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ABSTRACT
MEIJIAO ZHANG. Robust Generalized Likelihood Ratio Test Based On
Penalization. (Under the direction of DR. JIANCHENG JIANG)

The Least Absolute Deviation combined with the least absolute shrinkage and se-
lection operator (LAD-lasso) estimator can do regression shrinkage and selection and
is also resistant to outliers or heavy-tailed errors which is proposed in Wang, Li and
Jiang (2007). Generalized Likelihood Ratio (GLR) test motivated from the likeli-
hood principle, which does not require knowing the underlying distribution family
and also shares the Wilks property, has wide applications and nice interpretations.
(Fan, Zhang and Zhang (2001) and Fan and Jiang (2005)). In this dissertation, we
propose a GLR test based on LAD-lasso estimators in order to combine their ad-
vantages together. We obtain the asymptotic distributions of the test statistics by
applying the Bahadur representaton of the LAD-lasso estimators into the quantile
regression theories. Furthermore, we show that the test has oracle property and can
detect alternatives nearing the null hypothesis at a rate of y/n. Simulations are con-
ducted to compare test statistics under different procedures for a variety of error
distributions including normal, t(3) and mixed normal. A real data example is used
to illustrate the performance of the testing approach.

KEY WORDS: L1 regression, LAD-lasso, GLR test, Bahadur representaton, Quan-

tile regression, Oracle property.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

Consider the linear model

yi = 10+ 27y + & (1)
where ¢; are identically independently distributed (i.i.d.) random noises with median
0 and Flg;| = 0 > 0.  and v are unknown parameters.

To obtain an estimator to be robust against outliers and error distributions and

also enjoy a sparse representation, Wang, Li and Jiang (2007) proposed a robust

lasso-type estimator, minimizing from the following LAD-lasso criterion:
n p
LAD —lasso = Q(8) = > _ |y — «iB| +n > _ Nl
i=1 j=1

In the current study we propose a robust GLR test based on L1 regression to im-
prove likelihood ratio test. The idea is applicable to some parametric, semiparametric,
and nonparametric models.

Our interest here lies on the following testing problem

Hy:v=1 wvs. H1377é70

regarding [ as nuisance parameters.

Let Y = (y1, . un) s X = (21, o0y ), Z = (21, .., 2n)', and € = (g4, ..., &,)" in model



(1). The reduced model is

Y =XB+Zy+e,
and the full model is
Y=XB+Zy+ec.
When ¢; are normal, it is known that the LR test is equivalent to the F-test

F o= (RSSO — RS’Sl)/q
" RSSi/(n—p—q)’

where p = dim(3), ¢ = dim(~), and RSSy and RSS; are the residual sum of squares
under Hy and H,, respectively, based on the least squares estimation. Under the
null hypothesis, F,, follows the F,,_,_, distribution. Under the alternative F,, has a

non-central F, ,,—,,(?) distribution with non-centrality parameter
vi=0"" | (I — P)Z(y — ) II*

where P, = X(X'X)™'X', I, is the n x n identity matrix, and || - || denotes the
Ly norm of a vector. In general, v? depends on the sample correlations between the
variables in X and those in Z [Bickel and Doksum (2007)].

According to the previous argument, under H,, we consider the penalized least

absolute deviation estimator minimizing

QB.Y) =y — 2B —Znl+n > N8, (2)
i=1 Jj=1

over (3,7. Let B,’y be the resulting estimator. Then the residual sum of absolute



deviations is
n
RSS; = |y — 2} — A
i=1

Under Hy, we minimize

QB) =y — =B — Zivl +n Y _ N8, (3)
i=1 j=1

over 3 and get the minimizer BO.

The residual sum of absolute deviations is

n
RSS; = Z lyi — 2380 — 20
i=1
Since the error distribution is not specified, the LR test is not available here. In-
tuitively, we can compare the residual sum of squares from the null and alternative

models. Following the idea in Fan et al.(2001) and Fan and Jiang (2007), we define

the GLR statistic

n RSSy — RSS; n
2RSS

T, = glog(RSSS/RSSf) ~

Large values of T}, suggest rejection of Hy. It is worth pointing out that the GLR
test of Fan et al.(2001) is different from the GLR test proposed here, since their GLR
test did not use regularization.

In the above estimation we have penalized the nuisance parameters but not the
interesting parameters. This is different from the common penalized estimation for
variable selection, where all parameters are penalized. This GLR test is an improve-

ment over the common method for two reasons:

e It improves the power of GLR test by penalizing only the nuisance parameters.



o [t keeps the size of GLR test without penalizing the interesting parameters.

If the true values of interesting parameters v are zero and all parameters are pe-
nalized, then asymptotically there is no difference between the penalized estimators

of parameters under the null and alternative because of their oracle properties.

1.2  Outline

The rest of this dissertation is organized as follows. In Chapter 2, we begin to
discuss my model and the theoretical results based on my proof. We proposed the
new test statistics, termed as the Generalized Likelihood Ratio test, to test if the
coefficient without penalization under high dimensional multiple linear regression
model is constant or not. The test statistics is constructed based on the comparison
of the generalized likelihood under null and alternative hypotheses respectively. The
asymptotic distribution of the test statistics has been derived and the detailed proofs
are provided in the Appendix section. In Chapter 3, we use the simulation results to
show the good performance of our test statistics and compare our working procedure
with the oracle procedure to illustrate the oracle properties of our test statistics.
In Chapter 4, a real data example has been applied to show the significance of the
testing procedure. In Chapter 5, we conclude the dissertation and discuss some

possible directions for future work.



