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ABSTRACT

MAORONG RAO. HIGH CONFIDENCE SET REGULARIZATION IN SPARSE
HIGH DIMENSIONAL LOGISTIC REGRESSION WITH MEASUREMENT

ERROR. (Under the direction of DR. JIANCHENG JIANG)

The nature of complexity of high dimensional data diminishes the efficacy of the

classical statistics inference. Regularization technique has been actively developed

in response to derive revolution inference.

l1 based regularization such Lasso [13] and Dantizg Selector [5] succeed in two

aspects. First, the inherent sparsity of l1 accords with the underlying nature of

high dimensional data; second, the convexity essence paving the way to compu-

tational feasibility in high dimension. Based on the idea provided by Dantzig Se-

lector, James, G. M. and P. Radchenko extended an algorithm [33] to solve Dantzig

Selector for generalized linear model. Fan [8] abstracted this framework to the set

of convex loss function as High Confidence Set. To fill the gap of theoretical sup-

port within this framework, we derive the bound of prediction error and parameter

error beyond the scope of logistic loss. We termed this classifier as High Confi-

dence Set Selector (HCS). An implicit assumption of high confidence set selection

is that the data is collected precisely. However, the data is inevitable to process

with measurement error in reality. In response to this challenge, a new methodol-

ogy (MHCS) accounts for measurement error was introduced. We further derive

the theory and algorithm.

Our simulation study provides strong numerical support that compared with

other popular regularization methods, e.g., LASSO, Ridge, and HCS, MHCS ad-
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vances in restore information from measurement error. And due to embedded lin-

earity instinct, HCS and MHCS is versatile to connect with state of art technique

such as word vectors, deep network, transfer learning, etc. We demonstrate the

cutting edge applications in two real examples.
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CHAPTER 1: INTRODUCTION

”High dimensional data are nowadays rule rather than exception.” [4]

In high dimensional setting, the dimensions d is larger than sample size n, some-

times even grows faster with the sample size increasing. For example, in many

contemporary applications, microarray data is frequently in thousands or beyond,

while the sample size n is typically in the order of tens. ”The central conflict in high

dimensional setup is that the model complexity is not supported by limited access

to data.” Fan points out the essential challenge in high dimensional statistics [8]. In

other words, the ”variance” of conventional models is high in such new settings,

and even simple models such as LDA need to be regularized.

This limit inclines the chance of overfitting. Basically, if the number of parame-

ters is larger than the sample size, with un-regularized empirical risk minimization

approach, a model can be selected with perfect performance in training simply by

memorizing the training sample other than generalize the trend of signal from pop-

ulation. In other words, it may fail severely to predict the unseen data.

Basically, if the number of parameters is larger than the sample size, with un-

regularized empirical risk minimization approach, a model can be selected with

perfect performance in training simply by memorizing the training sample other

than generalize the trend of signal from population. In other words, it may fail

severely to predict the unseen data.
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In order to develop statistical inference in high dimensional setting, which lead

to reasonable accuracy or asymptotic consistency. It is crucial to pare down the

high degree of complexity to its bare essentials.

A natural underlying form of simplicity in high dimension is sparsity, we hope

that the nature of the world is not so complex as it might be. Loosely speaking, a

sparse statistical model is one in which only a relatively small number of parameters

(or predictors) play an important role. ”it’s possible to develop high dimensional

statistical inference, if log(p)× (sparsity(β)) << n.”[4]

We refer to Hastie et al. [13] and Buhlmann et al. [4] for overviews of statistical

challenges associated with high dimensionality.

In addition to the embedded simplicity, the other principle in high dimension

stat is efficiency in algorithm.

The convexity of l1 norm bring success in the efficiency of optimization, accom-

pany with embedded sparsity, l1 regularization prevails decades in recovering the

underlying signal in high dimension data.

l1 constrain enjoys two important properties. First, it is naturally sparse, i.e., it

has a large number of zero components. Second, it is computationally feasible even

for high-dimensional data whereas classical procedures such as BIC are not feasible

when the number of parameters becomes large.

Fan[8] introduces a closely related regularization methodology in high dimen-

sion stat, which the fundamental idea is to select the sparsest member measured by

l1 norm in a set which carries the information of data, termed as high confidence

set. We elaborate the idea as follow:
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Assume a random sample from the population (X, Y ) are collected in the form

(X1, Y1), . . . , (Xn, Yn), the loss function ρβ(X, Y ) has the form ρβ(X, Y ) = ρ(XTβ, Y ),

which is assumed to be convex.

β∗ ∈ Rd is the target parameter which minimizes the expected loss Eρ(XTβ, Y ),

that is:

β∗ = arg min
β∈Rd

Eρ(XTβ, Y )

Our target is to find an estimate of β∗ through empirical risk minimization.

Denote the empirical loss as

Lnρ(β) =
1

n

n∑
i=1

ρ(XT
i β, Yi);

and the gradient with respect to β as ∇βLnρ(β), the high confidence set is con-

structed as follow:

Cλ = {β ∈ Rd : ‖∇Lnρ(β)‖∞ < λ},

where the tuning parameter λ is chosen related to the confidence level viz

Pr(β∗ ∈ Cλ) = Pr{‖∇Lnρ(β)‖∞ < λ} > 1− δ

The high confidence set Cλ inherits the information about β∗ from sample data.

In addition, as we discuss above, if we impose the sparsity on the underlying pa-

rameter β∗, with this assumption, a natural solution is selecting the sparsest solu-

tion in the high confidence set, viz.

β = arg min
β∈Cλ

‖β‖1

With this generalized framework, several works can be considered as examples
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of high confidence set selection with specific loss measure. For instances, Dantzig

Selector [5] can be viewed as high confidence set estimation for linear regression

with quadratic loss; Cai and Liu [6] propose Linear programming discriminant

rule (LPD) for two Multi-Gaussian distributed data, which apply the high confi-

dence set selection with measured of log likelihood ratios of Bayes rule. Barut [2]

extends the above linear discriminant rule through high confidence set selection

under measurement error scenario.

Inspired by this idea, we apply this method to regularize high dimensional lo-

gistic regression. We term this method as High Confidence Set Selector (HCS).

An implicit assumption of HCS is that the data is collected precisely, however, in

reality, the measure is inevitable to process with noise and missing value. In many

real application, such as image recovery and speech recognition, most problems

are subject to measurement error.

There are various studies concern on correction of measurement error. Within

the context of estimate distribution of measurement error, estimators proposed in

studies [34], [35], [36], [41] yield sound asymptotic results by approach maximum

likelihood.

However, under high dimensional setting, the distribution of measurement error

is too complex to capture. Methods proposed in [40], [42], [32] which accounts for

measurement error without requiring estimation of its distribution, stand out in

practical application in high dimensional setting.

In order to account for measurement error, we develop the model with addititve

measurement error proposed in [40] to generalized linear model with logistic loss.
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We denote the modified classifier as MHCS.

Through out this paper, we will introduce High Confidence Set Selector and its

theoretical properties in Chapter 2. The extended method accounts for measure-

ment error (MHCS) are introduced in Chapter 3. Implementation algorithm and

numerical simulation are elaborated in Chapter 4; Applications in real world data

are illustrated in Chapter 5.



CHAPTER 2: HIGH CONFIDENCE SET ESTIMATION

2.1 Model Setup and Methodology

Consider a measurable spaceM = X ×Y , where Y = {0, 1}, and (xi, yi)
n
i=1 ∈M

is a set of n i.i.d. random pairs of observations; φ(·) is a set of bounded real value

functions φ = (φ1, . . . , φd), ‖φ(·)‖∞ < Md [15], which maps original features from

X to Z ∈ R, e.g., φ : X → Z ∈ Rd.

Defined the parametric space Ω : (f, φ), for a given φ, let Z = φ(X), then the

generalized logistic regression model defined in parametric space Ω : (f, φ) can be

modeled as:

Pr(Y = 1|Z) =
exp f(Z)

1 + exp f(Z)
,

where f : Z → R, is the log odds ratio, i.e.,

f(Z) = log
Pr(Y = 1|Z)

Pr(Y = 0|Z)
,

Denote ρf as the loss function of generalized logistic regression given Z = φ(X),

then,

ρf (Z, Y ) = Y f (Z)− log
{

1 + exp f (Z)
}

;

denote the corresponding empirical loss as Ln, then

Ln ρf =
1

n

n∑
i=1

{
Yif(Zi)− log [ 1 + exp f (Zi) ]

}
.
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The expected risk Lρf is the expectation of loss given f , it holds

Lρf = E ( ρf ) = E (Ln ρf ).

Given Z = φ(X), denote f0 as the best parameter in Ω which minimizes Ln ρf , e.g.:

f0 = arg min
f∈Ω

Lρf .

For a set of given φ, consider the linear subspace Ωβ(φ, fβ) ⊂ Ω(φ, f), such that:

fβ(Z) = βTZ.

Correspondingly, in this linear subspace, the loss function is

ρβ(Z, Y ) = Y βTZ − log [ 1 + exp ( βTZ ) ];

and the empirical loss is

Ln ρβ (Z, Y ) =
1

n

n∑
i=1

ρβ(Z, Y ) =
1

n

n∑
i=1

{
Yi β

TZi − log [ 1 + exp (βTZi) ]
}
.

Denote the expected loss as Lρβ,

L ρβ (Z, Y ) = E [ ρβ (Z, Y ) ] = E [ Ln ρβ (Z, Y ) ]

The optimal parameter β∗ in linear subspace is defined as the one minimizes the

expected loss, e.g.,

β∗ = arg min
β∈Ωβ

Lρβ (Z, Y ); (1)
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It holds that:

∂ L ρβ (Z, Y )

∂β

∣∣∣∣
β∗

= 0 (2)

In classical statistics setting, with fixed dimension of β, as n → ∞, by asymptotic

theory, we can achieve ∇β Ln ρβ∗(Z, Y ) → 0 in probability. However, in high di-

mensional statistics, d is larger than n, sometimes even grows faster than n, we

cannot expect∇β Ln ρβ∗(Z, Y ) = 0 to hold exactly, however, we would expect

‖∇β Ln ρβ∗(Z, Y ) ‖∞ ≤ λ with large probability when appropriate λ is chosen.

Therefore, it’s straightfoward to define the high confidence set as follow:

C(λ) = {β ∈ Rd : ‖∇β Ln ρβ (Z, Y ) ‖∞ ≤ λ}; (3)

where λ is chosen such that

Pr
{
β∗ ∈ C(λ)

}
= Pr

{
‖∇β Ln ρβ∗(Z, Y ) ‖∞ ≤ λ

}
≥ 1− δ (4)

for a positive sequence δ → 0.

Then we select the solution with minimum l1 norm in C(λ) as a proxy of β∗, we

termed this estimatior as High Confidence Set Selector (HCS):

β̂HCS = arg min
β∈C(λ)

‖ β ‖1 (5)
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2.2 Theoretic Property of High Confidence Set Estimation

In this section we investigate the theoretical properties of High Confidence Set

Selector in three aspects. First, we show that, with appropriate choice of λ, β∗ falls

in C(λ) with high probability. Second, we derive the generalized prediction error

bound of High Confidence Set Selector in terms of excess risk. With the assump-

tions of sparsity and restricted strong convexity [29], we derive the parameter error

bound in third result.

The following assumptions are used in theoretical study:

Assumption. A1: (Zi, Yi)
n
i=1 are i.i.d.

Assumption. A2: ‖φ(·)‖∞ < Md;

Remark. Assumption A1 and Assumption A2 are general assumptions in the litera-

ture regards generalized error bound in l1 regularization and learning theory ([15],

[16], [17], [18], [19]). In pratical, various data collected bounded, such as the image

data which ranges from 0 to 255 in RGB; Sets of base function {φ} can outputs in

nature, such as sigmoid function, softmax function ranges from 0 to 1; The output

of feature transformed based on the similarity such as wordvector, neural networks

with certain activate function, ranges from (-1,1). Addition advantage of this set-

ting is that, X is distribution free, which avoids the complexity of density estimation

in high dimension statistics.

Assumption. A3: Md

√
log2d ∼ O(

√
n)

Assumption. A4: Construct a sequence {aj}J−1
j=0 , aj = 2aj−1, for ∀a0 > 0, there exists
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a positive integer J <∞, such that,

aJ−1 = a0 2J ≥ 2‖β∗‖1

Remark. Assumption A3 and Assumption A4 are technique assumption.

Assumption. A5: ‖ β∗ ‖0 ≤ s

Remark. Assumption A5 assume the target parameter β∗ is s-sparse, which means

the maximum number of nonzero components of β∗ is s, i.e., ‖β∗‖0 = s.

This assumption is widely used in high dimensional setting, we refer [43] for

general reviews.

Assumption (A6 Restricted Strong Convexity).

δ Ln ρ( ∆, β∗ ) (Z, Y ) ≥ κ ‖ ∆ ‖2‖β∗‖1 <∞.

Remark. The restricted strong convexity assumption is the key assumption in deriva-

tion of parameter error bound. Define the support set S by a mapping nonzero

components of β∗ to the index set as follow: S :={j : β∗j 6= 0}, |S| =s.

Denote ∆ as deviation in the neighbor of β∗, ∆ = β − β∗;

The Restricted Strong Convexity Assumption is defined as [29]:

δ Ln ρ( ∆, β∗ ) (Z, Y )

= Ln ρ(β∗+∆ )(Z, Y )− Ln ρβ∗(Z, Y )−
〈
∇βLn ρβ∗(Z, Y ), ∆

〉
≥ κ ‖ ∆ ‖2 (6)

for ‖∆Sc‖1 ≤ ‖∆S‖1.
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where S is the index set we defined before, Sc is complementary set of S.

The strong convexity in geometry is the curvature of loss function, we use the

empirical loss to track the population performance, once we have the estimator β̂,

we prefer it is robust against the perturbation in empirical loss. If strong convexity

exists, the solution to the parameter estimation will not change much to a small per-

turbation in empirical loss, it’s therefore a stable solution. While in weak curvature,

opposite effect occurs, small perturbation in empirical loss would cause parameter

shifts enormously in parameter space.

From Theorem 2.2, we can see the excess risk is tracked by the l1 norm of ‖β̂−β∗‖,

in high dimension scenario, where n << p, there exists space with low curvature

such that β∗ is far away from β̂, but it will not arouse fluctuation in empirical loss

function, the main idea is to restrict the target parameter lies in these directions. By

l1 regularization, ‖β̂‖1 ≤ ‖β∗‖1, apply the lemma from basis pursuit [45], we have

following property for ∆̂ : ‖∆̂Sc‖1 ≤ ‖∆̂S‖1.

