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ABSTRACT
DAN HAN. Population Dynamics with Immigration. (Under the direction of DR.
STANISLAV MOLCHANOV)

The paper contains the complete analysis of the Galton-Watson models with im-
migration, including the processes in the random environment, stationary or non-
stationary ones. We also study the branching random walk on Z? with immigration
and prove the existence of the limits for the first two correlation functions. Addi-
tional results concerns the Lyapunov stability of the moments with respect to small
perturbations of the parameters of the model such as mortality rate, birth rate and

immigration rate.
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CHAPTER 1: INTRODUCTION

The subject of the population dynamics from the mathematical view point is the
analysis of the evolution in space and time of some species (we call them particles)
in the presence of such factors as birth and death processes, migration, immigration
and etc. The simplest models of such kind exclude the interaction between particles
and even the spatial distribution of the species.

The classical example is the Galton-Watson branching process with continuous
time. One of the defects of this model is the absence of the statistical equilibrium.
That is, n(t), the number of the particles at time t, either goes to co with positive
probability or population degenerates P a.s. In the critical case when the mortality
rate and birth rate are equal to each other, P(n(t) = 0) — 1 and this was the central
observation by Galton, the founder of the theory of branching processes.

The central problem in the population dynamics is the study of the models which
demonstrates the convergence to statistical equilibrium. On the mathematical level,
it is the theory of the infinite-dimensional Markov processes which phase space is the
set of all possible configurations of the particles, either on Z? (lattice models) or on
R? (continuous models).

Configurations are changing in the time (due to migration,, birth-death processes
etc). Existence of statistical equilibrium is equivalent to the ergodicity of Markov

process, mentioned above. The probability measure (distribution) P(-) is the space
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of configurations converges weakly to the limit if ¢ — co. The limiting measure P(o0)
is the desirable stationary distribution (steady states).

The simplest population model with steady state is so called contact model.

In 2006, Y. Kondratiev and A. Skorokhod first proposed a continuous contact
model [7] in R?. A series of researches in continuous contact models have been done
by Y. Kondratiev and his group, especially see the publication of Y. Kondratiev, O.
Kutovyi and S. Pirogov [6] in 2008. Under certain general technical assumptions on
the infection spreading characteristics, they constructed the non-equilibrium contact
process as a a spatial birth-and-death Markov process on configuration space. The
process describes a stochastic evolution in configurations, i.e, locally finite subsets
v C R? as the phase space of the process in the language of papers [7],[6]. During the
stochastic evolution, each particle independently generates a new particle according
to a dispersion probability density 0 < a € L'(R?), which is an even function. The
contact process generator is given on proper function F(v):

(LF)(y) = )l MIF(y \ 2) = F(7)] + /ﬁ(ﬂf,v)[F(v Uz) = F(y)]dz
Rd

dSe'

where p(z,7) describes the death rate of the particle z in the configuration -.
B(x, ) describes the rate at which, given the configuration 7, a new particle is born
at € R%. They considered a spatial branching process with killing. Assume the
death rate ¢ = 1 and the birth rate
Bz, y) =k alz—y)
yeY

0<ae Ll(Rd),/ a(z)dz =1
R4



And in the nearest future, we will set k, the diffusivity as 1.

The above construction means each y € 7 generates a new particle at x € R? with
the rate ka(x — y)dr independently. Additional technical assumption in [6] is the
existence of the second moment: [, a(z)z* < oo.

For the critical value k = 1 and the dimension d > 3, they proved the existence of a
continuous family of invariant measures parameterized by the density values. Starting
with an admissible measure uniquely defined by the density of the initial state, the
critical contact process converges to the equilibrium measure uniquely defined by the
density of the initial state. But in the dimension d = 2, invariant measures for the
model do not exist. Namely, when d = 2, correlations between population members
are growing in time too fast and the second-order limiting correlation function will
diverge to infinity.

From a biological perspective, Y. Kondratiev and his group’s contact model is a
"forest” model: there is no motion of parental particles ”trees” in space, however,
each parental "tree” can produce a new "seed”, and the seeds can jump to other
random positions around the parental "tree” and originate the new trees.

