (4.9) can be extended analytically to C \ {0}, as discussed in

Section 4.2.1. The same proof shows that the operators are not only meromorphic

with respect to the infinity norm, but even with respect to the norm in S2.

We will apply Corollary 4.4 with n = 2 to the function a(k) := det2(1 + Q(H0 −

z)−1) to get the following estimates:

ln |a(K)| ≤ 1

2
‖Q(H0 − z)−1‖2

S2

by Lemma 2.2

≤ 1

2

(
2 ‖V ‖∞,q

(
2q
−1
2 +
√

2
)

+ ‖V ‖2
∞,q

)2 ∥∥W (H0 − z)−1W
∥∥2

S2

by inequality 5.7

≤ 1

2

(
2 ‖V ‖∞,q

(
2q
−1
2 +
√

2
)

+ ‖V ‖2
∞,q

)2
(

1

1− |k|2
∞∑

n=−∞

|k|−2|n|q|n|

)2
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by (5.3)

≤ 1

2

(
2 ‖V ‖∞,q

(
2q
−1
2 +
√

2
)

+ ‖V ‖2
∞,q

)2
(

1

1−R2

∞∑
n=−∞

R−2|n|q|n|

)2

since |k| > R

≤ 1

2

(
2 ‖V ‖∞,q

(
2q
−1
2 +
√

2
)

+ ‖V ‖2
∞,q

)2
(

1

1−R2

(
2

1− qR−2
− 1

))2

Note that in order for the last inequality to make sense we must enforce the following

restriction on q : q = R2+ε, ε > 0. So plugging the estimate above into result in

Corollary 4.4 for ln(A) and setting Λ = 1/R yields the following inequality:

#{j : Im kj ≥ 0} ≤

(
2 ‖V ‖∞,q

(
2q
−1
2 +
√

2
)

+ ‖V ‖2
∞,q

)2

2 ln Λ

( √
2Λ2

Λ2 − 1

)2(
Λε + 1

Λε − 1

)2

+4 .

The extra
√

2 in front of the
Λ2

Λ2 − 1
term is due to the fact that H0, is an orthog-

onal sum of two operators (i.e. it is a matrix opeator), as can be seen in subsection

5.1.2. Now, by Lemma 2.1 for |kj| > 1, the kj + k−1
j , coincide with the eigenvalues of

H, counting algebraic multiplicities.

The established bound for compact V can be easily extended to the general case

with the use of the continuity argument. Hence the result in Theorem 5.1 holds.

The proof for Theorem 5.2 will be very similar to the proof of Theorem 5.1.

Proof of Theorem 5.2. Suppose V is compactly supported. The Birman–Schwinger

operators K(k) from (4.9) can be extended analytically to C \ {0}, as discussed in

Section 4.2.1. The same proof shows that the operators are not only meromorphic

with respect to the infinity norm, but even with respect to the norm in S1.

We will apply Corollary 4.4 with n = 2 to the function a(k) := det1(1 + Q(H0 −
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z)−1), then we get the following estimates:

ln |a(K)| ≤ ‖Q(H0 − z)−1‖S1 , by Lemma 2.2

≤
(

2 ‖V ‖∞,q
(

2q
−1
2 +
√

2
)

+ ‖V ‖2
∞,q

)∥∥W (H0 − z)−1W
∥∥
S1

by inequality 5.7

≤
(

2 ‖V ‖∞,q
(

2q
−1
2 +
√

2
)

+ ‖V ‖2
∞,q

) 1

1− |k|2

(
∞∑

n=−∞

|k|−|n|q
|n|
2

)2

by inequality 5.4

≤
(

2 ‖V ‖∞,q
(

2q
−1
2 +
√

2
)

+ ‖V ‖2
∞,q

) 1

1−R2

(
∞∑

n=−∞

R−|n|q
|n|
2

)2

since |k| > R

≤ 1

2

(
2 ‖V ‖∞,q

(
2q
−1
2 +
√

2
)

+ ‖V ‖2
∞,q

)2 1

1−R2

(
2

1− q 1
2R−1

− 1

)2

So after plugging the estimate above into result in Corollary 4.4 for ln(A) and setting

Λ = 1/R we get the following result

#{j : Im kj ≥ 0} ≤

(
2 ‖V ‖∞,q

(
2q
−1
2 +
√

2
)

+ ‖V ‖2
∞,q

)
ln Λ

√
2Λ2

Λ2 − 1

(
Λ
ε/2

+ 1

Λε/2 − 1

)2

+ 4 .

Now, by Lemma 2.1 for |kj| > 1, the kj + k−1
j , coincide with the eigenvalues of H,

counting algebraic multiplicities.

The established bound for compact V can be easily extended to the general case

with the use of the continuity argument. Hence the result in Theorem 5.2 holds.



CHAPTER 6: BIHARMONIC OPERATOR ON R3

In this chapter we study the biharmonic operator on R3 with a complex potential,

which decays exponentially at infinity. We obtain bounds on the total number of

eigenvalues of the said operator.

6.1 Introduction and Main Results

We consider the operator

H = (−∆)2 + V (x), x ∈ R3

with a complex valued exponentially decaying potential V. We obtain an estimate for

the total number NB of eigenvalues of the operator H in the complex plane C, minus

the positive real line.

Figure 6.5: Spectrum of a biharmonic operator with a complex potential
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Our work is motivated by a recent result of Frank, Laptev and Safronov [15] which

gives a similar estimate for the number of eigenvalues of a Schrödinger operator.

While Shrödinger operators are the most intensively studied operators in mathemat-

ical physics, polyharmonic operators of higher order have also been considered, as

they too have some interesting applications.

We assume that V is a measurable function such that the integral

‖V ‖1,ε :=

∫
R3

|V (x)|eε|x|dx <∞ (6.1)

is finite. In this case, the operator H can be defined in the sense of quadratic forms

as it was done in the paper of Laptev and Safronov [19]. We do not give the details of

this definition, simply because they are quite standard. Note only, that the domain

of the operator H is contained in the Sobolev space H2(R3). However it depends on

the potential V , which does not have to be bounded. It was also shown by Laptev

and Safronov [19] that it is enough to establish the eigenvalue bounds for compactly

supported smooth potentials V , since they could be extended to the general case by

the limit procedure.

For the following theorem we will need to introduce a few things. First let S2

denote the class of Hilbert-Schmidt operators and ‖·‖S2
denote the norm in this space,

i.e.

S2 = {T : trT ∗T <∞}, ‖T‖2
S2

= trT ∗T.

Theorem 6.1. Let ε > 0 and let V satisfy (7.1). Then the number NB of eigenval-

ues of H in L2(R3), counting algebraic multiplicities, located outside of the essential

spectrum, satisfies

NB ≤
1

ε3

(
ε2

4π
‖V ‖1,ε +

ε+ 2

64π2
‖V ‖2

1,ε +
3γ

64π4
‖V ‖3

1,ε

)
+ 1
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where γ is the best constant satisfying the inequality |det3(1 +X)| ≤ eγ‖X‖
3
S2 .

Note that the potential V in our estimate must decay exponentially fast in the

integral sense, so that ‖V ‖1,ε is finite. Recall that such exponential decay at infinity

is not needed in order to guarantee that the number of eigenvalues of the correspond-

ing Schrödinger operator to be finite. B. Pavlov used the notion of quasi-analyticity

to obtain certain criteria for the number of eigenvalues to be finite (see [25], [26]).