Figure 1: Illustration of Restricted Strong Convexity [43]

In high dimension setting, while we can’t expect the strong convexity exists in
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every directions, we can expect it exists in the direction of ∆̂ : ‖∆̂Sc‖1 ≤ ‖∆̂S‖1. In

Figure 1 we illustrate the ’restricted direction’, where the shadow direction is the

desiered.

To be simplify, the notation used in next section are listed below.

Notation:

λ∗ ≡
√

2 Md

√
log ( 2 d ) + log n

n
;

δ1 ≡
2Md

n
;

δ2 ≡ 2Md

√
2 log 2d

n

δ0 = δ1 + δ2

2.2.1 High Confidence Set

Recall that the high confidence set defined in (3), as discuss in previous section,

we expect the optimal linear solution β∗ falls in the high confidence set with high

probability when appropriate λ is chosen. Define

Event A := {β∗ ∈ Cλ},

then we have following theorem

Theorem 2.1 (Event A). With β∗ defined in (1), and Cλ defined in (3), under Assumption

A1 − A3, if λ > λ∗, it holds that:

P ( β∗ ∈ Cλ ) > 1− 1

n
.
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2.2.2 Prediction Error

Define our solution set:

Bλ :=
{
β ∈ Rd : β = arg min

β ∈C (λ )

‖ β ‖1

}
(7)

The relationship between optimal linear solution β∗, solution to HCS (β̂HCS), linear

parameter space (Ωβ), High Confidence Set (Cλ) and Solution Set of HCS (Bλ) is

illustrated in Figure 2.

Figure 2: The relationship between β∗, β̂HCS , Ωβ , Cλ and Bλ

We defined the excess risk of β̂ ∈ Ωβ as:

E(β̂) = Lρβ̂ − Lρβ∗ .

The prediction error bound in terms of excess risk is derived in Theorem 2.2.

Theorem 2.2 (Prediction Error Bound). Denote the solution to HCS as βHCS , under

Assumption A1 − A4, when λ > λ∗, with probability at least 1− 2J e−2n − 1
n
, where J is
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a positive integer satisfies Assumption A4, it holds that:

E(β̂HCS) ≤ (λ+ δ0 ) ‖ β∗ − β̂HCS ‖1 + δ0 a0

2.2.3 Parameter Error

Theorem 2.3 ( Parameter Error Bound ). Under Assumption A1 − A6, when λ ≥ λ∗,

with probability at least 1− 1
n

, it holds:

(i) ‖ β̂HCS − β∗ ‖2 ≤
4λ
√
s

κ
;

(ii) ‖ β̂HCS − β∗ ‖1 ≤
8λ s

κ

Corollary (Prediction Error Bound). Under Assumption A1 − A6, when λ > λ∗, with

probability at least 1− 2J e−2n − 1
n
, it holds that:

E(β̂HCS) ≤ 8 λ s

κ
(λ+ δ0 ) + δ0 a0



CHAPTER 3: THEORETICAL STUDY OF HIGH CONFIDENCE SET
ESTIMATION WITH MEASUREMENT ERROR

3.1 Background and Model setup

As discuss in Chapter 1, the measurement error is inevitable in reality.

Consider model with additive measurement error. Instead of (X, Y ), we observe

(U, Y ), where X ∈ X , and U ∈ X .

Analogous to model setup in Chapter 2, φ(·) : X → Z is a set of base function

with ‖φ(·)‖∞ ≤Md . After features transformation by φ(·), we have (W, Y), where

W = φ(U);

And the additive measurement error Ξ is defined as:

Ξ = φ(U)− φ(X)

For simplicity, denote Z = φ(X), thus,

W = Z + Ξ.

According to Theorem 2.1, β∗ is feasible in Cλ if λ is chosen appropriately. How-

ever, the presence of measurement error leads the high confidence set lost its effi-

cacy.

To see this, if we roughly plug the achievable measure W into the high confidence
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set,

Cλ = {β : ‖∇βLn(W,Y, β)‖∞ < λ}

E(∇βLn(X, Y, β∗)) = 0 thus for ∀λ > 0, ∇βLn(X, Y, β∗) → 0 if n → ∞ however,

E(∇βLn(W,Y, β∗)) is not necessary to be 0, thus for given λ, β∗ may not in Cλ even

n→∞.

In the case of linear regression, Rosenbaum and Tsybakov [40] introduced an

addition parameter γ to bound the magnitude of the measurement error in the

matrix uncertainty selector (MUS), which yielding the following two bounds:

‖Wε‖∞ < λ

and

‖Ξ‖∞ < γ

where W is obeservation, Ξ is the measurement error and ε is the residual. These

bounds are sufficient condition for β∗ is feasible with high probability in following

set:

{β : ‖W (Y −Wβ)‖∞ < λ+ γ‖β‖1}.

Inspired by this idea, we develop a modified high confidence setC(λ, γ) for logistic

regression. Note that logistic loss can be expressed in the form of mean function

µ(Zβ), thus it can be expressed in the following form:

‖∇β Lnρβ (W,Y )‖∞ =
1

n
‖ W T [ Y − µ (Wβ ) ] ‖∞;
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where

µ (Wβ ) =
exp (Wβ )

1 + exp (Wβ )
∈ ( 0, 1 ).

By model assumption,

Wβ = Zβ + Ξβ;

Thus by Taylor expansion and Cauchy residual theorem,

µ (Wβ ) = µ (Zβ ) + µ′ ( ξ ) ( Ξβ )

where ξ lies in the segment between Wβ and Zβ .

Then by triangle inequality, 1
n
‖ W T [ Y −µ (Wβ ) ] ‖∞ can break into two parts:

1

n
‖ W T [ Y − µ (Wβ ) ] ‖∞ =

1

n
‖ W T [ Y − µ (Zβ )− µ′ ( ξβ ) ( Ξβ ) ] ‖∞

≤ 1

n
‖ W T [ Y − µ (Zβ ) ] ‖∞ +

1

n
‖ W T µ′ ( ξ ) ( Ξβ ) ‖∞

≤ 1

n
‖ W T [ Y − µ (Zβ ) ] ‖∞ +

1

n
‖ W T µ′ ( ξ ) Ξ ‖∞‖β‖1

Thus it’s intuitive to construct the high confidence set which accounts for measur-

ment error as follow:

C(λ, γ) = { 1

n
‖ W T [ Y − µ (Wβ ) ] ‖∞ ≤ λ + γ ‖ β ‖1 };

Where λ and γ are the high-confidence upper bound of 1
n
‖ W T [ Y − µ (Zβ ) ] ‖∞

and 1
n
‖ W T µ′ ( ξ ) Ξ ‖∞ respectively.

Then alike HCS, we select the member in C(λ, γ) with minimal l1 norm:

β̂ = arg min
β ∈C (λ, γ )

‖ β ‖1.
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We termed this estimator as High Confidence Set Selector with Measurment Error,

abbreviated as MHCS.

3.2 Theoretical Properties of MHCS

Analogous to HCS, we extend the study of high confidence set property, predic-

tion error bound and parameter error bound to MHCS. The modified assumptions

and notations used in this chapter are listed below.

Assumption and Notation

Assumption (C1). (Zi, Yi)
n
i=1 are i.i.d., and (Wi, Yi)

n
i=1 are i.i.d.;

Assumption (C2). W = Z + Ξ, and E(W ) = 0.

Assumption ( C3). ‖φ(·)‖∞ < Md; i.e., ‖ Z ‖∞ ≤Md; and ‖ W ‖∞ ≤Md;

Assumption ( C4). Md

√
log2d2 ∼ O(

√
n);

Assumption (C5). For ∀a0 > 0,∃J <∞, such that, aJ−1 = a0 2J ≥ 2‖β∗‖1;

Assumption (C6). ‖ β∗ ‖0 ≤ s;

Assumption ( C7). δ Ln ρ( ∆, β∗ ) (W, Y ) ≥ κ ‖ ∆ ‖2

Remark. The model assumption of additive measurement error C2 has been illus-

trated in Section 3.1, other assumptions are analogous to in Section 2.2.
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Notation:

λ∗ ≡
√

2 Md

√
log ( 2 d ) + log n

n
;

γ∗ ≡ M2
d

√
log ( 2 d2 ) + log n

2n
,

δ1 ≡
2Md

n
;

δ2 ≡ 2Md

√
2 log 2d

n

δ0 = δ1 + δ2

We have following properties for MHCS:

Theorem 3.1 ( Event B ).

Under Assumption C1 − C4, when λ > λ∗, γ > γ∗,

P [ β∗ ∈ C(λ, γ ) ] > 1− 2

n
.

Theorem 3.2 (Excess Risk).

Under Assumption C1−C5, when λ > λ∗, γ > γ∗, with probability at least 1− 2
n
, it holds:

E(β̂MHCS) ≤
(

3λ+ 2 γ ‖ β∗ ‖1 + δ0

)
‖ β∗ − β̂MHCS ‖1 + δ0 a0 .

Theorem 3.3 ( Parameter Error Bound ).

Under Assumption C1 − C7, when λ ≥ λ∗ and γ ≥ γ∗, with probability at least 1− 2

n
,

it holds:

(i) ‖ β̂MHCS − β∗ ‖2 ≤
4 ( λ+ γ ‖ β∗ ‖1 )

√
s

κ
;

(ii) ‖ β̂MHCS − β∗ ‖1 ≤
8 ( λ+ γ ‖ β∗ ‖1 ) s

κ
.
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Corollary. Under Assumption C1 − C7, when λ > λ∗, γ > γ∗, with probability at least

1− 2J e−2n − 2
n
, it holds that:

E(β̂MHCS) ≤ 8s(λ+ γ‖β∗‖1 ) (3 λ + 2γ‖β∗‖1 + δ0)

κ
+ δ0 a0



CHAPTER 4: NUMERICAL STUDY OF HIGH CONFIDENCE SET ESTIMATION

4.1 Implementation

We propose an algorithm utilize Newton-Raphson method to solve this opti-

mization problem, which involves in a sequence of non-convexity approximations

to the high confidence set. In the following we introduce the main idea.

Notice that simple algebra leads to:

L′n(Z, Y, β) ≡ ∇β Ln ρβ(Z, Y ) = n−1

n∑
i=1

{
−YiZi +

Ẑi exp(βTZi)

1 + exp(βTZi)

}
and

L′′n(Z, Y, β) ≡ ∂2Lnρβ(Z, Y )

∂β2
= n−1

n∑
i=1

ẐiẐ
T
i exp(βTZi)

{1 + exp(βTZi)}2
.

Given an initial value β̂(0), by Taylor’s expansion, we have

L′n(Z, Y, β) ≈ L′n(Z, Y, β̂(0)) + L′′n(Z, Y, β̂(0))(β − β̂(0)) ≡ δ0 + Σ0β,

where δ0 = L′n(Z, Y, β̂(0))−L′′n(Z, Y, β̂(0))β̂(0) and Σ0 = L′′n(Z, Y, β̂(0)). Then C(λ) can

be approximated by

C(λ; β̂(0)) = {β ∈ Rd : ‖δ0 + Σ0β‖∞ ≤ λ}.

Then we obtain the one-step approximation to β̂(λ):

β̂(1) = arg min
β

{
‖β‖1 : β ∈ C(λ; β̂(0))

}
. (8)
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Using the above estimator as an updated initial value, we obtain a two-step approx-

imation. Repeat this procedure up to convergence.

The remaining problem is to solve optimization problem (8). This requires solv-

ing a non-convex program which can be written as the following form:

min 1Tp (β+ + β−)

s.t. Σ0β
+ − Σ0β

− + δ ≤ λ

Σ0β
+ − Σ0β

− + δ ≥ −λ

β+, β− ≥ 0

β+
j β
−
j = 0, for j = 1, . . . , p.

The convex relaxation of this problem can be obtained by dropping the final con-

straint. Furthermore, the relaxed problem is a linear program with 2d variables and

4d constraints. This linear program can be solved very efficiently using a large set

of methods such as interior point method or the dual simplex method.

It’s straightforward to extend this algorithm to the case of MHCS as follow:

L′n(W,Y, β) ≡ n−1

n∑
i=1

{
−YiWi +

Wi exp(βTWi)

1 + exp(βTWi)

}
and

L′′n(W,Y, β) = n−1

n∑
i=1

WiẐ
T
i exp(βTWi)

{1 + exp(βTWi)}2
.

Given an initial value β̂(0), by Taylor’s expansion, we have

L′n(W,Y, β) ≈ L′n(W,Y, β̂(0)) + L′′n(W,Y, β̂(0))(β − β̂(0)) ≡ δ0 + Σ0β,
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where δ0 = L′n(W,Y, β̂(0)) − L′′n(Z, Y, β̂(0))β̂(0) and Σ0 = L′′n(Z, Y, β̂(0)). Then C(λ, γ)

can be approximated by

C(λ, γ; β̂(0)) = {β ∈ Rd : ‖δ0 + Σ0β‖∞ ≤ λ+ γ‖β‖1}.

Then we obtain the one-step approximation to β̂(1) for next implementation:

β̂(1) = arg min
β

{
‖β‖1 : β ∈ C(λ, γ; β̂(0))

}
. (9)

Using the above estimator as an updated initial value, we obtain a two-step approx-

imation. Repeat this procedure up to convergence.

The remaining problem is to solve optimization problem (9). This requires solv-

ing a non-convex program which can be written as the following form:

min 1Tp (β+ + β−)

s.t. (Σ0 − γ)β+ − (Σ0 + γ)β− + δ ≤ λ

(Σ0 + γ)β+ − (Σ0 − γ)β− + δ ≥ −λ

β+, β− ≥ 0

β+
j β
−
j = 0, for j = 1, . . . , d.

4.2 Simulation Experiment

In this section, we conduct simulation experiments to investigate prediction error

and parameter error of proposed methods (HCS, MHCS). Specifically, follow [2],

we evaluate the performance of our classifier in scopes of following measures, and

compared the results with competitive l1, l2 regularization approach, i.e., LASSO
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and Ridge. The performance measures are:

1. CE: Classification Error;

2. Deviance: Cross Entropy:

Deviance = − 1

n

n∑
i

[yilog(ŷi) + (1− yi)log(1− ŷi)];

where ŷ = 1/(1 + exp(−xβ̂));

3. L1: l1 norm of the difference between standardized β̂ and β∗;

L1 =

∥∥∥∥∥ β̂

‖β̂‖2

− β∗

‖β∗‖2

∥∥∥∥∥
1

;

4. L2: l2 norm of the difference between standardized β̂ and β∗;

L2 =

∥∥∥∥∥ β̂

‖β̂‖2

− β∗

‖β∗‖2

∥∥∥∥∥
2

;

5. FN : False Negative Ratio, i.e., the number of zero coefficient of β̂ for which

β∗ is non-zero

FN =
s0 − ‖β̂J‖0

s0

.