Denote n(t,I') is the number of particles at moment t in the set I' C R?. Assume
that the initial field of ”trees” has a Poissonian structure with the density pq, i.e.

V(' € B(RY), m(T) =| I' |< oo, we have (for constant rates y and [3)

P{n(0,T) =k} = eMF)(A(kL'))k, k>0

AMT) = |F|Po
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During a small period time dt, each particle located at + € R%an die with probabil-
ity pudt or generates a new offspring with probability Sdt. It means that the parental
tree stays at the same point z € R%, but it generate the seed (new offspring) which
jumps from z to x + z with the distribution density a(z).

The field n(¢,T") has multiplicity one and the correlation functions kfn) (1, T2y vy Tp)
has the sense of the densities:

k}fn) (1,29, ,xp)dzy...dx, = P{to find a particle at the moment ¢ > 0
in the volumes dxq,- - ,dz, around n points z1,- -+, x,}

In [6],The following model was introduced by Kondratiev. Consider initial Poisso-
nian field in R%. Assume the death rate p of the particles is equal to the birth rate
B. Whenever there is a transformation, the probability of death or birth is equal to
each other. That is, at moment ¢, a particle either dies with probability % or produces
a new seed, which will be randomly distributed according to a(z),z € R%. Assume
this density function a(z) is symmetric a(z) = a(—z2) and [, a(z) = 1. Differential
equations of k§n) (1, ,x,) are derived. The first two moments have the following

form:

)
akta (z) _ —ﬁktl@) + 8 a(z — z)kﬁl)(z)dz
t Rd

and



8/€t(2) (%1, .I'Q)

By = — 28k (21, 22) + BEM (21)a(zr — 22) + BED (w2)a(zs — 1)+

B[ alzs — )k (w0, 2)dz + B | a(zy — )k (21, 2)d2 (2)
R4 R4

ke (21, 72) = 0

Under such a critical case = u, the equation (1) has unique solution k,gl) = po.
The density is invariant of dynamics. For d > 3,there exists a limiting distribution
of kt(z). For d < 2, k:ig) has a limiting distribution only when continuous density a(z)
satisfies some specific conditions.

The papers [6] and [7] covered only the continuous situation: particle fields in R,
d > 1. The methods mentioned in [7] and [6] are not working in the lattice case. In
the papers [7],[6], the assumption that two particles cannot appear in the same site
(i.e the particle field has the multiplicity one is the central point of analysis. For the
lattice models, this restriction will lead to highly complicated and highly non-linear
equations.

In 2010, Y. Feng, S. Molchanov and J. Whitmeyer [3] started the study of the lattice
contact models. They derived the equations for first correlation functions: my(t,z) =
E[n(t,x)], ma(t, 1, x9) = E[n(t, x1)n(t, x2)], ms(t, z1, x2, x3) = E[n(t, z1)n(t, z2)n(t, x3].
And under assumptions about criticality (5 = u) and transitivity of the the underly-
ing random walk with the generator

Lap(x) =Y [z +2) = (@)]a(2)
2#0



, they proved the existence of the limits

lim my(t, ) = my(t,-),i=1,2,3

t—o00

For the first two moments,they presented the exact formulas for the limiting density
and correlation function.

Let us stress that in [3], the dimension d can be arbitrary and there are no any
moment conditions. As the result, in dimension d = 1, 2 under regularity assumption
on the heavy tailed density a(z), the limiting moments exist .

Now the existence of the steady state for lattice contact process or branching ran-
dom walk on Z¢ is proven under the full generality, that is underlying random walk
is transient and § = p (criticality), see S. Molchanov, J. Whitmeyer [9]

In 2017, S. Molchanov and J. Whitmeyer [9] proposed the new method to study
the problem of the steady states for the critical contact process. The model in [9]
and [3] is different from the model in [7] and [6]. It includes the spatial motion of
the particles. Particularly, at the moment of the birth of a new particle (offspring),
it can stay at the same site as the parental particle does.