However, his methods do not lead to estimates for their total number Np. Also recall

that Pavlov established that if the potential decays slower than γ exp(−α|x|1/2) then

the number of eigenvalues of the corresponding one-dimensional Schrödinger operator

might be infinite. Another interesting result was recently established by Bögli [2]. In

this paper, the author constructs a non-real potential V ∈ Lp(Ω) ∩ L∞(Ω), p > d

that decays at infinity so that the Schrödinger operator has infinitely many non-real

eigenvalues accumulating at every point of the interval [0,∞). Also one may take a

look at the paper [11], where the authors prove that the spectrum of Schrödinger op-

erators in three dimensions is purely continuous and coincides with the non-negative

semiaxis for all potentials satisfying a form-subordinate smallness condition.

Remark: In this chapter we use the fact that we have explicit form for the

resolvent kernel of the Laplacian in the dimension d = 3. In the case when d = 1 the

explicit form for the resolvent kernel is also known, but we will not consider this case.

The reason being is that the case when d = 1 can be treated in the similar manner,

but in this case the operator W1(−∆−k)−1W2 is already a Hilbert Schmidt operator.

One does not need additional cancellations of singularities, which makes it simpler.
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6.2 Relation between operator of fourth order and the Schrödinger operator

In this section we show that it is possible to express the resolvent of the biharmonic

operator through the difference of resolvents of two “regular” Schrödinger operators.

Let us first consider the case when A = (−∆)2. Then, for every z ∈ ρ(A), using

the difference of two squares formula, we can express the operator (A−z)−1 as follows:

(A− z)−1 = ((−∆)2 − z)−1 = (−∆− k)−1(−∆ + k)−1, where k2 = z.

Next, recall the Hilbert’s identity, which states that for any two invertible operators

T and S, if T − S is bounded, the following holds: T−1 − S−1 = T−1(S − T )S−1.

Applying this result we get the following identity:

(−∆− k)−1 − (−∆ + k)−1 = (−∆− k)−1(2k)(−∆ + k)−1 = 2k(A− z)−1 .

Now solving for (A−z)−1 yields the following difference of the two resolvent Schrödinger

operators:

(A− z)−1 =
1

2k

[
(−∆− k)−1 − (−∆ + k)−1

]
, (6.2)

where k2 = z. Resolvents for the Schrödinger operators on R3 are already known. As

a result we can use them to help us find the resolvent for the operator of our interest.

In the next section we will prove some nontrivial results which will will be needed

later.

6.3 Resolvent Bounds

In this section we obtain some results which will be very useful for the proof of the

Theorem 6.1. We include the following figure to help understand the next Proposition.
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Figure 6.6: Zeros of a(w) inside Ω with pole of order n at (0, 0) (Biharmonic)

Proposition 6.2. Let a(w) be a function in Ω := {w ∈ C : Imw ≥ −ε, Rew ≥ −ε},

such that a(w) = 1 +O

(
1

|w|3

)
as |w| → ∞, and ln |a(w)| ≤ D

|w|3
if w lies on the

boundary of Ω. Moreover, assume that a(w) = a0(w)ef(w), where a0(w) is meromor-

phic, having only one pole of order n at w = 0 and f(w) is analytic everywhere except

w = 0. Then the number of zeros N of a(w) in the first quadrant satisfies

N ≤

∣∣∣∫∂ΩR
f(w)(w + (1 + i)ε)dw

∣∣∣
2πε2

+
3D

πε3
+ n ,

where ΩR = {w ∈ Ω : |w| ≤ R}, for any R > 0.

Proof. To get the desired estimate we would like to look at the function

ln(a(w)) = ln[a0(w)ef(w)] = ln[a0(w)] + f(w). However, ln[a0(w)] is not analytic in

Ω, due to a0 having a pole at w = 0, as well as possibly having zeros in Ω. To make

it analytic we need to get rid of the pole and all the zeros. To do so we introduce the
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following Blaschke product:

B(k) =

(
(w + (1 + i)ε)2 − ((1− i)ε)2

(w + (1 + i)ε)2 − ((1 + i)ε)2

)n∏
j

(w + (1 + i)ε)2 − (wj + (1 + i)ε)2

(w + (1 + i)ε)2 − (wj + (1− i)ε)2
,

where wj are zeros of a0(w). Let ∂ΩR = IR∪JR∪CR, where CR = {w ∈ Ω : |w| = R},

IR is the line {w ∈ Ω : w = t − iε and |w| ≤ R}, and JR is the line {w ∈ Ω : w =

it − ε and |w| ≤ R}. Then the function ln [a0(w)/B(w)] exists and is analytic in Ω,

and |B(w)| = 1 on ∂Ω. Now applying residue calculus yields the following equality

Re [2πiResw=0 (f(w)(w + (1 + i)ε))] = Re

∫
∂ΩR

(
ln

[
a0(w)

B(w)

]
+ f(w)

)
(w + (1 + i)ε)dw

= Re

∫
CR

ln
a(w)

B(w)
(w + (1 + i)ε)dw +Re

∫
IR

ln
a(w)

B(w)
(w + (1 + i)ε)dw

+Re

∫
JR

ln
a(w)

B(w)
(w + (1 + i)ε)dw .

(6.3)

As a result, from the equation above, after moving the last two integrals to the left

side and using the triangle inequality, we get the following:

∣∣∣∣∫
∂ΩR

f(w)(w + (1 + i)ε)dw

∣∣∣∣+ Re

∫
IR

ln
a(w)

B(w)
(w + (1 + i)ε)dw

+ Re

∫
JR

ln
a(w)

B(w)
(w + (1 + i)ε)dw ≥ −Re

∫
CR

ln
a(w)

B(w)
(w + (1 + i)ε)dw .

(6.4)

Now our goal is to estimate the right hand side from below and the left hand side

from above. So first we will estimate the integral on the right.

We know that the integral of a function over a curve can be estimated by the

maximum value of the function on that curve multiplied by the length of the curve.

Namely, ∣∣∣∣∫
CR

ψ(z)dz

∣∣∣∣ ≤ max
z∈CR

(ψ(z))|CR| .
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Here |CR| denotes the length of the curve CR. Now, due to our two assumptions,

since ln |a(w)| ≤ D

|w|3
if w ∈ ∂Ω and a(w) = 1 +O

(
1

|w|3

)
as |w| → ∞, we get the

following estimate for the integral

lim
R→∞

Re

∫
CR

ln [a(w)](w + (1 + i)ε)dw ≤ lim
R→∞

{
D

|R|3
|(R + (1 + i)ε)||CR|

}
= lim

R→∞

{
DπR

2|R|3
|(R + (1 + i)ε)|

}
= 0 .

(6.5)

And so we only need to estimate lim
R→∞

Re

∫
CR

lnB(w)(w + (1 + i)ε)dw from below.

After setting ξ = w+ (1 + i)ε at first, then setting ξ = Reiϕ and then computing the

integral we arrive at the following inequality

lim
R→∞

Re

∫
CR

lnB(w)(w + (1 + i)ε)dw = 4iε2n

(
πi

2

)
+ 2

(π
2

)∑
j

Im(wj + (1 + i)ε)2

≥ −2nε2π + π(2ε2)N = 2πε2(N − n) ,

(6.6)

where N is the number of zeros wj of the function a0(w) in the first quadrant. The

last inequality is due to the fact that if we set w = a+ bi and compute (w+ (1 + i)ε)2

we see that Im(w + (1 + i)ε)2 = 1(a + ε)(b + ε) ≥ 2ε2. Hence, since we are taking

the sum over all zeros of a0(w) which lie in the first quadrant, the desired inequality

holds.