6. FP : False Positive Ratio, i.e., the number of non-zero coefficient of β̂ for which

β∗ is zero

FP =
‖β̂Jc − β∗Jc‖0

p− s0
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Binomial distributed sample data set are generated as follow:

GenerateX ∼MultiGaussian(0d,Σ)

β∗ = [1s0 , 0d−s0 ]T , ;

Pr =
1

1 + e−Xβ∗

Y = Binomial(n, 1, P r) (10)

In our experiment setting, dimension d = 200; sparsity parameter s0 = 10; training

sample size ntraining = 100; and testing sample size ntesting = 100;

Three types of correlation matrix are taken into account:

Type 1: Identity Matrix: Σd×d = diag(d);

Type 2: Equal Correlation Matrix: Σ : Σi,j = ρ1{i 6=j};

Type 3: Toeplitz Matrix: Σ : Σi,j = ρ|i−j|;

For each type of correlation matrix, we consider following measurement error

scenarios:

Scenario 1. Missing Value: which randomly replace a certain proportion (10%,

30%, 50%) of data entries with 0;

Scenario 2. Perturbation: standard Gaussian noise are randomly added to a cer-

tain proportion(10%, 30%, 50%) of original data.

We denote the modified training dataset as Wtrain, testing dataset as Wtest, and

the original training dataset as Ztrain, testing dataset as Ztest. In measurement er-

ror experiments, classifiers are trained on (Wtrain, Ytrain) and performance measure

(1-6) are tested on (Wtest, Ytest) and (Ztest, Ytest) respectively. The corresponding
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Classification Error and Deviance measures are denoted as CE(Ztest), CE(Wtest),

Deviance(Ztest), Deviance(Wtest) in result table.

For regularization parameter selection, we sample tuning parameter from grid,

and conduct 5-fold cross validation on training set to select tuning parameter. The

effect of regularization parameters on β and cross validation will be illustrated in

following Experiment.

Experiment 1: Regularization Approach on different level of Perturbation

Follow the process of general simulation setup, we generate Type 1 data with

different level of perturbation, (10%, 30%, 50%). Figure 3 summarized the 5-fold

cross validation error varying with tuning parameter from 0% to 30% of perturba-

tion error. Graphs in left column illustrate cross validation error of HCS varying

along with λ. The black dash reference line on left column indicates the optimal λ,

denoted as λ∗, which minimize the cross-validation error. The blue reference line

denotes λ∗ plus standard error. For MHCS tuning, we fixed the λ = λ∗, where λ∗ is

attained from HCS cross-validation, then conduct 5-fold cross validation on γ grid.

The black dash reference line on right column indicates the optimal γ = γ∗ which

minimize the cross-validation error. Figure 3 presents that, as perturbation level

increases, the reference line of λ∗ and γ∗ slide to right. In right column, in order

to illustrate how cross validation error and tuning parameter γ differs as measure-

ment error increases, graphs (b), (d), (f), (h) starts with (λ = λ∗, γ = 0), which is

the solution to HCS, the corresponding cross validation error is plotted at the most

beginning of x-axis (e−7) instead of γ = 0, since the x-axis is log scale. From (b), (d)
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in Figure 3 it’s seen that, for data without measurement error or with low pertur-

bation level (10%), γ∗ = 0, which implies tuning parameter λ is capable to capture

the residual error to some extent. However, as the measurement error aggravates

in (f) and (g), γ∗ increases in response. This result strongly supports our theory in

chapter 3.

In Figure 4, we trace β route varying with regularization parameters, where the

colored lines indicate βj for j ∈ S0 (S0 = {j : β∗j 6= 0}), while for j ∈ Sc0, βj lines in

light grey. In our experiment, only first ten elements are colored. The figures on left

column trace β route move along with λ. Black dash line denotes the position where

λ∗ is. The figures on right column trace β route regard to γ tuning process with fixed

λ∗. It’s seen that as the regularization parameter (λ, γ) increase, the magnitude of

all βj decay. As the perturbation level increases, the route of β trumbles further

along λ.

For right column graphs, black dash reference line denotes the (λ = λ∗, γ =

0), while blue dash line denotes the position of γ∗ at each perturbation level. The

figures show both HCS and MHCS demonstrate the capability in feature selection.

However, MHCS selects less features in a more critical way.
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(a) Without measurement error, Type 1 (b) Without measurement error, Type 1

(c) 10% Perturbation, Type 1 (d) 10% Perturbation, Type 1

(e) 30% Perturbation, Type 1 (f) 30% Perturbation, Type 1

(g) 50% Perturbation, Type 1 (h) 50% Perturbation, Type 1

Figure 3: Tuning Parameter Selection Illustration: Cross Validation Error with dif-
ferent level of Perturbation, Type 1
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Figure 4: β route with different level of Perturbation
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Experiment 2: Type 1 data in different scenarios:

In this experiment, we compare performance (1-6) of four regularized classifiers

on the dataset generated from Type 1 correlation matrix, i.e., Identity correlation

matrix. Table 1- Table 7 summarized the result of 7 different scenarios respec-

tively. From Table 1 , 2 and 5, where no measurement error or mild measurement

error(10%) exists, LASSO, HCS, MHCS perform comparably in terms of prediction

error (CE, Deviance) and parameter error ( L1 and L2).

Ridge regression has fair capacity in capture the classification error, however, it

is not designed for sparse setting, which lead to large l1 norm and failed to conduct

feature selection. With respect to features selection, LASSO tends to reduce the

False Positive number at the cost of bringing up False Negative number; while HCS

acts on opposite, MHCS play a moderate role in between. As the measurement

error aggravates, which shown in Table 3, Table 4 Table 6, Table 7, all the perfor-

mance measures worsen to some degree. However, it’s seen that MHCS performs

relatively more robust against measurement error than other classifiers. To see this,

the margins of performance measure (CE, Deviance) between MHCS and LASSO,

MHCS and HCS increase while measurement error rises.

Table 1: Result without Measurement Error, Type 1

LASSO RIDGE HCS MHCS
CE 0.34 (0.05) 0.38 (0.03) 0.32 (0.04) 0.31 (0.05)
Deviance 1.24 (0.13) 1.33 (0.02) 1.34 (0.24) 1.24 (0.2)
L1 3.45 (0.55) 11.12 (0.36) 4.52 (0.63) 4.14 (0.58)
L2 0.83 (0.2) 1.09 (0.08) 0.75 (0.17) 0.75 (0.17)
FN 0.3 (0.19) 0 (0) 0.13 (0.13) 0.14 (0.13)
FP 0.08 (0.04) 1 (0) 0.2 (0.03) 0.17 (0.03)
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Table 2: Result of 10% Missing Value, Type 1

LASSO RIDGE HCS MHCS
CE(Ztest) 0.35 (0.06) 0.4 (0.03) 0.34 (0.06) 0.34 (0.04)
Deviance(Ztest) 1.25 (0.1) 1.34 (0.02) 1.44 (0.22) 1.32 (0.18)
CE(Wtest) 0.37 (0.05) 0.41 (0.05) 0.34 (0.06) 0.34 (0.05)
Deviance(Wtest) 1.29 (0.11) 1.34 (0.02) 1.44 (0.23) 1.33 (0.19)
L1 3.68 (0.53) 11.33 (0.33) 4.87 (0.75) 4.57 (0.65)
L2 0.88 (0.14) 1.13 (0.08) 0.84 (0.2) 0.84 (0.2)
FP 0.34 (0.11) 0 (0) 0.18 (0.15) 0.19 (0.14)
FN 0.08 (0.04) 1 (0) 0.22 (0.03) 0.18 (0.02)

Table 3: Result of 30% Missing Value, Type 1

LASSO RIDGE HCS MHCS
CE(Ztest) 0.37 (0.07) 0.4 (0.05) 0.37 (0.05) 0.35 (0.05)
Deviance(Ztest) 1.38 (0.1) 1.33 (0.03) 1.85 (0.36) 1.42 (0.15)
CE(Wtest) 0.45 (0.05) 0.41 (0.04) 0.41 (0.04) 0.41 (0.04)
Deviance(Wtest) 1.43 (0.11) 1.35 (0.02) 1.81 (0.23) 1.43 (0.1)
L1 4.25 (0.71) 11.72 (0.46) 4.37 (0.73) 4.25 (0.62)
L2 1.18 (0.19) 1.23 (0.09) 1.21 (0.2) 1.21 (0.2)
FP 0.59 (0.23) 0 (0) 0.29 (0.15) 0.35 (0.12)
FN 0.07 (0.05) 1 (0) 0.25 (0.02) 0.16 (0.02)

Table 4: Result of 50% Missing Value, Type 1

LASSO RIDGE HCS MHCS
CE(Ztest) 0.41 (0.05) 0.41 (0.04) 0.40 (0.06) 0.37 (0.05)
Deviance(Ztest) 1.35 (0.08) 1.35 (0.03) 1.94 (0.36) 1.42 (0.18)
CE(Wtest) 0.42 (0.05) 0.44 (0.04) 0.42 (0.04) 0.41 (0.04)
Deviance(Wtest) 1.43 (0.16) 1.36 (0.02) 1.76 (0.23) 1.39 (0.08)
L1 4.55 (0.62) 10.36 (3.81) 5.57 (0.43) 4.33 (0.52)
L2 1.22 (0.25) 1.25 (0.16) 1.21 (0.16) 1.21 (0.16)
FP 0.62 (0.2) 0 (0) 0.31 (0.1) 0.37 (0.07)
FN 0.05 (0.05) 1 (0) 0.27 (0.02) 0.16 (0.01)
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Table 5: Result of 10% Measurement Error, Type 1

LASSO RIDGE HCS MHCS
CE(Ztest) 0.34 (0.04) 0.39 (0.03) 0.35 (0.05) 0.34 (0.04)
Deviance(Ztest) 1.28 (0.11) 1.34 (0.02) 1.44 (0.2) 1.28 (0.14)
CE(Wtest) 0.36 (0.03) 0.38 (0.03) 0.36 (0.04) 0.36 (0.05)
Deviance(Wtest) 1.31 (0.12) 1.34 (0.02) 1.51 (0.19) 1.31 (0.14)
L1 3.73 (0.74) 11.27 (0.46) 4.93 (0.89) 3.98 (0.73)
L2 0.88 (0.22) 1.12 (0.1) 0.87 (0.23) 0.87 (0.23)
FP 0.29 (0.17) 0 (0) 0.18 (0.15) 0.25 (0.12)
FN 0.09 (0.04) 1 (0) 0.21 (0.03) 0.12 (0.03)

Table 6: Result of 30% Measurement Error, Type 1

LASSO RIDGE HCS MHCS
CE(Ztest) 0.38 (0.06) 0.38 (0.04) 0.37 (0.06) 0.35 (0.06)
Deviance(Ztest) 1.3 (0.08) 1.34 (0.03) 1.43 (0.18) 1.26 (0.12)
CE(Wtest) 0.38 (0.07) 0.41 (0.05) 0.38 (0.05) 0.36 (0.05)
Deviance(Wtest) 1.36 (0.11) 1.35 (0.02) 1.64 (0.28) 1.35 (0.17)
L1 4.01 (0.71) 11.58 (0.34) 5.36 (0.53) 4.48 (0.52)
L2 1.01 (0.23) 1.2 (0.08) 0.95 (0.19) 0.95 (0.19)
FP 0.41 (0.25) 0 (0) 0.23 (0.11) 0.27 (0.08)
FN 0.09 (0.07) 1 (0) 0.23 (0.03) 0.14 (0.02)

Table 7: Result of 50% Measurement Error, Type 1

LASSO RIDGE HCS MHCS
CE(Ztest) 0.40 (0.05) 0.4 (0.05) 0.40 (0.05) 0.37 (0.06)
Deviance(Ztest) 1.39 (0.18) 1.35 (0.03) 1.56 (0.2) 1.35 (0.11)
CE(Wtest) 0.42 (0.04) 0.43 (0.04) 0.41 (0.03) 0.42 (0.03)
Deviance(Wtest) 1.5 (0.21) 1.36 (0.03) 1.85 (0.2) 1.47 (0.12)
L1 4.56 (0.75) 10.83 (2.73) 5.92 (0.67) 4.91 (0.62)
L2 1.08 (0.21) 1.19 (0.1) 1.14 (0.15) 1.14 (0.15)
FP 0.48 (0.25) 0 (0) 0.33 (0.13) 0.38 (0.17)
FN 0.12 (0.07) 1 (0) 0.23 (0.03) 0.14 (0.03)

Experiment 3: Type 2 data with different scenarios

In this experiment, we compare performance measures (1-6) of four regularized

classifiers on the dataset generated from Type 2 correlation matrix, i.e., equal cor-
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relation matrix with ρ = 0.5. Table 8-Table 14 summarized results of 7 different

scenarios respectively.

The result presents that classification error (i.e., CE(Ztest), Deviance) from all

four classifiers are close to each other among all scenarios. In terms of classification

error (CE), Ridge regression edges out other classifiers with a small lead, however,

the performance of L1 and feature selection (FN, PN) in this dataset failed to ex-

ceed l1 regularization. With respect to feature selection, the performance of LASSO,

HCS, MHCS are consistently close to each other in every setting. The correspond-

ing results exhibit that, False Negative ratio among all the l1 regularized classifiers

(LASSO, HCS, MHCS) exceeds 50%, and False Positive is relatively high compare

to Type 1 and Type 3 dataset, each of which goes beyond 11%. As the measurement

error levels up, parameter error (L1, L2 ) and feature selection measure (FP, FN)

worsen to some extent, however, the classification risk appears consistently drift

around 11% to 13%. The reason is Type 2 data is generated with equal correlation

matrix, which all features are correlated to each other. With this inherent structure,

the l1 based classifier is more robust with respect to prediction error as measure-

ment error increases, though pays the price of increment of parameter error.