Let us give the detailed description of the contact model (lattice case),see details
in [9].

We now consider our process with birth, death and migration on a countable space,
specifically the lattice Z?. We denote N(t,y), t <0, y € Z% as the global population
at time ¢ in the position y € Z¢ and denote n(t,y,z) as the subpopulation at site

y € Z¢ generated by a single initial particles in the site z € Z¢. Those subpopulations



are independent, thus
N(t,y) =Y _ n(t.y,x),N(0,y) =1
x€Z
Each particle follows a random walk with generator kL, (z) = k Y. [Y(x +y) —

yezd

¥(x)]a(y) with a symmetrical a(y) = a(—y) and normalization »_ a(y) = 1. Death
y

occurs at rate p and birth occurs at rate . That means,during a period of time
(t,t +dt), the probability that one particle will split into two particles is fdt and the
probability that one particle will die is udt. In splitting, parental particle stays at
the same site and the new offspring jumps from z to « 4+ y with distribution b(y) and
Zd b(y) = 1 so that b is a probability distribution and b is symmetric so that the
yez

probabilities to jump to opposite directions are equal: b(y) = b(—y). Using the jump
distribution b(+), on can introduce the new linear operator

Lyp(x) = B [z + 2) — ¢(2)]b(2)

2z7#£0

For the study of subpopulation n(t, y, z), x,y € Z%, the generating function u, (¢, z,y) =
E,z"tvm) = S Pin(t,y,x) = j}27. u.(t,z,y) satisfies the Kolmogorov-Petrovski-
7=0

Piskunov type equation:

ou,
o = fLatts = (B+ pus+ fus 3 us(t, o +v,y)b(v) + p
yezd
s a—y (3)
u(0,,y) =
1, z#y

Then the factorial moments m,(t, x,y) = E(n(n—1)---(n—1041)) can obtain their

differential equations by differentiating 3 over z and substituting z = 1. For example,



ml(tvxa y) = Exn(ta Ys :L‘) is giVGIl by

om
81&1 = (KLa + BLy)M1 + (B — )y
(4)
mi(0,z,y) = 0(y — )
In the paper of S. Molchanov and J. Whitmeyer [9],this result uses backward equa-
tion technique instead of forward Kolmogorov equations, a strategy not feasible in the

continuous space. When birth and mortality rates are equal to each other and the un-

derlying random walk generated by L, is transient, then m;(t) = EN(t,z)(N(t,z) —

1) (N(t,z) — 1 + 1) 22 my(c0) and therefore N(t,z) T—OO> N(oo, ), where

N(oo, x) is a steady state, that is a random variable with a finite distribution. Thus
the whole population reaches a stationary distribution (steady state).

The second fundamental question of the population dynamics is the stability (or
instability) of the steady state with respect to small perturbation of the parameters
of the model. How to measure of this "smallness”? There are two possibilities:

(a) use L norm. Instead of constant rates /3, u, one can consider functions

B(x) = By + €€()

() = po + en(z)
where [£(z)| < 1,z € Z%, |n(z)| < 1 and € is a small parameter.
The function () and n(z) can be random or deterministic. It is so-called Lyapunov
stability .
(b) use local perturbations, i.e. 8(z) = By, u(z) = po when z € Z% — T but on the

finite set I, the difference 5(z) — u(x) = V(x) is not zero.



9

It is clear that for the contact processes, we cannot expect the Lyapunov stability.
For instance, if 5y = pp and the underlying random walk is transient, then the steady
state exists but for £(x) = 1,n(z) = 0, the process with f(x) = Gy +¢€, pu(z) = po = Bo

is supercritical. For the first moment, we have the obvious formula

my(t, x) = mpe — oo

as t — oo.

For £(x) = —1, the result is opposite,

my(t,x) = moe”" — 0

as t — oo.

Even assumption that £(x), n(x) are independent random symmetrically distributed
fields, i.e. V(z) = e(&(x) — n(zx)) is symmetrically distributed potential cannot lead
to stabilization.

