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Abstract. The Legendre polytope is the convex hull of all pairwise differences of the basis vectors,
also known as the full root polytope of type A. We describe all flag triangulations of this polytope
that are uniform in the sense that the edges may be described as a function of the relative order
of the indices of the four basis vectors involved. We also determine the refined face counts of these
triangulations that keeps track of the number of forward and backward arrows in each face.

1. Introduction

Triangulations of root polytopes and of products of simplices have been a subject of intense study
in recent years [2, 4, 5, 6, 12]. Motivated by an observation made in [8], we recently [10] established
that the Simion type B associahedron [18] may be realized as a pulling triangulation of the Legendre
polytope, defined as the convex hull of all differences of pairs of basis vectors in Euclidean space.
These vertices can be thought of as arrows between numbered nodes. We also showed that all pulling
triangulations are flag. The Legendre polytope is the centrally symmetric variant of the type A
root polytope whose lexicographic and revlex triangulations were studied by Gelfand, Graev and
Postnikov [12]. A question naturally arises: Are there other reasonably uniform triangulations of the
Legendre polytope?

In this paper we fully answer this question. We consider flag triangulations that are uniform in the
sense that the flag condition depends only on the relative order on the numbering of the basis vectors
involved, and classify all such triangulations. The key tool we use is a characterization of triangulations
of a product of simplices given by Oh and Yoo [15, 16] in terms of matching ensembles. We determine
that there are three classes of triangulations: variants of the lexicographic pulling triangulation,
variants of the revlex pulling triangulation, and variants of the triangulation representing the Simion
type B associahedron. All triangulations of the boundary of the Legendre polytope have the same
face numbers.

To distinguish between the three major classes, we introduce a refined face count which keeps track
of the number of forward and backward arrows in each face. Remarkably we find that the refined face
count in a triangulation belonging to the lexicographic class yields the same face number for a fixed
dimension, regardless how we fix the number of forward and backward arrows. The variants of the
Simion type B associahedron all have the same refined face numbers, up to exchanging the forward
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and backward arrows. Finally, the refined face count for the revlex triangulation and it variants leads
to considering an exponential generating function whose second partial derivative may be expressed in
terms of modified Bessel functions. Weighted generalizations of the Delannoy numbers play a crucial
role in the refined face count in the revlex and Simion class, whereas the Catalan numbers play a key
role in the refined face count in the lex and the Simion class.

Our paper is structured as follows. In Section 3 we state our main classification theorem and
prove the sufficiency part. The necessity part is shown in Section 4. In Section 5 we outline that all
triangulations that we consider are actually pairwise non-isomorphic. Results facilitating the refined
face count in all cases are presented in Section 6. The actual refined face count is performed, case by
case, in Sections 7, 8 and 9, respectively.

2. Preliminaries

2.1. The Legendre polytope. The Legendre polytope Pn is the convex hull of the n(n+ 1) vertices
ej − ei where i 6= j and {e1, e2, . . . , en+1} is the orthonormal basis of the Euclidean space Rn+1. This
polytope was first studied by Cho [7], and it is called the “full” type A root polytope in the work
of Ardila, Beck, Hoşten, Pfeifle and Seashore [2]. The name Legendre polytope [13] is motivated
by the fact that the polynomial

∑n
j=0 fj−1 · ((x − 1)/2)j is the nth Legendre polynomial, where fi

is the number of i-dimensional faces in any pulling triangulation of the boundary of Pn. Another
way to view the Legendre polytope is to intersect the hyperplane x1 + x2 + · · · + xn+1 = 0 with the
(n+ 1)-dimensional cross-polytope formed by the convex hull of the vertices ±2e1, ±2e2, . . ., ±2en+1.

The Legendre polytope Pn contains the root polytope P+
n , defined as the convex hull of the origin

and the set of points ej − ei, where i < j. The polytope P+
n was first studied by Gelfand, Graev

and Postnikov [12] and later by Postnikov [17]. Many properties of the Legendre polytope Pn are
straightforward generalizations of the properties of the root polytope P+

n .

We use the shorthand notation (i, j) for the vertex ej − ei of the Legendre polytope Pn. We may
think of these vertices as the set of all directed nonloop edges on the vertex set {1, 2, . . . , n + 1}. To
avoid confusion between edges and vertices of the Legendre polytope, we will refer to the vertices of Pn
as arrows. The root polytope P+

n is then the convex hull of the origin and of the forward arrows.
Suppressing the orientation we arrive at the edges representing vertices in the work of Gelfand, Graev
and Postnikov [12].

A subset of arrows is contained in some face of Pn exactly when there is no i ∈ {1, 2, . . . , n+1} that
is both the head and the tail of an arrow; see [13, Lemmas 4.2 and 4.4]. Equivalently, the faces are
products of two simplices [10, Lemma 2.2]: we may write them as ∆I ×∆J where I, J 6= ∅, I ∩ J = ∅
and for S ⊆ {1, 2, . . . , n + 1} the symbol ∆S denotes the convex hull of the set {ei : i ∈ S}. The
analogous observations regarding the faces of the root polytope P+

n that do not contain the origin
may be found in [12] where the sets of edges (forward arrows in our terminology) representing vertices
contained in a proper face are called admissible. Facets of Pn are exactly the faces ∆I × ∆J where
the disjoint union of I and J is {1, 2, . . . , n + 1}. The edges of Pn are of the form ∆I × ∆J where



UNIFORM FLAG TRIANGULATIONS OF THE LEGENDRE POLYTOPE 3

Type Order of nodes Type B Lexicographic Revlex
associahedron pulling pulling

THTH i1 < j1 < i2 < j2 i1 j1 i2 j2 i1 j1 i2 j2 i1 j1 i2 j2

HTHT j1 < i1 < j2 < i2 j1 i1 j2 i2 j1 i1 j2 i2 j1 i1 j2 i2

THHT i1 < j1 < j2 < i2 i1 j1 j2 i2 i1 j1 j2 i2 i1 j1 j2 i2

HTTH j1 < i1 < i2 < j2 j1 i1 i2 j2 j1 i1 i2 j2 j1 i1 i2 j2

TTHH i1 < i2 < j1 < j2 i1 i2 j1 j2 i1 i2 j1 j2 i1 i2 j1 j2

HHTT j1 < j2 < i1 < i2 j1 j2 i1 i2 j1 j2 i1 i2 j1 j2 i1 i2

Table 1. Pairs of arrows that are edges in three triangulations of the boundary ∂Pn
of the Legendre polytope.

{|I|, |J |} = {1, 2}. The two-dimensional faces ∆I ×∆J of Pn are either squares when |I| = |J | = 2 or
triangles when {|I|, |J |} = {1, 3}.

Affine independent subsets of vertices of faces of the Legendre polytope are described as follows. A
set S = {(i1, j1), (i2, j2), . . . , (ik, jk)} is a (k − 1)-dimensional simplex if and only if, disregarding the
orientation of the directed edges, the set S contains no cycle, that is, it is a forest [13, Lemma 2.4].
The analogous observations were made for the root polytope P+

n in [12] and for products of simplices
in [9, Lemma 6.2.8] (see also [4, Lemma 2.1]).

In a recent paper [10], the authors have shown that the Simion type B associahedron [18] is com-
binatorially equivalent to a pulling triangulation of the boundary of the Legendre polytope. For an
exact definition of a pulling triangulation we refer the reader to [10]. Here we only recall the following
key observation [10, Theorem 3.1]: every pulling triangulation of the boundary of the Legendre poly-
tope Pn is flag, that is, a subset of vertices is a face exactly when each pair of vertices in the subset
is an edge. Thus the triangulation giving rise to a combinatorial equivalent of the Simion type B
associahedron is completely determined by the rules given in the associated column of Table 1.

The last two columns in Table 1 are the analogous rules for two other pulling triangulations of
the boundary of the Legendre polytope Pn, also discussed in [10]. These are the lexicographic (lex)
and revlex pulling orders. Their restriction to the root polytope P+

n are called the antistandard,
respectively standard triangulations in [12]. The terminology we use in [10] was introduced in [13],
where it was observed that these are pulling triangulations. (These pulling triangulations are not to
be confused with the terms “lexicographic triangulation” and “reverse lexicographic triangulation”
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used in [19] where the first is a placing triangulation, and only the second is a pulling triangulation.)
The lexicographic pulling order was also studied in [2]. The reader may take Table 1 as a definition of
these flag complexes. In this paper we will see an independent verification of the fact that these (and
twelve other variants of them) are indeed triangulations of the boundary of the boundary ∂Pn of the
Legendre polytope.

2.2. Characterizing triangulations of ∆a−1 ×∆b−1 via matching ensembles. Our key tool to
verify that the flag complexes we define triangulate the boundary of the Legendre polytope Pn is
the characterization of the triangulations of the Cartesian product ∆a−1 ×∆b−1 given by S. Oh and
H. Yoo [15, 16]. See also [4]. We identify the vertices of ∆a−1 × ∆b−1 with edges in the complete
bipartite graph Ka,b, whose vertex set is {1, 2, . . . , a} ] {1, 2, . . . , b}, and call this the bipartite graph
representation of ∆a−1×∆b−1. As mentioned in the previous section, affine independent sets of vertices
in ∆a−1 ×∆b−1 may be characterized in an analogous way to the sets of affine independent vertices
of the Legendre polytope Pn. More precisely, by [9, Lemma 6.2.8] a set of affine independent vertices
of ∆a−1 × ∆b−1 corresponds to a forest in the bipartite graph representation, and maximal affine
independent sets correspond to trees. Facets of a triangulation of ∆a−1 × ∆b−1 thus correspond to
spanning trees. The results of S. Oh and H. Yoo characterize which sets of spanning trees correspond
a triangulation of ∆a−1 ×∆b−1.

Definition 2.1. A family M of matchings of Ka,b is a matching ensemble if it satisfies the following
three axioms:

Support axiom: For I ⊆ {1, 2, . . . , a} and J ⊆ {1, 2, . . . , b} with |I| = |J | there is a unique
matching in M that matches the elements of I with the elements of J in the subgraph induced
by I ] J of Ka,b.

Closure axiom: Any subset of edges of a matching in M is also a matching in M.
Linkage axiom: If m is a non-empty matching in M and v is any vertex of Ka,b not incident

to any edge of m then there is an edge e ∈ m and there is an edge e′ 6∈ m incident to v such
that the resulting matching m′ = (m− e) ∪ e′ also belongs to M.

For T a spanning tree of Ka,b define φ(T ) to be the set of all matchings contained in the edges of
the tree T . Extend this notion to families of spanning trees by defining

Φ(T ) =
⋃
T∈T

φ(T ).

S. Oh and H. Yoo proved the following result [16, Theorem 5.4].

Theorem 2.2 (Oh–Yoo). The function Φ is a bijection between families of spanning trees representing
triangulations of ∆a−1 ×∆b−1 and matching ensembles of the bipartite graph Ka,b.

Ceballos, Padrol and Sarmiento [5, Lemma 2.5] explicitly describe the inverse Φ−1.

Lemma 2.3 (Ceballos–Padrol–Sarmiento). Given a matching ensemble M on Ka,b, the spanning
tree T of Ka,b belongs to Φ−1(M) if and only if for each m ∈ M, there is no cycle in T ∪ m that
alternates between T and m.
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Closely related to this result is the following lemma, essentially due to Postnikov; see Lemma 12.6
in [17]. Although Postnikov originally made the statement in the case of spanning trees, the proof
carries over with very little modification to the case of forests. Recall that for a forest F in Ka,b we
denote ∆F to be simplex in ∆a−1 ×∆b−1 whose vertices correspond to the edges of the forest.

Lemma 2.4 (Postnikov). Let F and F ′ be two forests in the bipartite graph Ka,b. The intersection
of the two simplices ∆F ∩ ∆F ′ is either empty or a simplex represented by a set of edges of Ka,b if
and only if the graph F ∪F ′ does not contain a cycle of length greater than or equal to 4 in which the
edges alternate between F and F ′.

Proof. The proof of the necessity is exactly the same as for spanning trees. If there is a cycle
(i1, j1, i2, j2, . . . , ik, jk) such that

{{i1, j1}, {i2, j2}, . . . , {ik, jk}} ⊆ F and {{i1, jk}, {i2, j1}, . . . , {ik, jk−1}} ⊆ F ′

then the point 1/k ·
∑k

s=1(eis − ejs) belongs to the intersection ∆F ∩ ∆F ′ , but all vertices of the
smallest dimensional faces of the two simplices containing the point do not belong to the intersection.
To prove the converse, we only need to add one sentence to Postnikov’s proof. Just like in the proof
of [17, Lemma 12.6], direct all edges {i, j} ∈ F \ F ′ from i to j and we direct all edges {i, j} ∈ F ′ \ F
from j to i. The resulting set U(F, F ′) of directed edges is acyclic. We select a height function that
is constant on the connected components of F ∩F ′ and increases along the directed edges in U(F, F ′)
joining two connected components of F ∩ F ′. Since we started with forests instead of spanning trees,
the resulting height function is still undefined on those nodes that are not incident to any edge in the
union F ∪ F ′. For these, we select the height to be the same constant, that is, less than any of the
already defined values. �

3. Classifying uniform flag triangulations of the Legendre polytope

3.1. Uniform triangulations and their classification. A common property of all three flag com-
plexes described in Table 1 is that the edges are defined in a uniform fashion. We make this clear in
the following definition. First, let Vn be the vertex set defined by

Vn = {(i, j) : 1 ≤ i, j ≤ n+ 1, i 6= j}.

Definition 3.1. A flag simplicial complex 4n on the vertex set Vn is a uniform flag complex if
determining whether or not a pair of vertices {(i1, j1), (i2, j2)} forms an edge depends only on the
equalities and inequalities between the values of i1, i2, j1 and j2.