CHAPTER 2: ROBUST GLR TEST BASED ON PENALIZATION

2.1 Notations and Assumptions

For convenience, we define the regression coefficient as 6 = (6',7') = (5., 5i,7')'s
where 8, = (B1,.,0p)"s Bo = (Bpot1, -, Bp) and v = (71,...,7,). Moreover, as-
sume that 8; # 0 for 7 < py and 3; = 0 for j > py for some py > 0 or B, = 0.
Thus the correct model has p, significant and (p — pp) insignificant regression vari-
ables of nuisance parameter 5. Under Hy, its corresponding LAD-lasso estimator
is denoted by By = (B(’)a, B(’)b)’ . Under Hi, its corresponding LAD-lasso estimator is
denoted by o = (B’ﬁ’)/ = (A;,B,’,,@’)'. In addition, we also decompose the covari-
ate x; = (2, 2})" with x;a = (i1, ..., Tipy) and Ty = (Ti(pot1), - Tip)” and define
w; = (2}, 21) = (Wi, ..., wy) where z; = (21, ..., 2y) and [ = p+q.

To study the theoretical properties of our GLR test statistics, the following assump-

tions are necessary needed throughout:

Assumption 2.1. The error €; has continuous and positive density at the origin.

1/2

Assumption 2.2. n~ max  |wy| = o0,(1).

I<p+q;i<n
Assumption 2.3. There exists positive definite >.,, such that

ntWw) & %,.,

where (Wi, ..., wy) = w; be the ith row of W.



Denote
/ / /
T1al1y T1aT1p Llacy Y1 i X3
= / / / —=
Yoz = I T1ply, T1pTyp T1bRy Y1 Yoo Xa3 )
/ / /
f1T1, ATy 212 Y31 23z 233
A ’ 211 212 . .. . -
80 Mg = E(xi2)) = is positive definite and Y33 = F(z1z]) is also
Yo1 oo
N 211 213 R 211 213
positive definite. Define ¥ = DI . Then ¥ and
231 233 231 233

¥ ~1 are positive definite.

Assumption 2.4. Let a, = maz{\;,1 <j <po} and b, = min{\;,po < j < p}.

Vvna, — 0 and \/nb, — 00 as n — 0.

Note that Assumption 2.1, 2.2 and 2.3 are typical assumptions and used extensively
in literature for establishing the y/n-consistency and the asymptotic normality of the
unpenalized LAD estimator. Furthermore, the Assumption 2.4 appears in Wang, Li,

Jiang (2007) to build the oracle property of the penalized LAD-lasso estimator.
2.2 Bahadur Representations of the LAD-lasso Estimators
Under Hy, Ag,, 2 vn(Boa — Ba) and Ag, £ /n(Bo» — B). Then we have the

following theorem states as below.

Theorem 2.1. The Bahadur representations for Ag,, and Ag,, are

N 1
Agy, = 5f(o)ilZlillnil/QZ?:l%aSgn(51‘) + Op(l)a (5)



where sgn(x) is equal to 1 for x >0, 0 for x =0, and -1 for x < 0. And
A50& = Op<1)' (6)

Under Hy, Aﬁa 2 /n(Ba—fa), Aﬁb 2 /n(By— B) and A,y 2 /n(¥ —7). Then we

have the following theorem states as below.

Theorem 2.2. The Bahadur representations for Ag,, Ag and AW are

A 1
Ag, = §f(0) 1 _I/Q(EHE” (Tiasgn(e;) + LBE zisgn(e;)) + 0p(1), (7)

" 1
A, = §f<0) 1 ’1/2(2312" \Tiasgn(e;) + TPE zisgn(e;)) + 0p(1), (8)
Ag, = 0,(1). (9)

Theorem 2.1 and Theorem 2.2 show that the Bahadur representation of the penal-
ized estimator is the same as the unpenalized estimator, indicating that the penalized

estimator has oracle property.
2.3 Asymptotic Theory of the GLR Test Statistics

Now let’s consider the asymptotic properties of our GLR test statistics.

Theorem 2.3. Under Hy, T), % wxg.

However, the distribution of 7,, depends on nuisance parameters. So we define
N /5 — 2 o A RSS* .
T, 2 8f(0)6T,, where f(0) £ = ZK ———) and ¢ = — . In the defini-
tion of f£(0), the kernel K (x) is the normal density function and h is the bandwidth.

According to the nonparametric theory, f(0) is a consistent estimator of f(0). Ap-
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plying Lemma 7 in Appendix B, ¢ is also a consistent estimator of 0. So we propose

the following corollary.
Corollary 2.3.1. Under Hy, T, X

This is an extension of the Wilks type of phenomenon, by which, we mean that the
asymptotic null distribution of 7, is independent of the nuisance parameter o and
the nuisance design density function f.

To study the power of the proposed test, we consider the local (Pitman) alternatives
of the form

Hy,:y=v+n"A,,

where ||A,|| # 0 and ayo + bA, # 0 for nonzero constants a and b.

Theorem 2.4. For the testing problem Hy <> Hiy, when r < 1/2, the test T,, can

detect alternative Hy, asymptotically with probability one.

Corollary 2.4.1. For the testing problem Hy <> Hy, when r < 1/2, the test T~n can

detect alternative Hy,, asymptotically with probability one.

We conclude this section by considering the limiting behavior of the test statistic

under the local alternative Hy, with r = 1/2.