The local perturbations for the contact model were studied in several papers by
E.Yarovaya [1],[13],[12]. Roughly speaking, the result is the following one: For fixed
set I where f(x)—p(z) > 0, the steady states exists if max(f—pu) < 9, ¢ is sufficiently

zel

small. If 5 — p is large enough at least in one point, then my (¢, x) = E[n(t, )] — oc.



CHAPTER 2: SPATTIAL GALTON-WATSON PROCESS WITH
IMMIGRATION.NO MIGRATION AND NO RANDOM ENVIRONMENT.

2.1  Moments

In this section, we will study the branching process with immigration but without
migration. Assume that at each site for each particle we have birth of one new particle
with rate 8 and death of the particle with rate u. Also assume that regardless of the
number of particles at the site we have immigration of one new particle with rate k
(this is a simplified version of the process in [10]). Assume that 5 < pu, for otherwise
the population will grow exponentially. Assume we start with one particle at each
site. In continuous time, for a given site z, * € Z%, we can obtain all moments
recursively by means of the Laplace transform with respect to n(t,z), where n(t, z)

is the population size at time ¢ at x

Pt N) = Ee™) = 3" Pn(t,z) = jle ™.
=0

Specifically, for the jth moment, m;

m;(t,z) = (—1)j%\,\=0- (5)

A partial differential equation for ¢(¢,\) can be derived using the forward Kol-
mogorov equations

n(t+dt,z) = n(t,x) + Eu(t, x) (6)
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where the r.v. £ is defined

+1  pn(t,x)dt + kdt
Cae(t, ) =4 —1  pn(t,z)dt (7)

0 1= ((B+pn(t,z)+k)dt

\

In other words, our site (x) in a small time interval (¢,t + dt) can gain a new particle
with probability Sdt for every particle at the site or through immigration with prob-
ability kdt; it can lose a particle with probability udt for every particle at the site; or
no change at all can happen.

For each site # € Z¢, n(t,x) is a branching process. All these branching process
n(t, z) for different site x are independent with each other and there is no interactions
among those branching processes for different site = since there is no migration among
those sites. Because of this fact, it is sufficient to study n(t, z) for one particular site
x. Thus we write n(t) for n(t,z) of this particular site x.

Now @(t + dt, \) = E[e )] = E[Ele= -+ n (1)),

And E[e M) |n ()] = e O (1 — (B + p)n(t)dt — kdt) + (Bn(t) + k)dte DA 4

pn(t)dte= A0+,

Oy

One can apply the total expectation at both sides and use the formula =

E[e=*Wn(t)]. This leads to the general differential equation

WA _ pe — pte ) + 820N 0 ooy w22 g0y g

wo(A) = e 9)

from which we can calculate the recursive set of differential equations and we denote
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o(t, A
o a8
Doy (i G- 0 () -0
8/\i—k;<i (e =1) a»+ﬁ; P
J . z+1
J G za
1_ J—
w3 () 0t
3j900()\) i =X
oy e

Applying Eq. 5 we obtain a set of recursive differential equations for the moments

(-1p () Vimi + B(=1Pmes + (~Dimea]  (10)

=0
m;(0) =1

where we define mg = 1. For example, the differential equations for the first and

second moments are

and

de (t)
dt

=2(8 — pma(t) + (B + p+ 2k)ma(t) + k

These have the solutions:
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and

k(k+p) p?—2k>— B2+ kp— 3kﬁe—(u—ﬁ)t+

N k?* 4237 + 3k — 2up3 — 2KH ()t
(n—p)?

Again, given that we have assumed that p > 3, in other words, the birth rate is

not high enough to maintain the population size, as t — oo

k
ml(t) w w—_
k(k + )
mat) tmoo (p— [3)2
and
- m — m2 7 Mk:
Var(n(t)) = mo(t) 1(1) oo (i — B)2

Moreover, it is clear from Eq. 10 that all the moments are finite.

In other words, the population size will approach a finite limit, which can be
regulated by controlling the immigration rate k, and this population size will be stable,
as indicated by the fact that the limiting variance is finite. Without immigration,
i.e., if £ =0, the population size will decay exponentially.