We begin with the necessary conditions for describing uniform flag triangulations. To facilitate
making statements, we introduce some new terminology and notation. We use the letter T to mark
the tail of each arrow and the letter H to mark the head. For each pair of arrows on four nodes, we
will indicate the relative order of the two heads and two tails by writing down the appropriate letters
left to right in the order as they occur. We will refer to the resulting word as the type of the pair
of arrows. After that we will simply state in words the condition that a pair of arrows of a given
type must satisfy to be an edge of the triangulation. Three examples of this convention are given in
Table 1.
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The main classification result in this paper is the following.

Theorem 3.2. Let 4n be a uniform flag complex on the vertex set Vn for some n ≥ 5 that satisfies
the necessary conditions stated in Proposition 3.4. Then the complex 4n represents a triangulation
of the boundary ∂Pn of the Legendre polytope if and only if it satisfies exactly one of the following
conditions:

(1) Both THTH and HTHT types of pairs of arrows do not nest, and both HTTH and THHT
types of arrows do not cross.

(2) Both THTH and HTHT types of pairs of arrows nest, and both HTTH and THHT types of
arrows cross.

(3) Exactly one of the THTH and HTHT types of pairs of arrows nest. Furthermore, if both
THHT and HTTH types of pairs cross then both TTHH and HHTT types of pairs nest.

The three classes in listed in Theorem 3.2 are clearly pairwise mutually exclusive. We name them
as follows, and give brief motivations why.

(1) This class contains the triangulation obtained by the lexicographic pulling order of the Le-
gendre polytope and hence is named the lex class.

(2) This class contains the triangulation obtained by the revlex pulling order of the Legendre
polytope and hence is named the revlex class.

(3) This class contains the Simion type B associahedron and hence is called the Simion class.
Furthermore, we subdivide this class into the three subclasses, the Simion subclass of types a
through c, according to:
(a) Both THHT and HTTH types of pairs do not cross.
(b) Exactly one of the THHT and HTTH types of pairs cross.
(c) Both THHT and HTTH types of pairs cross, and both TTHH and HHTT types of

pairs nest.

In Subsection 3.2 we prove the necessary part of Theorem 3.2; see Propositions 3.6 through 3.8.
The sufficiency part of Theorem 3.2 is proved Section 4. The main tool for proving these results are
Theorem 3.5 which gives necessary and sufficient condition for a simplicial complex on the vertex
set Vn to be a triangulation of the boundary ∂Pn of the Legendre polytope. These conditions are the
support and the linkage axioms based upon Definition 2.1.

We end this subsection by introducing two commuting operations on triangulations. Let 4n be a
uniform flag complex on the vertex set Vn. Let the dual triangulation4∗n be the triangulation obtained
by reversing all the arrows. Let the reflected dual triangulation 4n be the triangulation obtained by
reversing all the arrows and replacing node i with n+ 2− i.
Lemma 3.3. Let 4n be a uniform flag complex on the vertex set Vn. First, 4n and 4∗n belong to
the same (sub)class. Second, the conditions on the types THTH, HTHT , TTHH and HHTT stays
invariant under the involution 4n 7−→ 4n, but the condition on THHT and HTTH switch.

Proof. See Table 2. �
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4 4∗ 4 4 4∗ 4

T H T H H T H T T H T H T H T H H T H T T H T H

H T H T T H T H H T H T H T H T T H T H H T H T

T H H T H T T H H T T H T H H T H T T H H T T H

H T T H T H H T T H H T H T T H T H H T T H H T

H H T T T T H H H H T T H H T T T T H H H H T T

T T H H H H T T T T H H T T H H H H T T T T H H

Table 2. The action of the two involutions 4 7−→ 4∗ and 4 7−→ 4.

3.2. Necessary conditions for uniform flag complex. The next proposition states a few necessary
conditions for a uniform flag complex to represent a triangulation of the boundary ∂Pn of the Legendre
polytope.

Proposition 3.4. Let 4n be a uniform flag complex on the vertex set Vn. Identify each vertex
(i, j) ∈ Vn with the vertex ej − ei of the Legendre polytope Pn. If the complex 4n represents a
triangulation of the boundary ∂Pn of the Legendre polytope then it satisfies the following criteria:

(1) There is no edge of the form {(i, j), (j, k)} in the complex 4n.
(2) For each three-element subset {i, j, k} of {1, 2, . . . , n + 1}, the two sets {(i, j), (i, k)} and
{(j, i), (k, i)} are edges in the complex 4n.

(3) For each four-element subset {i1, i2, j1, j2} of {1, 2, . . . , n + 1}, exactly one of the two sets
{(i1, j1), (i2, j2)} and {(i1, j2), (i2, j1)} is an edge in the complex 4n.

Proof. Condition (1) is equivalent to requiring that the faces of the flag complex represent affine
independent vertex sets. Condition (2) is necessary to make sure that the 2-dimensional triangular
faces of Pn belong to the triangulation, and condition (3) is necessary to ensure that each 2-dimensional
square face is subdivided into two triangles by a diagonal. �

Note that condition (2) and the fact that the complex 4n is a flag complex imply that for two
disjoint subsets I and J such that |I| = 3 and |J | = 1 that the set I × J is 2-dimensional face
(triangle) of 4n. Similarly, J × I is also a face of the complex 4n.

The next result is essential in proving the necessary and sufficient conditions on uniform flag trian-
gulation in Theorem 3.2.
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Theorem 3.5. Let 4n be a uniform flag complex on the vertex set Vn satisfying the conditions of
Proposition 3.4. Let M be the family of all faces that are matchings, that is, set

M = {{(i1, j1), (i2, j2), . . . , (ik, jk)} ∈ 4n : |{i1, j1, i2, j2, . . . , ik, jk}| = 2k}.
Identify each vertex (i, j) with the vertex ej − ei of the Legendre polytope. Then the complex 4n

represents a triangulation of the boundary ∂Pn of the Legendre polytope if and only if the family of
matchings M satisfies the following two properties:

(SA) For each I, J ⊂ {1, 2, . . . , n + 1} satisfying I ∩ J = ∅ and |I| = |J | there is a unique σ ∈ M
such that σ ⊆ I × J and |σ| = |I|;

(LA) Assume I, J ⊂ {1, 2, . . . , n + 1} satisfies I ∩ J = ∅ and let σ be a non-empty matching in
M such that σ ⊆ I × J . Then for each k 6∈ I ∪ J there is an edge (i, j) ∈ σ such that
(σ − {(i, j)}) ∪ {(k, j)} ∈ M. Also, for each k 6∈ I ∪ J there is an edge (i, j) ∈ σ such that
(σ − {(i, j)}) ∪ {(i, k)} ∈ M.

Proof. The conditions stated in Proposition 3.4 imply that each face of 4n represents a subset of a
proper face ∆I×∆J of the Legendre polytope Pn, where I and J are disjoint subsets of {1, 2, . . . , n+1}.
Under these conditions4n represents a triangulation of ∂Pn if and only if for each pair (I, J) of disjoint
nonempty subsets of {1, 2, . . . , n+ 1} the set of faces whose vertices are contained in I × J represent
a triangulation of the face ∆I ×∆J of Pn. Property (SA) is equivalent to the support axiom in the
definition of a matching ensemble, while property (LA) is equivalent to the linkage axiom. The closure
axiom is an immediate consequence of the fact that a subset of a face is a face in a simplicial complex.
By Theorem 2.2 the family of matchings M must satisfy the stated axioms.

To prove the converse, assume that M satisfies the stated axioms and let I and J be an arbitrary
pair of nonempty disjoint subsets of {1, 2, . . . , n + 1}. The set M| I×J of matchings contained in M
whose elements belong to I × J is a matching ensemble. By Theorem 2.2 there is a triangulation
4(I, J) of ∆I × ∆J corresponding to this matching ensemble for which the elements of M| I×J are
the matchings of the complete bipartite graph KI,J contained in the spanning trees representing the
facets of 4(I, J). It suffices to show that 4(I, J) is the family 4n| I×J of faces of 4n whose vertices
are contained in I × J .

Assume, by way of contradiction, that the two simplicial complexes 4(I, J) and 4n| I×J differ. If
there is a face σ of 4(I, J) that does not belong to 4n| I×J then (the vertex sets being equal) this
face σ also contains an edge {(i1, j1), (i2, j2)} that does not belong to 4n| I×J , since 4n| I×J is a flag
complex which would contain σ if it contained all of its edges. By part (2) of Proposition 3.4 the set
{i1, j1, i2, j2} must have four distinct elements, and by part (3) of the same proposition we must have
{(i1, j2), (i2, j1)} ∈ 4n| I×J . By the definition of M we have {(i1, j2), (i2, j1)} ∈ M| I×J and by our
assumption we also have {(i1, j1), (i2, j2)} ∈ M| I×J . This violates the uniqueness part of the support
axiom (SA) for the pair of subsets ({i1, i2}, {j1, j2}). Hence 4(I, J) is contained in 4n| I×J , that is,
4(I, J) ⊆ 4n| I×J .

We are left with the possibility of having a face σ in 4n| I×J that does not belong to 4(I, J). After
adding a few more vertices, if necessary, we may assume that this face σ is a facet of 4n| I×J . The ver-
tices of the facet σ are arrows from I to J which, disregarding their orientation, must form a forest. If
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T H T H & H T H T =⇒ T H H T & H T T H

Figure 1. A graphical representation of Proposition 3.6.

T H T H & H T H T =⇒ T H H T & H T T H

Figure 2. A graphical representation of Proposition 3.7.

some arrows of σ form a cycle {{i1, j1}, {i2, j1}, {i2, j2}, . . . , {ik, jk}, {i1, jk}} then the uniqueness part
of the support axiom (SA) is violated for the pair of sets ({i1, i2, . . . , ik}, {j1, j2, . . . , jk}), since both
{(i1, j1), (i2, j2), . . . , (ik, jk)} and {(i1, jk), (i2, j1), . . . , (ik, jk−1)} belong to M. Consider the centroid
1/|σ| ·

∑
(i,j)∈σ(ej − ei) of the face of Pn represented by σ. This point belongs to some facet ∆T of the

triangulation 4(I, J). Here T is the spanning tree of KI,J representing the facet. All vertices of σ can-
not be represented by edges belonging to T , for otherwise σ belongs to 4(I, J). Hence, by Lemma 2.4
there is a cycle (i1, j1, i2, j2, . . . , ik, jk) in KI,J such that the matching {(i1, j1), (i2, j2), . . . , (ik, jk)}
belongs to T and the matching {(i1, jk), (i2, j1), . . . , (ik, jk−1)} belongs to σ. Both matchings belong
to M, and we have reached a contradiction with Lemma 2.3. �

We now begin to obtain the necessary conditions.

Proposition 3.6. Let 4n be a uniform flag complex on the vertex set Vn representing a triangulation
of the boundary ∂Pn of the Legendre polytope for n ≥ 4. Assume that pairs of arrows of types THTH
and HTHT do not nest in the triangulation 4n. Then pairs of arrows of types HTTH and THHT
do not cross in the triangulation 4n.

Proof. Assume by way of contradiction, that HTTH type pairs of arrows cross in 4n. Hence the edge
σ = {(2, 5), (4, 1)} is in the triangulation 4n. Now let k = 3 and apply the linkage axiom (LA) in
Theorem 3.5. We obtain either the edge {(2, 5), (4, 3)} or {(2, 3), (4, 1)}, contradicting the assumed
condition on THTH or HTHT . The second conclusion follows by reversing all the arrows in the
proof. �

The next necessary condition is completely analogous to that of Proposition 3.6.

Proposition 3.7. Let 4n be a uniform flag complex on the vertex set Vn representing a triangulation
of the boundary ∂Pn of the Legendre polytope for n ≥ 4. Assume that pairs of arrows of the types
THTH and HTHT nest in the triangulation 4n. Then pairs of arrows of types HTTH and THHT
cross in the triangulation 4n.

Proof. The proof is completely analogous to the proof of Proposition 3.6, but this time use the edge
σ = {(2, 1), (4, 5)} in 4n. �
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T H T H & H T H T & T H H T & H T T H

=⇒

T T H H & H H T T

Figure 3. A graphical representation of the first case of Proposition 3.8.

Proposition 3.8. Let 4n be a uniform flag complex on the vertex set Vn representing a triangulation
of the boundary ∂Pn of the Legendre polytope for n ≥ 5. Assume exactly one of the THTH and
HTHT type of pairs of arrows nest, and the other type does not nest. Also assume that both THHT
and HTTH type of pairs of arrows cross. Then both TTHH and HHTT type of pairs nest.

Proof. Without loss of generality we may assume that THTH type of arrows nest and HTHT type of
pairs do not nest; the opposite case may be dealt with by reversing all arrows. Assume that HHTT
type of arrows cross and observe that both {(2, 1), (4, 3), (6, 5)} and {(2, 5), (4, 1), (6, 3)} form faces in
the triangulation 4n. Note that this contradicts the support axiom (SA) in Theorem 3.5 and thus
HHTT type of arrows must nest. A similar contradiction may be reached when TTHH type of arrows
cross, by considering the faces {(1, 6), (3, 2), (5, 4)} and {(1, 4), (3, 6), (5, 2)}. �

We conclude this section by an observation that we will frequently use in our proofs in the situations
when we need to consider only forward arrows or only backward arrows.

Theorem 3.9. Let 4n be a uniform flag complex on the vertex set Vn that satisfies the necessary
conditions stated in Proposition 3.4, and the condition that THTH type of pairs of arrows do not
nest. Then the restriction 4+

n of 4n to the set of forward arrows represents a triangulation of the
union of those boundary facets of the polytope P+

n that do not contain the origin.