We now will estimate second and third terms on the left hand side of 7.3. Note

that
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Re

∫
IR

ln
a(w)

B(w)
(w + (1 + i)ε)dw =

∫
IR

ln

∣∣∣∣ a(w)

B(w)

∣∣∣∣ (w + (1 + i)ε)dw,

since (w + (1 + i)ε)dw is real

=

∫
IR

ln |a(w)| (w + (1 + i)ε)dw,

since |B(w)| = 1 on the boundary

≤
∫
IR

D

|w|3
(w + (1 + i)ε)dw .

Analogous arguments show that the integral over the boundary JR will yield the same

estimate as above. So for w ∈ IR (i.e. w = t− iε), or w ∈ JR (i.e. w = it− ε), after

appropriate change of variables and integration we get

∫
JR (or IR)

ln

∣∣∣∣ a(w)

B(w)

∣∣∣∣ (w + (1 + i)ε)dw ≤ D

ε

∫ ∞
−1

s+ 1

(s2 + 1)3/2
ds

setting u = s2 + 1 : =
D

ε

∫ ∞
2

(
1

2u3/2
√
u− 1

+
1

2u3/2

)
du+

+
2D

ε

∫ 2

1

(
1

2u3/2
√
u− 1

+
1

2u3/2

)
du

=
D

ε

(√
1− 1

u
− 1

u1/2

)∣∣∣∣∣
∞

2

+
2D

ε

(√
1− 1

u
− 1

u1/2

)∣∣∣∣∣
2

1

=
3D

ε
.

(6.7)

Now combining inequalities 7.5, 7.6 and 7.3 we get a bound for the number of zeros

N of a(w) as follows

2πε2(N − n) ≤
∣∣∣∣∫
∂ΩR

f(w)(w + (1 + i)ε)dw

∣∣∣∣+
6D

ε
.

The conclusion of the proposition follows immediately.
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6.3.1 Classes of compact operators and determinants

Recall the Birman-Schwinger principle for the special case, where H0 is a self-adjoint

operator and V is bounded. According to the Birman–Schwinger Principle from

Chapter 2 and Lemma 2.1 we conclude that the algebraic multiplicities of eigenvalues

of H can also be characterized by zeros of the of the determinant of the Birman-

Schwinger operator mentioned above.

It is well known that the integral kernel for the operator (−∆− z)−1 in the case

when dimension d = 3 is given by ρ0(x, y) =
eik|x−y|

4π|x− y|
, where k2 = z, Im k > 0. So

from this result and equation 6.2 we can derive the integral kernel for (A − z)−1 to

be the following:

ρ(x, y) =
1

2k

[
ei
√
k|x−y|

4π|x− y|
− ei

√
−k|x−y|

4π|x− y|

]
=

1

2k

[
ei
√
k|x−y| − 1− (ei

√
−k|x−y| − 1)

4π|x− y|

]
.

Note that for any z ∈ C\R+, w = 4
√
z is always located in the first quadrant. However,

as we look at the proposition 6.2, we consider all values of w ∈ Ω, keeping in mind

that w4 = z if w is in the first quadrant. Also using the inequality

∣∣ei(a+bi)τ − 1
∣∣ ≤ ∣∣∣∣∫ τ

0

i(a+ bi)ei(a+bi)sds

∣∣∣∣ ≤ ∫ τ

0

|i||a+ bi|
∣∣ei(a+bi)sds

∣∣
≤ τ |a+ bi|e−bτ ≤ τ |a+ bi|eε1τ

(6.8)

we arrive at the following estimate for ρ(x, y):

|ρ(x, y)| ≤ 1

2|k|
|
√
k|
∣∣eε1(|x|+|y|)

∣∣ |x− y|+ |√−k| ∣∣eε1(|x|+|y|)
∣∣ |x− y|

4π|x− y|
=
eε1(|x|+|y|)

4π
√
|k|

.

(6.9)

Next, we use this result to find a bound for the Hilbert-Schmidt norm of the

operator X = W1(H0 − z)−1W2, where W1 = V |V |−1/2 and W2 = |V |1/2. Simple

calculations show us that the Hilbert-Schmidt norm of X can be estimated as so:
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‖X‖3
S2

=

[∫
R3

∫
R3

|W1(x)ρ(x, y)W2(y)|2dxdy
]3/2

≤
[∫

R3

|W2(y)|2
∫
R3

|W1(x)|2|ρ(x, y)|2dxdy
]3/2

(since ρ(x, y) = ρ(y, x))

≤

( 1

4π
√
|k|

)2 ∫
R3

|W2(y)|2
∣∣e2ε1|y|

∣∣ ∫
R3

|W1(x)|2
∣∣e2ε1|x|

∣∣ dxdy
3/2

(by inequality 6.9)

=

[
1

16π2|k|

∫
R3

|V (y)
∣∣e2ε1|y|

∣∣ dy ∫
R3

|V (x)|
∣∣e2ε1|x|

∣∣ dx]3/2

=
1

64π3|k|3/2

(∫
R3

∣∣e2ε1|x|
∣∣ |V (x)|dx

)3

.

(6.10)

6.4 Proof of Theorem 6.1

As discussed in the section above we will be looking at det3(1 + W1(H0 − ς)−1W2).

We know that

det3(1 +W1(H0 − ς)−1W2) = det1(1 +W1(H0 − ς)−1W2)e−Tr(X)+
Tr(X2)

2

=

[∏
j

(1 + kj)

]
e−Tr(X)+

Tr(X2)
2 .

Note that the product has a pole of order 1 at k = 0. Moreover, the function in the

exponent will then have a pole of order 2 at k = 0. Let us note that

|det3(1 +X)| ≤ eγ‖X‖
3
S3 ≤ eγ‖X‖

3
S2 , for some γ > 0. The proof of this statement

can be found in Lemma 2.2 in Chapter 2; it is essentially due to Weyl’s inequal-

ity [28, Thm. 1.15]. Now if we set w2 = k and apply Proposition 6.2 to the function

a(w) = det3(1 + X(w)) we will get an estimate for the number of zeros of the func-

tion det3(1 + X(w)). However, to get an explicit bound we still need to compute
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∂ΩR

(
−Tr(X) +

Tr(X2)

2

)
(w + (1 + i)ε)dw. This is exactly what we will be doing

in the next two subsections.

6.4.1 Estimating

∣∣∣∣∫
∂ΩR

−Tr(X)(w + (1 + i)ε)dw

∣∣∣∣
After a simple Taylor expansion and integration we get that Tr(X) =

(
i+ 1

8wπ

)∫
R3

V (x)dx.

Now using residue calculus we get

∫
∂ΩR

Tr(X)(w + (1 + i)ε)dw =

∫
∂ΩR

(
i+ 1

8wπ

)
(w + (1 + i)ε)

∫
R3

V (x)dxdw

=
i+ 1

8π

∫
R3

V (x)dx

∫
∂ΩR

(
1 +

(1 + i)ε

w

)
dw

=
ε

2

∫
R3

V (x)dx .