2.2  Local CLT

Setting \, = nf8 + k, u, = nu, we see that the model given by Eqgs. 6 and 7 is a

particular case of the general random walk on Z} = {0,1,2,---} with generator

Ly(n) = d(n+ DAy = (An + pn)(n) + pntp(n = 1), >0 (11)

L1p(0) = kep(1) — k1p(0) (12)
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1—(n(B 4 p) + k)dt

: ) njudt nf + k)dp d
- \_J w N\

Figure 1: n(t) is the random walk on Z1

The theory of such chains has interesting connections to the theory of orthogonal
polynomials, the moments problem, and related topics (see [4]). We recall several

facts of this theory.

a. Equation £ = 0,z > 1, (i.e., the equation for harmonic functions) has two

linearly independent solutions:

Il
—_

Y1(n)

(13)

=
[\
E
I
—_
N
[
—_

K1 B1p2 . H1p2 -1
L+ A1 + A1A2 + + A1 Ap—1 nz?2
\

b. Denoting the adjoint of £ by L*, equation L*r = 0 (i.e., the equation for the

stationary distribution, which can be infinite) has the positive solution

Ao
(1) = EW(O) (14)
)\0)\1
(2) = M1M27T 0 (15)
(16)
r(n) = 2 A (17)
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This random walk is ergodic (i.e., n(t) converges to a statistical equilibrium, a

steady state) if and only if the series 1+ 2—[1’ coep 2oy ooy Ao s o hverges. In

Hip2 H1p2: fin

our case,

Ao A1 _ k(k+ ) (k4 (n—1))8
fi1 - fn p(2p) - - - () '

Ty =

If B > u, then, for n > ng, for some fixed € > 0, W > 1+ ¢, that is, z,, > C",
for C' > 1 and n > ny(e), and so Y x, = oo. In contrast, if 5 < u, then, for some

0 <e <1,

—k+(z;1)ﬂ <1—¢, and x, < ¢", for 0 < ¢ < 1 and n > ny(e); thus,

> x, < co. In this ergodic case, the invariant distribution of the random walk n(t)

is given by the formula

where

ok kBHR) k() (B 1)+ k)
et e T w(20) - (o)

Theorem 1 (Local Central Limit theorem). Let 8 < p. If [ = O(k?*/?), then, for the

invariant distribution m(n)

2
e 202

vV 2mo?

m(ng+1) ~ as k — oo (18)

uk k

2 _ ok
where 0% = GogE 0~ g



Proof.
) = LE(E+8)---(k+B(n - 1))
S nuﬁ@g) - -1->(nu)(ﬁ )
=52
SOx =

Set

ﬁl E_1q k _
B B
= (2) (0 24 )

! k

B, 51

=a, || —(1+ :
EM( n—i—z)
14 D)

i=1
! g(n—i-i—l)—l—

:a"H n+i

==

16

(19)



and because a,, ~ .

17

T 86— 1) (1= B) + k
_%H( )1 = B) + kp

it (e =Bt ku
1 4 BE=Dw=5)

l
= - R
_anOH 1_|_Z(“_B

l .
We consider ) ln(1+W> f 1n(1—|— z—1)(u—B

k
=1 o

)z +O(In(1 + FRL=2)2))

and Zln(1+ “ Up=B)) dx—f In 1+m(“ Nz + O(In(1 4 L= )))

=1

We integrate the series In(1 + z) = x — %xQ + %xi” — .

/llln (1 ==y,

and take [ = O(k?/?)

:/ll (:c—l)/illz—ﬁ)ﬁdx_%/ll ((:c—l)/ig_

B)B) e

L (N

wk 62k2
_ (=P8

2
ok F+0(1)

and

/l In(1 + w)m

[ )



Hence

(u=B)Bj2_

Qno+l ™~ Ang€

: 2 _
or, setting o* = TR

(pg4l ~ Ape€ 202,

From Eq.19

and, using Stirling’s formula and the fact that ng ~ pr

1
uk 2k U = e w=p*

2m king k
no kL B 5 TTo
Apy = (é) EA k ( < )
H CUaS &Y no
VE (£)7V2mng(no/e)
& 21 %+L)g+

2mo pw—
k
1 ( Iz M—B)B
2o \p— B p
1




and so

_2
m(no+1) = —2— ~ —="€ 22 ~ e 202 as ny — o0.