Proof. Since all the arrows are forward arrows and any non-incident pair of such arrows is of the
type TTHH or THTH, the face structure of 4+

n depends on the rules associated with TTHH
and THTH. If such arrow pairs cross then the faces of any 4+

n | I×J are all sets of forward arrows
{(i1, j1), (i2, j2), . . . , (ik, jk)} where i1 < i2 < · · · < ik and j1 < j2 < · · · < jk hold. If such pairs
of arrows nest then the faces of 4n| I×J are all sets of forward arrows {(i1, j1), (i2, j2), . . . , (ik, jk)}
such that i1 < i2 < · · · < ik and j1 > j2 > · · · > jk hold. In other words, we obtain the well-known
lexicographic and revlex pulling triangulations of P+

n . �

4. Verifying the sufficiency part of the classification

In this section we show that any uniform flag complex 4n on Vn that satisfies one of the sets of
criteria listed in Theorem 3.2 represents a triangulation of the boundary ∂Pn of the Legendre polytope.
We do this by verifying in each case that the support and linkage axioms of Theorem 3.5 are satisfied.
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To verify the support axiom (SA), we will list the elements of the disjoint union I ∪ J in order,
marking each element of I with a T (tail) and each element of J with a H (head). Thus we obtain
a word containing the same number of letters T and H. We also associate to each tail an up (1, 1)
step, and to each head a down (1,−1) step. These steps yield a lattice path starting at the origin and
ending on the x-axis. We will describe the unique matching contained in 4n whose tail set is I and
head set is J in terms of this associated TH-word and associated lattice path.

During the verification of the support axiom (SA) we will often treat forward and backward arrows
separately. The following lemma is obvious.

Lemma 4.1. For any uniform flag complex on Vn and any face σ ⊂ Vn that is a matching and consists
of backward arrows only the lattice path associated to the tail set I and head set J never goes above
the x-axis.

Indeed, at any stage the number of tails listed can not exceed the number of heads listed. The next
lemma is a partial converse of Lemma 4.1.

Lemma 4.2. Let 4n be a uniform flag complex on Vn that satisfies the necessary conditions stated
in Theorem 3.2 and has the property that HTHT type of pairs of arrows do not nest. Let I and J be
two sets satisfying I, J ⊂ {1, 2, . . . , n + 1}, I ∩ J = ∅ and |I| = |J | 6= 0. Assume that the lattice path
associated with the two sets I and J only goes below the x-axis, that is, the associated word is a lower
Dyck word. Then there is a unique matching contained in 4n that matches I to J . Furthermore, this
matching consists of backward arrows only.

Proof. First we show that no matching from I to J contains a forward arrow. Assume by way of
contradiction that there is a smallest counterexample to this statement, and let (i, j) be the forward
arrow with the smallest tail i in such an example. The associated lattice path must start with a down
step, hence the least element of I ∪ J is a head j1, the head of a backward arrow (i1, j1). If i1 < i
holds then the removal of the arrow (i1, j1) yields a smaller counterexample, in contradiction with our
assumption of minimality. We can not have i1 > j either as HTHT type of pairs of arrows do not
nest. Hence we have j1 < i < i1 < j and HTTH type of pairs of arrows cross. The same reasoning
may be repeated for any backward arrow whose head is to the left of i: the tails of these arrows are
all between i and j, in particular no tail of a backward arrow is to the left of i. By the choice of i,
there is no tail of a forward arrow to the left of i either: the first up step in the associated lattice
path is contributed by the tail i. Hence i is preceded by k ≥ 1 heads: j1, j2, . . . , jk, and the tails
i1, i2, . . . , ik of these backward arrows all occur before j. The associated lattice path goes above the
x-axis before the down step associated to j unless there is a backward arrow (i′, j′) whose head j′

occurs before j, while i′ occurs only after it. The pair {(i, j), (i′, j′)} is a crossing THHT type of
pair of arrows. Since both THHT and HTTH type of pairs cross, the complex 4n can not belong to
the lex class. It can not belong to the revlex class either because HTHT type of pairs of arrows do
not nest by our assumption. We are left with the possibility that HTHT type of pairs do not nest
and THTH type of pairs nest. By Proposition 3.8 HHTT type of pairs nest. As a consequence no
backward arrow (i′, j′) satisfying j′ < j < i′ can cross any arrow (is, js) satisfying js < i < is < j.
But then the associated lattice path goes above the x-axis at the step associated to max(i1, i2, . . . , ik)
and we obtain a contradiction.
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Having established that no matching can contain a forward arrow, we may show the existence of a
unique matching by induction. Regardless on the condition on the HHTT type of pairs of arrows, the
first step of the associated lattice path is a down step, corresponding to a head j1. We only need to
show that there is a unique way to identify the tail i1 of this arrow, and that the removal of the steps
associated to j1 and i1 results in a lattice path that does not go above the horizontal axis. In the case
when HHTT type of pairs nest, i1 must be the tail marking the first return to the horizontal axis,
because all arrows whose head is between j1 and i1 must also have their tail in the same interval as
backward arrows can not cross. The removal of the first down step and the first return to the x-axis
yields a lattice path that does not go above the x-axis. Finally, in the case when HHTT type of pairs
cross, i1 must be the least tail, marking the first up step, as any back arrow whose tail precedes i1
would form a HHTT type of nesting pair with (i1, j1). The removal of the first up step and the first
down step yields once again a lattice path that does not go above the x-axis. �

Remark 4.3. The proof of Lemma 4.2 defines the matchings induced by the associated lattice paths
in a recursive fashion, but it is not difficult to prove the following explicit rules by induction:

(1) If HHTT type of arrows nest then each head j, representing a down step, is matched to the
tail i representing the first return to the same level.

(2) If HHTT type of arrows cross then the kth head in the left to right order is matched to the
kth tail in the left to right order.

(3) In either case, each head j is matched to a tail i in such a way that there is no return to the
x-axis strictly between the down step associated to j and the up step associated to i.

Lemma 4.4. Assume that the same conditions as in Lemma 4.2, but with the extra condition that the
associated word w factors as a product to two lower Dyck words w1 and w2. Then the matching as a
graph is a disjoint union of the two matchings for w1, respectively w2.

Proof. The matching obtained by taking the union of the two matchings for w1, respectively w2,
satisfies all the conditions. Hence by uniqueness the result follows. �

We will use Lemmas 4.1 and 4.2 for backward arrows most of the time, but the reader should
note that the dual statements, for forward arrows and associated lattice paths never going below the
x-axis, also hold. These lemmas were about the case when THTH type of arrows do not nest. We
will consider the case when they nest in the dual form below.

Lemma 4.5. Let 4n be a uniform flag complex on Vn that satisfies the necessary conditions stated in
Theorem 3.2 and has the property that HTHT type of pairs of arrows nest. Let I and J be two sets
satisfying I, J ⊂ {1, 2, . . . , n+ 1}, I ∩ J = ∅ and |I| = |J | 6= 0. There is a matching in 4n consisting
of forward arrows only that matches I to J if and only if every tail precedes every head, that is, i < j
holds for all i ∈ I and j ∈ J . Furthermore, if every tail precedes every head in I ∪J then the matching
contained in 4n that matches I to J is unique.

Proof. It is a direct consequence of the condition on THTH type of pairs of arrows that all tails
must precede all heads in every face that consists of forward arrows only. Conversely assume that
I = {i1, i2, . . . , ik} and J = {j1, j2, . . . , jk} satisfy i1 < i2 < · · · < ik and ik < j for all j ∈ J . Clearly,



UNIFORM FLAG TRIANGULATIONS OF THE LEGENDRE POLYTOPE 13

any arrow whose tail is in I and whose head is in J is a forward arrow. Any pair of such arrows is a
TTHH type of pair. Hence the only matching contained in 4n is {(i1, j1), (i2, j2), . . . , (ik, jk)} where
j1 < j2 < · · · < jk holds if TTHH type of pairs cross and j1 > j2 > · · · > jk holds when TTHH type
of pairs nest. �

The verification of the linkage axiom (LA) is facilitated by the following observations.

Lemma 4.6. Let 4n be any uniform flag complex on Vn satisfying the conditions stated in Proposi-
tion 3.4. Then the complex 4n satisfies the relevant part of the linkage axiom (LA) when k is inserted
as a tail and there exist i ∈ I such that there is no element of I ∪J strictly between k and i. Similarly,
when k is inserted as a head and there exist j ∈ J such that there is no element of I ∪ J strictly
between k and j, the linkage axiom is satisfied.

In other words, if we insert a new tail in position k next to a tail, then we may extend the arrow
containing the old tail to contain the new tail instead. A similar observation can be made about
inserting a new head. We only need to verify the linkage axiom (LA) in the cases when a new head
is inserted between two tails (or as the least or largest node, next to a tail), and when a new tail is
inserted between two heads (or as the least or largest node, next to a head).

Lemma 4.7. Let 4n be any uniform flag complex on Vn satisfying the necessary conditions stated
in Theorem 3.2, and that HTHT type of arrows do not nest. Let I and J be two sets satisfying
I, J ⊂ {1, 2, . . . , n + 1}, I ∩ J = ∅, and |I| = |J | 6= 0. Assume that the associated lattice path to the
two sets I and J only goes below the x-axis. If k > min(I ∪ J) is inserted as a tail or k < max(I ∪ J)
and k is inserted as a head, then the relevant part of the linkage axiom is verified in such a way that
the new arrow is also a backward arrow.

Proof. By symmetry, it is enough to consider the case when k is inserted as a tail. By Lemma 4.6 we
can assume that k is inserted after head j of an arrow (i, j). If HHTT type of pairs nest then we
match j to k and we remove the tail i. Note that the new arrow does not introduce any crossings. If
HHTT type of pairs cross then consider the least tail i′ > k, which is the tail of an arrow (i′, j′). Note
that j′ ≤ j since otherwise there would be two nesting backward arrows. Match k to j′ and remove
the tail i′. By Remark 4.3 part (2), it is straightforward to see that we obtain a matching belonging
to 4n. Note that in both cases, all the new arrows are backward arrows. �

4.1. The lex class. In this subsection we show that all four triangulations in the lex class are possible.

Theorem 4.8. Let 4n be a uniform flag complex on the vertex set Vn that satisfies the necessary
conditions stated in Proposition 3.4 and has the property that both THTH and HTHT types of arrows
do not nest. Then the complex 4n represents a triangulation of the boundary ∂Pn of the Legendre
polytope.

Proof. We begin by observing that Proposition 3.6 implies that THHT and HTTH types of arrows
do not cross. Next we verify the support and linkage axioms of Theorem 3.5.



14 RICHARD EHRENBORG, GÁBOR HETYEI AND MARGARET READDY

T H T ′ H T. . . . . . T H T ′ H T. . . . . .

H T ′ H T T. . . . . . H T ′ H T T. . . . . .

H T ′ H T T. . . . . . H T ′ H T T. . . . . .

Figure 4. Verifying the linkage axiom in the lex class of triangulations.

To verify the support axiom (SA), mark maximal runs of the associated lattice path that are above
the x-axis with forward arrows. Similarly, mark the maximal runs of the lattice path that are below
the x-axis with backward arrows. The fact that no end of a forward arrow can occur between the head
and tail of a backward arrow follows from the fact that arrows of opposite direction do not cross, nor
do they nest. By the same reason no end of a backward arrow can occur between the head and tail
of a forward arrow. Within each maximal run, match the heads H and the tails T according to the
TTHH and HHTT rules. By Lemmas 4.1, 4.2 and their duals, this can be done in a unique way.
Furthermore, note that arrows of opposite direction do not cross and do not nest. This shows that
there is a unique way to obtain a matching between the set of tails I and the set of heads J .

To verify the linkage axiom (LA), we may by symmetry assume that we are inserting a new tail
at position k. Denote this node by T ′. If the new tail is adjacent to an old tail, we are done by
Lemma 4.6. If a new tail T ′ is inserted in between two heads we have three possible cases. If the two
heads are part of a THHT pattern then we are between two maximal runs as described above. Take
any of the two heads adjacent to the inserted element, unlink it from its pair and link it to the inserted
tail; see the first line of Figure 4. If the two heads are part of a HHTT pattern, there are two subcases
depending upon whether the two arrows nest or cross, and these two cases are explained in the second
and third line of Figure 4. In each of these two subcases, one can verify that the new matching is
in fact a face. Finally, if the two heads are part of a TTHH pattern, it is mirror symmetric to the
previous case. �

4.2. The revlex class. We now turn our attention to the revlex class and show that all four trian-
gulations are possible.

Theorem 4.9. Let 4n be a uniform flag complex on the vertex set Vn that satisfies the necessary
conditions stated in Proposition 3.4 and has the properties that both THTH and HTHT types of
arrows nest. Then the complex 4n represents a triangulation of the boundary ∂Pn of the Legendre
polytope.

Proof. By Proposition 3.7 we conclude that THHT and HTTH types of arrows cross. Hence if we
disregard the direction of the arrows, we have that the pattern . . . . cannot occur. Thus all pairs
of arrows must either nest or cross.
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The fact that every pair of arrows nests or crosses implies that all arrows must arch over the midpoint
of the set I ∪ J , that is, the point that has the same number of elements of I ∪ J to the left of it as
the number of such elements to the right. For example, for the word TTHT |HHTH, the midpoint
is marked with a vertical bar. Hence the number of tails to the left of the midpoint must equal the
number of heads to the right of it. The tails to the left of the midpoint are tails of the forward arrows.
They must be matched with the heads to the right of the midpoint. The analogous statement is true
for the heads and tails of the backward arrows. Now match the left of midpoint tails with the right
of the midpoint heads according to the TTHH rule. Similarly, match the right of midpoint tails with
the left of the midpoint heads according to the HHTT rule. Both of these matchings are unique,
proving the support axiom.

To verify the linkage axiom (LA), by symmetry it is enough to verify the linkage axiom after inserting
a new tail at position k, denoted by T ′. Assume that there another tail T of an arrow (i, j) in the
set of tails I adjacent to T ′ and that the position i is on the same side of the midpoint as position k.
Then we can replace the arrow (i, j) with (k, j). If there is no such arrow (i, j), there is no tail on
the same side as T ′, that is, the situation is T · · ·T |HH · · ·HT ′H · · ·H or H · · ·HT ′H · · ·HH|T · · ·T .
These two possibilities are symmetric, so it enough to consider the first one. Note that all the arrows
are forward arrows. Let (i, j) be the arrow with the smallest value of j, that is, the arrow attached
to the first H. Replace the arrow (i, j) with the new arrow (k, j). Note that this yields the new word
T · · ·TH|H · · ·HT ′H · · ·H, where there is now an H on the left of the new midpoint. This completes
the verification of the linkage axiom. �

4.3. The Simion class of triangulations. In this section we conclude the proof of Theorem 3.2.
The remaining case is the Simion class of triangulations.