Theorem 2.5. Under Hy, with r = 1/2, T, N Wxg(f) + C?%, where p* =
Af(0)2AL(E3) 1A, 0% = LOA S SIS AL
Corollary 2.5.1. Under Hy, withr = 1/2, T), % Xo(p*)+D?, where p* = 4f(0)2AL (%) TA

¥

D? = 4f(0)2AL X5 51 S5/,
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The above theorem and corollary show that both the test T}, and Tn can detect the
local alternatives at a maximum rate of y/n, the optimal rate in all regular parametric

tests.



CHAPTER 3: SIMULATIONS

Similarly to Section 2.1 of Wang, Li and Jiang (2007), we can easily get the LAD-
lasso estimator by creating an augmented dataset including the penalized terms for
nuisance parameters. In addition, we use the method in Section 2.3 of Wang, Li
and Jiang (2007) to get the tuning parameter estimate for each A; which makes the

LAD-lasso estimator enjoy the same asymptotic efficiency as the oracle estimator.
3.1  Density Estimation under H

Specifically, we set p =9 and 8 = (1,0,0,0,0,0,0,0,0)". In other words, the first
po = 1 regression variable is significant, while the other 8 are insignificant. We also
set ¢ = 3 and v = (1,2,3). For a given i, the covariates x; and z; are generated
from a standard twelve-dimensional multivariate normal distribution. The sample size
considered is given by n = 500. Furthermore, each response variable y; is generated
according to

Yi = ;8 + 2 + &

where ¢; is generated from N(0,1).

According to Theorem 2.3 and its corresponding corollary, the distribution of T,
should be asymptotically mxg—distributed and T), should be asymptotically x3-
distributed. To verify this empirically, we plot the sampling distribution of 1000

simulation statistics of T}, and T, against their true distribution density respectively



11

via the kernel density estimate as shown in Figure 1. The two plots depict the T}, and

T,, closely following their true distributions, which is consistent with our asymptotic

theory.
(a) (b)
o
a @
o | |
[an] 8 |
o
= — —
(=)
o
o s
o
2 g
T T T T < T T T T
0 2 4 5 ] 5 10 15

Figure 1: Estimated densities. (a) : T}; (b) : T},. Solid: true; dashed: the simulation
approximation.

3.2  Power Functions under H;

We next investigated the power of our tests by considering the following alternative

sequences indexed by # = 0,0.2,0.4,0.6,0.8, 1.0:
Hip iy =70 +n 200,

where A, = (—6,0,2)" and A, L 7.

Note that when # = 0, the null and the alternative are the same. Therefore, we can
expect that: 1) when 6 = 0, the power of the test should be close to the significance
level; 2) the further is 6 away from 0, the greater is the power. These are consistent
with the plots as shown in Figure 2. Figure 2 illustrate the power functions of 7}, and

T, against them of their oracle tests based on 1000 simulation iterations of sample
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size n = 500 at three different significance levels: 0.1, 0.05, and 0.01. We can tell
from the figure that our tests perform closely to the oracle tests, so our tests have

oracle property and should mimic the oracle tests.

00 02 04 06 08 10
00 02 04 06 08 10
00 02 04 06 08 10

00 02 04 08 08 10 00 02 04 06 08 10 00 02 04 08 08 10

(d) (e) U]

00 02 04 06 08 10

00 02 04 06 08 10

00 02 04 0B OB 10
Il Il Il Il 1 Il
\
.
N
.
.
N
N
N
.
N
.
N
N

T T T T T T T T T T T T T T T T T T
00 02 04 05 028 10 00 02 04 06 08 10 00 02 04 08 03 10

Figure 2: Power functions of T}, and T,. (a), (b) and (c): T; (d), (e) and (f): T;
From left to right, significance levels are a = 0.1[(a), (d)], 0.05[(b), (e)], 0.01[(c), (f)].
Solid: GLR-lasso test; dashed: Oracle test.

We next compare our test (GLR-lasso) with the unpenalized test using the LAD
estimators (GLR) and oracle test for T}, and T}, respectively in three error distribu-
tions: N(0,1),(3) and mixed normal (0.95N(0, 1) + 0.05N(0,9)). The results in the

tables below indicating that our test is robust against heavy-tailed errors and outliers

due to the LAD and also has oracle property due to the LASSO.



Table 1: Power results of 7, for N(0,1) error

9

n_ o Test 00 02 04 06 08 1.0
500 0.1  Oracle 0.104 0.154 0340 0643 0877 0061
GLR-lasso  0.092 0.143 0.323 0563 0.800 0.936

GLR 0.087 0124 0202 0320 0491 0.701

0.05  Oracle 0.057 0.087 0227 0486 0.187 0925
GLR-lasso  0.049 0.071 0.209 0421 0681 0.888

GLR 0.044  0.063 0.115 0.204 0.363  0.589

0.0l Oracle 0.009 0019 0088 0260 0555 0823
GLR-lasso  0.007 0.011 0.052 0.183 0.418 0.665

GLR 0.004 0.015 0.027 0.064 0.169 0.336

1000 0.1 Oracle 0.004 0164 0354 0622 0866 0074
GLR-lasso  0.084 0.160 0.316 0574 0.802 0.933

GLR 0.100  0.125 0217 0348 0507  0.706

0.05  Oracle 0.046 0101 0245 0488 0.776 0.040
GLR-lasso  0.034 0.077 0.220 0416 0.703  0.891

GLR 0.051 0.062 0.128 0.238 0370  0.599

0.0l Oracle 0.008 0024 0082 0275 0558 0814
GLR-lasso  0.005 0.019 0.069 0.184 0432 0.716