This yields the following estimate from above:

∣∣∣∣∫
∂ΩR

−Tr(X)(w + (1 + i)ε)dw

∣∣∣∣ =

∣∣∣∣ε2
∫
R3

V (x)dx

∣∣∣∣ ≤ ε

2

∫
R3

|V (x)|eε|x|dx . (6.11)

6.4.2 Estimating

∣∣∣∣∫
∂ΩR

Tr(X2)

2
(w + (1 + i)ε)dw

∣∣∣∣
Note that

Tr(X2) =

∫
R3

∫
R3

V (y)ρ2(x, y)V (x)dydx

=
i

32w2π2

(∫
R3

V (x)dx

)2

− i+ 1

32wπ2

∫
R3

∫
R3

V (x)|x− y|V (y)dydx+ ψ(w),

(6.12)

where ψ(w) is analytic at w = 0. Now when we use residue calculus to integrate

Tr(X2) over ∂ΩR we get the following bound
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∣∣∣∣∫
∂ΩR

Tr(X2)

2
(w + (1 + i)ε)dw

∣∣∣∣ = ∣∣∣∣∫
∂ΩR

∫
R3

∫
R3

V (y)ρ2(x, y)V (x)(w + (1 + i)ε)dydxdw

∣∣∣∣
=

∣∣∣∣∣ ε

16π

∫
R3

∫
R3

V (x)|x− y|V (y)dydx− 1

32π

(∫
R3

V (x)dx

)2
∣∣∣∣∣

≤ ε

16π

(∫
R3

|V (x)(1 + |x|)dx
)2

+
1

32π

(∫
R3

V (x)dx

)2

≤ 1

16πε

(∫
R3

|V (x)|eε|x|dx
)2

+
1

32π

(∫
R3

|V (x)|eε|x|dx
)2

=
ε+ 2

32πε

(∫
R3

|V (x)|eε|x|dx
)2

.

(6.13)

Note that the last inequality is valid, since, due to our assumption, the potential

decays exponentially at infinity, forcing the integrals to be finite.

6.4.3 Proof of the Theorem

Combining estimates 6.11 and 6.13 we get the following inequality:

∣∣∣∣∫
∂ΩR

(
−Tr(X) +

Tr(X2)

2

)
(w + (1 + i)ε)dw

∣∣∣∣ ≤ ε

2
‖V ‖1,ε +

ε+ 2

32πε
‖V ‖2

1,ε , (6.14)

where ‖V ‖1,ε =

∫
R3

|V (x)|eε|x|dx. Then we apply Proposition 6.2 to the function

a(w) = det3(1 + X) with a0(w) = det1(1 + X) and f(w) = −Tr(X) +
Tr(X2)

2
,

as discussed in the beginning of this section. After this we use the estimate 6.14.

Moreover, we set D =
γ

64π3

(∫
R3

e2ε1|x||V (x)|dx
)3

due to 6.10. Choosing ε1 = ε/2

we conclude that the total number N of zeros of the function det3(1 +X) satisfies

N ≤ 1

ε3

(
ε2

4π
‖V ‖1,ε +

ε+ 2

64π2
‖V ‖2

1,ε +
3γ

64π4
‖V ‖3

1,ε

)
+ 1 ,

where ‖V ‖1,ε =

∫
R3

|V (x)|eε|x|dx. Then by the argument in the second paragraph
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of the subsection 7.3.1, the same estimate gives us the bound for the number of eigen-

values of the operator H.



CHAPTER 7: POLYHARMONIC OPERATOR OF ORDER 2l ON Rd, WITH

d > 2l

In this chapter we study the polyharmonic operator of order 2l, l ∈ N on Rd with a

complex potential, which decays exponentially at infinity. We obtain bounds on the

total number of eigenvalues of the said operator. Result in this Chapter is essentially

a generalization of the result in Chapter 6.

7.1 Introduction and Main Results

We consider the operator

H = (−∆)l + V (x), x ∈ Rd

with a complex valued exponentially decaying potential V. We obtain an estimate for

the total number N of eigenvalues of the operator H in the complex plane C, minus

the positive real line. This work is essentially an extension of the result obtained in

Chapter 6 to more general order 2l and dimension d.

Just like in Chapter 6 we assume that V is a measurable function such that the

integral

‖V ‖ d+1
2
,ε :=

∫
Rd
|V (x)|

d+1
2 eε|x|dx <∞ (7.1)

is finite. In this case, once again, the operator H can be defined in the sense of

quadratic forms as it was done in the paper of Laptev and Safronov [19]. Note only,

that the domain of the operator H is contained in the Sobolev space Hl(Rd). However

it depends on the potential V , which does not have to be bounded. It was also shown
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by Laptev and Safronov [19] that it is enough to establish the eigenvalue bounds

for compactly supported smooth potentials V , since they could be extended to the

general case by the limit procedure.

Note that in the case when d > 2l the resolvent will have singularity at the the line

x = y. We note that even Cwikel estimate for the polyharmonic operator considers

this case separately. In this case, for the real potential V , Cwikel proved the following

inequality:

N ≤ Cl,d

∫
Rd
|V |

d
2ldx ,

where Cl,d is a constant which depends only on the dimension d and the power of the

Laplacian l [4].

For the following theorem we will need to introduce a few things. First let Sp

denote the pth Schatten-class operator and ‖·‖Sp denote the norm in this space, i.e.

Sp =

T :

(∑
k

spk(T )

) 1
p

<∞

 , ‖T‖pSp =
∑
k

spk(T ).

Theorem 7.1. Let ε > 0, l > 1, d− odd and satisfy d > 2l. Also let V satisfy (7.1).

Then the number NP of eigenvalues of H in L2(Rd), counting algebraic multiplicities,

located outside of the essential spectrum, satisfies

NP ≤
Cd,l

ε2(ld−d+l)

(∫
Rd
eε|x||V (x)|

d+1
2 dx

)2

where Cd,l is a constant which depends only on the dimension d and power of the

Laplacian l.

Note that the potential V in our estimate must decay exponentially fast in the

integral sense, so that ‖V ‖ d+1
2
,ε is finite.



54

7.2 Relation between operator of oredr 2l and the Schrödinger operator

In this section we will to express the resolvent of the polyharmonic operator of order

2l through the sum of resolvents of “regular” Schrödinger operators.

Consider A = (−∆)l. We can express (A− z)−1 =
1

(−∆)l − z
as follows:

1

(−∆)l − z
=

l∑
j=1

cj
−∆− kj

, cj =
l∏

n=1
n6=j−1

1

z1

(
e

(j−1)2iπ
l − e 2inπ

l

)

where kj = z1e
(j−1)2πi

l and zl1 = z.

Claim 7.2. For the cj and kj defined above the following holds:

l∑
j=1

cj = 0 and
l∑

j=1

cj · kj = 0 .

Proof. To prove the first inequality consider the function
1

pl − |z|
. Then the following

inequality holds:

∣∣∣∣∫
CR

dp

pl − |z|

∣∣∣∣ ≤ 2πRmax

∣∣∣∣ 1

Rl − |z|

∣∣∣∣→ 0, as R→∞

So the sum of residues has to equal to zero. But the residues are the Cj’s. Hence the

first equality holds.

The proof of the second equality is analogous to the prove of the first one.

7.3 Resolvent Bounds

In this section we will prove some nontrivial results which will be very useful for the

proof of the Theorem 7.1.
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Proposition 7.3. Let a(w) be a function defined on

Ω :=
{
w ∈ C : 0 ≤ arg

(
w + εeiπ/2l

)
< π/l

}
where w1 = |w1|eiϕ, ϕ ∈

[
0,
π

l

)}
, such that a(w) = 1 + O

(
1

|w|l+1

)
as |w| → ∞,

and ln |a(w)| ≤ D

|w|l+1
if w lies on the boundary of Ω. Moreover, assume that a(w) =

a0(w)ef(w), where a0(w) is meromorphic, having only one pole of order n at w = 0

and f(w) is analytic everywhere except w = 0. Then the number of zeros N of a(w)

in Ω + εe
iπ
2l =

{
w ∈ C : w = |w|eiϕ, ϕ ∈

[
0,
π

l

)}
satisfies

N ≤
l
∣∣∣∫∂ΩR

f(w)(w + εe
iπ
2l )l−1dw

∣∣∣
2πεl

+
lDCl
πεl+1

+ n ,

where ΩR = {w ∈ Ω : |w| ≤ R}, for any R > 0.