Theorem 4.10. Let 4n be a uniform flag complex on the vertex set Vn that satisfies the necessary
conditions stated in Proposition 3.4 and has the properties that exactly one of the types THTH and
HTHT do nest. Then the complex 4n represents a triangulation of the boundary ∂Pn of the Legendre
polytope.

Using the involution 4n 7−→ 4∗n it is enough to consider the cases where THTH type of arrows
nest and HTHT type of arrows do not nest in the following propositions. We begin by considering
all four flag complexes in the Simion subclass of type a.

Proposition 4.11. Let 4n be a uniform flag complex on the vertex set Vn that satisfies the necessary
conditions stated in Proposition 3.4 and has the properties that the THTH type of arrows nest, the
HTHT type of arrows do not nest, and both THHT and HTTH types of arrows do not cross. Then
the complex 4n represents a triangulation of the boundary ∂Pn of the Legendre polytope.

Proof. Let w be the associated TH-word to the two sets I and J . Factor the word w as follows
w1T · · ·TwhTwh+1Hwh+2H · · ·Hw2h+1 where the factors w1, w2, . . . , w2h+1 are lower Dyck words.
Note that such a factorization exists and is unique since the h T s in the expression correspond to
left-to-right maxima of the lattice path. Similarly, the Hs correspond to right-to-left maxima. Create
a matching from I to J by making h forward arrows from the h T s to the h Hs, according to the
TTHH rule. Finally, apply Lemma 4.2 to each factor wr to create matching consisting of only
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backward arrows. It is straightforward to see that there is no crossing between a forward and a
backward arrow, that is, the THHT and HTTH conditions. Furthermore, no backward arrow nests
a forward arrow, the HTHT condition follows and finally no two forward arrows follow each other, so
the THTH condition is also true.

Next we show the uniqueness part of the support axiom. Assume a matching from I to J contains
h forward arrows. Since THTH type of pairs nest, the tails of all forward arrows precede all heads.
The heads and tails of the forward arrows partition the number line into 2h + 1 segments. Since
THHT and HTTH types of pairs do not cross and HTHT do not nest, backward arrows that have
one end in one of these line segments, have their other end in the same line segment. By Lemma 4.1
the part of the lattice path associated to all backward arrows in one of these line segments represent
a lattice path starting and ending at the same level and never going above the level where it started.
Hence the tails of the forward arrows mark the first ascents to level 1, 2, . . ., h and the heads of the
forward arrows mark the last descents to levels h− 1, h− 2, . . ., 0. This observation shows the unique
determination of the endpoints of the forward arrows. By Lemma 4.5 there is a unique way to match
the heads and tails of the forward arrows, and by Lemma 4.2 there is a unique way to match the heads
and tails of the backward arrows within each segment created by the endpoints of the forward arrows.

To verify the linkage axiom (LA), note that Lemma 4.7 is applicable unless k is inserted as a tail
at the beginning of a run of backward arrows or as a head at the end of such a run. Assume k is
inserted as a tail, the case when k is inserted as a head is completely analogous. If k is inserted right
after a tail, then we are done by Lemma 4.6. If k is inserted right after a head j, then this head is
necessarily the head of a forward arrow (i, j). In this case the backward arrow (k, j) and remove the
arrow (i, j). Note that this results in a matching in 4n in which there is one less forward arrow and
the arrow (k, j) becomes part of the run of backward arrows immediately succeeding it. We are left
with the case when the inserted tail k satisfies k < min(I ∪ J). If the current matching contains at
least one forward arrow, then we select the forward arrow (i, j) with the smallest i. We remove the
arrow (i, j) and add the arrow (k, j). This move does not change the crossing or nesting properties of
arrows of the same direction, nor does it create crossing arrows of opposite directions. Finally, if the
current matching on I ∪J consists of backward arrows only, then we associate an initial NE step to k,
and continue with the lattice path associated to I ∪ J which now starts and ends at level 1 and never
goes above that level. Let j ∈ J be the head associated to the last descent from level 1 to level 0, this
is the head of a backward arrow (i, j). Removing (i, j) and adding (k, j) results in a valid matching
because of part (3) of Remark 4.3. �

Next, we turn our attention to the Simion subclass of type c.

Proposition 4.12. Let 4n be a uniform flag complex on the vertex set Vn that satisfies the necessary
conditions stated in Proposition 3.4 and has the properties that the THTH type of arrows nest, the
HTHT type of arrows do not nest, both THHT and HTTH types of arrows cross and both TTHH
and HHTT type of arrows nest. Then the complex 4n represents a triangulation of the boundary ∂Pn
of the Legendre polytope.

Proof. Let w be the associated TH-word to the two sets I and J and assume that the associated lattice
path reaches height h. That is, there are at least h ascents (T ) before the path reaches height h, and
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at least h descent (H) since it leaves height h the last time. Hence we factor the word w uniquely as

w = Hm1THm2T · · ·THmhT · u ·HTn1HTn2H · · ·HTnh

Using the rule for TTHH (nest), match the first h tails in this expression with the last h heads,
to create h pairwise nesting forward arrows. The remaining nodes contribute the subword w′ =
Hm1+m2+···+mh · u · Tn1+n2+···+nh . Note that this is a lower Dyck word. Thus apply Lemma 4.2 to
this word to create the remaining arrows, which are all backward arrows. Directly by the construction
rules hold for types THTH, TTHH and HHTT . Next notice that HTTH must cross, since all
tails of backward arrows are after the tails of forward arrows. By the symmetric argument THHT
must also cross. The final condition for HTHT is that no backward arrow can nest a forward arrow.
Recall that the word w reaches its maximum height some where in the factor u. Hence the word w′

reaches the maximum of 0 also in the factor u. Thus w′ can be factored into two lower Dyck words
w′ = (Hm1+m2+···+mh · u1) · (u2 · Tn1+n2+···+nh). By Lemma 4.4 each backward arrow has either its
tail or head (or both) in the word u1 ·u2. Hence it lies between the tail and and head of every forward
arrow and last condition is proved.

Next we prove uniqueness. Assume that the associated lattice path reaches height h. Observe
that the conditions imply that all the forward arrows must nest. Let (i′, j′) be the inner most forward
arrow. Since no backward arrow nest, be in front or behind this shortest forward arrow, each backward
arrow must have either its tail or head (or both) in the interval from i′ to j′. Let h′ be the number of
forward arrows. Hence the first h′ T s in the associated TH-word correspond to the tails of the forward
arrows. Similarly, the last h′ Hs correspond to the head of the forward arrows. Since the backward
arrows nest. Consider the backward arrow (i′′, j′′) with the smallest head j′′. If j′′ < i′ then there is
no backward arrow above the tail i′′, only h′ forward arrows. Similarly, if there is no such backward
arrow then there is no backward arrow above i′, and only h′ forward arrows. In both cases we obtain
that the maximal height h is h′. This agrees with the construction in the previous paragraph and the
uniqueness in Lemma 4.2 implies that the matching from I to J is unique.

Before proving the linkage axiom recall that the TH-word w has the following factorization

w = Hm1THm2T · · ·THmhT︸ ︷︷ ︸
1st factor

·z ·HTn1HTn2H · · ·HTnh︸ ︷︷ ︸
5th factor

,

where

z = u1Tu2T · · ·umT︸ ︷︷ ︸
2nd factor

· x︸︷︷︸
3rd factor

·Hv1Hv2 · · ·Hvn︸ ︷︷ ︸
4th factor

,

where m =
∑h

i=1mi, n =
∑h

i=1 ni and u1, u2, . . . , um, x, v1, v2, . . . , vn are all lower Dyck words. Con-
sider the case when we insert a new tail T ′. By Lemma 4.7 it can be inserted in the one of the
lower Dyck words u1, . . . , um, x, v1, . . . , vn or immediate after one of these words. If inserted in the 1st
factor, or immediate afterward, we can move one of the tails of the forward arrows. The case when
inserted in the 2nd or 3rd factor is already taken care about. In the 4th factor, in front of a vi then
it is immediate after a head, which can be used for the switch. Finally, in the 5th factor when n > 0
we can move one of tails of the closest backward edge from 5th factor to the 4th factor. When n = 0,
remove the inner most forward arrow and use its head. Observe that this is only case that changes
the number of forward arrows. This completes the proof of the linkage axiom (LA). �
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Finally, we consider half of the cases in the Simion subclass of type b. Observe that the proof is a
mixed of the two previous proofs.

Proposition 4.13. Let 4n be a uniform flag complex on the vertex set Vn that satisfies the necessary
conditions stated in Proposition 3.4 and has the properties that the THTH type of arrows nest, the
HTHT type of arrows do not nest, the HTTH type of arrows cross and the THHT type of arrows
do not cross. Then the complex 4n represents a triangulation of the boundary ∂Pn of the Legendre
polytope.

Proof. Let w be the associated TH-word to the two sets I and J and assume that the associated
lattice path reaches height h. Factor the word w as follows z1 · z2 = z1 ·Hwh+2H · · ·Hw2h+1 where
the factors wh+2, wh+3, . . . , w2h+1 are lower Dyck words. Note that such a factorization exists and is
unique since the h Hs are right-to-left maxima. Note that the word z1 contains at least h T s. Factor
z1 as Hm1THm2T · · ·THmhTwh+1. That is, we have

w = z1 · z2 = Hm1THm2T · · ·THmhTwh+1 ·Hwh+2H · · ·Hw2h+1.

Create a matching from I to J by making h forward arrows from the first h T s in z1 to the h Hs
in z2, according to the TTHH rule. Apply Lemma 4.2 to each factor wh+2 through w2h+1 to create
matchings consisting of only backward arrows. Finally, on the remaining letters Hm1 , Hm2 , . . ., Hmh ,
wh+1 apply Lemma 4.2 again to create the remaining backward arrows. It is straightforward to see
that this matching satisfies all the conditions and hence the existence part of the support axiom (SA)
holds.

We now prove the uniqueness part of the support axiom (SA). Let us denote the number of forward
arrows in the matching between I and J by h. The endpoints of these arrows partition the number
line into 2h+ 1 segments. Since THHT pairs do not cross, just like in the proof of Proposition 4.11,
backward arrows having one end in one of the last h segments have both ends in the same segment.
The endpoints of these arrows within the same segment are associated to a lattice path starting and
ending at the same level. Before the leftmost head of a forward arrow the numbers of tails exceeds the
number of heads by h and this is the largest height reached by the associated lattice path. The heads
of the forward arrows mark the last descents to level h − 1, h − 2, . . ., 0, respectively. Since HTTH
type of pairs cross, no tail of a backward arrow may occur before the tail of the forward arrow: the
leftmost h tails are tails of forward arrows, and they mark the first h ascents in the associated lattice
path. The rest of the proof of the uniqueness and existence parts of the support axiom is very similar
to the one in the proof of Proposition 4.11, we omit the details. We only underline the key difference:
we treat all backward arrows whose tail is to the right of the heads of the forward arrows as a single
set: after removing the tails of the forward arrow they yield a lattice path from level 0 to level 0 that
never goes above the x-axis, and the tails of the forward arrows are correctly reinserted if and only
if they are to the left of the tails of all backward arrows. Hence we consider h + 1 runs of backward
arrows: the last h runs are just like in the proof of Proposition 4.11 and the first run is different.

To verify the linkage axiom (LA) we observe that Lemma 4.7 is applicable in all cases except when
a new head is inserted at the end or a new tail is inserted at the beginning of any of the h + 1 runs
of backward arrows. If a new tail is inserted at the beginning of one of the last h runs of backward
arrows then we may proceed exactly as in the proof of Proposition 4.11 when k is inserted right after
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the head of a forward arrow. If k < min(I ∪ J) is inserted as a tail, again, we may proceed as in
the proof of Proposition 4.11 (note that there is nothing to the left of this inserted new tail). If k
is inserted as a head at the end of one of the first h runs of backward arrows then k is immediately
followed by the head j of a forward arrow (i, j) and Lemma 4.6 is applicable. We are left with the
case when k > max(I ∪ J) and k is inserted as a head. If the matching on I ∪ J contains at least
one forward arrow, we proceed as in the proof of Proposition 4.11 (note that the dual case when k is
inserted as a tail at the beginning was explained). Finally, when the matching on I ∪ J consists of
backward arrows only, then let (i, j) be the backward arrow whose tail i is min(I). Replacing (i, j)
with (i, k) yields a matching in 4n. �

Proposition 4.14. Let 4n be a uniform flag complex on the vertex set Vn that satisfies the necessary
conditions stated in Proposition 3.4 and has the properties that the THTH type of arrows nest, the
HTHT type of arrows do not nest, the HTTH type of arrows do not cross and the THHT type of
arrows cross. Then the complex 4n represents a triangulation of the boundary ∂Pn of the Legendre
polytope.

Proof. Follows from Proposition 4.13 and Lemma 3.3 by applying the involution 4n 7−→ 4n. �

Proof of Theorem 4.10. The result in the case THTH nests and HTHT do not nest follows by com-
bining Propositions 4.11, 4.12, 4.13 and 4.14. The case when THTH do not nest and HTHT nests
follows by the involution 4n 7−→ 4∗n. �

5. Fifteen distinct triangulations

The classification given in Theorem 3.2 was accompanied by the observation that some triangu-
lations are (reflected) duals of each other. Taking the dual of a uniform flag triangulation amounts
to taking a centrally symmetric copy, taking the reflected dual amounts to composing this reflection
about the origin with a reflection abut the subspace defined as the intersection of the n+1 hyperplanes
defined by the equations xi = xn+1−i for i = 1, 2, . . . , n. In this section we outline how to prove that
there are no other such coincidences.