GLR 0.012  0.015 0.038 0.090 0.176  0.338

Table 2: Power results of 7, for N(0,1) error
0

n o Test 00 02 04 06 08 1.0
500 0.1  Oracle 0.008 0152 0333 0622 0868 0055
GLR-lasso  0.090 0.137 0.320 0553 0.787 0.930

GLR 0.087  0.125 0.199 0.324 0489  0.702

0.05  Oracle 0052 0.077 0215 0471 0.758 0018
GLR-lasso  0.048 0.072 0.202 0418 0.669 0.875

GLR 0.043  0.062 0.114 0201 0.368 0.584

0.0 Oracle 0.008 0017 0084 0245 0527 0804
GLR-lasso  0.009 0.012 0.057 0.184 0406 0.644

GLR 0.005  0.014 0.028 0.061 0.166  0.329

1000 0.1  Oracle 0.080 0.153 0335 0599 0856 0.060
GLR-lasso  0.084 0.149 0313 0560 0.788 0.928

GLR 0.004 0121 0212 0345 0493  0.694

0.05  Oracle 0.038 0004 0224 0467 0.750 0.929
GLR-lasso  0.033  0.069 0.209 0.391 0.678 0.878

GLR 0.047  0.059 0.123 0.233 0357  0.581

0.0l Oracle 0.007 0023 0.078 0.265 0536 0.796
GLR-lasso  0.005 0.019 0.063 0177 0411 0.693

GLR 0.011 0.015 0.040 0.087 0.172  0.325

13



Table 3: Power results of 7T,, for ¢(3) error

9

n o Test 00 02 04 06 08 1.0
500 0.1 Oracle 0109 0151 0288 0542 0.789 0934
GLR-lasso  0.107 0.131 0.269 0.493 0.709 0.879

GLR 0110 0.116 0.205 0310 0439  0.622

0.05  Oracle 0.051 0081 0.8 0420 0.687 0.891
GLR-lasso  0.050 0.061 0.162 0.367 0.587 0.802

GLR 0.057 0.058 0.110 0.189 0.319  0.491

0.01 _ Oracle 0.007 0018 0.063 0.90 0417 0.724
GLR-lasso  0.008 0.010 0.049 0.149 0313  0.560

GLR 0.009 0012  0.028 0.067 0.135 0.267

1000 0.1 Oracle 0.090 0.143 0289 0520 0808 0921
GLR-lasso  0.077 0.122  0.283 0476 0.769 0.888

GLR 0.093 0115 0.162 0.282  0.469 0.605

0.05  Oracle 0.048 0079 0.97 0399 0.686 0870
GLR-lasso  0.034  0.065 0.162 0.341 0.638 0.805

GLR 0.043  0.062  0.088 0.197 0.352  0.483

0.01 _ Oracle 0.008 0021 0076 0.176 0444 0.704
GLR-lasso  0.003 0.013 0.040 0.142 0364 0.573

GLR 0.012 0013 0021 0077 0.141 0.246

Table 4: Power results of T,, for ¢(3) error
9

n o Test 00 02 04 06 08 1.0
500 0.1 Oracle 0.064 0.103 0214 0458 0.732 0906
GLR-lasso  0.070 0.087 0.205 0.408 0.643 0.834

GLR 0.075  0.078 0.143  0.220 0.367  0.538

0.05  Oracle 0.031 0049 0.128 0339 0595 0846
GLR-lasso  0.033 0.033 0113 0291 0500 0.743

GLR 0.033  0.042 0074 0.143 0252 0411

0.0 Oracle 0.003 0009 0.043 0.113 0343 0617
GLR-lasso  0.003 0.005 0.026 0.098 0.220 0.445

GLR 0.005  0.006 0.014 0.038 0.083 0.182

1000 0.1 Oracle 0.065 0.105 0.248 0453 0./51 089
GLR-lasso  0.056 0.096 0.224 0420 0.710 0.848

GLR 0.062  0.091 0.119 0242 0414 0547

0.05  Oracle 0.035 0.056 0.160 0330 0.613 0829
GLR-lasso  0.020 0.049 0.114 0283 0572 0.742

GLR 0.020  0.046 0.065 0.155 0284  0.422

0.01 _ Oracle 0.005 0010 0051 0.133 0376 0.629
GLR-lasso  0.002 0.009 0.019 0.113 0289 0.489

GLR 0.007 0007 0014 0.047 0.110 0.193

14



Table 5: Power results of 7}, for mixed normal error

0

n o Test 0.0 0.2 0.4 0.6 0.8 1.0
500 0.1 Oracle 0.101 0.145 0.289 0.582 0.833 0.941
GLR-lasso  0.108 0.130 0.309 0.526 0.787 0.908
GLR 0.115 0.120 0.200 0.314 0.522  0.675
0.05 Oracle 0.051 0.077 0.200 0.451 0.744 0.907
GLR-lasso 0.054 0.074 0.191 0.375 0.670 0.846
GLR 0.065 0.070 0.120 0.202 0.375 0.540
0.01  Oracle 0.007 0.014 0.067 0.243 0.524 0.743
GLR-lasso  0.008 0.013 0.049 0.161 0.381 0.628
GLR 0.007 0.011 0.034 0.081 0.171  0.307
1000 0.1 Oracle 0.089 0.148 0.347 0.631 0.835 0.959
GLR-lasso  0.103 0.162 0.302 0.551 0.800 0.932
GLR 0.097 0.148 0.192 0.327 0.511 0.661
0.05  Oracle 0.047 0.085 0.231 0482 0.731 0.916
GLR-lasso  0.057 0.085 0.205 0.425 0.680 0.869
GLR 0.042 0.078 0.112 0.217 0.382 0.535
0.01  Oracle 0.009 0.020 0.088 0.229 0.501 0.797
GLR-lasso  0.008 0.015 0.067 0.172 0.405 0.665
GLR 0.007 0.011 0.035 0.077 0.167 0.310