Table 8: Result without Measurement Error, Type 2

LASSO RIDGE HCS MHCS
CE 0.12 (0.04) 0.11 (0.03) 0.12 (0.04) 0.12 (0.03)
Deviance 0.56 (0.08) 0.64 (0.05) 0.56 (0.12) 0.56 (0.1)
L1 5.08 (0.54) 14.23 (0.45) 5.5 (0.3) 5.43 (0.31)
L2 1.31 (0.17) 1.41 (0.05) 1.4 (0.15) 1.4 (0.15)
FP 0.56 (0.08) 0 (0) 0.53 (0.12) 0.55 (0.13)
FN 0.1 (0.02) 1 (0) 0.12 (0.02) 0.11 (0.02)
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Table 9: Result of 10% Missing Value, Type 2

LASSO RIDGE HCS MHCS
CE(Ztest) 0.12 (0.04) 0.11 (0.03) 0.12 (0.04) 0.12 (0.03)
Deviance(Ztest) 0.56 (0.12) 0.62 (0.05) 0.59 (0.14) 0.58 (0.13)
CE(Wtest) 0.13 (0.04) 0.11 (0.03) 0.13 (0.04) 0.12 (0.03)
Deviance(Wtest) 0.59 (0.15) 0.65 (0.05) 0.59 (0.14) 0.59 (0.13)
L1 5.25 (0.42) 14.24 (0.44) 5.49 (0.67) 5.42 (0.58)
L2 1.38 (0.18) 1.42 (0.06) 1.41 (0.23) 1.41 (0.23)
FP 0.57 (0.11) 0 (0) 0.56 (0.12) 0.57 (0.08)
FN 0.11 (0.02) 1 (0) 0.11 (0.02) 0.11 (0.02)

Table 10: Result of 30% Missing Value, Type 2

LASSO RIDGE HCS MHCS
CE(Ztest) 0.12 (0.03) 0.11 (0.03) 0.11 (0.03) 0.11 (0.03)
Deviance(Ztest) 0.54 (0.12) 0.57 (0.06) 0.57 (0.14) 0.57 (0.13)
CE(Wtest) 0.13 (0.04) 0.11 (0.03) 0.13 (0.04) 0.12 (0.03)
Deviance(Wtest) 0.59 (0.16) 0.67 (0.05) 0.59 (0.12) 0.58 (0.1)
L1 5.66 (0.5) 14.3 (0.41) 5.82 (0.37) 5.88 (0.44)
L2 1.43 (0.16) 1.44 (0.05) 1.45 (0.13) 1.45 (0.13)
FP 0.53 (0.09) 0 (0) 0.52 (0.1) 0.6 (0.08)
FN 0.12 (0.01) 1 (0) 0.13 (0.02) 0.13 (0.02)

Table 11: Result of 50% Missing Value, Type 2

LASSO RIDGE HCS MHCS
CE(Ztest) 0.13 (0.04) 0.11 (0.03) 0.12 (0.03) 0.12 (0.04)
Deviance(Ztest) 0.59 (0.18) 0.52 (0.07) 0.57 (0.24) 0.59 (0.23)
CE(Wtest) 0.15 (0.05) 0.12 (0.04) 0.15 (0.04) 0.16 (0.02)
Deviance(Wtest) 0.74 (0.23) 0.7 (0.04) 0.66 (0.15) 0.67 (0.12)
L1 6.18 (0.81) 14.28 (0.39) 6.11 (0.58) 6.35 (0.66)
L2 1.57 (0.25) 1.48 (0.06) 1.56 (0.22) 1.56 (0.22)
FP 0.66 (0.13) 0 (0) 0.62 (0.14) 0.65 (0.16)
FN 0.15 (0.02) 1 (0) 0.14 (0.02) 0.14 (0.02)
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Table 12: Result of 10% Measurement Error, Type 2

LASSO RIDGE HCS MHCS
CE(Ztest) 0.12 (0.03) 0.11 (0.03) 0.13 (0.03) 0.13 (0.03)
Deviance(Ztest) 0.57 (0.1) 0.65 (0.05) 0.56 (0.12) 0.56 (0.12)
CE(Wtest) 0.12 (0.04) 0.11 (0.03) 0.12 (0.03) 0.12 (0.03)
Deviance(Wtest) 0.59 (0.11) 0.65 (0.05) 0.58 (0.13) 0.58 (0.13)
L1 5.38 (0.5) 14.19 (0.41) 5.78 (0.54) 5.74 (0.57)
L2 1.43 (0.22) 1.42 (0.05) 1.46 (0.21) 1.46 (0.21)
FP 0.63 (0.17) 0 (0) 0.61 (0.15) 0.63 (0.13)
FN 0.11 (0.01) 1 (0) 0.13 (0.01) 0.13 (0.02)

Table 13: Result of 30% Measurement Error, Type 2

LASSO RIDGE HCS MHCS
CE(Ztest) 0.12 (0.02) 0.1 (0.03) 0.12 (0.02) 0.12 (0.03)
Deviance(Ztest) 0.58 (0.1) 0.66 (0.05) 0.59 (0.11) 0.57 (0.12)
CE(Wtest) 0.14 (0.03) 0.11 (0.03) 0.15 (0.02) 0.14 (0.02)
Deviance(Wtest) 0.62 (0.1) 0.67 (0.05) 0.65 (0.13) 0.63 (0.13)
L1 5.8 (0.94) 14.26 (0.39) 6.21 (0.76) 6.07 (0.76)
L2 1.54 (0.27) 1.45 (0.06) 1.6 (0.25) 1.6 (0.25)
FP 0.61 (0.14) 0 (0) 0.64 (0.2) 0.63 (0.19)
FN 0.11 (0.02) 1 (0) 0.13 (0.02) 0.13 (0.02)

Table 14: Result of 50% Measurement Error, Type 2

LASSO RIDGE HCS MHCS
CE(Ztest) 0.13 (0.03) 0.11 (0.03) 0.13 (0.04) 0.12 (0.02)
Deviance(Ztest) 0.59 (0.07) 0.68 (0.04) 0.56 (0.1) 0.55 (0.09)
CE(Wtest) 0.15 (0.03) 0.11 (0.03) 0.15 (0.04) 0.13 (0.03)
Deviance(Wtest) 0.67 (0.09) 0.69 (0.04) 0.68 (0.12) 0.66 (0.11)
L1 6.23 (0.64) 14.21 (0.29) 6.55 (0.76) 6.52 (0.8)
L2 1.69 (0.19) 1.46 (0.05) 1.67 (0.2) 1.67 (0.2)
FP 0.7 (0.17) 0 (0) 0.72 (0.13) 0.72 (0.16)
FN 0.12 (0.02) 1 (0) 0.14 (0.02) 0.14 (0.02)

Experiment 4: Type 3 data with different scenarios

In this experiment, we compare performance measures (1-6) of four regularized

classifiers on the dataset generated from Type 3 correlation matrix, i.e., Toeplitz
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correlation matrix with ρ = 0.5. Table 15 - Table 21 summarized result of 7 different

scenarios respectively.

The result presents that LASSO, HCS and MHCS perform comparably in terms

of prediction error (CE, Deviance) in all settings, though MHCS appears to have a

small lead when measurement error imposed.

With respect to parameter error, MHCS has lowest L1 error, while LASSO has

lowest L2 error. the margin of L1 between MHCS and LASSO decreases while the

margin of L2 between MHCS and LASSO increases as the measurement error levels

up. As we discuss before, HCS is a specific solution to MHCS where γ = 0. With

the appropriate γ, MHCS is apt to approach solution in the direction of L1 decay-

ing, which dramatically improve the performance of FP with trade off in a small

increment in FN, especially in the case of measurement error presents. To see this,

compare FN and FP of MHCS with HCS in Table 17, Table 18, where missing value

reach 30% and 50% respectively, MHCS amends to reduce the FN by 13% by only

bringing up 1% increment to FP. As the measurement error leverages, all the per-

formance margins between MHCS and HCS increase, which suggests that MHCS

performs more robust against measurement error.

Table 15: Result without Measurement Error, Type 3

LASSO RIDGE HCS MHCS
CE 0.17 (0.04) 0.24 (0.04) 0.18 (0.03) 0.17 (0.04)
Deviance 0.78 (0.11) 1.21 (0.03) 0.85 (0.19) 0.79 (0.08)
L1 2.46 (0.29) 9.09 (0.34) 3.49 (0.27) 2.26 (0.32)
L2 0.48 (0.1) 0.67 (0.04) 0.55 (0.07) 0.55 (0.07)
FP 0.13 (0.08) 0 (0) 0.12 (0.1) 0.15 (0.08)
FN 0.06 (0.02) 1 (0) 0.16 (0.03) 0.04 (0.01)
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Table 16: Result of 10% Missing Value, Type 3

LASSO RIDGE HCS MHCS
CE(Ztest) 0.19 (0.03) 0.24 (0.05) 0.2 (0.05) 0.19 (0.04)
Deviance(Ztest) 0.81 (0.11) 1.21 (0.03) 0.93 (0.2) 0.8 (0.08)
CE(Wtest) 0.2 (0.03) 0.25 (0.05) 0.21 (0.05) 0.19 (0.04)
Deviance(Wtest) 0.84 (0.1) 1.22 (0.03) 0.95 (0.2) 0.84 (0.09)
L1 2.87 (0.76) 9.38 (0.33) 3.84 (0.47) 2.42 (0.42)
L2 0.54 (0.14) 0.72 (0.05) 0.63 (0.12) 0.63 (0.12)
FP 0.16 (0.11) 0 (0) 0.14 (0.11) 0.16 (0.11)
FN 0.09 (0.05) 1 (0) 0.17 (0.02) 0.05 (0.02)

Table 17: Result of 30% Missing Value, Type 3

LASSO RIDGE HCS MHCS
CE(Ztest) 0.21 (0.03) 0.27 (0.05) 0.23 (0.03) 0.21 (0.04)
Deviance(Ztest) 0.9 (0.1) 1.21 (0.03) 1.22 (0.27) 0.85 (0.1)
CE(Wtest) 0.25 (0.04) 0.29 (0.04) 0.29 (0.05) 0.22 (0.05)
Deviance(Wtest) 0.99 (0.12) 1.25 (0.03) 1.34 (0.23) 0.97 (0.09)
L1 2.96 (0.68) 10.17 (0.35) 4.79 (0.58) 2.81 (0.51)
L2 0.58 (0.13) 0.84 (0.06) 0.78 (0.14) 0.78 (0.14)
FP 0.17 (0.13) 0 (0) 0.12 (0.06) 0.13 (0.09)
FN 0.08 (0.06) 1 (0) 0.21 (0.03) 0.08 (0.01)

Table 18: Result of 50% Missing Value, Type 3

LASSO RIDGE HCS MHCS
CE(Ztest) 0.19 (0.04) 0.26 (0.07) 0.23 (0.07) 0.2 (0.05)
Deviance(Ztest) 0.85 (0.12) 1.19 (0.06) 1.35 (0.54) 0.83 (0.16)
CE(Wtest) 0.24 (0.05) 0.33 (0.05) 0.3 (0.04) 0.27 (0.05)
Deviance(Wtest) 1.02 (0.18) 1.29 (0.03) 1.43 (0.26) 1.07 (0.09)
L1 3.23 (0.73) 10.61 (0.32) 5.26 (0.72) 3.23 (0.62)
L2 0.65 (0.13) 0.96 (0.09) 0.88 (0.17) 0.88 (0.17)
FP 0.2 (0.12) 0 (0) 0.14 (0.08) 0.15 (0.1)
FN 0.09 (0.05) 1 (0) 0.23 (0.02) 0.1 (0.02)
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Table 19: Result of 10% Measurement Error, Type 3

LASSO RIDGE HCS MHCS
CE(Ztest) 0.17 (0.04) 0.23 (0.06) 0.18 (0.04) 0.17 (0.04)
Deviance(Ztest) 0.82 (0.12) 1.22 (0.03) 0.86 (0.19) 0.82 (0.08)
CE(Wtest) 0.19 (0.04) 0.25 (0.06) 0.19 (0.04) 0.18 (0.04)
Deviance(Wtest) 0.85 (0.12) 1.23 (0.03) 0.95 (0.18) 0.85 (0.08)
L1 2.67 (0.32) 9.27 (0.29) 3.9 (0.57) 2.47 (0.41)
L2 0.53 (0.12) 0.71 (0.04) 0.63 (0.13) 0.63 (0.13)
FP 0.17 (0.08) 0 (0) 0.16 (0.11) 0.18 (0.1)
FN 0.07 (0.02) 1 (0) 0.17 (0.03) 0.05 (0.02)

Table 20: Result of 30% Measurement Error, Type 3

LASSO RIDGE HCS MHCS
CE(Ztest) 0.2 (0.05) 0.24 (0.06) 0.22 (0.07) 0.19 (0.06)
Deviance(Ztest) 0.89 (0.13) 1.24 (0.03) 1 (0.26) 0.87 (0.12)
CE(Wtest) 0.24 (0.04) 0.26 (0.04) 0.26 (0.06) 0.23 (0.04)
Deviance(Wtest) 0.94 (0.1) 1.24 (0.03) 1.2 (0.23) 0.93 (0.1)
L1 2.75 (0.57) 9.78 (0.42) 4.57 (0.81) 2.82 (0.62)
L2 0.56 (0.17) 0.79 (0.07) 0.73 (0.18) 0.73 (0.18)
FP 0.19 (0.14) 0 (0) 0.13 (0.09) 0.14 (0.11)
FN 0.06 (0.03) 1 (0) 0.2 (0.03) 0.07 (0.02)

Table 21: Result of 50% Measurement Error, Type 3

LASSO RIDGE HCS MHCS
CE(Ztest) 0.19 (0.04) 0.27 (0.04) 0.21 (0.05) 0.2 (0.04)
Deviance(Ztest) 0.91 (0.09) 1.26 (0.02) 0.96 (0.21) 0.91 (0.06)
CE(Wtest) 0.25 (0.04) 0.31 (0.06) 0.27 (0.04) 0.24 (0.05)
Deviance(Wtest) 1.03 (0.12) 1.27 (0.03) 1.29 (0.2) 1.01 (0.09)
L1 2.85 (0.59) 10 (0.4) 4.36 (0.46) 2.75 (0.45)
L2 0.58 (0.13) 0.82 (0.07) 0.73 (0.14) 0.73 (0.14)
FP 0.17 (0.13) 0 (0) 0.11 (0.07) 0.17 (0.12)
FN 0.08 (0.04) 1 (0) 0.2 (0.03) 0.07 (0.02)



CHAPTER 5: REAL DATA ANALYSIS

Real Data Example 1: Sentiment Analysis of IMDb Movie Review

This example presents the proposed techniques (HCS, MHCS) to perform sen-

timent analysis in IMDB movie reviews, we compare the results with competing

methods: penalized logistic regression(PLR), support vector machine (SVM).