Theorem 5.1. For n ≥ 4 there are 15 non-isomorphic uniform flag triangulations of the boundary
of the Legendre polytope Pn. They are distributed as follows: the lex class and the revlex class each
contain 3 triangulations; the two Simion subclasses a and b each contain 4 triangulations; and finally
the Simion subclass c only contains 1 triangulation.

The upper bound of 15 is a direct consequence of Lemma 3.3. In the rest of this section we show
how the triangulations differ already when n = 4.

In every flag triangulation of the boundary ∂Pn of the Legendre polytope each arrow (i, j) has at
least 2n − 2 neighbors: the set {(i, k) : k 6∈ {i, j}} ∪ {(k, j) : k 6∈ {i, j}} is a subset of cardinality
2n− 2 of the set of neighbors of (i, j).

Definition 5.2. The excess degree ε(i, j) of the arrow (i, j) ∈ Vn in a uniform flag complex 4n on
the vertex set Vn is the number of arrows (i′, j′) such that |{i, i′, j, j′}| = 4 and {(i, j), (i′, j′)} ∈ 4n.
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Condition Contribution Contribution Condition Contribution Contribution

to ε(i, j) to ε(j, i) to ε(i, j) to ε(j, i)

T H T H

(
q
2

)
pr T H T H

(
p
2

)
+
(
r
2

)
0

H T H T pr
(
q
2

)
H T H T 0

(
p
2

)
+
(
r
2

)
T H H T

(
r
2

) (
p
2

)
T H H T qr pq

H T T H
(
p
2

) (
r
2

)
H T T H pq qr

H H T T 0 pr +
(
q
2

)
H H T T 0 pq + qr

T T H H pr +
(
q
2

)
0 T T H H pq + qr 0

Table 3. Table to compute the excess degrees ε(i, j) and ε(j, i) for 1 ≤ i < j ≤ n+ 1,
where p = i− 1, q = j − i− 1 and r = n+ 1− j.

That is, the excess degree ε(i, j) is the amount by which the degree of (i, j) exceeds 2n− 2. Table 3
shows how to compute the excess degrees. For example, whenever THTH pairs of arrows nest and
i < j, then for each arrow (i, j) there are

(
q
2

)
ways to select (i′, j′) satisfying i < j′ < i′ < j, where

p = i− 1, q = j − i− 1 and r = n+ 1− j.

In Table 4 we show the sorted lists of the excess degrees for the 15 triangulations when n = 4. It
is straightforward to observe that these lists are distinct, showing that the triangulations are non-
isomorphic.

6. Tools for refined face enumeration

In this section we introduce some terminology and results that we will use to prove theorems
regarding the refined face counting in uniform flag triangulations of the boundary ∂Pn of the Legendre
polytope. Our triangulations are defined by a set of rules, independent of the dimension. After fixing
such a set of rules, we will simultaneously consider each triangulation 4n determined on the vertex
set Vn defined by these rules, for each n ≥ 0. Note that the set V0 is the empty set, and the only face
contained in 40 is the empty set.

In order to compute the associated generating function, we introduce the following more general
notion. Let F = (F0,F1, . . .) be a sequence of collections of arrows, where Fn is a subset of the power
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Class/ HHTT & TTHH Sorted list of excess degrees

subclass conditions

Lex H H T T T T H H 16, 24, 32, 44, 64

H H T T T T H H 01, 13, 27, 31, 44, 64

H H T T T T H H 02, 210, 44, 64

Simion a H H T T T T H H 15, 25, 35, 65

H H T T T T H H 01, 13, 24, 35, 44, 63

H H T T T T H H 14, 24, 38, 64

H H T T T T H H 01, 12, 23, 38, 44, 62

Simion b H H T T T T H H 01, 12, 25, 37, 41, 51, 63

H H T T T T H H 02, 11, 25, 34, 45, 51, 62

H H T T T T H H 02, 12, 21, 310, 41, 52, 62

H H T T T T H H 03, 11, 21, 37, 45, 52, 61

Simion c H H T T T T H H 02, 24, 38, 43, 52, 61

Revlex H H T T T T H H 04, 24, 410, 62

H H T T T T H H 04, 24, 31, 47, 53, 61

H H T T T T H H 04, 24, 32, 44, 56

Table 4. The sorted lists of the excess degrees for n = 4, where superscripts denotes multiplicities.

set of Vn, that is, Fn ⊆ 2Vn . We define the associated generating function

F (F , x, y, t) =
∑

n,i,j≥0

f(Fn, i, j) · xiyjtn

where f(Fn, i, j) is the number of sets in Fn consisting of i forward arrows and j backward arrows.
Our interest is to compute this generating function when F is the collection F = (40,41, . . .). In this
case f(4n, i, j) counts the faces of the simplicial complex 4n with i forward arrows and j backward
arrows, and we call the polynomial

∑
i,j≥0 f(4n, i, j) · xiyj the face polynomial. We note that power

of t is the same as the number of vertices in a facet of the triangulation. The number of cases to be
considered can be reduced by extending the notion of the dual and reflected dual triangulations to all
families F = (F0,F1, . . .). The following lemma is a straightforward consequence of the definitions:

Lemma 6.1. Let F = (F0,F1, . . .) be a sequence of collections of arrows, where Fn ⊆ 2Vn. Let F∗ =
(F∗0 ,F∗1 , . . .) be the dual family, obtained by reversing all arrows in all sets, and let F = (F0,F1, . . .)
be the reflected dual family, obtained by reversing each arrow, and replacing each node i in Vn with
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n+ 2− i. Then we have

F (F∗, x, y, t) = F (F , y, x, t) and F (F , x, y, t) = F (F , x, y, t).

The families of uniform flag triangulations defined by a set of rules are coherent in the sense that it
is closed under the insertion and removal of isolated nodes. To make this informal observation precise,
consider the map πk : N− {k} → N given by

πk(m) =

{
m if m < k,

m− 1 if m > k.

Definition 6.2. Let F = (F0,F1, . . .) be a collection of families of sets such that for each n the
family Fn consists of subsets of Vn. We call such a collection coherent if for each subset σ of Vn and
each k ∈ {1, 2, . . . , n + 1} that is not incident to any arrow in σ, the set πk(σ) = {(πk(i), πk(j)) :
(i, j) ∈ σ} belongs to Fn−1 if and only if σ belongs to Fn. In particular, for a coherent collection
F = (F0,F1, . . .), the empty set either belongs to all Fn or it belongs to none of them.

By abuse of terminology we will say that F contains the empty set if all families Fn in it contain it.
Sets of arrows in coherent collections may be enumerated by counting only the saturated sets in the
families, which we now define.

Definition 6.3. For n ≥ 1, a subset σ of Vn is saturated if the set of endpoints of its arrows is the set
{1, 2, . . . , n+ 1}. We also consider the empty set to be a saturated subset of V0 = ∅. Given a coherent

collection F = (F0,F1, . . .), we denote the family of saturated sets in Fn by F̂n.

Note that F̂0 = {∅} exactly when F contains the empty set. One of our key counting tools is the
following observation.

Lemma 6.4. Given a coherent collection of families F of arrows, the face generating function satisfies

F (F , x, y, t) = − t

(1− t)2
· δF0,{∅} +

1

(1− t)2
· F
(
F̂ , x, y, t

1− t

)
,(6.1)

F (F̂ , x, y, z) =
z

1 + z
· δF̂0,{∅} +

1

(1 + z)2
· F
(
F , x, y, z

1 + z

)
,(6.2)

where δ denotes the Kronecker delta function.

Proof. Consider the second term of equation (6.1). The power n in a term xiyjtn in F (F̂ , x, y, t) counts
the number of spaces between nodes in the digraph. The substitution t 7−→ t/(1 − t) corresponds to
subdividing each space into more spaces, that is, inserting isolated nodes into these spaces. Finally,
the factor of 1/(1 − t)2 correspond to inserting isolated nodes before and after the full subset. This

completes the proof of the first equation, in the case when F̂0 = ∅. In the case when F̂0 = {∅} we
need to correct the right-hand side of the first equation by subtracting 1/(1− t)2 contributed by z0 in

F (F̂ , x, y, z) and we need to add 1/(1 − t) to account for the empty set belonging to all families Fn.
Equation (6.1) is equivalent to (6.2) by noting that z = t/(1− t) is equivalent to t = z/(1 + z). �
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Using Lemma 6.4 it is always possible, albeit sometimes tedious, to compute the generating function
of all faces. An interesting special case is counting all facets with a given number of forward and
backward arrows. The following statement is straightforward.

Lemma 6.5. Let 4n be any uniform flag triangulation of the boundary ∂Pn of the Legendre polytope.
Then a face σ ∈ 4n is a facet if and only if it is saturated and contains no isolated nodes, that is,
every i ∈ {1, 2, . . . , n+ 1} is incident to some element of σ.

In other words, as a subset of Vn, a facet is the set of edges of a forest with no isolated nodes.
Such a forest has n+ 1 nodes and n arrows. If the number of forward arrows is i then the number of
backward arrows is n− i in such a forest, contributing a term xiyn−itn to the generating function of
all faces and the term xiyn−izn to generating function of all saturated faces.

Corollary 6.6. Let F = (40,41, . . .) be a coherent family of uniform flag triangulations. Then
the facet generating function

∑
n≥0

∑n
i=0 f(4n, i, n− i)xiyn−izn may be obtained by substituting x/w

into x, y/w into y and wz into t in F (F , x, y, t) and then evaluating the resulting expression at
w = 0. Alternatively it may also be obtained by substituting x/w into x, y/w into y and wz into z in

F (F̂ , x, y, z) and then evaluating the resulting expression at w = 0.

For any uniform flag triangulation of the boundary ∂Pn of the Legendre polytope, the vertex sets
consisting only of forward (backward) arrows form subcomplexes whose face numbers are easier to
count. We first review the rephrasing of a known result.

A useful way to express our results is in terms of the generating function for the Catalan numbers:

C(u) =
∑
n≥0

Cn · un =
1−
√

1− 4u

2u
.

Proposition 6.7. Consider a family of uniform flag triangulations F defined by a set of rules that
contains the rule that HTHT types of pairs of arrows do not nest. Then the following two identities
hold:

F (F , 0, y, t) =
1− t−

√
1− (4y + 2)t+ t2

2yt
,(6.3)

F (F̂ , 0, y, z) =
1

1 + z
· (C(yz(z + 1)) + z) .(6.4)

Proof. Setting x = 0 implies that we are only interested in digraphs with backward arrows. By the
dual of Theorem 3.9 the subcomplex of faces formed by backward arrows represents the lexicographic
or revlex pulling triangulation of the faces of P+

n not containing the origin. (The choice depends on
the rule for the HHTT pairs of arrows.) Both triangulations have the same face numbers. The proof
of Theorem 5.4 in [13, Theorem 5.4] implies the quadratic equation

F (F , 0, y, t) = 1 + t · F (F , 0, y, t) + yt · F (F , 0, y, t)2,(6.5)

and solving it yields (6.3). Identity (6.4) follows by applying (6.2) in Lemma 6.4 and (6.3). �
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Remark 6.8. Another possibility to prove (6.3) is to use Theorem 5.4 and Corollary 5.6 in [13], which
states

n∑
j=0

f(Fn, 0, j) ·
(
u− 1

2

)j
=

n∑
j=0

1

j + 1
·
(
n+ j

j

)
·
(
n

j

)
·
(
u− 1

2

)j
=
P

(−1,1)
n (u)

n+ 1
,

where P
(−1,1)
n (u) is a Jacobi polynomial. The stated equation follows by integrating the well-known

generating function [1, 22.9.1] of the Jacobi polynomials P
(−1,1)
n (u).

We will later use the following corollary of Proposition 6.7. It has a direct bijective proof; see [11].

Corollary 6.9. Consider a family of uniform flag triangulations F such that HTHT types of pairs of
arrows do not nest. Then the sum over all forests F consisting of k ≥ 1 backward arrows, no forward
arrows and no isolated nodes is

Gk(z) =
∑
F

z#nodes of F = Ck · zk+1 · (z + 1)k−1.(6.6)

Similarly, if the uniform flag triangulations F satisfies the requirement that THTH types of pairs of
arrows do not nest, then the sum over all forests F consisting of k ≥ 1 forward arrows, no backward
arrows and no isolated nodes also yields the identity (6.6).

Proof. Equation (6.6) follows by considering the coefficient of yk in equation (6.4). Observe that there
is an extra factor of z since we are counting the number of nodes. The second statement follows by
reversing the first statement. �

Note that the lower extreme cases of Corollary 6.9 enumerate the anti-standard trees and the
noncrossing alternating trees of Gelfand, Graev and Postnikov [12]. We will also use the following
refined variant of Proposition 6.7.

Proposition 6.10. Consider a family of uniform flag triangulations F defined by a set of rules that

contains the rule that HTHT type of pairs of arrows do not nest. For each n ≥ 0, let F (i)
n denote the

set of all faces where the sequence of heads and tails, listed in increasing order, satisfies the condition
that the i smallest nodes are heads and the next node is a tail. Then the two resulting collections

F (i) =
(
F (i)

0 ,F (i)
1 , . . .

)
and F̂ (i) =

(
F̂ (i)

0 , F̂ (i)
1 , . . .

)
satisfy

F (F (i), 0, y, t) =
yitiF (F , 0, y, t)i

(1− t)i+1
,(6.7)

F (F̂ (i), 0, y, z) =
1

1 + z
· (yz(1 + z)C(yz(z + 1)))i .(6.8)

Proof. Without loss of generality we may assume that HHTT type pairs of arrows nest. Indeed, if we
fix the head-tail pattern of the nodes then we are counting the faces in a triangulation of the convex
hull of all vertices represented by all backward arrows whose heads and tails are selected from the
prescribed set of heads and tails. For example, if we fix n = 3 and the pattern THTH (contributing
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to the collection F (1)) then we have to count the faces in the triangulation of the convex hull of e2−e1,
e4− e1 and e4− e3. We obtain the same face numbers for the lexicographic and revlex triangulations.