Table 6: Power results of 7}, for mixed normal error

0

n a Test 0.0 0.2 0.4 0.6 0.8 1.0
500 0.1 Oracle 0.092 0.128 0.274 0.556 0.812 0.934
GLR-lasso  0.100 0.122 0.286 0.503 0.767 0.900
GLR 0.106 0.106 0.188 0.292 0.497 0.652
0.05 Oracle 0.042 0.068 0.169 0.420 0.720 0.890
GLR-lasso  0.046 0.062 0.174 0.351 0.640 0.830
GLR 0.055 0.064 0.115 0.190 0.356 0.524
0.01  Oracle 0.005 0.011 0.056 0.223 0.487 0.715
GLR-lasso  0.008 0.010 0.043 0.146 0.351  0.599
GLR 0.007 0.009 0.032 0.074 0.158 0.281
1000 0.1 Oracle 0.081 0.135 0.329 0.599 0.817 0.950
GLR-lasso  0.090 0.151 0.288 0.524 0.785 0.920
GLR 0.089 0.136 0.182 0.306 0.483 0.641
0.05 Oracle 0.038 0.079 0.212 0.455 0.711 0.910
GLR-lasso  0.053 0.081 0.191 0.409 0.660 0.853
GLR 0.038 0.070 0.101 0.209 0.365 0.522
0.01  Oracle 0.005 0.017 0.080 0.204 0.462 0.762

GLR-lasso  0.008 0.014 0.059 0.146 0.370 0.624
GLR 0.006 0.010 0.030 0.063 0.152 0.287




CHAPTER 4: REAL DATA EXAMPLE

We use the data set in Jiang, Jiang, Song (2012). It consists a random sample of

113 hospitals and for each hospital there are 11 variables.

e Infection risk (y): Average estimated probability of acquiring an infection in

the hospital.

e Age (x1): Average age of patients (in years).

e Length of stay (z3): Average length of stay of all patients in the hospital (in

days).

e Routine culturing ratio (z3): Ratios of number of cultures performed to number

of patients without signs or symptoms of hospital-acquired infection, times 100.

e Routine chest X-ray ratio (x4): Ratio of number of X-rays performed to numbers

of patients without signs or symptoms of pneumonia, times 100.

e Number of beds (z5): Average number of beds in the hospital during the study

period.

e Average daily census (zg): Average number of patients in the hospital per day

during the study period.

e Number of nurses (z7): Average number of full-time equivalent registered and
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licensed practical nurses during the study period (number full time plus one

half the number part time).

e Available facilities and services (xg): Percent of 35 potential facilities and ser-

vices that are provided by the hospital.

e Medical school affiliation (zg): 1=Yes, 2=No.

[ ] Region (:1:'10,:1:11,:1:12): 1INE, QINC, BIS, 4=W.

We study whether the infection risk depends on the possible influential factors.
Since the medical school affiliation and region are categorical, we introduced a dummy
variable xg for the medical school affiliation and three dummy variables (z19, €11, Z12)

for the region as covariates. The model is linear,

yi = N2 Bixi + e, i =1,...,113.
Table 7: Estimates and standard errors

Method LAD LAD-lasso

1 0.12593(0.01547) _ 0.11584(0.00784)
o 0.20449(0.13214)  0.21798(0.06344)
3 0.02575(0.01589)  0.01493(0.00616)
T4 0.01973(0.00726)  0.02056(0.00406)
5 -0.00351(0.00373)  0.00000(0.00086)
6 0.01129(0.00458)  0.00405(0.00136)
z7 -0.00277(0.00232)  0.00000(0.00070)
o -0.01541(0.01401)  0.00000(0.00395)
z9 -0.08286(0.44532)  0.00000(0.02239)
10 -0.19322(0.33639)  0.00000(0.05143)
€11 -0.91443(0.34513)  -0.40235(0.18229)
T1o -1.49347(0.43851)  -1.41223(0.26854)

We applied the LAD and LAD-lasso to get the coefficient estimates for each co-
variate. The tuning parameter estimation mentioned in Section (3.1) was applied in

LAD-lasso method. The results of variable estimation and selection are presented in
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Table 7. From Table 7, we can see that all coefficients are nonzero in LAD since we
did not apply penalty method. The LAD-lasso selected six variables: age (x7), length
of stay (x2), routine culturing ratio (z3), routine chest X-ray ratio (z4), average daily
census (xg) and the categorical variable region.

Since the estimated coefficients were positive for x1, xs, 3, x4, T¢ and negative for
x11, T12, which indicates that, during the study period, infection risk (y) increases
with the average age of patients (x;), average length of stay of all patients in the
hospital (x3), the routine culturing ratio (x3), the routine chest X-ray ratio (z4),
average number of patients in the hospital per day (z4) and decreases with the region
corresponding to x1; and x15. This is reasonable, since elderly patients tend to have
a weak resistance to infection, and larger zo and x4 increase the chance of cross-
infection among patients. In addition, routine cultures and chest X-ray may do harm
to the body, and patients without signs or symptoms of hospital-acquired infection
or pneumonia should receive it as little as possible. There may be also a region effect
to the infection. People from South or West area have stronger resistance to infection
comparing with those from other areas.