Experiment setup

We download a sample data set developed by [27], the training data set contains

2000 movie reviews from IMDb, where 1000 reviews are labeled as positive (1), and

1000 reviews are labeled as negative (0); the testing data set contains 1000 reviews,

with 500 reviews are labeled as negative, and 500 reviews are labeled as positive.

The general techniques for text preprocessing include following steps: first remove

all the links and punctuations in text, convert all words into lower case, and tok-

enize the text into a sequence of single word (unigrams).

Bag of Words representation is applied to this example, where each unique word

serves as a feature. We also applied a rough dimension reduction technique by

simply removing stopword according to NLTK stopword list and dropping features

which occur less than 10 times over all samples, which result in 12,932 dimensions

in total number of features.

Denote nw{i, j} as the number of occurrences of word j in review i and nd{i}
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as the total number of words in review i. then we denote the value of feature j in

review i as:

zij =
nw{i, j}
nd {i}

yi = 1 if the review is positive, yi = 0 if the review is negative.

The full data set is randomly separated to 70% for training, the remaining 30% for

testing. Then we fit the different classifiers on training set, and record the numbers

of non-zero coefficients (‖β̂‖0) and testing classification error (CE). The tuning pa-

rameter λ in HCS is selected by 5-fold cross validation on training set. For MHCS,

λ and γ are sampled from a grid search, then similar to HCS, we select the one pro-

duces best result by 5-fold cross validation on training set. This process is repeated

for 50 times, and the mean value of ‖β̂‖0 and CE are summarized in Table 22:

The results shows that among all classifiers, SVM achieves lowest mean classi-

fication error, which is 0.1. HCS, MHCS perform comparatively with the mean

classification error are 0.12 and 0.11 respectively. Although SVM performs slightly

better in terms of mean classification error, from Table 22, it’s seen MHCS performs

more stable than SVM with standard error 0.01 while for SVM is 0.08.

In the aspect to the capability of feature selection, the proposed classifiers show

prominent advantage of l1 regularization in high dimensional setting. According

to the number of non-zero, HCS and MHCS select 82 and 47 features among 12,932

features. while other classifiers do not present the power of feature selection.
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Table 22: Performance measures of IMDB movie review

HCS MHCS SVM PLR
CE 0.12 (0.02) 0.11 (0.01) 0.1 (0.08) 0.13 (0.03)
‖β̂‖0 82 (1.5) 47 (1.1) 12,932 (0) 12,932 (0)

We exhibit the features with top 10 positive and negative coefficient selected by

MHCS in a test trail, according to the result shows in Table 23 , the positive and

negative terms demonstrate a close match to human’s emotional sentiment.

Table 23: Demo: Top 10 Positive and Negative Features Selected by MHCS

coef word coef word

5.253178e-03 wonderful 4.628492e-03 poor

4.500304e-03 favorite -2.106760e-03 worst

4.462270e-03 loved -1.062546e-03 disappointing

4.112702e-03 excellent -5.603305e-04 terrible

2.744693e-03 amazing -5.047209e-04 waste

8.060263e-04 worth -2.728851e-04 awful

7.088666e-04 enjoy -2.314834e-04 boring

6.042885e-04 perfect -9.118960e-05 save

4.579394e-04 best -2.501499e-05 horrible

4.315558e-04 holiday -5.956561e-06 disappointment

Missing Value Scenarios

In order to investigate the proposed classifiers’ capability of dealing with mea-

surement error, we randomly delete a certain proportion of word sequence which

generates the original data set Z, denote this new data set as W, then we sample

70% data fromW as training set, denote asWtrain. The training process is the same

as previous example. Then we apply the fitted model and tuning parameter se-
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lected by 5-fold cross validation to conduct prediction test on remaining testing

data Wtest, we test on Z which has the same index as Wtest as well, denote as Ztest.

Repeat this process 50 times, the mean and standard error are recorded in Table

24: the result presents that HCS, MHCS, SVM perform better than PLR over all

settings, although the standard error of SVM is higher than PLR. As the missing

proportion increases, the performance of all the classifiers worsen to some degree.

Nevertheless, the result shows that MHCS performs better than other classifiers,

demonstrates its robustness against missing value.

Table 24: Performance measures of IMDb movie review Missing Value Scenario

HCS MHCS SVM PLR

mean sd mean sd mean sd mean sd

10%
Wtest 0.12 (0.02) 0.11 (0.02) 0.11 (0.07) 0.15 (0.02)

Ztest 0.13 (0.02) 0.12 (0.02) 0.10 (0.11) 0.14 (0.02)

30%
Wtest 0.15 (0.03) 0.12 (0.01) 0.14 (0.1) 0.16 (0.02)

Ztest 0.15 (0.02) 0.13 (0.02) 0.13 (0.09) 0.16 (0.01)

50%
Wtest 0.16 ( 0.02) 0.15 (0.02) 0.17 (0.1) 0.18 (0.01)

Ztest 0.15 (0.02) 0.14 (0.02) 0.17 (0.7) 0.2 (0.01)

Real Data Example 2: Cat vs. Dog Image Recognition

Image data is remarkably high dimensional and frequently process with noise.

In this example, we use a small sample of labeled images of dog and cat from kag-

gle [26], our aim is to build a classifier automatically distinguish whether images

contain either a dog or a cat. The original data set contains 25,000 images of dogs

and cats in training fold, and 12,500 images in test folds. In order to demonstrate
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proposed classifier in d > n setting, we only use a small sample in this example.

We use 1,200 images from training fold, 600 are labeled as cat and 600 are labeled as

dog, then randomly split the data to 1000 images for training, 200 images for test-

ing. The main idea is input the image data (3× 224× 224) to a pre-trained network

(VGG-16 [28]) for feature extraction, then foward the extracted features to the linear

classifiers concerned. VGG-16[28] is a CNN network pre-trained on ImageNet data

set, its architecture is illustrated in Figure 5. ImageNet[44] is large data set contains

Figure 5: VGG-16 Architature [28]

1.2 M labeled images from 1000 categories.

In image recognition, pre-trained networks demonstrates strong capability to

conduct new deep learning task via transfer learning. Besides computationally effi-

ciency due to pre-trained weights, the first few layers of CNN in image recognition

training usually capture universal features such as lines, edges, curves that related

to other task.

To conduct the feature extraction, we freeze all weights, utilize the entire network

as feature extractor, then forward the extracted features to the HCS, MHCS, SVM
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and PLR.

First block in Table 25 illustrates top 5 feature extracted by VGG-16 with the a

sample cat image ’original Murphy’ (Figure 6).

Perturbation Scenarios:

In order to investigate proposed classifiers’ capability to cope with noise contam-

inated data, we add Gaussian noise to image data set on purpose. Figure 6 elabo-

rates the effect with different proportion of noise, the corresponding top 5 feature

extracted by VGG-16 listed in Table 25.

Figure 6: Murphy with different proportion Gaussian Noise



45

Table 25: Top 5 Features Extracted by VGG-16

Orignal Murphy 10% Noise

Feature Value Feature Value

Siamese cat 0.998657 Siamese cat 0.972666

paper towel 0.000367 cairn 0.014863

tub 0.000216 West Highland white terrier 0.001727

toilet tissue 0.000196 Scotch terrier 0.001670

lynx 0.000178 paper towel 0.001231

20% Noise 30% Noise

Feature Value Feature Value

Siamese cat 0.982971 West Highland white terrier 0.505062

cairn 0.004131 Scotch terrier 0.141582

West Highland white terrier 0.002864 cairn 0.134488

Scotch terrier 0.000798 Siamese cat 0.073840

giant panda 0.000571 Norwich terrier 0.037540

In second step, we train the classifiers on extracted features, this process is same

as previous examples. Table 26 and Table 27 summarize the result of performance.

It’s seen that MHCS performs best among four classifiers, with lowest classification

error (19%) and smallest number of selected features (17 out of 1,000), HCS also

demonstrates the capability of feature selections which the number is 32 out of

1,000, while SVM and PLR selects all the features.

Table 26: Performance measures of Cat vs Dog Image Recognition

HCS MHCS SVM PLR

CE 0.21 0.19 0.2 0.23

‖β̂‖0 32 17 1,000 1,000
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From Table 27, it’s shown that HCS and MHCS perform more stable than SVM

and PLR as the proportion of perturbation increases. In aspects of prediction error,

and robustness against noise, MHCS surpass other classifiers.

Table 27: Performance Measures of Cat vs Dog with Noise

HCS MHCS SVM PLR

Mean SE Mean SE Mean SE Mean SE

10%
Ztest 22.8 0.2 20.5 0.1 22.2 0.3 25.6 0.1

Wtest 22.3 0.2 21.4 0.1 23.1 0.3 25.1 0.1

20%
Ztest 23.5 0.1 21.2 0.2 23.2 0.3 25.8 0.2

Wtest 22.8 0.2 21.9 0.2 23.5 0.3 25.3 0.1

30%
Ztest 24.1 0.1 22.4 0.1 25.3 0.3 26.7 0.1

Wtest 24.5 0.1 22.7 0.1 25.4 0.2 26.4 0.1
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A Proof of Chapter 2

Assumption and Notation used in proofs of Chapter 2

Assumption.

A1 : (Zi, Yi)
n
i=1 are i.i.d.

A2 : ‖φ(·)‖∞ < Md

A3 : Md

√
log2d ∼ O(

√
n)

A4 : For ∀a0 > 0,∃J <∞, such that, aJ−1 = a0 2J ≥ 2‖β∗‖1

A5 : ‖ β∗ ‖0 ≤ s

A6 : δ Ln ρ( ∆, β∗ ) (Z, Y ) ≥ κ ‖ ∆ ‖2

Notation:

λ∗ ≡
√

2 Md

√
log ( 2 d ) + log n

n
;

δ1 ≡
2Md

n
;

δ2 ≡ 2Md

√
2 log 2d

n

δ0 = δ1 + δ2



52

A1. Proof of Theorem 2.1

Theorem 2.1 [ Event A ] Under Assumption A1 − A3, if λ > λ∗, it holds that:

P ( β∗ ∈ Cλ ) > 1− 1

n
.

Proof.

Ln ρβ∗ (Z, Y ) =
1

n

n∑
i=1

{
Yi Ziβ

∗ − log [ 1 + exp (Ziβ
∗) ]
}
.

Let∇βj Ln ρβ∗ (Z, Y ) denote the gradient of Ln ρβ∗ (Z, Y ) with respect to βj , then

for each j,

∇βj Ln ρβ∗ (Z, Y ) =
1

n

n∑
i=1

{
Zij [ Yi − µ (Ziβ

∗ ) ]
}

where

µ (Ziβ
∗ ) =

exp (Ziβ
∗)

1 + exp (Ziβ∗)
∈ ( 0, 1 )

let εi = Yi − µ (Ziβ ) , then εi ∈ (−1, 1 )

∇βj Ln ρβ∗ (Z, Y ) =
1

n

n∑
i=1

Zij εi

Since {Zi, Yi }ni=1 are i.i.d, then for each j, {Zijεi }ni=1 is a set of n independent

random variables.

We have following properties for Zijεi:

According to Lemma 5.1, we have

E ( Zijεi ) = 0; (11)
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According to Assumption A2, ‖Z‖∞ ≤Md and εi ∈ (−1, 1 ), we have

Zij εi ∈ (−Md, Md ) (12)

Then, combine (11) and (12), we can apply Hoeffding’s Inequality to { Zijεi }ni=1,

P
{ ∣∣∣ ∇βj Ln ρβ∗ (Z, Y )

∣∣∣ > λ
}

= P
{ ∣∣∣ 1

n

n∑
i=1

Zijεi

∣∣∣ > λ
}
≤ 2 exp

[
− 2n2 λ2∑n

i=1 ( 2Md )2

]
= 2 exp

(
− nλ2

2M2
d

)
(13)

Then by De Morgan’s Law, we abtain the union bound:

P
{
β∗ ∈ Cλ

}
=P

{ ∥∥∥ ∇β Ln ρβ∗ (Z, Y )
∥∥∥
∞
≤ λ

}
=P

(
∩ d

j=1

{ ∣∣∣ ∇βj Ln ρβ∗ (Z, Y )
∣∣∣ ≤ λ

} )
=1− P

(
∪ d

j=1

{ ∣∣∣ ∇βj Ln ρβ∗ (Z, Y )
∣∣∣ > λ

} )
≥1−

d∑
j=1

P
{ ∣∣∣ ∇βj Ln ρβ∗ (Z, Y )

∣∣∣ > λ
}

(14)

Plug the result of (13) into (14), it holds,

(14) ≥ 1− 2d exp
(
− nλ2

2Md
2

)
= 1− exp

[ (
− nλ2

2Md
2

)
+ log ( 2 d )

]
(15)

therefore,

P
{ ∥∥∥ ∇β Ln ρβ∗ (Z, Y )

∥∥∥
∞
≤ λ

}
≥ 1− exp

[ (
− nλ2

2Md
2

)
+ log ( 2 d )

]
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let

λ ≥
√

2 Md

√
log ( 2 d ) + τ

n
;

then

P ( β∗ ∈ Cλ ) = P
{ ∥∥∥ ∇β Ln ρβ∗ (Z, Y )

∥∥∥
∞
≤
√

2 Md

√
log ( 2 d ) + τ

n

}
> 1− e−τ .

To be specific, set τ = log 2d, then with

λ ≥
√

2 Md

√
log ( 2 d ) + log n

n
≡ λ∗,

it holds that:

P ( β∗ ∈ Cλ ) ≥ 1− 1

n
.

Lemma 5.1. With same notations in Theorem 2.1,

E ( Zijεi ) = 0

Proof.