Figure 7.7: Zeros of a(w) inside Ω with pole of order n at (0, 0) (Polyharmonic)
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The proof of this Proposition will be similar to the proof of the Proposition 6.2.

Proof. To get the desired estimate we would like to look at the function

ln(a(w)) = ln[a0(w)ef(w)] = ln[a0(w)] + f(w). However, ln[a0(w)] is not analytic in

Ω, due to a0 having a pole at w = 0, as well as possibly having zeros in Ω. To make

it analytic we need to get rid of the pole and all the zeros. To do so we introduce the

following Blaschke product:

B(k) =

(
(w + εe

iπ
2l )l − (εe

−iπ
2l )l

(w + εe
iπ
2l )l − (εe

iπ
2l )l

)n∏
j

(w + εe
iπ
2l )l − (wj + εe

iπ
2l )l

(w + εe
iπ
2l )l − (wj + εe

−iπ
2l )l

,

where wj are zeros of a0(w). Then the function ln [a0(w)/B(w)] exists and is

analytic in Ω, and |B(w)| = 1 on ∂Ω.

Let ∂ΩR = IR ∪ JR ∪ CR, where CR = {w ∈ Ω : |w| = R}, IR is the

line {w ∈ Ω : w = t − εe
iπ
2l and |w| ≤ R}, and JR is the line {w ∈ Ω : w =

teiπ/l − εe
iπ
2l and |w| ≤ R} (refer to Figure 7.8).

Figure 7.8: ΩR for Polyharmonic Operator
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Now applying residue calculus yields the following equality

Re
[
2πiRes w=0

(
f(w)(w + εe

iπ
2l )l−1

)]
=

= Re

∫
∂ΩR

(
ln

[
a0(w)

B(w)

]
+ f(w)

)
(w + εe

iπ
2l )l−1dw

= Re

∫
CR

ln
a(w)

B(w)
(w + εe

iπ
2l )l−1dw

+ Re

∫
IR

ln
a(w)

B(w)
(w + εe

iπ
2l )l−1dw

+ Re

∫
JR

ln
a(w)

B(w)
(w + εe

iπ
2l )l−1dw .

(7.2)

As a result, from the equation above, after moving the last two integrals to the left

side and using the triangle inequality, we get the following

∣∣∣∣∫
∂ΩR

f(w)(w + εe
iπ
2l )l−1dw

∣∣∣∣+ Re

∫
IR

ln
a(w)

B(w)
(w + εe

iπ
2l )l−1dw

+ Re

∫
JR

ln
a(w)

B(w)
(w + εe

iπ
2l )l−1dw ≥ −Re

∫
CR

ln
a(w)

B(w)
(w + εe

iπ
2l )l−1dw .

(7.3)

Now our goal is to estimate the right hand side from below and the left hand side

from above. So first we will estimate the integral on the right.

We know that the integral of a function over a curve can be estimated by the

maximum value of the function on that curve multiplied by the length of the curve.

Namely, ∣∣∣∣∫
CR

ψ(z)dz

∣∣∣∣ ≤ max
z∈CR

|ψ(z)||CR| .

Here |CR| denotes the length of the curve CR. Now, due to our two assumptions,

since ln |a(w)| ≤ D

|w|l+1
if w ∈ ∂Ω and a(w) = 1 + O

(
1

|w|l+1

)
as |w| → ∞,
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we get the following estimate for the integral:

lim
R→∞

Re

∫
CR

ln [a(w)](w + εe
iπ
2l )l−1dw ≤ lim

R→∞

{
D

|R|l+1

∣∣∣R + εe
iπ
2l

∣∣∣l−1

|CR|
}

= lim
R→∞


DπR

∣∣∣R + εe
iπ
2l )
∣∣∣l−1

l|R|l+1

 = 0 ,

(7.4)

since |CR| =
πR

l
.

And so we only need to estimate lim
R→∞

Re

∫
CR

lnB(w)
(
w + εe

iπ
2l

)l−1

dw =

lim
R→∞

∫
CR

ln |B(w)|
(
w + εe

iπ
2l

)l−1

dw from below. After setting

ξ = w + εe
iπ
2l , ξ0 = εe

iπ
2l and ξj = wj + εe

iπ
2l

the B(w) becomes

B(w) =

(
ξl − ξ0

l

ξl − ξl0

)n∏
j

(
ξl − ξlj
ξl − ξj

l

)
.

Now using the fact that ln(1 − x) = −x − x2

2
− x3

3
− · · · we get the following

expression for lnB(w):

lnB(w) =
2ni Im ξl0

ξl
−
∑
j

2i Im ξlj
ξl

+O

(
1

ξ4

)
,

where we are summing over the zeros of the function a(w) in Ω.

Recall that ξ0 = εe
iπ
2l , hence Im ξl0 = εl. Also recall that wj = |wj|eiϕj , ϕj ∈

[
0,
π

l

)
.

Then

ξlj =
(
wj + εe

iπ
2l

)l
=
(
|wj|eiϕj + εe

iπ
2l

)l
=

l∑
k=0

αk|wj|keikϕeiπ(
l−k
2l )εl−k ,

where αk > 0 are the binomial coefficients.
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Now we have

Im ξlj =
l∑

k=0

αk|wj|k sin

(
kϕ+

l − k
2l

π

)
εl−k

and

sin

(
kϕ+

l − k
2l

π

)
> 0 .

Hence, since ε < 1, we get

Im ξlj ≥
l∑

k=0

αk|wj|k sin

(
kϕ+

l − k
2l

π

)
εl = εl

l∑
k=0

αk|wj|k sin

(
kϕ+

l − k
2l

π

)
.

Clearly
l∑

k=0

αk|wj|k sin

(
kϕ+

l − k
2l

π

)
≥ 1, since for k = 0 we have αk · 1 · 1 ≥ 1.

This yields that Im ξlj ≥ εl . This means that the following estimate holds:

lim
R→∞

Re

∫
CR

lnB(w)(w + εe
iπ
2l )l−1dw =

(
2ni Im ξl0 −

∑
j

2i Im ξlj

)
lim
R→∞

∫
CR

dξ

ξ

≥

(
−2nεl +

∑
j

2εl

)
π

l

≥ 2εl(N − n)
π

l
,

(7.5)

where N is the number of zeros wj of the function a0(w) in Ω + εe
iπ
2l . Since we are

taking the sum over all zeros of a0(w) which lie in Ω, the last inequality holds.

We now will estimate second and third terms on the left hand side of 7.3 from
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above. Note that

Re

∫
IR

ln
a(w)

B(w)
(w + εe

iπ
2l )l−1dw =

∫
IR

ln

∣∣∣∣ a(w)

B(w)

∣∣∣∣ (w + εe
iπ
2l )l−1dw,

since (w + εe
iπ
2l )l−1dw is real

=

∫
IR

ln |a(w)| (w + εe
iπ
2l )l−1dw,

since |B(w)| = 1 on the boundary of Ω

≤
∫
IR

D

|w|l+1
(w + εe

iπ
2l )l−1dw,

since ln |a(w)| ≤ D

|w|l+1
on the boundary of Ω .