CHAPTER 3: BRANCHING PROCESS WITH MIGRATION AND
IMMIGRATION FOR BINARY SPLITTING
We now consider our process with birth, death, migration, and immigration on a
countable space, specifically the lattice Z?. As in the other models, we have 5 > 0,
the rate of duplication at x € Z% u > 0, the rate of death; and k& > 0, the rate of
immigration. Here, we add migration of the particles with rate x > 0 and probability
kernel a(z), z € Z%, 2 # 0, a(z) = a(—2), ;}a(z) = 1. That is, a particle jumps from
site x to x 4 z with probability ka(z)dt. Here we put x = 1 to simplify the notation.

For n(t,z) the number of particles at = at time ¢, the forward equation for this

process is given by n(t + dt, x) = n(t,z) + £(dt, x), where

(

1 w. pr. n(t,x)pdt + kdt + > a(z)n(t,z + z)dt
270

{dt,x) = ¢ —1 w. pr. n(t,z)(u+1)dt

0 w.pr. 1—(B4p+)n(t,x)dt— > alz)n(t,x + z)dt — kdt
\ 2#0
(20)

Note that £(dt, z) is independent on F¢; (the o-algebra of events before or including

t) and

a) Elé(dt,x)|Fet] =n(t,x)(8 —p— 1)dt + kdt + %goa(z)n(t, x + z)dt.

b) E[&3(dt, z)|Fet] = n(t,z)(8 + p+ 1)dt + kdt + > a(z)n(t, = + z)dt.
2#0

¢) ElE(dt, x)E(dt,y)|Fai] = alw — y)n(t,)dt + aly — a)n(t, y)d.
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A single particle jumps from x to y or from y to x. Other possibilities have

probability O((dt)?) = 0. Here, of course, x # y.

d) If £y, y # z, and x # z, then FE[{(dt, z)E(dt, y)E(dt, z)] = 0.

We will not use property d) in this paper but it is crucial for the analysis of

moments of order greater or equal to 3.

From here on, we concentrate on the first two moments.
3.0.1  First moment

Due to the fact that g < p, the system has a short memory, and we can calculate

all the moments under the condition that n(0,z), x € Z4, is a system of independent,

and identically distributed random variables with expectation ;%ﬁ We will select

Poissonian random variables with parameter A\ = ﬁ Setting my (t, z) = E[n(t, z)],

we have
my(t + dt,x) = E[En(t + dt, z)|F]] = E[E[n(t,z) + £(t, )| F]]

=ma(t,x) + (B — wyma(t,2)dt + kdt + > a(z)[ma(t,z + 2) — ma (¢, z)]dt
27#0
(21)

Defining the operator L,(f(t,x)) = > a(z)[f(t,z + z) — f(t,z)], then, from Eq.
27#£0

27 we get the differential equation

omy(t, x)
ot

m1(0,z) =0

= (B — wyma(t, ) + k + Lamy(t, )
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Because of spatial homogeneity, £,m;(t,z) = 0, giving

omy(t,x
IUL) (5 s t,2) +
myq (0, l’) =0
which has the solution
ko
my(t, ) = (eVPTHE—1).
—p

Thus, if 8 > u, mi(t,z) — oo, and if u > S,

lim mq (¢, _
t—00 1( ) Iu—ﬂ

3.0.2  Second moment
We derive differential equations for the second correlation function ms(t, x,y) for
x =y and x # y separately, then combine them and use a Fourier transform to prove
a useful result concerning the covariance.