By definition of Ln ρβ∗ (Z, Y ) ,

Ln ρβ∗ (Z, Y ) =
1

n

n∑
i=1

ρβ∗ (Zi, Yi )

Thus for 1 ≤ j ≤ d, the gradient w.r.t. β∗ is:

∇βj Ln ρβ∗ (Z, Y ) =
∂ 1
n

∑n
i=1 ρβ(Zi, Yi )

∂ βj

∣∣∣
β∗

=
1

n

n∑
i=1

∂ ρβ(Zi, Yi )

∂ βj

∣∣∣
β∗

Take the expectation of the gradient, combine with the definition of β∗ and (2), we
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have:

E [∇βj Ln ρβ∗ (Z, Y ) ] = E

{
1

n

n∑
i=1

∂ ρβ(Zi, Yi )

∂ βj

∣∣∣
β∗

}

= E

{
∂ ρβ(Z, Y )

∂ βj

∣∣∣
β∗

}
=
∂ E [ ρβ (Z, Y ) ]

∂ βj

∣∣∣
β∗

=
∂ L ρβ∗ (Z, Y )

∂βj

∣∣∣∣
β∗

= 0. (16)

Therefore,

E ( Zijεi ) = E
[ 1

n

n∑
i=1

Zijεi

]
= E

[
∇βj Ln ρβ∗ (Z, Y )

]
= 0;
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A2. Parameter Error Bound

2.1 Preliminary

2.1.1 Concentration Inequality

Theorem 5.1 (Hoeffding’s Inequality).

If Z1, Z2, . . . , Zn are independent with P ( ai ≤ Zi ≤ bi ) = 1, then for any t > 0,

P ( | 1

n

n∑
i=1

Zi − E(Z) | > λ ) ≤ 2 e−2nλ2/c;

where c =
1

n

n∑
i=1

(bi − ai)2.

Theorem 5.2 (McDiarmid Inequality[23]). Let Z1, . . . , Zn ∈ Z be independent random

variables, a mappingG : Z → R, and there exist nonnegative numbers c1, . . . , cn such that

∀i ∈ {1, , n}, and ∀Z1, . . . , Zn, Z
′
k ∈ Z , the function G satisfies

sup
Z1,...,Zn,Z′i

∣∣∣∣G(Z1, . . . , Zi, . . . , Zn)−G(Z1, . . . , Z
′
i, . . . , Zn)

∣∣∣∣ ≤ ci (17)

then,

P

( ∣∣∣∣ G(Z1, . . . , Zn)− E
[
G(Z1, . . . , Zn)

]∣∣∣∣ ≥ δ

)
≤ 2 exp

(
− 2δ2∑n

i=1 c
2
i

)
(18)

Lemma 5.2. [7]

Let Z be a random variable with mean 0, and a ≤ Z ≤ b. Then, for any t,

E ( etZ ) ≤ et
2(b−a)2/8.
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2.1.2 Measure of Complexity

To develop uniform bound, it’s necessary to introduce a way to measure how

complex the hypothesis class is. There are several approaches to measure the com-

plexity such as VC Dimension, Covering, Rademacher Complexity, etc. In this the-

oretical study, we utilize Rademacher Complexity to measure the complexity of

function class for high confidence set selection.

Definition 5.1 (Rademacher Random Variable).

Rademacher Random Variable {r1, r2, . . . , rn}is a set of independent and identical

random variables, with P (ri = 1) = P (ri = −1) = 0.5.

Definition 5.2 (Rademacher Complexity). [7]

Rademacher Complexity of F is

Rad ( F ) = E
[

sup
f∈F

1

n

n∑
i=1

ri f(Zi )
]

The more complex the function class is , the larger the Rad ( F ) would be.

Intuitively, if the function class is complex enough, it’s possible to pick some f ∈ F ,

which match the sign of Rademacher Random Variable, to make the Rad(F) large.

There are a lot of important properties of Rademacher Complexity. we introduce

one useful Lemma below, which apply symmetrization technique.

Lemma 5.3 (Symmetrization Theorem [24]). Let Z1, ..., Zn be indepedent random vari-

ables with values in Z , r1, ..., rn be a Rademacher sequence independent of Z1, ..., Zn; f is
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a real valued functions on Z , Then

E
(

sup
f∈F

∣∣∣ ( Ln − L ) f(Zi)
∣∣∣ ) ≤ 2E

(
sup
f ∈F

∣∣∣ 1

n

n∑
i=1

ri f (Zi )
∣∣∣ ).

Lemma 5.4 (Contraction Theorem [14]). Let Z1, ..., Zn be non-random elements of some

space Z and let F be a class of real valued functions on Z , Consider Lipschitz functions

ρi : R→ R, i.e. ∣∣ ρi(x)− ρi(x′)
∣∣ ≤ |x− x′ |,∀x, x′ ∈ R,

Let r1, ..., rn be a Rademacher sequence. Then for any function φ : Z → R, we have:

E
(

sup
f∈F

∣∣∣ n∑
i=1

ri [ ρi(φ(xi) )− ρi(φ′(xi) )
] ∣∣∣ ) ≤ 2E

(
sup
f∈F

∣∣∣ n∑
i=1

ri [φ(xi)−φ′(xi)
] ∣∣∣ ).
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2.2 Proof of Theorem 2.2

Theorem 2.2 Under AssumptionA1−A4, when λ > λ∗, with probability at least

1− 2J e−2n − 1
n
, it holds that:

E(β̂HCS) ≤ (λ+ δ ) ‖ β∗ − β̂HCS ‖1 + δ a0

proof of Theorem 2.2. Define the solution set of HCS:

Bλ :=
{
β̂ ∈ Rd : β̂ = arg min

β ∈Cλ )

‖ β ‖1

}
(19)

Define a quantity Vλ:

Vλ = sup
β̂ ∈Bλ

(Ln − L ) ( ρβ∗ − ρβ̂ )

a0 + ‖β̂ − β∗‖1

(20)

Where Ln is the emperical loss operator, L is the expected loss operator;

ρβ̂ , ρβ∗ are logistic loss with respect to β̂ and β∗ respectively;

a0 is a small quantity which by assumption A4 satisfies: a0 >
‖β∗‖1

2J
.

Construct a partition set of Bλ according to the distance between β∗ and β̂:

B0 = {β̂ : β̂ ∈ Bλ, ‖β̂ − β∗‖1 ≤ a0}

Bj = {β̂ : β̂ ∈ Bλ, aj−1 < ‖β̂ − β∗‖1 ≤ aj}; (1 ≤ j ≤ J − 1)

BJ = {β̂ : β̂ ∈ Bλ, ‖β̂ − β∗‖1 > aJ−1} (21)

For 1 ≤ j ≤ J − 1: aj = 2aj−1, by Assumption A4, it holds aJ−1 ≥ 2‖β∗‖1.
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Then, we can derive the bound according to this partition Bλ as follow:

P ( Vλ > δ0 ) = P
(

sup
β̂ ∈Bλ

(Ln − L ) ( ρβ∗ − ρβ̂ )

a0 + ‖β̂ − β∗‖1

> δ0

)
≤

J∑
j=0

P
(

sup
β̂ ∈Bj

(Ln − L ) ( ρβ∗ − ρβ̂ )

a0 + ‖β̂ − β∗‖1

> δ0

)
. (22)

to be simplified, let

Vj = sup
β̂ ∈Bj

(Ln − L ) ( ρβ∗ − ρβ̂ )

a0 + ‖β̂ − β∗‖1

(23)

then (22) is equivalent to

P ( Vλ > δ0 ) ≤
J∑
j=0

P
(
Vj > δ0

)
.

According to Lemma 5.5: For 0 ≤ j ≤ J − 1

P
(
Vj > δ0

)
< 2 e−2n

By Theorem 2.1, when λ > λ∗, it holds

P
(
VJ > δ0

)
≤ P

(
‖β̂−β∗‖1 > aJ−1

)
≤ P

(
‖β̂−β∗‖1 > 2 ‖β∗‖1

)
≤ P ( β∗ /∈ Cλ ) ≤ 1

n

Thus,

P
(
Vλ > δ0

)
< 2J e−2n +

1

n
.

It comes to conclude that, with probability at least 1− 2J e−2n − 1
n
, it holds:

Vλ := sup
β̂∈Bλ

|( Ln − L ) ( ρβ∗ − ρβ̂ )|
a0 + ‖β∗ − β̂‖1

< δ0.

Since our estimator β̂HCS ∈ Bλ, it holds

| ( Ln − L ) ( ρβ∗ − ρβ̂HCS ) |
a0 + ‖β∗ − β̂HCS‖1

≤ sup
β̂∈Bλ

|( Ln − L ) ( ρβ∗ − ρβ̂ )|
a0 + ‖β∗ − β̂HCS‖1

≤ δ0;



61

thus,

Ln ( ρβ∗ − ρβ̂HCS )− L ( ρβ∗ − ρβ̂HCS ) ≤ δ0 a0 + δ ‖ β∗ − β̂HCS ‖1 .

rearrange the orders, then

E(β̂HCS) = L ( ρβ̂HCS − ρβ∗ ) ≤ Ln ( ρβ̂HCS − ρβ∗ ) + δ0 ‖ β∗ − β̂HCS ‖1 + δ a0

by (3) : Ln( ρβ̂HCS − ρβ∗ ) ≤ λ ‖ β̂HCS − β∗ ‖1 , thus

E(β̂HCS) ≤ (λ+ δ ) ‖ β∗ − β̂HCS ‖1 + δ0 a0

Lemma 5.5. As Bj , Vj , defined in (21), (23), for 0 ≤ j ≤ J − 1, it holds:

P (Vj > δ0 ) < 2 e−2n.

Proof. The process to prove Vj is bouned contains following two steps: Step 1,

prove Vj is concerntrated around its mean E(Vj ); Step 2, prove the mean E(Vj)

is bounded above.

Step 1: Concerntraction around mean:

P
(
|Vj − E (Vj ) | > δ1

)
< 2 e−2n

Denote {Di}ni=1 = (Zi, Yi)
n
i=1. It suffices to apply McDiarmid Inequality (Theorem

5.2) to derive the concentration bound if it satisfies:

sup
Di

∣∣∣∣ Vj (D1, . . . , Dk, . . . , Dn )− Vj (D1, . . . , D
′
k, . . . , Dn )

∣∣∣∣ ≤ ci.

Let hβ =
ρ∗β − ρβ

a0 + ‖β̂ − β∗‖1

and h̄β = hβ − E(hβ) (24)
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then,

Vj( D1, . . . , Dn ) = sup
β∈Bj

(Ln − L)(ρ∗β − ρβ)

{
D1, . . . , Dn

}
a0 + ‖ β̂ − β∗‖1

= sup
β ∈Bj

1

n

n∑
i=1

h̄β (Di ) (25)

Construct a set
{
D′i
}
n
i=1, such that :

D′i =


(Z ′i, Y

′
i ) when i = k

(Zi, Yi ) when i 6= k

then,

Vj (D′1, . . . , D
′
k, . . . , D

′
n ) = sup

β ∈Bj

1

n

n∑
i=1

h̄β (D′i )

By definition of Vj in (25), for ∀β1 ∈ Bj we have:

1

n

n∑
i=1

h̄β1 (Di ) − Vj (D1, . . . , D
′
k, . . . , Dn ) =

1

n

n∑
i=1

h̄β1 (Di ) − sup
β ∈Bj

1

n

n∑
i=1

h̄β (D′i ) ;

(26)

For ∀β1 ∈ Bj , it holds supβ ∈Bj
1
n

∑n
i=1 h̄β (D′i ) >

1
n

∑n
i=1 h̄β1 (D′i ), thus,

(26) ≤ 1

n

n∑
i=1

h̄β1 (Di ) −
1

n

n∑
i=1

h̄β1 (D′i ) ≤
1

n

[
h̄β1 (Dk ) − h̄β1 (D′k )

]
(27)

Since Dk and D′k are from same distribution, we have

E
[
hβ1 (Dk )

]
= E

[
hβ1 (D′k )

]
(28)
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Therefore, by definiton of h̄β , (24):

(27) =
1

n

{(
hβ1 (Dk )− E

[
hβ1 (Dk )

])
−
(
hβ1 (D′k )− E

[
hβ1 (D′k )

])}
=

1

n

[
hβ1 (Dk ) − hβ1 (D′k )

]
by definition of hβ (24),

=
1

n

{ ( ρ∗β − ρβ1 ) (Dk )− ( ρ∗β − ρβ1 ) (D′k )

a0 + ‖β∗ − β1‖1

}
by the triangle inequality,

≤ 1

n

{ ∣∣ ( ρ∗β − ρβ1 ) (Zk, Yk )
∣∣+

∣∣ ( ρ∗β − ρβ1 ) (Z ′k, Y
′
k )
∣∣

a0 + ‖β∗ − β1‖1

}
by Lipschitz property of ρβ ,

≤ 1

n

{ ∣∣ ZT
k β
∗ − ZT

k β1

∣∣ +
∣∣Z ′Tk β∗ − Z ′Tk β1

∣∣
a0 + ‖β∗ − β1‖1

}
by Holder’s inequality,

≤ 1

n

{
‖ ZT

k ‖∞‖ β∗ − β1 ‖1 + ‖ Z ′Tk ‖∞‖ β∗ − β1 ‖1

a0 + ‖β∗ − β1‖1

}
by Assumption:

≤ 2Md

n
.

Since for ∀β1 ∈ Bj, it holds

1

n

n∑
i=1

h̄β1 (Di ) − Vj (D1, . . . , D
′
k, . . . , Dn ) ≤ 2Md

n

thus,

sup
β∈Bj

1

n

n∑
i=1

h̄β (Di ) − Vj (D1, . . . , D
′
k, . . . , Dn ) ≤ 2Md

n
,

by (25),

Vj (D1, . . . , Dk, . . . , Dn ) = sup
β∈Bj

1

n

n∑
i=1

h̄β (Di ) ,
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thus,

Vj (D1, . . . , Dk, . . . , Dn )− Vj (D1, . . . , D
′
k, . . . , Dn ) ≤ 2Md

n
.

Analogously, it can be proved

Vj (D1, . . . , D
′
k, . . . , Dn )− Vj (D1, . . . , Dk, . . . , Dn ) ≤ 2Md

n
,

thus, ∣∣∣∣ Vj (D1, . . . , Dk, . . . , Dn )− Vj (D1, . . . , D
′
k, . . . , Dn )

∣∣∣∣ ≤ 2Md

n
.

Since D1, . . . , Dn are i.i.d,

sup
D1,...,Dk,...,Dn,Dk′

∣∣∣∣ Vj (D1, . . . , Dk, . . . , Dn )− Vj (D1, . . . , D
′
k, . . . , Dn )

∣∣∣∣ ≤ 2Md

n
.

Thus, the condition (17) in McDiarmid Inequality ( Theorem 5.2 ) meets with

ci =
2Md

n
.