Now if w ∈ IR then w = t − εe
iπ
2l , t ∈

[
0, R + ε sin

( π
2l

))
and dw = dt. Also(

w + εe
iπ
2l

)l−1

dw = tl−1dt. Moreover, |w| =
∣∣∣t− εe iπ2l ∣∣∣. Then

lim
R→∞

∫
IR

ln

∣∣∣∣ a(w)

B(w)

∣∣∣∣ (w + εe
iπ
2l )l−1dw ≤ lim

R→∞
D

∫ R+ε sin( π2l)

0

tl−1dt∣∣∣t− εe iπ2l ∣∣∣l+1

setting t = εs : = D lim
R→∞

∫ R
ε

+sin( π2l)

0

εl−1sl−1εds

εl+1

∣∣∣s− e iπ2l ∣∣∣l+1

=
DCl
ε

,

(7.6)

where Cl =

∫ ∞
0

sl−1ds∣∣∣s− e iπ2l ∣∣∣l+1
.

Now if w ∈ JR then w = te
iπ
l − εe

iπ
2l , where t ∈

[
0, R + ε sin

π

2l

)
and dw = e

iπ
l dt.

Moreover, (
w + εe

iπ
2l

)l−1

dw = −tl−1dt

and

|w| =
∣∣∣e iπl t− εe iπ2l ∣∣∣ =

∣∣∣e iπl ∣∣∣ ∣∣∣t− εe−iπ2l ∣∣∣ =
∣∣∣t− εe iπ2l ∣∣∣ .

The last equality holds since the terms are complex conjugates.
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Then

lim
R→∞

∫
JR

ln

∣∣∣∣ a(w)

B(w)

∣∣∣∣ (w + εe
iπ
2l )l−1dw ≤ lim

R→∞
D

∫ 0

R+ε sin( π2l)

−tl−1dt∣∣∣t− εe iπ2l ∣∣∣ ≤ DCl
ε

, (7.7)

which is same as the integral over IR.

Now combining inequalities 7.7, 7.6, 7.5 and 7.3 we get a bound for the number

of zeros N of a(w) as follows

2εl(N − n)
π

l
≤
∣∣∣∣∫
∂ΩR

f(w)(w + εe
iπ
2l )l−1dw

∣∣∣∣+
2DCl
ε

.

The conclusion of the proposition follows immediately.

7.3.1 Classes of compact operators and determinants

Recall the Birman-Schwinger principle for the special case, where H0 = ∆l is the

polyharmonic operator of order 2l and V ∈ C∞0 (Rd). In this case the Birman-

Schwinger principle states that for z ∈ ρ(H0), z is the eigenvalue of the operator

H0 + V if and only if −1 is an eigenvalue of the operator X := W1(H0 − z)−1W2,

where W1 = V |V |−1/2 and W2 = |V |1/2. Moreover, the corresponding geometric mul-

tiplicities coincide.

Let us also recall well known results that are valid for H0 = (−∆)l and V ∈

C∞0 (Rd). Firstly, the function ς 7→ detn(1 + W1(H0 − ς)−1W2) is analytic on the

whole ρ(H0) and for all n such that 2ln > d. Also a point z ∈ ρ(H0) is an eigenvalue

of H0 + V if and only if detn(1 + W1(H0 − z)−1W2) = 0, and the order of the zero

coincides with the algebraic multiplicity of the corresponding eigenvalue of H (see

[13, 20, 29]). This means that the algebraic multiplicities of eigenvalues of H can also

be characterized by multiplicities of zeros of the perturbation determinant mentioned
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above.

Now we have the following expansion for the Birman-Schwinger operator:

K = W1(A− z)−1W2 = W1

(
l∑

j=1

cj
−∆− kj

)
W2 =

l∑
j=1

W1
cj

−∆− kj
W2 ,

where kj = w2
j . Now we will use a result obtained by Frank, Laptev and Safronov to

get an upper estimate for ‖K‖Sd+1
.

‖K‖Sd+1
=

∥∥∥∥∥
l∑

j=1

W1
cj

−∆− kj
W2

∥∥∥∥∥
Sd+1

≤
l∑

j=1

∥∥∥∥W1
cj

−∆− kj
W2

∥∥∥∥
Sd+1

=
l∑

j=1

|cj|
∥∥∥∥W1

1

−∆− kj
W2

∥∥∥∥
Sd+1

≤
l∑

j=1

|cj|Cd
(

1

|wj|

∫
Rd
eβd|x|(Im wj)− |V (x)|

d+1
2 dx

) 2
d+1

,

(7.8)

where βd =
2
(
e
d+1
2 − 1

)
e− 1

. The last inequality is due to the result obtained by Frank,

Laptev and Safronov [15, Prop. 4.2]. Note that |cj| =
(

1

|z1|

)l−1

C1(l, j), and

|kj| = |wj|2, which yield the following inequality:

|cj|
|wj|

2
d+1

=
C1(l, j)

|z1|
1
d+1

+l−1
≤ 1

z
1
d+1

+l−1

1

max
j
C1(l, j) =:

1

|z1|
1
d+1

+l−1
C1(l) .

Hence our estimate becomes

‖K‖Sd+1
≤ lCdC1(l)

|z|
1
d+1

+l−1

1

max
j

(∫
Rd
eβd|x|(Im wj)− |V (x)|

d+1
2 dx

) 2
d+1

.

Recall that our area of interest is Ω, which means that all of our wj lie above the line
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t− iε sin
( π

2l

)
, which implies that (Im wj)− ≤ ε sin

( π
2l

)
. And so we get the “final”

estimate estimate to be

‖K‖Sd+1
≤ CdC2(l)

|z1|
1
d+1

+l−1

(∫
Rd
eε
′βd|x| |V (x)|

d+1
2 dx

) 2
d+1

, (7.9)

where ε′ = ε sin
( π

2l

)
.

7.4 Proof of Theorem 7.1

As discussed in the section above we will be looking at detd+1(1 +W1(H0− ς)−1W2).

Note that this is the case when d > 2l. This means that (d+ 1)th determinant does

not have a pole. Let us note that

|detn(1 +X)| ≤ eγn‖X‖
n
Sn ,

for some γn > 0. The proof of this statement can be found in Lemma 2.1; it is

essentially due to Weyl’s inequality [28, Thm. 1.15]. Now if we set w2 = k and apply

Proposition 7.3 to the function a(w) = detd+1(1 + K(w)) we will get an estimate

for the number of zeros of the function det d+1(1 + K(w)). Consequently we get the

following estimate for ln |a(w)| = ln | det d+1(1 +K)|:

ln |detd+1(1 +K)| ≤ γd+1 ‖K‖d+1
Sd+1

≤ γd+1Cd,l
|w1|2(ld+l−d)

(∫
Rd
eε
′βd|x| |V (x)|

d+1
2 dx

)2

=
1

|w1|l+1

γd+1Cd,l
|w1|2ld−2d+l−1

(∫
Rd
eε
′βd|x| |V (x)|

d+1
2 dx

)2

≤ 1

|w1|l+1

γd+1Cd,l
(ε′)2ld−2d+l−1

(∫
Rd
eε
′βd|x||V (x)|

d+1
2 dx

)2

,

(7.10)

where the last inequality holds due to the fact that we will be considering w ∈

∂Ω which lie at least ε′ away from zero. So we will apply Proposition 7.3 to the
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detd+1(1 +K) with

D =
γd+1Cd,l

(ε′)2ld−2d+l−1

(∫
Rd
eε
′βd|x||V (x)|

d+1
2 dx

)2

.