To check the significance of the selected variables, we performed the hypothesis

testing problem:

Hy: By = P = B4 =0 vesus Hy : at least one of them is not zero.

So our interesting parameters are (31, [2, (4 while the nuisance parameters are
the rest. We performed both GLR test and GLR-lasso test of T,to get p-values

since their asymptotic null distributions are x?(3) which does not depend on nuisance
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parameters. The realized value of GLR was calulated as 111.23576 and 117.61400
of GLR-lasso. So the p-values for both tests are zero indicating that the selected

variables were significant.



CHAPTER 5: CONCLUSION

In summary, under both the null and the alternative hypothesis we have proposed,
the penalized estimators enjoy the oracle property of estimation. The resulting test
statistics imitate the oracle test statistics in the sense that those unknown insignificant

nuisance parameters were known in advance. Hence:

The GLR tests should mimic the oracle GLR test.

This is very useful when there are several insignificant nuisance parameters, for ex-
ample, in high-dimensional regression models or even in classical multiple linear re-
gression models.

In future work, we would like to apply our test to ARIMA models which the errors
are not i.i.d distributed, and also semiparametric and nonparametric models. In
addition, we could also expand the LAD-lasso estimators to various quantile regression

methods and penalty functions.
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APPENDIX A: PROOFS OF THEOREMS IN SECTION 2.2

Lemma .1. Under Hy, \/H(BOQ — Ba) = O,(1) and Boy = 0 with probability tending

to 1.
Proof. See Lemma 1 and Lemma 2 of Wang, Li, and Jiang (2007) for reference. [J

Lemma .2. The sequence of solutions By of (3) satisfies

n~1/? i Tiasgn(y; — 2.60) — 0 almost surely. (10)
Proof. Let {e;}}_; be the standard basis of ”. Define

Gj(a) = Zn: lyi — 2}(Bo + ae;)| + n;|Bo; + al,

i=1

and let H;(a) be the derivative of G;(a), so that

Z zijsgn(y; — x; (BO + ae;)) + nAjsgn(Boj +a).

Using the method of Ruppert and Carroll (1980, proof of Lemma A.2), we can show

that

n_1/2|Hj(0)| S 2n_1/2 Z |$Z]|I(yz — ZE;BO = O) + 2\/5/\]1(50] = 0)
i=1
Applying Lemma A.1 of Ruppert and Carroll (1980), it can be shown that Z 2351 (y
i=1

xéﬁo = 0) — 0 almost surely. By applying v/nA; — 0 when 1 < j < pg of Assump-

tion 2.4, it is clear that n=Y/2H,(0) — 0 almost surely when 1 < j < py. Since

n~2H;(0 n~1? wasgn — 240) + vn\;sgn(Bo;),

using /nA; — 0 when 1 < j < py of Assumption 2.4 again, the result (10) is
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proved. O]
Proof of Theorem 2.1 :

Proof. For A € RP, define

_ n*1/2zxﬂ/}7_ 71/2 'A )

where ¢, (x) =7 — I(x < 0).
Let Ay £ (Alﬂow A%Ob)’. From Lemma 1, we know that Ay = O,(1). Applying Lemma

A.3 of Ruppert and Carroll (1980), we have
M(Ag) = M(0) + f(0)SeeAo = 0y(1).

Using the definition of M (A), we have

n xia l’m ABOa
n_l/QZ Do (ei—n~ 22 A 1/22 U ()+f(0)2,, = 0,(1),
=1

Tip Lip Aﬁob

which leads to

_1/2 Z JZW@ZJT &i— 1/2 A _n_1/2 sza¢7(5l)+f(0) (211A50a+212A60b) = Op(l)'
i=1

Applying Lemma 1, it is obvious that AﬁOb = 0p(1). Using Lemma 2, it shows that

n-1/2 mewT g —n VA ) — 0 almost surely, then we have

FO)S0Ag, =07 " ziath(e1) + 0p(1).
=1

In L1-norm regression, 7 = 3. So ¢ (g;) = 3sgn(e;) when ¢; # 0. Thus, the Bahadur

representation of Ay in Theorem 2.1 has been proved. ]
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Lemma .3. Under Hy, /n(fa — fa) = O,(1), V(5 —7) = O,(1) and B, = 0 with

probability tending to 1.

Proof. Since we don’t use penalty on our interest parameter v, so the tuning param-

eter for v is zero, which satisfies the Assumption 2.4. The result follows from Lemma

1 and Lemma 2 of Wang, Li, and Jiang (2007).

~

Lemma .4. The sequence of solutions (3,7) of (2) satisfies
n~ 12 Za:msgn(yi — 28 — 214) = 0 almost surely.
i=1

and

n-1/2 Z zisgn(y; — 2.6 — 2/4) — 0 almost surely.
i=1

Proof. Let {e;}}_, be the standard basis of R?. Define
Li(a) = |y — 2{(B + ae;) — 24|+ nX;|B; + al,
i=1

and let N;(a) be the derivative of L;(a), so that

Ni(a) = =) wijsgn(y: — 24(8 + ae;) — 2A4) + nAjsgn(B; + a).
=1

Then result (11) follows from Lemma 2.