By setting δ =
2Md

n
, it conclude that:

P
(
| Vj − E (Vj ) | > 2Md

n

)
< 2e−2n (29)

Step 2: Upper Bounded E(Vj)

E (Vj ) ≤ δ2

E ( Vj ) = E
(

sup
β̂∈Bj

∣∣ ( Ln − L ) (ρβ∗ − ρβ̂)
∣∣

a0 + ‖ β∗ − β̂ ‖1

)
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recall the definition of Bj :

Bj = {β̂ : β̂ ∈ Bλ, aj−1 < ‖ β∗ − β̂ ‖1 < aj};

thus,

for j = 0:

a0 + ‖ β∗ − β̂ ‖1 ≥ a0,

for 1 ≤ j ≤ J − 1:

a0 + ‖ β∗ − β̂ ‖1 ≥ aj−1.

therefore,

for j = 0:

E ( Vj ) ≤ 1

a0

E
(

sup
β̂∈Bj

∣∣ ( Ln − L ) (ρβ∗ − ρβ̂)
∣∣)

for 1 ≤ j ≤ J − 1:

E ( Vj ) ≤ 1

aj−1

E
(

sup
β̂∈Bj

∣∣ ( Ln − L ) (ρβ∗ − ρβ̂)
∣∣)

Denote h̃β̂ = ρβ∗ − ρβ̂ , by Symmetrization Lemma (Lemma 5.3 ), it holds:

E
(

sup
β̂∈Bj

| ( Ln − L ) h̃β̂ |
)
≤ 2Rad { h̃β̂, β̂ ∈ Bj }; (30)

Where Rad { h̃β̂, β̂ ∈ Bj } is Rademacher Complexity of { h̃β̂, β̂ ∈ Bj }:

Rad { h̃β̂, β̂ ∈ Bj } = E
(

sup
β̂ ∈Bj

∣∣∣ 1

n

n∑
i=1

ri h̃β̂ (Zi, Yi )
∣∣∣ );

and {ri}ni=1 is a set of i.i.d Rademacher random variable.
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Thus,

E
(

sup
β̂∈Bj

| ( Ln − L ) h̃β̂ |
)
≤ 2E

(
sup
β̂ ∈Bj

∣∣∣ 1

n

n∑
i=1

ri h̃β (Zi, Yi )
∣∣∣ )

By Contraction Theorem (Lemma 5.4),

≤ 2E
(

sup
β̂ ∈Bj

∣∣∣ 1

n

n∑
i=1

ri Zi ( β
∗ − β̂ )

∣∣∣ )
By Holders Inequality,

≤ 2E
(

sup
β̂ ∈Bj

[ 1

n
‖ZT r‖∞ ‖ β∗ − β̂ ‖1

] )
since ‖β∗ − β̂‖1 < aj

≤ 2 aj E
[ 1

n
‖ZT r‖∞

]
By Lemma 5.6:

≤ 2ajMd

√
2 log 2d

n

Thus, for j = 0 :

E ( V0 ) ≤ 2a0

a0

Md

√
2 log 2d

n
≤ 2Md

√
2 log 2d

n
;

for 1 ≤ j ≤ J − 1 :

E ( Vj ) ≤ 2aj
aj−1

Md

√
2 log 2d

n
≤ 4Md

√
2 log 2d

n
;

which concludes that, for 0 ≤ j ≤ J − 1:

E ( Vj ) ≤ 4Md

√
2 log 2d

n
≡ δ2. (31)

Set δ0 = δ1 + δ2, combine (29) and (31), it concludes:

P (Vj > δ0 ) < 2Je−2n +
1

n
(32)
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Lemma 5.6. With same notations of Lemma 5.5, it holds:

E

(
max

1≤ j≤ d

1

n
| ZT

j r |
)
≤Md

√
2 log 2d

n
.

Proof.

Let Tij =
1

n
Zij ri, then E ( Tij ) = 0, and |Tij| ≤

Md

n
.

By Lemma 5.2,

E [ exp ( t Tij ) ] ≤ exp (
t2 Md

2

2 n2
). (33)

Let Tj =
∑n

i=1 Tij , then,

E [ exp ( t Tj ) ] = E [ exp ( t
n∑
i=1

Tij ) ]

by independency of {Tij}ni=1,

=
n∏
i=1

E [ exp ( t Tij ) ]

by the result of (33),

≤
n∏
i=1

exp (
t2Md

2

2n2
) = exp (

t2Md
2

2n
) (34)

Thus, Tj is a subgaussian random variable with σ = Md√
n
.

Create a set { T ′j } 2d
j=1, with 2d elements, where

{ T ′j } dj=1 = { Tj } dj=1;

{ T ′j } 2d
j=d+1 = { −Tj } dj=1.
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Notice that,

max
1≤ j≤ d

| Tj | = max
1≤ j≤ 2d

T ′j;

thus,

exp [ t E ( max
1≤ j≤ d

| Tj | ) ] = exp [ t E ( max
1≤ j≤ 2d

T ′j ) ].

Then, by Jensen’s Inequality and convexity of ex, it holds:

exp [ t E ( max
1≤ j≤ 2d

T ′j ) ] ≤ E [ exp ( t max
1≤ j≤ 2d

T ′j ) ]

= E [ max
1≤j≤ 2d

exp ( t T ′j ) ]

≤
2d∑
j=1

E [ exp ( t T ′j ) ]

by the result of subgaussian tails in (34):

≤ 2d exp (
t2Md

2

2n
).

take log for both sides, we have

E ( max
1≤ j≤ d

| Tj | ) ≤
log 2d

t
+

tMd
2

2n
.

setting t =
√

2n log 2d /Md,

E ( max
1≤ j≤ d

| Tj | ) ≤Md

√
2 log 2d

n
.
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A3. Proof of Theorem 2.3

Theorem 2.3: Under AssumptionA1−A6, when λ ≥ λ∗, with probability at least

1− 1
n

, it holds:

(i) ‖ β̂HCS − β∗ ‖2 ≤
4λ
√
s

κ
;

(ii) ‖ β̂HCS − β∗ ‖1 ≤
8λ s

κ

proof of Theorem 2.3. Since β̂HCS is the solution from Cλ, by definition of Cλ,

‖ ∇β Ln ρβ̂HCS ( Z, Y ) ‖∞ ≤ λ

Under Event A, we have β∗ ∈ Cλ, therefore

‖ ∇β Ln ρβ∗ ( Z, Y ) ‖∞ ≤ λ;

then by the triangle inequality,

‖ ∇β Ln ρβ̂HCS ( Z, Y ) − ∇β Ln ρβ∗ ( Z, Y ) ‖∞

≤ ‖ ∇β Ln ρβ̂HCS ( Z, Y ) ‖∞ + ‖ ∇β Ln ρβ∗ ( Z, Y ) ‖∞ ≤ 2 λ; (35)

let ∆̂ = β̂ − β∗, then the first order Taylor error is

δ Ln ρ( ∆̂, β∗ )(Z, Y ) : = Ln ρ(β∗+∆̂ )(Z, Y )− Ln ρβ∗(Z, Y )−
〈
∇β Ln ρβ∗(Z, Y ), ∆̂

〉
by first order derivative property of convexity function,

≤
〈
∇β Ln ρβ̂HCS ( Z, Y ), ∆̂

〉
−
〈
∇β Ln ρβ∗ ( Z, Y ), ∆̂

〉
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rearrange inner product,

=
〈 [
∇β Ln ρβ̂HCS ( Z, Y ) − ∇β Ln ρβ∗ ( Z, Y )

]
, ∆̂

〉
by Holder’s inequality,

≤ ‖ ∇β Ln ρβ̂HCS ( Z, Y ) − ∇β Ln ρβ∗ ( Z, Y ) ‖∞ ‖ ∆̂ ‖1

by the result of (35), it holds:

≤ 2λ ‖ ∆̂ ‖1 (36)

Since β̂HCS = arg minβ∈Cλ ‖ β ‖1, thus ‖ β̂HCS ‖1 ≤ ‖ β∗ ‖1, similar to basis

pursuit [45], we have following two properties for ∆̂:

‖ ∆̂Jc ‖1 ≤ ‖ ∆̂J ‖1 (37)

‖ ∆̂ ‖1 ≤ 2
√
s ‖ ∆̂ ‖2 (38)

By Assumption A6, ∆̂ satisfies restricted strong convexity assumption, that is,

δ Ln ρ( ∆̂, β∗ ) (Z, Y ) ≥ κ ‖ ∆̂ ‖2
2;

combine with (36) and (38) we have,

κ ‖ ∆̂ ‖2
2 ≤ 2 λ ‖ ∆̂ ‖1 ≤ 4 λ

√
s ‖ ∆̂ ‖2;

therefore,

‖ ∆̂ ‖2 ≤
4 λ
√
s

κ
; (39)

plug (39) into (38), we have

‖ ∆̂ ‖1 ≤
8 λ s

κ
. (40)
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[Corollary] Under Assumption A1 − A6, when λ > λ∗, with probability at least

1− 2J e−2n − 1
n
, it holds that:

E(β̂HCS) ≤ 8 λ s

κ
(λ+ δ0 ) + δ0 a0

Proof. Take the result of (38) into Theorem 2.2, the result can be achieved.
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B Proof of Chapter 3

Assumptions and Notations in Chapter 3

Assumption (C1). (Zi, Yi)
n
i=1 are i.i.d., and (Wi, Yi)

n
i=1 are i.i.d.;

Assumption (C2). W = Z + Ξ, and E(W ) = 0.

Assumption ( C3). ‖φ(·)‖∞ < Md; i.e., ‖ Z ‖∞ ≤Md; and ‖ W ‖∞ ≤Md;

Assumption ( C4). Md

√
log2d2 ∼ O(

√
n);

Assumption (C5). For ∀a0 > 0,∃J <∞, such that, aJ−1 = a0 2J ≥ 2‖β∗‖1;

Assumption (C6). ‖ β∗ ‖0 ≤ s;

Assumption ( C7). δ Ln ρ( ∆, β∗ ) (W, Y ) ≥ κ ‖ ∆ ‖2

Notation:

λ∗ ≡
√

2 Md

√
log ( 2 d ) + log n

n
;

γ∗ ≡ M2
d

√
log ( 2 d2 ) + log n

2n
,

δ1 ≡
2Md

n
;

δ2 ≡ 2Md

√
2 log 2d

n

δ0 = δ1 + δ2
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B1. Proof of Theorem 3.1

Theorem 3.1 [Event B]
Under Assumption C1 − C4, when λ > λ∗, γ > γ∗,

P [ β∗ ∈ C(λ, γ ) ] > 1− 2

n
.

proof of Theorem 3.1.

Since Ln ρβ (W, Y ) =
1

n

n∑
i=1

{
YiWi β − log [ 1 + exp (Wi β ) ]

}
;

it holds, ∇β Ln ρβ (W,Y ) =
1

n

n∑
i=1

{
Wi [ Yi − µ (Wi β ) ]

}
;

Thus, (??) is equivalent to

C(λ, γ ) =

{
β ∈ Rd :

1

n
‖ W T [ Y − µ (Wβ ) ] ‖∞ ≤ λ+ γ ‖ β ‖1

}
, (41)

where

µ (Wβ ) =
W exp (Wβ )

1 + exp (Wβ )
∈ ( 0, 1 ).

By Assumption C2,

Wβ = Zβ + Ξβ

thus by Cauchy Remainder Theorem,

µ (Wβ ) = µ (Zβ ) + µ′ ( ξ β ) ( Ξβ )
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where ξβ lies in the segment between Wβ and Zβ .

Therefore,

P
(
β∗ ∈ C (λ, γ )

)

=P

{
1

n
‖ W T [ Y − µ (Wβ∗ ) ] ‖∞ ≤ λ+ γ ‖ β∗ ‖1

}

=P

{
1

n
‖ W T [ Y − µ (Zβ∗ )− µ′ ( ξβ∗ ) ( Ξβ∗ ) ] ‖∞ ≤ λ+ γ ‖ β∗ ‖1

}
By triangle inequality,

1

n
‖ W T [ Y − µ (Zβ∗ )− µ′ ( ξβ∗ ) ( Ξβ∗ ) ] ‖∞

≤ 1

n
‖ W T [ Y − µ (Zβ∗ ) ] ‖∞ +

1

n
‖ W T µ′ ( ξ ) ( Ξβ∗ ) ‖∞

Define

Event B := { β∗ ∈ C (λ, γ ) }

:= { 1

n
‖ W T [ Y − µ (Zβ∗ )− µ′ ( ξ β∗ ) ( Ξβ∗ ) ] ‖∞ ≤ λ + γ ‖ β∗ ‖1 };

Define

Event B1 := { 1

n
‖ W T [ Y − µ (Zβ∗ ) ] ‖∞ ≤ λ };

Event B2 := { 1

n
‖ W T µ′ ( ξ β∗ ) ( Ξβ∗ ) ‖∞ ≤ γ ‖ β∗ ‖1 }.

Notice that, Event B1 and Event B2 implies Event B. Now we investigate the

probability of each event respectively.
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(i) Event B1 :

P (B1 ) = P { 1

n
‖ W T [ Y − µ (Zβ∗ ) ] ‖∞ ≤ λ }

let ε = Y −µ (Zβ∗ ), then sinceE(ε) = 0 and ‖W‖∞ < Md, analogous to Theorem

2.1, it holds:

when λ ≥
√

2 Md

√
log ( 2 d ) + log n

n
≡ λ∗,

P (B1 ) ≥ 1− 1

n
.

(ii) Event B2

Notice that

µ ( ξi β ) =
exp ( ξi β )

1 + exp ( ξi β )
∈ ( 0, 1 ),

then

µ′ ( ξi β ) =
exp ( ξi β )

[ 1 + exp ( ξi β ) ]2
= µ ( ξi β ) [ 1− µ ( ξi β ) ] ∈ ( 0,

1

4
);

Thus,

1

n
‖ W T µ′ ( ξ β ) ( Ξβ∗ ) ‖∞ ≤

1

4n
‖ W T ( Ξβ∗ ) ‖∞ ≤

1

4n
‖ ΞT W ‖∞‖ β∗ ‖1.

Define

Event B′2 := { 1

4n
‖ ΞT W ‖∞ ≤ γ };

then,

P ( B′2 ) =P
( 1

4n
‖ ΞT W ‖∞ ≤ γ

)
= P

(
max
k

max
j

1

n

∣∣∣ n∑
i=1

1

4
Ξik Wij

∣∣∣ ≤ γ
)
.