First we show that, for i > 1 the formal power series F (F (i), 0, y, t) satisfies the relation

F (F (i), 0, y, t) = t · F (F (i), 0, y, t)(6.9)

+
∑
d≥1

ydtd · F (F (i−1), 0, y, t) · F (F , 0, y, t)d−1 · (1 + tF (F , 0, y, t)).

The term t ·F (F (i), 0, y, t) corresponds to the possibility of the node 1 not being incident to any arrow
in a face, the dth term in the next sum accounts for the possibility of node 1 being the head of exactly
d arrows. Assume the set of tails of these arrows is {i1, i2, . . . , id}, where 1 < i1 < i2 < · · · < id. These
arrows contribute a factor ydtd. Since no pairs of arrows are allowed to cross, the d arrows whose
tail is 1 partition the set of arrows into d + 1 classes. Each of these classes may be empty, except
for the set of arrows whose head precedes i1: these arrows form a set where i − 1 tails are followed
by the first head when we list their endpoints in increasing order. These arrows contribute a factor
of F (F (i−1), 0, y, t). For each j in {1, 2, . . . , d − 1}, the set of arrows whose head belongs to the set
{ij + 1, ij + 2, . . . , ij+1} contribute a factor F (F , 0, y, t)d−1. (Note that the factor of t contributed
by ij is already counted.) Finally the set of arrows whose tail is id + 1 or a larger element, contribute
a factor of (1 + tF (F , 0, y, t)). Rearranging (6.9) yields the recurrence

F (F (i), 0, y, t) = F (F (i−1), 0, y, t) · yt(1 + tF (F , 0, y, t))
(1− t)(1− ytF (F , 0, y, t))

.

By (6.5) we may replace the factor 1 + tF (F , 0, y, t) with F (F , 0, y, t) · (1− ytF (F , 0, y, t)). Thus we
obtain

F (F (i), 0, y, t) = F (F (i−1), 0, y, t) · ytF (F , 0, y, t)
1− t

.

Combining this recurrence with the expression

F (F (1), 0, y, t) =
ytF (F , 0, y, t)

1− t
,

which may be shown in a completely analogous fashion, equation (6.7) follows by induction on i.

Combining equations (6.2), (6.3) and (6.7) yield the identity (6.8). �

When HTHT pairs of arrows do not nest, we obtain a very different expression for the count of
faces containing backward arrows only. We employ its dual form, obtained after reversing all arrows,
using a generalization of the Delannoy numbers. Recall a Delannoy path from (0, 0) to (a, b) is a lattice
path consisting of North steps (0, 1), East steps (1, 0) and NE steps (1, 1). The number of Delannoy
paths from (0, 0) to (a, b) is the Delannoy number Da,b.

Definition 6.11. Given two non-negative integers a and b, the Delannoy polynomial Da,b(x) is the
total weight of all Delannoy paths from (0, 0) to (a, b), where each step contributes a factor of x. Thus
the coefficient of xj in Da,b(x) is the number of Delannoy paths from (0, 0) to (a, b) having j steps.
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Proposition 6.12. Consider a family of uniform flag triangulations F defined by a set of rules

requiring that THTH type of pairs of arrows nest. Then the collection F̂ of families of saturated faces
satisfies

F (F̂ , x, 0, z) = 1 + xz ·
∑
a,b≥0

Da,b(x) · za+b.(6.10)

In particular, the contribution to F (F̂ , x, 0, z) of all saturated faces having a+ 1 tails and b+ 1 heads
is Da,b(x) · xza+b+1.

Proof. The constant 1 on the right-hand side of (6.10) accounts for the empty face. The condition
on the THTH type of pairs of arrows implies that for any face consisting of forward arrows only,
all tails precede all heads. Assume that the set of tails of forward arrows representing a saturated
face has cardinality a + 1 and that the set of heads has cardinality b + 1. Let the set of tails be
{i1 < i2 < · · · < ia+1} and the set of heads be {j1, j2, . . . , jb+1}. If TTHH type of pairs of arrows nest
order the set of heads decreasingly, that is, jb+1 < · · · < j2 < j1. Otherwise, that is, if TTHH type of
pairs of arrows cross order the set of heads increasingly, that is, j1 < j2 < · · · < jb+1. Order the arrows
in lexicographic order. Associate a North step to each instance when the tail remains unchanged from
the next arrow in the list, an East step to each instance when the head remains unchanged and a NE
step to each instance when both head and tail change. We obtain a Delannoy path from (0, 0) to (a, b)
in which the number of steps is one less than the number of arrows on the list. The correspondence
is a bijection between all saturated faces on the given set of heads and tails and all Delannoy paths
from (0, 0) to (a, b). �

In our formulas we will often use the following bivariate generating function of the Delannoy poly-
nomials. We set

D(u, v, x) =
∑
a,b≥0

uavb ·Da,b(x) =
1

1− x(u+ v + uv)
.(6.11)

7. Face enumeration in the Simion class

In this section we compute generating functions for the class of uniform triangulations of the bound-
aries of the Legendre polytope in the Simion class, that is, exactly one of the THTH and HTHT
types of pairs of arrows nest. Our main result on enumerating faces is the following result:

Theorem 7.1. Consider a collection of uniform flag triangulations F belonging to the Simion class

and let F̂ be the collection of families of saturated faces. If THTH types of pairs of arrows do not
nest and HTHT types of pairs of arrows nest then the following identity holds.

F (F̂ , x, y, z) =
C(yz(z + 1)) + z

1 + z
+

xz · (1 + zC(yz(z + 1))) · C(yz(z + 1))2

(1 + z) · (1− 2C(yz(z + 1))xz − C(yz(z + 1))2xz2)
.(7.1)
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T H T H H T H T T H H T H T T H

Figure 5. The rules for pairs of arrows in the Simion type a subclass.

If THTH types of pairs of arrows nest and HTHT types of pairs of arrows do not nest, then the
following identity holds.

F (F̂ , x, y, z) =
C(xz(z + 1)) + z

1 + z
+

yz · (1 + zC(xz(z + 1))) · C(xz(z + 1))2

(1 + z) · (1− 2C(xz(z + 1))yz − C(xz(z + 1))2yz2)
.(7.2)

It suffices to prove the first half of Theorem 7.1, the second half is a direct consequence of Lemmas 3.3
and 6.1, using the duality 4 7−→ 4∗. We prove the first half for each subclass of the Simion class
separately, in Propositions 7.2, 7.3 and 7.4, respectively.

We begin now by studying the type a subclass of the Simion class; see Figure 5.

Proposition 7.2. Consider a collection of uniform flag triangulations F defined by a set of rules that
contain the following rules:

(1) THTH type of pairs of arrows nest.
(2) HTHT type of pairs of arrows do not nest.
(3) Both THHT and HTTH types of pairs of arrows do not cross.

Then the collection F̂ of families of saturated faces satisfies:

F (F̂ , x, y, z) =
C(yz(z + 1)) + z

1 + z

+
xz · (1 + zC(yz(z + 1))) · C(yz(z + 1))2

1 + z
·D(z · C(yz(z + 1)), z · C(yz(z + 1)), x).

Proof. First we show that

F (F̂ , x, y, z) =
1

1 + z
· (C(yz(z + 1)) + z)(7.3)

+
∑
a,b≥0

xza+b+1Da,b(x) · 1 + zC(yz(z + 1))

1 + z
· C(yz(z + 1))a+b+2.

By equation (6.4) the term 1
1+z · (C(yz(z + 1)) + z) accounts for the possibility of a face containing

backward arrows only. In all the other cases, the face also contains forward arrows. If these arrows
are incident to a+ 1 tails and b+ 1 heads, then by Proposition 6.12 these contribute Da,b(x) ·xza+b+1.
The a+ 1 tails and b+ 1 heads of forward arrows partition the number line into a+ b+ 3 segments.
Since THHT and HTTH type of pairs of arrows do not cross, backward arrows that have at least
one end in one of these segments must have both ends in the same segment. Hence the contribution of
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or
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)

Figure 6. The rules for pairs of arrows in the Simion type b subclass.

the backward arrows may be written as a product of a+ b+ 3 independent factors. Tails of backward
arrows whose endpoints are contained in one of the leftmost a + 1 segments may coincide with the
tail of a forward arrow. On these segments, the total weight of nonempty sets of backward arrows
must be multiplied by (1 + z) to account for the possibility of (not) identifying the rightmost tail of
a backward arrow with the tail of a forward arrow. By equation (6.4) the total weight of nonempty
sets of arrows is 1

1+z · (C(yz(z + 1)) + z) − 1. Keeping in mind also the possibility of not inserting
any backward arrow between the tails of two forward arrows, or to the left of all forward arrows, we
obtain that the backward arrows discussed so far contribute a factor of(

1 + (1 + z) ·
(

1

1 + z
· (C(yz(z + 1)) + z)− 1

))a+1

= C(yz(z + 1))a+1.

Similarly, backward arrows inserted between the b + 1 heads of forward arrows or to the right of the
heads of all forward arrows contribute a factor of C(yz(z + 1))b+1. The only remaining possibility is
to insert backward arrows between the rightmost tail of a forward arrow and the leftmost head of a
forward arrow. Heads and tails of backward arrows inserted on this segment cannot coincide with the
head or tail of a backward arrow, they contribute a factor of

1 + z ·
(

1

1 + z
· (C(yz(z + 1)) + z)− 1

)
=

1 + zC(yz(z + 1))

1 + z
.

The statement is a direct consequence of (7.3) and the definition of D(u, v, x) given in (6.11). �

We now consider the uniform triangulations which belong to the Simion subclass of type b. Since
there is still no restriction on the rules for the TTHH and HHTT types of pairs, at a first glance
this subclass appears to be the largest one. This appearance is misleading, as this class is closed
under taking the reflected dual triangulations. By Lemma 3.3 this operation takes any uniform flag
triangulation in which THHT type pairs cross and HTTH type pairs do not cross into a uniform
flag triangulation in which THHT type pairs do not cross and HTTH type pairs cross. As a direct

consequence of Lemma 6.1, the generating function F (F̂ , x, y, z) does not change if we take the reverse
of F .

Proposition 7.3. Consider a family of uniform flag triangulations F defined by a set of rules that
contains the following requirements:

(1) THTH type of pairs of arrows nest.
(2) HTHT type of pairs of arrows do not nest.
(3) Exactly one of the THHT and HTTH types of pairs of arrows cross.
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Then the collection F̂ of families of saturated faces satisfies

F (F̂ , x, y, z) =
1

1 + z
· (C(yz(z + 1)) + z)

+D

(
C(yz(z + 1))z,

z

1− yz(z + 1)C(yz(z + 1))
, x

)
· xz · C(yz(z + 1)) · (1− yzC(yz(z + 1)))

(1− yz(z + 1) · C(yz(z + 1)))2
.

Proof. The proof is similar to the proof of Proposition 7.2. As a consequence of Lemmas 3.3 and 6.1,
without loss of generality we may assume that THHT type of pairs do not cross and HTTH type of
pairs cross. We first prove that

F (F̂ , x, y, z) =
1

1 + z
· (C(yz(z + 1)) + z)(7.4)

+
∑
a,b≥0

xza+b+1Da,b(x) · C(yz(z + 1))b+1

·

1 +
∑
i≥1

(yz(z + 1) · C(yz(z + 1)))i

z + 1
·
((

i+ a+ 1

a+ 1

)
z +

(
i+ a

a

)) .

Just as in the proof of Proposition 7.2, the term 1
1+z · (C(yz(z + 1)) + z) accounts for the possibility

of a face containing backward arrows only. In all the other cases, forward arrows that are incident to
a + 1 tails and b + 1 heads contribute a factor of Da,b(x) · xza+b+1. The b + 1 heads of the forward
arrows partition the number line into b + 2 segments. Since THHT type of pairs of arrows do not
cross, backward arrows that have at least one end between the heads of two forward arrows or to the
right of the largest tail of a forward arrow must have both ends in the same position. Backward arrows
contained in the right b + 1 segments contribute a factor of C(yz(z + 1))b+1, just as in the proof of
Proposition 7.2.

It remains the possibility of having backward arrows that are entirely to the left of the head of
any forward arrow. Let us list the endpoints of these backward arrows in increasing order. This list
must begin with a positive number of heads, followed by a tail. Let i be the number of heads of
backward arrows preceding all tails. By equation (6.8), the total weight of these backward arrows

is 1
1+z · (yz(1 + z)C(yz(z + 1)))i. Since HTTH type of pairs of arrows cross, the a + 1 tails of the

forward arrows must all appear before the first tail of a backward arrow, only the rightmost of them
may coincide with the leftmost tail of a backward arrow. There are

(
i+a+1
a+1

)
ways to insert the tails

of the forward arrows strictly in front of the leftmost tail of a backward arrow, and there are
(
i+a
a

)
to perform this insertion if the rightmost tail of a forward arrow is equal to the leftmost head of a
backward arrow. The contribution of these arrows is the sum after 1 on the last line of (7.4).
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Figure 7. The rules for pairs of arrows in the Simion type c subclass.

Observe that by applying the identity
∑

i≥1

(
i+m
m

)
·ti = 1/(1− t)m+1−1 twice to the factor appearing

on the last line of (7.4), we can rewrite this factor as

1 +
z

z + 1
·
(

1

(1− yz(z + 1)C(yz(z + 1)))a+2
− 1

)
+

1

z + 1

(
1

(1− yz(z + 1)C(yz(z + 1))a+1
− 1

)
.

Simplifying this expression, including canceling a factor of z+1 in the numerator and the denominator,
yields

1

(1− yz(z + 1)C(yz(z + 1))a
· (1− yzC(yz(z + 1)))

(1− yz(z + 1)C(yz(z + 1)))2
.

Finally, using (6.11) equation (7.4) simplifies to the desired expression in the proposition. �

We now examine the Simion subclass of type c. This is the smallest subclass, as by Proposition 3.8
the TTHH and HHTT types of pairs of arrows must nest.