Let {ug}i_, be the standard basis of R?. Define

Li(a) = |y — B — 2(7 + auy)|

=1

and let N/ (a) be the derivative of L} (a), so that

Ni(a) = — Z zipsgn(ys — 24 — 23 + auy)).
i=1

]

(11)

(12)
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The result (12) follows from Ruppert and Carroll (1980, proof of Lemma A.2). [
Proof of Theorem 2.2 :

Proof. For A € RPT4, define

A) — nil/QZwﬂ/}T(gi 71/2 /A)
=1

Let A £ <A/ﬁav A/’Bb, Ag)’ From Lemma 3, we know that A = O,(1). Applying Lemma

A.3 of Ruppert and Carroll (1980), we have

M(A) — M(0) + f(0)Z..A = 0,(1).
Using the definition of M(A) and simple algebra, we have

n_1/2 Z l’ml/}T( _1/2 / 1/2 Z l'mwT E; +f( )(211A5a+212Aﬁb+213A7> = Op(l),
=1

n

nT2Y "z (gi—n T P A) =Yz (2) 4 £(0) (B1Ap, + S5288, 4 S53A ) = 0,(1).

i=1 i=1
By applying Lemma 3, it is obvious that Aﬁb = 0,(1). Using Lemma 4, we can
see that n=1/2 ZIMI/JT(&' n~ Y20l A)Y = 0 almost surely and n~'/2 ZZﬂ/JT

i=1
n~1/? ’A) — O almost surely. So the above results can be simplified as

Ba - Tiq
f(0)X = n_l/QZ Yr(gi) + 0p(1),
A,y =1 Zi
which is equivalent as
Aﬁa n Lia
= f(0)7'ST T2 Wr(e5) + 0p(1).
A’Y =1 Zi
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Using the definition of ¥~! and 1), (g;) when 7 = %, the Bahadur representation of A

in Theorem 2.2 has been proved. [
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APPENDIX B: PROOFS OF THEOREMS IN SECTION 2.3

Lemma .5. According to the notations and assumptions in Section 2.1,

- Y+ IS By N S i3B!

—B ey 57! B!

where B = Y33 — 23121_11213, and provided 21_11 and B~ exist.
Proof. 1t is well known known result by using simple matrix algebra. O

Lemma .6.

Agy, = Ag, + 21/ 154,

0

Proof. Define &, = n~1/? Z Tiasgn(e;), & =n~1/? Z zisgn(e;) and 1, = (&, &) =

i=1 =1
—~ | ia d d
n~1/?2 Z sgn(e;). It is obvious to see that &, — N(0,%11), & — N(0,Xs3)

=1 2

and 7, 4N (0,%). Applying the Bahadur representation of the LAD-lasso estimators

in Theorem 2.1 and Theorem 2.2, then we have

Ao, = 5F0) D6 + 0,(1), (13)
By, = 1026+ £76) +0,(1), (14)
Ay = 2SO (596, +59) + 0,(1). (15)

We can plug in the above equations to Aﬁa + EffZBAW SO

N X 1
Ag, + S T340, = §f(0)_1[211§n + BB+ B 0135, + BPE)] + 0,(1)

1
= §f(0)_1[(211 + IS8 8, + (B + S S1E?)E] + 0p(1).
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Consider the two matrix before &, and & .
DU D EE = S+ B BB S S+ 2 S (- BT SRy = By
PB4 Y EB = 0SB + 28 3B =0
Plug them back in, so we have Ay, + N7'E15A, = LF0)'E &, + 0,(1), or the

Lemma is proved. [

Lemma .7. RSS}/n =0+ 0,(1)

n . A 1 n . . X 1 n
Proof. RSST/n = %Z lyi — i — 27| = EZ Vi — @0 — 2300 — 27| = n Z |y —
i=1 i=1 =1

1« A A .
T Ba — 24|+ 0,(1) = - E lei —n 22l Ag, —n 22 A |+ 0,(1), since P(B, = 0) — 1
i=1

a

as n — o0.

A A _1 A 1,1 .
Define &; = ¢, — n"22;,Ag, —n~22;A,, and according to Law of Large Numbers,

RSSt/n % E|2|.

n
Let T2 (e — n~2aj, A, —n"22/A | — |e)).
=1

According to Wang, Li, Jiang (2007), it holds that

B EAYH < Ag,
r=— | " Lo ans | T | o, (16)
A, A,
According to Equation (14) and (15), we have
Ag, 1, e
| = 107 o1, (17)
Ay
Plug in (17) back to (16), we can get [ = —mngEflnn+op(l). Since 7, 4 N(0,%),
_ d d
then 7, %" 'n, = x3 ., Thus, I — —mxzﬁq = I = 0,(1) = I/n = oy(1).
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According to the definition of I and the Law of Large Numbers, I/n 2 E|&;| — Ele,).

Thus, E|é;| = Elei| + 0,(1) = RSST/n = Elg;| + 0,(1) = 0 + 0,(1). O

Lemma .8. A, % N(0, wB_l)

Proof. According to Equation (15), A, = SF(0) (23, 533, + 0,(1) where 1, 4
N(0,%). In order to calculate the variance of A, we need to calculate ($3!, $33)% (23!, 1333,
According to Lemma 5, it can be shown that (33!, ¥33)%(331 333) = B~ Thus
A, % N(O BY). 0

1
7 4f(0)2
Proof of Theorem 2.3

. RSS;—RSS}
Proof. Consider —=5—% under Hj.