Note that

∣∣∣∣∫
∂ΩR

f(w)(w + εe
iπ
2l )l−1dw

∣∣∣∣ = 0 and n = 0, since a(w) is analytic. Hence

the total number of zeros of a(w) in Ω + εe
iπ
2l =

{
w ∈ C : w = |w|eiϕ, ϕ ∈

[
0,
π

l

)}
can be estimated as follows:

N ≤ lDCl
π(ε′)l+1

=
γd+1Cd,l

π(ε′)2(ld−d+l)

(∫
Rd
eε
′βd|x||V (x)|

d+1
2 dx

)2

.

And finally, after changing the notation by setting ε = ε′ and then, once again, taking

βε as a new ε and adjusting Cd,l, we arrive at the following bound:

N ≤ Cd,l
ε2(ld−d+l)

(∫
Rd
eε|x||V (x)|

d+1
2 dx

)2

.

But now, by the argument in the second paragraph of the subsection 7.3.1, the

same estimate gives us the bound for the number of eigenvalues of the operator

H.

Most of the papers listed in the references section contain results on the eigenvalues

of non-self-adjoint operators. More specifically, those are the articles [1]-[19], [21]-[27]

and [30]-[31]. The remaining references were needed for technical reasons.



CHAPTER 8: FUTURE WORK

Spectral Analysis is a very vast and important field of mathematics. It is very widely

used in other sciences, such as physics, chemistry, quantum mechanics, and many

others. There are many ways that the results in this dissertation may be extended or

generalized. For once, the results about the discrete Schrödinger or Dirac operators

can be generalized to an arbitrary dimension d. Moreover, for the Polyharmonic

operator one could also get an estimate for the case when 2l < d, or maybe even get

a similar estimate for the case when d− even. Such results may not be very easy to

do. However, as some of the best mathematicians put it, “quality is more important

than quantity”.

Another interesting extension one may consider is to study the operator (−∆)l+V ,

where 0 < l < 1, which was suggested by Dr. Molchanov. Many of the qualities of

such operator are known, so it would be nice to also estimate the total number of

eigenvalues.

There are also some questions that arise from physics. The following were sug-

gested by Dr. D. Jacobs:

1) Construct specific V (x) that could be interesting. Have it such that V (x) = 0

outside some finite range (i.e. V (x) is compactly supported), say x > L, but on

0 ≤ x ≤ L, let V (x) be an interesting function. Actually, an interesting family of

functions, where you can control the shape of V (x). Perhaps the degree of “rough-

ness”. I will call this family of functions V (x|shape). Then, using your formulas,

you can find the lowest possible bound of number of eigenvalues for a particular
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V (x|shape). In this way, you might be able to gain insight into the type of shapes

that gives more/less eigenvalues. How does the variations in V (x) effect the number

of eigenvalues?

2) Normally in physics we like self-adjoint V , but if you do allow for non-self-

adjoint potential V , how can you control the number of eigenvalues that have an

imaginary component, (+ or -). Can you design a V (x|shape) that might correspond

to a loss of particles in a system or gain of particles?

I believe this would correspond to cases where there are eigenvalues below or above the

real line. Complex eigenvalues with positive imaginary parts would respond physically

different than negative imaginary parts. Could you provide bounds for numbers

of eigenvalues with positive imaginary components and also for negative imaginary

components. My intuition tells me that the positive half plane would correspond to

loss of particles and the negative half plane would correspond to gain of particles (or

vice versa depending on how the original operator is defined).

3) Finally, if we push further, could there be bounds for ranges of eigenvalues

within concentric circles. Could you reduce this radius, and count number of eigen-

values within a smaller radius? If you could, you would be able to give estimates of

the number of eigenvalues with magnitude within a ring. R1 < |λ| < R2. I realize all

this is probably too difficult to calculate, but these sort of questions would be very

interesting.

Often times mathematicians obtain results without knowing if it is useful in the

“real world applications”. And quite often, many years later, it comes out that those

results do indeed have some very important applications. In case of Spectral Theory

it might not always be clear right away when a result will be very useful, but with

time some interesting applications might come to light [22].
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APPENDIX 1: EXISTENCE OF POLES OF THE det2(1 +K(k)) in CHAPTER 5

Since we would like to apply the Proposition 4.3 to the function a(k) = det2(I+K(k))

we need to do some analysis to demonstrate that the second determinant contains

poles at k = ±1.

First notice that det 2(I +K(k)) = det 1(I +K(k)) · e−Tr[K(k)].

Let us recall that the kernel of K(k) is W (n)
−k

k2 − 1
W (m)Sign(V (m)). We can

rewrite it as follows:

S(n)W (n)
−k

k2 − 1
W (m) =

−k
k2 − 1

W (n)S(n)
(
k−|n−m| − 1

)
W (m)

+
−k

k2 − 1
W (n)S(n)W (m)

where S(n) is the sign function of V .

As a result, we can split the operator K(k) into the sum of two operators, as so

K(k) = X0(k) + X̃(k), (A.1)

where X0(k) =
−k

k2 − 1
Γ =

−k
k2 − 1

WSW , and X̃(k) is analytic at k = ±1. Note that

Γ is a rank 1 operator, since Γ can be expressed as

Γu = SW < u,W > . (A.2)

From this we can also see that u = SW is an eigenvector of Γ. Consequently, we get

λ =< SW,W >=
∑
n

S(n)W (n)W (n) =
∑
n

V (n)

to be the eigenvalue of Γ.
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Now from equation A.1, after some algebra, we also get the following

I +K(k) = 1 + X̃(k) +X0(k) = (I +X0(k))[I + (I +X0(k))−1X̃(k)]

which, in turn, implies that

det (I +K(k)) = det (I +X0(k)) det
(
I + (I +X0(k))−1X̃(k)

)
(A.3)

Note that the eigenvalue of the operator X0(k) =
−k

k2 − 1
Γ is equal to

−k
k2 − 1

times the eigenvalue of Γ. Which, in turn, equals to
−k

k2 − 1

∞∑
n=−∞

V (n). Hence the

determinant of the operator I +X0(k) is

det(I +X0(k)) =
∏
j

(1 + λj) = 1− k

k2 − 1

∞∑
n=−∞

V (n) . (A.4)

Note that from equation A.2 we see that there is only one nonzero eigenvalue, namely

λ = − k

k2 − 1

∞∑
n=−∞

V (n) .

Hence A.4 holds.

Now, since SW is an eigenvector of Γ and < SW,W > is its corresponding

eigenvalue, we can decompose the space H into orthogonal subspaces as follows:

H = `2(Z,C2) = H0 ⊕ H⊥0 ,

where H0 = αSW + βW . Then the following two properties hold:

1) Γ : H0 → H0 2) Γ : H⊥0 → 0.

This means that X0H0 → H0 and X0H
⊥
0 → 0, since X0 is proportional to Γ. As a

result, we can write the identity as I = IH0 ⊕ IH⊥0 . From this we get
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I +X0(k) = (IH0 +X0(k)) + IH⊥0 .

Note that {SW,W} makes up a basis for H0. Moreover, Γ(SW ) = λSW (since

SW is an eigenvector of Γ) and

Γ(W ) = µSW ,

where

λ =
∞∑

n=−∞

V (n), µ =
∞∑

n=−∞

|V (n)| .