Proposition 7.4. Consider a family of uniform flag triangulations F defined by the following rules:

(1) THTH type of pairs of arrows nest.
(2) HTHT type of pairs of arrows do not nest.
(3) Both THHT and HTTH types of pairs of arrows cross.
(4) Both TTHH and HHTT types of pairs of arrows nest.

Then the collection F̂ of families of saturated faces satisfies:

F (F̂ , x, y, z) =
1

1 + z
· (C(yz(z + 1)) + z)

+D

(
z

1− yz(z + 1) · C(yz(z + 1))
,

z

1− yz(z + 1) · C(yz(z + 1))
, x

)
· xz(z + 1− yz(z + 1) · C(yz(z + 1)))2

(1 + z)(1 + z · C(yz(z + 1))) · (1− yz(z + 1) · C(yz(z + 1)))4
.
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Proof. The proof is similar to the proof of Proposition 7.3 in many details, we will highlight the
substantial differences. First we show the following equality:

F (F̂ , x, y, z) =
1

1 + z
· (C(yz(z + 1)) + z)(7.5)

+
∑
a,b≥0

xza+b+1Da,b(x) · 1

1 + z((C(yz(z + 1)) + z)/(z + 1)− 1)

·

1 +
∑
i≥1

(yz(z + 1) · C(yz(z + 1)))i

1 + z
·
((

i+ a+ 1

a+ 1

)
z +

(
i+ a

a

))
·

1 +
∑
j≥1

(yz(z + 1) · C(yz(z + 1)))j

1 + z
·
((

j + b+ 1

b+ 1

)
z +

(
j + b

b

)) .

Just as in (7.4), the term 1
1+z · (C(yz(z + 1)) + z) is contributed by the faces containing backward

arrows only. The second sum is contributed by faces that contain forward arrows as well, these forward
arrows are incident to a + 1 tails and b + 1 heads. The total contribution of the forward arrows is
xza+b+1Da,b(x). For the precise count of the contribution of the backward arrows, we use the fact that
no pair of backward arrows crosses. We call a saturated face {(i1, j1), (i2, j2), . . . , (ik, jk)} of backward
arrows connected if it is empty or the arrow (max(i1, i2, . . . , ik),min(j1, j2, . . . , jk)) belongs to the set.
Clearly each saturated face of backward arrows is uniquely the disjoint union of maximal connected

sets. Introducing Ĝ as the collection of families of connected saturated sets of backward arrows, we
have the equality

1 + z · (F (F̂ , 0, y, z)− 1) =
∑
k≥0

F (Ĝ, 0, y, z)k · zk =
1

1− z · F (Ĝ, 0, y, z)

where k stands for the number of maximal connected sets. Indeed, for k = 0 the empty set is satu-
rated and connected, for all nonempty saturated sets, the first component contributes an unnecessary
additional factor of z on the right hand side. Substituting (6.4) yields

1 + z ·
(

1

1 + z
· (C(yz(z + 1)) + z)− 1

)
=

1

1− z · F (Ĝ, 0, y, z)
.(7.6)

We partition the backward arrows of a saturated face into three classes. The first class is formed
by all backward arrows whose head is weakly to the left to the head of some forward arrow. Since
HTTH type of pairs of arrow cross, the tail of such a backward arrow is to the right of all backward
arrows. The same condition on the HTTH type of pairs of arrows also guarantees that to the left of
any tail of a forward arrow we can only have a head of a backward arrow belonging to the first class.
Since HTHT type of pairs do not nest, the tail of a backward arrow in the first class is between the
heads and tails of all forward arrows. All such backward arrows form a connected component: they
all contain or arch over the rightmost tail of a forward arrow, and any backward arrow that does not
contain or arch over this rightmost tail has its head to the right of all backward arrows in the first
class. The same reasoning also shows that all heads of backward arrows in the first class are to the
left of the tails of these arrows. Introducing i as the number of heads of backward arrows in the first
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class, the contribution of all backward arrows in the first class is1 +
∑
i≥1

(yz(z + 1) · C(yz(z + 1)))i

1 + z
·
((

i+ a+ 1

a+ 1

)
z +

(
i+ a

a

)) · (1− zF (Ĝ, 0, y, z)).

Just as in the proof of Proposition 7.3, each summand in the first factor is the total weight of all
saturated faces of backward arrows in which i heads are followed by a tail in the left-to-right order,

and the factor of 1 − zF (Ĝ, 0, y, z) represents dividing by 1/(1 − zF (Ĝ, 0, y, z)), i.e., removing the
contribution of the additional connected components. Hence the above expression represents the total
weight of connected saturated faces.

The second class is formed by all backward arrows whose head is weakly to the right of the head of
some forward arrow. A completely analogous reasoning shows that the total weight of these arrows is1 +

∑
j≥1

(yz(z + 1) · C(yz(z + 1)))j

1 + z
·
((

j + b+ 1

b+ 1

)
z +

(
j + b

b

)) · (1− zF (Ĝ, 0, y, z)).

The remaining arrows form the third class: the heads and tails of these arrows are to the right to the
tails of the arrows in the first class and to the left of the heads of the arrows in the second class. They
contribute a factor of

1 + z · (F (F̂ , 0, y, z)− 1) = 1 + z ·
(

1

1 + z
· (C(yz(z + 1)) + z)− 1

)
.

Equation (7.5) is now a consequence of (7.6). The algebraic manipulations used to derive the statement
from (7.5) are very similar to the proof of Proposition 7.3 and therefore omitted. �

Proof of Theorem 7.1. We begin with the proof of (7.1). We have proved three variants of this for-
mula in Propositions 7.2, 7.3 and 7.4, it remains to show that the three generating functions in these
propositions are equal to the generating function in equation (7.1). This is straightforward by expand-
ing D(u, v, x) using equation (6.11) and that the Catalan generating function satisfies the quadratic
relation C(u) = 1 + u · C(u)2, especially in the form 1/(1− u · C(u)) = C(u). Equation (7.2) follows
now from equation (7.1) by applying the involution 4 7−→ 4∗ and Lemmas 3.3 and 6.1. �

By combining Theorem 7.1 and Lemma 6.4 it is possible to give the generating function of all faces.
We now explicitly count the facets using Corollary 6.6 and equation (7.1). Since

F
(
F̂ , x

w
,
y

w
,wz

)
=
C(yz(wz + 1)) + wz

1 + wz
+

xz · (1 + wzC(yz(wz + 1))) · C(yz(wz + 1))2

(1 + wz)(1− 2C(yz(wz + 1))xz − C(yz(wz + 1))2xwz2)
,

we obtain that the facet generating function is given by∑
n≥0

n∑
i=0

f(4n, i, n− i)xiyn−izn = C(yz) +
xz · C(yz)2

1− 2xzC(yz)
(7.7)

= C(yz) +
∑
i≥1

2i−1 · (xz)i · C(yz)i+1.
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Theorem 7.5. Let 4n be a uniform flag triangulation of the boundary ∂Pn of the Legendre polytope
belonging to the Simion class satisfying the property that THTH type of pairs of arrows nest and
HTHT type of arrows do not nest. Then for i ≥ 1, the number of facets of 4n consisting of i forward
arrows and n− i backward arrows is given by

f(4n, i, n− i) = 2i−1 · (i+ 1) · (2n− i)!
(n− i)! · (n+ 1)!

.(7.8)

The number of facets of the triangulation 4n consisting of no forward arrows and n backward arrows
is given by the Catalan number Cn.

Proof. Observe that the coefficient of ynzn in equation (7.7) is the nth Catalan number Cn. For i ≥ 1,
the coefficient of xiyn−izn = (xz)i · (yz)n−i is 2i−1 times the coefficient of (yz)n−i in C(yz)i+1, which

is 2i−1 · i+1
2n−i+1 ·

(
2n−i+1
n+1

)
by an identity due to Catalan [3]. �

Remark 7.6. The formula (7.8) given in Theorem 7.5 may be restated as

f(4n, i, n− i) = 2i−1 · C(n, n− i)(7.9)

where the numbers

C(n, k) =
(n+ k)! · (n− k + 1)

k! · (n+ 1)!

are the numbers in the Catalan triangle, see sequence A009766 in [14].

We end with two observations. First, it is amusing how the expression in (7.8) is off by a factor of
1/2 in the case when i = 0. Second, when 4n is the Simion type B associahedron triangulation of the
boundary of the Legendre polytope, it is a possible to give a more combinatorial proof of Theorem 7.8
by analyzing the tree structure of the digraphs corresponding to facets.

8. Face enumeration in the revlex class

In this section we study the revlex class, that is, the class containing the revlex pulling triangulation.

Our first result is similar to equations (7.3), (7.4) and (7.5), and it is perfectly suitable to com-
pute the face numbers with a prescribed number of forward and backward arrows. Unfortunately,
it does not seem suitable to produce a closed form formula without infinite sums, that is similar to
Propositions 7.2, 7.3 and 7.4.

Theorem 8.1. Consider a family of uniform flag triangulations F defined by a set of rules that
contains the following rules:

(1) Both THTH and HTHT types of pairs of arrows nest.
(2) Both HTTH and THHT types of pairs of arrows cross.
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Then the collection F̂ of families of saturated faces satisfies

F (F̂ , x, y, z) = 1 +
∑
a,b≥0

(x ·Da,b(x) + y ·Da,b(y)) · za+b+1(8.1)

+ xy ·
∑

a′,b′,a′′,b′′≥0

Da′,b′(x) ·Da′′,b′′(y) · za′+b′+a′′+b′′+2 · C(a′, b′, a′′, b′′, z)

where

C(a′, b′, a′′, b′′, z) =

(
a′ + b′′ + 2

a′ + 1

)
·
(
a′′ + b′ + 2

b′ + 1

)
· z(8.2)

+

(
a′ + b′′ + 1

b′′

)
·
(
a′′ + b′ + 1

b′

)
+

(
a′ + b′′ + 1

a′

)
·
(
a′′ + b′ + 1

a′′

)
.

Proof. By Proposition 6.12 the first three terms on the right hand side of (8.1) are the total weights
of all faces that do not contain arrows in both directions. The last sum is the total weight of all
faces containing arrows in both directions: forward arrows on a′ + 1 tails and b′ + 1 heads and
backward arrows on a′′+ 1 tails and b′′+ 1 heads. Again, by Proposition 6.12 the subfaces of forward
and backward arrows, respectively, contribute factors of xDa′,b′(x)za

′+b′+1 and yDa′′,b′′(y)za
′′+b′′+1

respectively. We may collect the contribution of all faces that contain only forward or only backward
arrows by identifying a′ and a′′ with a, and b′ and b′′ with b. For the remaining faces there is an
additional factor of z when the set of endpoints of forward arrows is disjoint from the set of endpoints
of backward arrows. By Proposition 3.7 THHT and HTTH type of pairs of arrows cross. As a
consequence, heads of backward arrows are to the left of the heads of forward arrows and tails of
backward arrows are to the right of the tails of the backward arrows. These conditions also ensure
that the set of endpoints of the backward arrows cannot have two or more nodes in common with the
set of endpoints of the forward arrows. The first term factor C(a′, b′, a′′, b′′, z) accounts for the number
of ways we may line up a′ + 1 tails of forward arrows with b′′ + 1 heads of backward arrows on one
side and, independently a′′ + 1 tails of backward arrows with b′ + 1 heads of forward arrows on the
other side. The remaining terms correspond to the cases when the forward arrows and the backward
arrows share one head or one tail, respectively. �

We obtain a more compact expression using the proof of Theorem 8.1 by introducing the following
generating function.

Definition 8.2. Let F̂ = (F̂0, F̂1, . . .) be a collection of families of arrows such that for each n the

family F̂n consists of saturated subsets of Vn. We define the node-enriched exponential generating

function of F̂ as follows:

(1) The empty set (if it belongs to F̂0) contributes a factor of 1.

(2) Each nonempty σ ∈ F̂n contributes a term

xiyj · ua+1 · vb+1

(a+ 1)! · (b+ 1)!
· tn,
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where i is the number of forward arrows, j is the number of backward arrows, a + 1 is the
number of nodes that are left ends of arrows and b + 1 is the number of nodes that are right
ends of arrows.

It should be noted that the numbers a + 1 and b + 1 count the left and right ends of arrows and
not their heads or tails: a left end is the tail of a forward arrow or the head of a backward arrow.
A common tail of a forward and a backward arrow is counted twice: once as a left end and once as
a right end. It is easy to derive from the requirements on the THHT and HTTH type of pairs of
arrows that for the triangulations in the revlex class, there is at most one node that is simultaneously
the left end and the right end of some arrow.

The node-enriched exponential generating function of the saturated faces in a triangulation in the
revlex class has a compact expression in terms of the following exponential generating function of the
Delannoy polynomials:

(8.3) D̃(u, v, x) =
∑
a,b≥0

Da,b(x) · ua+1 · vb+1

(a+ 1)! · (b+ 1)!
.

Theorem 8.3. Consider a family of uniform flag triangulations F defined by a set of rules that
contains the following rules:

(1) Both THTH and HTHT types of pairs of arrows nest.
(2) Both HTTH and THHT types of pairs of arrows cross.

Then the node-enriched exponential generating function of the collection F̂ of families of saturated
faces is given by

1 +
1

z
· D̃(uz, vz, x) +

1

z
· D̃(vz, uz, y) +

1

z
· D̃(uz, vz, x) · D̃(vz, uz, y)

+
1

z2
· ∂
∂u
D̃(uz, vz, x) · ∂

∂v
D̃(vz, uz, y) +

1

z2
· ∂
∂v
D̃(uz, vz, x) · ∂

∂u
D̃(vz, uz, y).

Proof. The proof is essentially the same as that of Theorem 8.1 and omitted. �

Theorem 8.3 motivates computing D̃(u, v, x) explicitly.