" . " . . 1 <& . .
—RSS N
% = % Z(Iyi - 90250 - Zho| — |y — 372/3 - ZM) = 2 Z(|yz‘ - x;aﬁ[)a - ‘T;bﬂob -
i=1 =1
/ I H I h IaN 1 . I A / I h /2
%ol = [Yi — @i o — T Bo — 27]) = 5 Z(|yz = iqBoa — 20| — [Yi — T Ba — 2i7]) + 0, (1),

i=1
since P(fy, = 0) — 1 and P(f, = 0) — 1 as n — co.

n n

_RSS* 1, a 1, a 1 q 1
B 13 (e — n-balu A | = [e— n-bal,Ag, - nhA ) = 237 (e -
i=1 1=1
n
1, 1 1, 4 _1 oA L — 1
n"2xi, Agy, | — |eil) — 3 D (lei —n72af,Ap, —n22A |~ |gi]) = 5
i—1

According to Wang, Li, Jiang (2007),

n

L= (e —n 2w, An,| = lail) = =6 Mg, + F0)AL, Snlg, +0,(1).  (18)

i=1

L =" (lei=n" 2}, A5, —n 2 ZA [ —|eil) = =, (Af,, ALY+ F(0) (A, AD)S(AG,, AL) +o,(1).
=1

(19)

From Equation (13), we can get

&n = 2£(0)211 A4, + 0,(1) (20)
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From Equation (17), we can get
N = 2 (0)S(A,, A))" + 0,(1) (21)

Plug Equation (20) and (21) back to (18) and (19), then we have

I = = f(0)Ay, S11As, +0,(1), and I = — F(0)(AY,, A )S(A] ALY + 0,(1).

I~ Iy = FO(Ap,, A)EAL, ALY — A S0l +o0,(1)

= FO) (AL SnAg, + AL S5 Ap, + Al BisA, + ALSp AL — AL $151Ag,) + 0,(1).

Applying Lemma 6, we can get
AgoazllABOa - A/’BQZHA& + A%EglA/ja + A,ﬁazlgA,y —|— A;ZglEﬁlZmAv,

]1 — IQ = f(O)A{Y(Zggg - 23121*11213)A7 + Op(l) = f(O)A;BA»Y + Op(l).

I

Applying Lemma 7, we can get T,, = - L 0p(1) under Hy. And by using Lemma

8, we can get I, — I, % Xo. Thus, T, 4,

g under H,. ]

1 1
17(0) 87 (0o X

Proof of Theorem 2.4

: RSS;—RSS;
Proof. Consider ——>—1 under Hy,.

n

n
RSS%—RSS* - - R 1 A N
PR = 3% i — @i — 2ol = Iy — 1B = 2A41) = 5 (15— ¥iafoa — i Bon —
i=1 i=1
n

. A . 1 . . .
2ol = |Yi = %o B — TPy — 2]) = B Z(Hﬁ — T3 B0a — 20| = |Yi = Tio B — 2]) + 0, (1),

i=1
since P(fy, = 0) — 1 and P(f, = 0) — 1 as n — oo.

n
RSS;—RSSy 1 1, 4 Y 1, a 1 a B
D) =3 E (’51 —n 2w, Ap, + 0T LAY = e = nT2a,Ap, — nT2ZA ) =
i=1
n

IR A 1 A A

5 2 (lei— 3l Agy +n 72 M|~ leil) = 5 D (lei—n 2wl Mg, —n722A ~fe) =
=1 i=1

Is — 1,
.
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According to Wang, Li, Jiang (2007),

Iy =" (lei = n 2, A, +n"ZAy] = |&i])
=1
77n< Boa? _nl/Q*TA/) f( )( Boa 7_n1/2 TA/ )2( Boa 7_n1/277"Ai{)/ +OP<1)
- _1 A —1 4 A A A A A A
L= (lei—n"2al,Ag,—n"22]A | = |ai]) = =, (Af,, ALY+ £(0) (A}, A )S(A], ALY+
i=1
op(1).
By using Equation (21), we can get
Iy = —2f(0)(A} , ADS(A, |, —n2 ALY+ F0)(A),, —n/2 T ADS(A, | —nl/2 ALY+
0p(1), and Iy = — f(0) (A} , AD)S(A), ALY +0,(1).

Replacing A,Boa with Aga and AW by using Lemma 6, we can get

Iy — Iy = f(0)AL BA, + 2f(0)n'*"Al BA, + f(0)n' " AL S55A, + 0,(1)
= FIO)(A, +n*"A)YB(A, + 0277 AL) + F(0)n' " ALy S0 S1sA, + 0,(1)

=1+ I} + o,(1).

From Lemma 8 we can see that A, +n!/2"A, % N(nl/2-rA 7o B~') which leads

v 4f

to I} 4, ﬁ(o)xg(f) where the non-centrality parameter p* = 4f(0)*n'~> A/ BA,.

I} — oo as m — oo when r < 1/2. By Slutsky’s Theorem and Lemma 7, we can get

d. I5+1; .
T, — % under H,. P(T, > WXgJ—JHIn) — 1 where x2, ,, is the (1 — a)th
quantile of xZ if 7 < 1/2. O

Proof of Theorem 2.5
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Proof. According to the proof of Theorem 3.4, if r = 1/2, we have
Iy — Iy = f(0)A BA, + 2f(0) A BA, + f(0)AL S35, + 0,(1)

= fI0)(A, + A)B(A, + A) + FO)AL S35 S15A, + 0,(1)

= I3 + I} + op(1).
Then I} 4 mxg(pQ) where the non-centrality parameter p*> = 4f(0)*Al BA,.

Thus, by Slutsky’s Theorem and Lemma 7, T, % mxg(ﬂ) + C? where C? =

%AQZ:&@EEBAW under H;. -