Denote

Ti,k,j =
1

4
ΞikWij,
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then
n∑
i=1

Ti,k,j =
n∑
i=1

1

4
ΞikWij;

Since E (Wij ) = 0,

E
( 1

n

n∑
i=1

Ti,k,j

)
= E

( 1

4n

n∑
i=1

ΞikWij

)
=

1

4n
E
[
E
(
Wij

) n∑
i=1

Ξik

]
= 0

and

| Ti,j,k | =
1

4
|ΞikWij | ≤

1

4
‖Ξ ‖∞ ‖W ‖∞ ≤

1

2
M2

d

Then apply Hoeffding’s Inequality,

P
( ∣∣∣ 1

n

n∑
i=1

Tijk

∣∣∣ > γ
)
≤ 2 exp

[
− 2n2 γ2∑n

i=1 [ 2 (1
2
M2

d ) ]2

]

= 2 exp
[
− 2n γ2

Md
4

]
(42)

The union bounds can be achieved as following:

P (B′2) = P
{ ∥∥∥ 1

4n
ΞT W

∥∥∥
∞
≤ γ

}

= P
(

max
k

max
j

1

n
|

n∑
i=1

Tijk | ≤ γ
)

= P
(
∩dk=1 ∩dj=1

{ 1

n
|

n∑
i=1

Tijk | ≤ γ
} )

= 1− P
(
∪dk=1 ∪dj=1

{ 1

n
|

n∑
i=1

Tijk | > γ
} )

≥ 1−
d∑

k=1

d∑
j=1

P
( 1

n
|

n∑
i=1

Tijk | > γ
)
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by the result of (42),

≥ 1− exp
[
− 2n γ2

M2
d

+ log ( 2 d2 )
]

(43)

With

γ ≥ M2
d

√
log ( 2 d2 ) + τ

2n
,

it holds,

P ( B2
′ ) ≥ 1− e−τ .

let

γ ≥ M2
d

√
log ( 2 d2 ) + log n

2n
≡ γ∗,

then,

P (B′2 ) ≥ 1− 1

n
.

Therefore, when λ > λ∗, γ > γ∗,

P ( B ) > 1− 2

n
.
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B2. Proof of Theorem 3.2

[Theorem 3.2]

Under Assumption C1 −C5, when λ > λ∗, γ > γ∗, with probability at least 1− 2
n
, it

holds:

E(β̂MHCS) ≤
(

3λ+ 2 γ ‖ β∗ ‖1 + δ0

)
‖ β∗ − β̂MHCS ‖1 + δ0 a0 .

Proof of Theorem 3.2.
Define

Vλ,γ = sup
β̂ ∈B (λ, γ )

(Ln − L ) ( ρβ∗ − ρβ̂ ) (Z, Y )

a0 + ‖ β̂ − β∗ ‖1

(44)

where

B (λ, γ ) :=
{
β̂ ∈ Rd : β̂ = arg min

β̂ ∈C (λ ,γ )

‖ β̂ ‖1

}
(45)

Similar to Theorem 2.2, we patition B (λ, γ ) into {Bj}Jj=0:

B0 = {β̂ : β̂ ∈ B(λ,γ), ‖β̂ − β∗‖1 ≤ a0}

Bj = {β̂ : β̂ ∈ B(λ,γ), aj−1 < ‖β̂ − β∗‖1 ≤ aj}; (1 ≤ j ≤ J − 1)

BJ = {β̂ : β̂ ∈ B(λ,γ), ‖β̂ − β∗‖1 > aJ−1} (46)

For 1 ≤ j ≤ J − 1:

aj = 2aj−1;
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by Assumption C5, it holds:

aJ−1 ≥ 2 ‖ β∗‖1 and a0 ≥
‖β∗‖1

2J
;

Then, we can derive the bound according to this partition B(λ,γ) as follow:

P ( Vλ,γ > δ0 ) = P
(

sup
β̂ ∈B(λ,γ)

(Ln − L ) ( ρβ∗ − ρβ̂ )

a0 + ‖β̂ − β∗‖1

> δ0

)

≤
J∑
j=0

P
(

sup
β̂ ∈Bj

(Ln − L ) ( ρβ∗ − ρβ̂ )

a0 + ‖β̂ − β∗‖1

> δ0

)
. (47)

to be simplified, let

Vj = sup
β̂ ∈Bj

(Ln − L ) ( ρβ∗ − ρβ̂ )

a0 + ‖β̂ − β∗‖1

(Z, Y ) (48)

then (47) is equivalent to

P ( Vλ,γ > δ0 ) ≤
J∑
j=0

P
(
Vj > δ0

)
.

According to Lemma 5.7: For 0 ≤ j ≤ J − 1

P
(
Vj > δ0

)
< 2 e−2n

By Theorem 3.1, when λ > λ∗ and γ > γ∗, it holds

P
(
VJ > δ0

)
≤ P

(
‖β̂−β∗‖1 > aJ−1

)
≤ P

(
‖β̂−β∗‖1 > 2 ‖β∗‖1

)
≤ P ( β∗ /∈ Cλ,γ ) ≤ 2

n

Thus,

P
(
Vλ,γ > δ0

)
< 2J e−2n +

2

n
.

It comes to conclude that, with probability at least 1− 2J e−2n − 2
n
, it holds:

Vλ,γ := sup
β̂∈B(λ,γ)

|( Ln − L ) ( ρβ∗ − ρβ̂ )(Z, Y )|
a0 + ‖β∗ − β̂‖1

< δ0.
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Since our estimator β̂MHCS ∈ B(λ,γ), it holds

| (Ln − L ) ( ρβ∗ − ρβ̂MHCS
) (Z, Y ) |

a0 + ‖β̂MHCS − β∗‖1

≤ sup
β̂ ∈B(λ,γ)

|(Ln − L) ( ρβ∗ − ρβ̂ ) (Z, Y ) |
a0 + ‖β̂ − β∗‖1

≤ δ0

thus,

Ln ( ρβ∗ − ρβ̂MHCS
)− L ( ρβ∗ − ρβ̂MHCS

) ≤ δ0 a0 + δ0 ‖ β∗ − β̂MHCS ‖1 .

rearrange the orders, then

E(β̂MHCS) = L ( ρβ̂MHCS
− ρβ∗ ) ≤ Ln ( ρβ̂MHCS

− ρβ∗ ) + δ0 ‖ β∗ − β̂MHCS ‖1 + δ0 a0

since:∣∣ Lnρβ̂MHCS
(Z, Y )− Lnρβ∗ (Z, Y )

∣∣ ≤ ‖ ∇β Ln ρβ̂MHCS
(Z, Y ) ‖∞ ‖ β̂MHCS − β∗ ‖1

by Lemma 5.8

≤ ( 3λ+ 2 γ ‖ β̂MHCS ‖1 ) ‖ β̂MHCS − β∗ ‖1;

then,

E(β̂MHCS) = Lρβ̂MHCS
(Z, Y )− Lρβ∗(Z, Y )

≤
∣∣Lnρβ̂MHCS

(Z, Y )− Lnρβ∗(Z, Y )
∣∣+ δ0 ‖ β∗ − β̂MHCS ‖1 + δ0 a0

≤ ( 3λ+ 2 γ ‖ β̂MHCS ‖1 ) ‖ β∗ − β̂MHCS ‖1 + δ0 ‖ β∗ − β̂MHCS ‖1 + δ0 a0 ;

Under β∗ ∈ Cλ,γ, ‖ β̂MHCS ‖1 ≤ ‖ β∗ ‖1;

E(β̂MHCS) ≤
(

3λ+ 2 γ ‖ β∗ ‖1 + δ0

)
‖ β∗ − β̂MHCS ‖1 + δ0 a0 .

Lemma 5.7. As Bj , Vj , defined in (46), (48), for 0 ≤ j ≤ J − 1, it holds:

P (Vj > δ0 ) < 2 e−2n.
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Proof. Analogous to Theorem 2, we have following results for Vj :

P ( | Vj − E (Vj ) | > δ1 ) < 2 e−2n;

and

E( Vj ) ≤ δ2;

set δ0 = δ1 + δ2, then

P ( Vj > δ0 ) < 2 e−2n.

Lemma 5.8.

With same notations in Theorem 3.2, when λ > λ∗ and γ > γ∗, then with probability

at least 1− 2

n
, it holds:

1

n

∥∥∥ ZT [ Y − µ (Zβ̂MHCS ) ]
∥∥∥
∞
≤ 3λ+ 2 γ ‖ β̂MHCS ‖1 .

Proof.
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By triangle inequality,

1

n

∥∥∥ ZT [ Y − µ (Zβ̂MHCS ) ]
∥∥∥
∞
− 1

n

∥∥∥ ΞT [ Y − µ (Zβ̂MHCS ) ]
∥∥∥
∞

; − 1

n

∥∥∥ W T µ′ ( ξ β̂MHCS )( Ξβ̂MHCS )
∥∥∥
∞

≤ 1

n

∥∥∥ ZT [ Y − µ (Zβ̂MHCS ) ] + ΞT [ Y − µ (Zβ̂MHCS ) ] − W T µ′ ( ξ β̂MHCS ) ( Ξβ̂MHCS )
∥∥∥
∞

=
1

n

∥∥∥ W T [ Y − µ (Wβ̂MHCS ) ]
∥∥∥
∞
.

Thus, after rearranging orders, the gradient of target population through high con-

fidence set estimation, would be bounded by the following three parts.

1

n

∥∥∥ ZT [ Y − µ (Zβ̂MHCS ) ]
∥∥∥
∞
≤ 1

n

∥∥∥ W T [ Y − µ (Wβ̂MHCS ) ]
∥∥∥
∞

+
1

n

∥∥∥ ΞT [ Y − µ (Zβ̂MHCS ) ]
∥∥∥
∞

+
1

n

∥∥∥ W T µ′ ( ξ β̂MHCS ) ( Ξβ̂MHCS )
∥∥∥
∞

First, since β̂MHCS ∈ C (λ, γ ), by definition of C(λ,γ), it holds,

1

n
‖ W T [ Y − µ (Wβ̂MHCS ) ] ‖∞ ≤ λ+ γ ‖ β̂MHCS ‖1; (49)

Similar to the process in proving previous theorem Event B1 and Event B2, under

the condition λ ≥ λ∗ and γ ≥ γ∗, the second part and third part will be bounded
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with high probability:

P
( 1

n

∥∥∥ ΞT [ Y − µ (Zβ̂MHCS ) ]
∥∥∥
∞
≤ 2 λ

)
> 1− 1

n
; (50)

P
( 1

n

∥∥∥ W T µ′ ( ξ β̂MHCS ) ( Ξβ̂MHCS )
∥∥∥
∞
≤ γ ‖ β̂MHCS ‖1

)
> 1− 1

n
; (51)

Thus by De Morgan’s Law again,

P
( 1

n

∥∥∥ ZT [ Y − µ (Zβ̂MHCS ) ]
∥∥∥
∞
≤ 3λ+ 2 γ ‖ β̂MHCS ‖1

)
≥ 1− 2

n
.



84

B3. Proof of Theorem 3.3

Theorem 3.3:

Under AssumptionC1 - AssumptionC7, when λ ≥ λ∗ and γ ≥ γ∗, with probability at least 1− 2

n
,

it holds:

(i) ‖ β̂MHCS − β∗ ‖2 ≤
4 ( λ+ γ ‖ β∗ ‖1 )

√
s

κ
;

(ii) ‖ β̂MHCS − β∗ ‖1 ≤
8 ( λ+ γ ‖ β∗ ‖1 ) s

κ
.

proof of Theorem 3.3.

By the definition of C(λ,γ), it holds:

‖ ∇β Ln ρβ̂MHCS
( W, Y ) ‖∞ ≤ λ+ γ ‖ β̂MHCS ‖1;

Condition on β∗ ∈ C( λ,γ ),

‖ ∇β Ln ρβ∗ ( W, Y ) ‖∞ ≤ λ+ γ ‖ β∗ ‖1;

then by the triangle inequality,

‖ ∇β Ln ρβ̂MHCS
( W, Y ) − ∇β Ln ρβ∗ ( W, Y ) ‖∞

≤ ‖ ∇β Ln ρβ̂MHCS
( W, Y ) ‖∞ + ‖ ∇β Ln ρβ∗ ( W, Y ) ‖∞

≤ 2λ+ γ ‖ β̂MHCS ‖1 + γ ‖ β∗ ‖1 ≤ 2λ+ 2 γ ‖ β∗ ‖1 (52)
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Thus, the corresponding result of (36) is:

δ Ln ρ( ∆̂, β∗ )(W, Y ) : = Ln ρ(β∗+∆̂ )(W, Y )− Ln ρβ∗(W, Y )−
〈
∇β Ln ρβ∗(W, Y ), ∆̂

〉

≤ ‖ ∇β Ln ρβ̂MHCS
( W, Y ) − ∇β Ln ρβ∗ ( W, Y ) ‖∞ ‖ ∆̂ ‖1

≤ 2 ( λ+ γ ‖ β∗ ‖1 ) ‖ ∆̂ ‖1 (53)

Under Event B, ‖β̂MHCS‖1 ≤ ‖β∗‖1, thus, (37) and (38) still valid.

By Assumption C7,

δ Ln ρ( ∆̂, β∗ ) (W, Y ) ≥ κ ‖ ∆̂ ‖2
2;

combine with (53) and (38) we have,

κ ‖ ∆̂ ‖2
2 ≤ 2 ( λ+ γ ‖ β∗ ‖1 ) ‖ ∆̂ ‖1 ≤ 4 ( λ+ γ ‖ β∗ ‖1 )

√
s ‖ ∆̂ ‖2;

therefore,

‖ ∆̂ ‖2 ≤
4 ( λ+ γ ‖ β∗ ‖1 )

√
s

κ
; (54)

plug (54) into (38), we have

‖ ∆̂ ‖1 ≤
8 ( λ+ γ ‖ β∗ ‖1 ) s

κ
. (55)

[Corollary] Under Assumption C1-C7, when λ > λ∗, γ > γ∗, with probability at
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least 1− 2J e−2n − 2
n
, it holds that:

E(β̂MHCS) ≤ 8s(λ+ γ‖β∗‖1 ) (3 λ + 2γ‖β∗‖1 + δ0)

κ
+ δ0 a0

Proof. Take the result of (55) into Theorem 3.2, the result can be achieved.
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C Code

https://github.com/firfre/high-confidence-set