Theorem 8.4. The exponential generating function D̃(u, v, x) is given by

D̃(u, v, x) =
∑
k≥0

(uv · (x2 + x))k

k!2
· ψk+1(ux) · ψk+1(vx)

where ψk+1(z) = dk

dzk

(
ez−1
z

)
.
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Proof. We use the formula

Da,b(x) =
∑
k

(
a

k

)
·
(
b

k

)
· (x2 + x)k · xa+b−2k.

Here k counts the total number of NE steps and “northwest corners” (i.e., N steps immediately

followed by E steps) in a Delannoy path from (0, 0) to (a, b). There are
(
a
k

)(
b
k

)
ways to select the

positions of these steps and corners in the plane, and each such place contributes a factor of x2 + x
(the weight of a N step followed by an E step is x2, the weight of a NE step is x). Using the above

formula for Da,b(x), the definition of D̃(u, v, x) may be rearranged as follows:

D̃(u, v, x) =
∑
k≥0

(uv · (x2 + x))k

k!2
·
∑
a,b≥k

(ux)a−k

(a− k)!
· (vx)b−k

(b− k)!
· 1

a+ 1
· 1

b+ 1
.

The statement follows after noticing that

ψk+1(z) =
∑
n≥0

1

n+ k + 1
· z

n

n!

which can easily be shown by induction on k. �

Remark 8.5. It is a direct consequence of Theorems 8.3 and 8.4 that

∂

∂u

∂

∂v
D̃(u, v, x) = exp(x · (u+ v)) · I0(2

√
(x2 + x) · uv)

where I0(z) is the modified Bessel function of the first kind.

Remark 8.6. It can be shown by induction that

ψk(z) =
ez · pk(z) + ck

zk
,

where ck = (−1)k · (k − 1)! and

pk(z) =
k−1∑
i=0

(−1)i · (k − 1)!

(k − 1− i)!
· zk−1−i.

We conclude this section by counting the facets, using Corollary 6.6.

Theorem 8.7. Consider any uniform flag triangulation 4n of the boundary ∂Pn of the Legendre
polytope that belongs to the revlex class. For 1 ≤ k ≤ n − 1, the number of facets consisting of k
forward arrows and n− k backward arrows, that is, f(4n, k, n− k), is given by

k∑
i=1

n−k∑
j=1

(
k − 1

i− 1

)
·
(
n− k − 1

j − 1

)
·
[(
n− k + i− j

i

)
·
(
k − i+ j

j

)
+

(
n− k + i− j

i− 1

)
·
(
k − i+ j

j − 1

)]
.

The number of facets with n forward arrows and no backward arrows; and the number of facets with
no forward arrows and n backward arrows are both equal to 2n−1.

Proof. Inspecting (8.1) we see that the total degree of x and y is strictly less than the degree of z,
except for the contributions, in which the following rules are observed:
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(1) In the expansion of Da′,b′(x) only the contribution of those Delannoy paths are kept which
contain no NE steps. Hence, to compute the contribution of the facets only, we much replace

each appearance of Da′,b′(x) in (8.1) with
(
a′+b′

a′

)
· xa′+b′ .

(2) Similarly, we much replace each appearance of Da′′,b′′(y) in (8.1) with
(
a′′+b′′

a′′

)
· ya′′+b′′ .

(3) Only the z-free part of the factor C(a′, b′, a′′, b′′, z) contributes to the calculation of the con-
tribution of the facets.

Therefore we obtain

F
(
F̂ , x

w
,
y

w
,wz

)∣∣∣w=0 = 1 +
∑
a′,b′≥0

(
a′ + b′

a′

)
· (xz)a′+b′+1 +

∑
a′′,b′′≥0

(
a′′ + b′′

a′′

)
· (yz)a′′+b′′+1

(8.4)

+
∑
a′,b′≥0
a′′,b′′≥0

C0(a′, b′, a′′, b′′) ·
(
a′ + b′

a′

)
· (xz)a′+b′+1 ·

(
a′′ + b′′

a′′

)
· (yz)a′′+b′′+1

where

C0(a′, b′, a′′, b′′) =

(
a′ + b′′ + 1

b′′

)
·
(
a′′ + b′ + 1

b′

)
+

(
a′ + b′′ + 1

a′

)
·
(
a′′ + b′ + 1

a′′

)
.

The contribution of all facets consisting of forward arrows only is
∑

a′,b′≥0

(
a′+b′

a′

)
· (xz)a′+b′+1 on the

right hand side of (8.4). The part of the statement regarding these facets is a direct consequence of
the binomial theorem. Similarly, the part of the statement on facets consisting on backward arrows
only follows from inspecting the next sum on the right hand side of (8.4). The contribution of all
other facets is collected in the last sum. The contribution of all facets consisting of k forward and
n− k backward arrows is the sum of all terms, satisfying a′+ b′+ 1 = k and a′′+ b′′+ 1 = n− k. The
statement now follows after substituting i = a′ + 1 and j = a′′ + 1. �

9. Face enumeration in the lex class

We now turn our attention to face enumeration in the four triangulations studied in Subsection 4.1.
This class is we call the lex class and it contains the lexicographic pulling triangulation. So far, the
lex class and revlex class have been similar to each other; see Propositions 3.6 and 3.7, Subsections 4.1
and 4.2. By comparing this section with the previous section we observe that this similarity breaks
down. This section also differ from previous sections on enumeration in that we do not use generating
functions in stating the results and the proofs are more bijective.

Theorem 9.1. Let 4n be a uniform flag triangulation of the boundary ∂Pn of the Legendre polytope
in the lex class, that is, 4n satisfies the rules:

(1) Both THTH and HTHT types of pairs of arrows do not nest.
(2) Both THHT and HTTH types of pairs of arrows do not cross.
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Then the number of (k − 1)-dimensional faces in the triangulation 4n consisting of i forward arrows
and k − i backward arrows is given by

f(4n, i, k − i) =
fk−1(4n)

k + 1
=

1

k + 1
·
(
n+ k

k

)
·
(
n

k

)
.

Furthermore, this quantity is independent of the parameter i.

We begin with a lemma about Catalan numbers. For a subset S of the integers, call a run a maximal
interval in S.

Lemma 9.2. For k a nonnegative integer, let i be an integer satisfying 0 ≤ i ≤ k. Then the kth
Catalan number is given by the sum of products

Ck =
∑
S⊆[k]
|S|=i

∏
R run in S
or in [k]− S

C|R|.(9.1)

Note that when i = 0 or i = k, the lemma does not give anything new. When i = 1 or i = k − 1,
the lemma yields the classical recursion for the Catalan numbers.

Proof of Lemma 9.2. Recall that C(x) =
∑

k≥0Ck · xk is the generating function for the Catalan

numbers, which satisfies the quadratic relation C(x) = 1 + x · C(x)2. Let f(x) be C(x) without the
constant term, that is, f(x) = C(x)− 1. Multiply the right hand-side of (9.1) with xiyk−i and notice

that xiyk−i =
∏
R run in S x

|R| ·
∏
R run in [k]− S y

|R|. Sum over all i and k such that 0 ≤ i ≤ k. The

resulting generating function is given by∑
k≥0

0≤i≤k

∑
S⊆[k]
|S|=i

∏
R run in S

or in [k]− S

C|R| · xiyk−i = 1 +
f(x)

1− f(y)f(x)
+

f(y)

1− f(x)f(y)
+ 2 · f(x)f(y)

1− f(x)f(y)
(9.2)

=
(1 + f(x)) · (1 + f(y))

1− f(x)f(y)
.(9.3)

Note that the first term in (9.2) corresponds to k = 0, the second to subsets S ⊆ [k] with 1, k ∈ S,
the third to subsets S ⊆ [k] with 1, k 6∈ S, and finally, the fourth term to subsets S such that
|S ∩ {1, k}| = 1. Next observe that

(1− f(x)f(y)) · (x · C(x)− y · C(y)) = (x− y) · C(x) · C(y),(9.4)

by expanding the product on the left hand-side of (9.4) and simplifying using the quadratic relation
C(x) = 1 + x · C(x)2 four times. Using (9.4) the generating function in (9.3) simplifies to

x · C(x)− y · C(y)

x− y
=
∑
k≥0

∑
0≤i≤k

Ck · xiyk−i,

which is the generating function for the left hand-side of (9.1). �
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Figure 8. A forest with 6 forward arrows and 3 backward arrows on 12 nodes, counted
by the term G3(z) · z−1 ·G2(z) · 1 ·G3(z) · z−1 ·G1(z) in the proof of Proposition 9.4.

Remark 9.3. Lemma 9.2 is equivalent to the following statement about lattice paths from the origin
to (2n, 0) taking up steps (1, 1) and down steps (1,−1). For such a lattice path p, considered as
a piecewise linear function, let b(p) be 1/2 times the sum of the lengths of the intervals where the
lattice path is below the x-axis. Then for an integer 0 ≤ i ≤ n, the number of lattice paths p such
that b(p) = i is given by the Catalan number Cn. A bijective proof of this statement is given in the
preprint [11].

Observe that Corollary 6.9 applies to the case when we only have backward arrows or only forward
arrows. Now we turn our attention to the case when we have both forward and backward arrows.

Proposition 9.4. Consider digraphs such that both THTH and HTHT types of pairs of arrows do
not nest and both THHT and HTTH types of pairs of arrows do not cross. The sum over all forests F
consisting of i forward arrows, k − i backward arrows and no isolated nodes, where k ≥ 1, is∑

F

z#nodes of F = Ck · zk+1 · (z + 1)k−1.

Proof. Given that we have k undirected arrows, pick a subset S of them. Let S be the set of the
forward arrows, and let the complement be the backward arrows. Hence the generating function can
be expressed as ∑

F

z#nodes of F =
∑
S⊆[k]
|S|=i

(1 + z−1)r(S)−1 ·
∏

R run in S
or in [k]− S

G|R|(z),

where r(S) is the number of runs in the subset S plus the number of runs in the complement [k]− S.
and G|R|(z) is the polynomial appearing in equation (6.6). The factor 1 + z−1 appears since when
we switch direction of arrows either the node set is disjoint, yielding the term 1, or they share an a
vertex, yielding the term z−1. Expanding G|R|(z) using Corollary 6.9 we have∑

F

z#nodes of F =
∑
S⊆[k]
|S|=i

z−r(S)+1 · (z + 1)r(S)−1 ·
∏

R run in S
or in [k]− S

C|R| · z|R|+1 · (z + 1)|R|−1

= zk+1 · (z + 1)k−1 ·
∑
S⊆[k]
|S|=i

∏
R run in S

or in [k]− S

C|R|,

where we used
∑

R |R| = k. Now by Lemma 9.2 the result follows. �
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Proof of Theorem 9.1. Observe that the enumeration in Proposition 9.4 is independent of i, that is,
the distribution is uniform. Inserting isolated vertices will not change this fact. Since the total number
of k-dimensional faces is given by fk−1(4n) =

(
n+k
k

)
·
(
n
k

)
, the number of faces with exactly i forward

arrows is fk−1(4n)/(k + 1). �

10. Concluding Remarks

The result of Oh and Yoo [16, Theorem 5.4] characterizing triangulations of products of simplices
is deep but not very direct. It is an easy exercise, left to the reader, to show that most of the fifteen
uniform flag triangulations of the boundary ∂Pn of the Legendre polytope are pulling triangulations.
(Since all pulling triangulations of ∂Pn are flag, it suffices to come up with a pulling order that satisfies
the given flag conditions.) Three of the fifteen uniform flag triangulations do not seem to arise in such
an easy manner: the only triangulation in the lex class, where both TTHH and HHTT types of pairs
of arrows nest, the only triangulation in the revlex class where both TTHH and HHTT types of
pairs of arrows cross, and the only triangulation (up to taking the dual) in the type c subclass of the
Simion class. The geometry of these three triangulations seems worth a closer look.

All triangulations of ∂Pn discussed in this paper have the same face numbers. Setting x and y
in our formulas yields many equalities linking the Legendre polynomials, the Catalan numbers, the
Delannoy numbers and some of their weighted generalizations. Exploring these formulas, relating
them to known results, or proving them combinatorially are all subject to future investigation.
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[2] F. Ardila, M. Beck, S. Hoşten, J. Pfeifle and K. Seashore, Root polytopes and growth series of root lattices,
SIAM J. Discrete Math. 25 (2011), 360–378.

[3] E. Catalan, Sur les nombres de Segner, Rend. Circ. Mat. Palermo 1 (1887), 190–201.
[4] C. Ceballos, A. Padrol and C. Sarmiento, Dyck path triangulations and extendability, J. Combin. Theory

Ser. A 131 (2015), 187–208.
[5] C. Ceballos, A. Padrol and C. Sarmiento, Geometry of ν-Tamari lattices in types A and B, Sém. Lothar.

Combin. 78B (2017), Art. 68, 12 pp.
[6] P. Cellini and M. Marietti, Root polytopes and Abelian ideals, J. Algebr. Comb. 2014 (39), 607–645.
[7] S. Cho, Polytopes of roots of type An, Bull. Austral. Math. Soc. 59 (1999), 391–402.
[8] R. Cori and G. Hetyei, Counting genus one partitions and permutations, Sém. Lothar. Combin. 70 (2013), Art.

B70e, 29 pp.



UNIFORM FLAG TRIANGULATIONS OF THE LEGENDRE POLYTOPE 41

[9] J. A. de Loera, J. Rambau and F. Santos, “Triangulations: Structures for Algorithms and Applications,”
Algorithms Comput. Math. vol. 25, Springer-Verlag, Berlin, 2010.

[10] R. Ehrenborg, G. Hetyei and M. Readdy, Simion’s type B associahedron is a pulling triangulation of the
Legendre polytope, Discrete Comput. Geom. 60 (2018), 98–114.

[11] R. Ehrenborg, G. Hetyei and M. Readdy, Very pure monoids and Catalan combinatorics, in preparation.
[12] I. M. Gelfand, M. I. Graev and A. Postnikov, Combinatorics of hypergeometric functions associated with

positive roots, in Arnold-Gelfand Mathematical Seminars: Geometry and Singularity Theory, Birkhäuser, Boston,
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