Hence, we can express the operators Γ and X0 as so

Γ =

λ µ

0 0

 and X0(k) =
−k

k2 − 1

λ µ

0 0

 ⇒ I +X0(k) =

1 +
−kλ
k2 − 1

−kµ
k2 − 1

0 1

 .

Now let us find (I +X0)−1:

(I +X0)−1 =
1

1 + −kλ
k2−1

1
kµ

k2 − 1

0 1 +
−kλ
k2 − 1

 =
k2 − 1

k2 − kλ− 1

1
k

k2 − 1
µ

0 1 +
−k

k2 − 1
λ


Notice that when λ 6= 0 we have

(I +X0)−1 =
1

k2 − kλ− 1

k2 − 1 kµ

0 k2 − kλ− 1

 , and k2 − kλ− 1 6= 0

Hence in this case (I +X0)−1 exists and is analytic at k = ±1 when λ 6= 0. As a

result, from equations A.3 and A.4, we see that

det(I +K(k)) =

(
1− k

k2 − 1
λ

)
det
(
I + (I +X0(k))−1X̃(k)

)
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where λ =
∞∑

n=−∞

V (n) and det
(
I + (I +X0(k))−1X̃(k)

)
is analytic at k = ±1.

Now let us take a look at what happens when λ =
∞∑

n=−∞

V (n) = 0. So let us

suppose that λ =
∞∑

n=−∞

V (n) = 0. Consider a new operator Vε,i = V + ε(·, ei)ei,

for some i ∈ Z, where {ei} is a basis for H. Then clearly ‖V − Vε,i‖ ≤ ε and
∞∑

n=−∞

Vε,i(n) 6= 0. Then, according to the argument above, the operator Hε,i := H0 +

Vε,i has poles at ±1. As a result we can get an estimate on the number of eigenvalues

for the operator Hε,i. After this we can apply the result obtained by Laptev and

Safronov in Proposition 3 of [19]. From this proposition we conclude that the number

of eigenvalues of operators H and Hε,i will be the same. As a result, the estimate

for Hε,i will also hold for H. Hence, without loss of generality we can assume that

λ =
∞∑

n=−∞

V (n) 6= 0, as the class of potentials for which k = ±1 are poles of

det 1(1+X) forms a dense subset of potentials for which ‖V ‖∞,q <∞. Where ‖V ‖∞,q

is defined as follows:

‖V ‖∞,q = sup
−∞<n<∞

|Vnq−|n||

where Λ is any constant greater than 1 and q =
1

Λ2+ε
, for any ε > 0.



APPENDIX 2: EXISTENCE OF POLES OF THE det3(1 +X(w)) IN CHAPTER 6

In order for us to be able to use Proposition 6.2 we need to show that the function

a(k) = det3(I + X(w)) contains a pole of some order n at w = 0. In this subsection

we will use similar agrumentation as in Appendix 1 to show that the function a(k) =

det3(I + X(w)) contains the pole of order 1 at
√
k = w = 0. To do so we need

to decompose operator X(w) into the sum of two operators, one analytic with the

respect to w and one having a pole of order 1 at w = 0.

Recal that the integral kernel for (A− z)−1, where A = (−∆)2, is

ρ(x, y) =
1

2k

(
ei
√
k|x−y| − e−

√
k|x−y|

2π|x− y|

)
,

where k2 = z. So after the Taylor expansion we get

ρ(x, y) =
i+ 1

8π
√
k

+ α(k, x, y) ,

where α is an analytic function of k. Hence we can express the operator X(w) as

follows

X(w) = WSign(V )
i+ 1

8πw
W + X̃(w) ,

where X̃(w) is analytic at w = 0. The we can rewrite this as

X(w) = X0(w) + X̃(w) =
i+ 1

8πw
Γ + X̃(w) (A.5)

where Γ = WSW , S = Sign(V ). Note that Γ is a rank 1 operator: Γu = SW <

u,W >. Then u = SW is an eigenvector of Γ. Hence

< SW,W >=

∫
R3

V (x)dx

is an eigenvalue of the operator Γ.
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Now from A.5, using same argumentation as in Appendix 1, we get the equality

A.3, that is

det (I +X(w)) = det (I +X0(w)) det
(
I + (I +X0(w))−1X̃(w)

)
(A.6)

Note that the eigenvalue of X0(w) is

i+ 1

8πw

∫
R3

V (x)dx .

Using this fact we can calculate the first determinant on the right side of the equation

above to get

det(1 +X0(w)) =
∏
j

(1 + λj) (A.7)

where λj are eigenvalues of the operator Γ. However, since Γ has only one eigenvalue

we get the equality

det(1 +X0(w)) = 1 +
i+ 1

8πw

∫
R3

V (x)dx (A.8)

Now we will use same argumentation of Appendix 1 almost word for word, except

at a few places, where the operators differ. First, will decompose our Hilbert space

H = L2(R3,C) into two orthogonal subspaces H = H0⊕H⊥0 , where H0 = αSW + βW .

Then note that the following two properties hold:

1) Γ : H0 → H0 2) Γ : H⊥0 → 0.

This means that X0H0 → H0 and X0H
⊥
0 → 0, since X0 is proportional to Γ. Then

I + X0(k) = (IH0 + X0(k)) + IH⊥0 , where I = IH0 ⊕ IH⊥0 . Note that {SW,W} makes

up a basis for H0. Moreover, Γ(SW ) = λSW (since SW is an eigenvector of Γ) and
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Γ(W ) = µSW , where

λ =

∫
R3

V (x)dx and µ =

∫
R3

|V (x)|dx .

Hence, we can express the operators Γ and X0 as so

Γ =

λ µ

0 0

⇒ X0(k) =
i+ 1

8πw

λ µ

0 0

 ⇒ I +X0(k) =

1 +
(i+ 1)λ

8πw

(i+ 1)µ

8πw

0 1

 .

From this we get that (I +X0)−1 is

(I +X0)−1 =
1

1 + (1+i)λ
8πw

1
−µ(1 + i)

8πw

0 1 +
(1 + i)λ

8πw

 =
8πw

8πw + (1 + i)λ

1
−µ(1 + i)

8πw

0 1 +
(1 + i)λ

8πw


Notice that when λ 6= 0 we have

(I +X0)−1 =
1

8πw + (1 + i)λ

8πw −µ(1 + i)

0 8πw + (1 + i)λ

 , and 8πw + (1 + i)λ 6= 0

Hence in this case (I + X0)−1 exists and is analytic at w = 0 when λ 6= 0. As a

result, from equations A.6 and A.8, we see that

det(I +X(w)) =

(
1 +

i+ 1

8πw

∫
R3

V (x)dx

)
det
(
I + (I +X0(w))−1X̃(w)

)

where λ =

∫
R3

V (x)dx and det
(
I + (I +X0(k))−1X̃(k)

)
is analytic at k = ±1.

Now if λ =

∫
R3

V (x)dx = 0 the we use the exact argument as at the end of Ap-

pendix 1. To do so we replace all summations over Z by integrals over R3, all n re-

placed by x. Hence, without loss of generality we can assume that λ =

∫
R3

V (x)dx 6= 0,

as the class of potentials for which w = 0 is a pole of det 1(1+X) forms a dense subset
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of all potentials for which ‖V ‖1,ε <∞. Here ‖V ‖1,ε is defined as follows:

‖V ‖1,ε =

∫
R3

|V (x)|eε|x|dx , ∀ε > 0 .
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