L z=y

my(t + dt, z, ) = E[E[(n(t,z) + £(dt, 2))?| F<]

= ma(t, 7, 2) + 2E[n(t,2)[n(t,2)(B — p — 1)dt + kdt + Y _ a(2)n(t, = + z)]dt]
2#0
+ En(t, )8+ p+ V)dt + kdt + Y _ a(z)n(t, z + z)di]
270

Denote Laomo(t, z,y) = > a(z)(ma(t,x + z,y) — ma(t, z,y)).
270

From this follows the differential equation

Ooms(t, z, x)
ot

ms(0,z,2) =0

=2(8 — p)ma(t,x,z) + 2Lema(t, x, ) + ikﬁ + 2%“;1)
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I. x #y

Because only one event can happen during dt

P{g(dt, x) = 1,§(dt, y) = 1} = P{E(dt, x) = —1,&(dt,y) = =1} = 0,

while the probability that one particle jumps from y to z is
P{(dt,x) = 1,£(dt, y) = =1} = a(z — y)n(t, y)dt,
and the probability that one particle jumps from x to y is
P{&(dt,x) = —1,&(dt,y) = 1} = a(y — x)n(t, z)dt.
Then, similar to above

ma(t + dt, x,y) = E[E[(n(t, x) + £(t, 2)) (n(t, y) + £ )| Fal]

= m2(t7 LE,’y) + (6 - N)mQ(twrv y>dt + kml(t7y)dt + Z a(Z)(mQ(t,I + 2 y) - m2<t7 €, y))dt
2#0

+ (B = wyma(t, z,y)dt + kmy (¢, x)dt + Y a(2)(ma(t,z,y + 2) — ma(t, z,y))dt
z7#£0

+a(xr —y)ma(t,y)dt + aly — z)mq (¢, x)dt
=ma(t,z,y) + 2(8 — p)ma(t, z,y)dt + k(mi(t,y) + m(t,2))dt + (Laoyw + Lay)ma(t, z, y)dt

+a(z —y)(mi(t,x) +ma(t,y))dt

The resulting differential equation is

8777'2 (ta z, y)

8t = 2(5 - ,u)m2(t7 xz, y) + (ﬁax + ‘Cay)mZ(ta z, y) + k(ml(ta $> + ml(tv y))

+a(z —y)lmai(t, 2) + ma(t,y)]

(22)
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That is

2

p—_>

a7/’7/2 (ta xz, y)
ot

= 2<ﬂ - M)mQ(ta Z, y) + ('Ca:c + *Cay)mQ(ta x, y) + + 20’(3: - y)

Because, for fixed t, n(t,z) is homogeneous in space, we can write ma(t, x,y) =

ma(t,z —y) = mao(t,u). Then, we can condense the two cases into a single differential

equation
Oma(t, u) = 2(8 — p)ma(t, u) + 2Laumo(t, u) + 25 + 2a(u) £ + 5o (u) 2Lt
815 % 2%, aul’t2\ b, n—_ =7 0 u—p

mo(0,u) = En*(0,z)

Here w =z —y # 0 and a(0) = 0.

We can partition mo(t, u) into ma(t,u) = maoj + mae, where the solution for mo;

depends on time but not position and the solution for msy depends on position but

2k2

not time. Thus, £,,m21 = 0 and mo; corresponds to the source et which gives

Omo (t,u) 2k?

— 2 =2(f - t

Y (B — wymar(t,u) + W — 5
- 2
Ast — 00, moy — My =m3(t,x) = (ufﬂ)Q.
0
For the second part, mos % =0, i.e.
220 9(B — t 2L t, 2 ) —= =0
ot (B — p)maa(t,u) + maa(t, u) + a(u>ﬁb—5 + do(u) 8

Ast — 00, may — M,. M, is the limiting correlation function for the particle field

n(t,z), t — oco. It is the solution of the “elliptic” problem

2£auM2<u) - 2(:“ - B)MQ(U) + 5000% + 2@('&)’“ f 5 =0

ko
p—_0
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Applying the Fourier transform My(0) = 3. My(u)e’®®, § € T4 = [—7, 7]¢,

we obtain

We have proved the following result.
Theorem 2. If t — oo, then Cov(n(t,x),n(t,y)) = E[n(t,x)n(t,y)|—E[n(t, x)| En(t, y)]
= m2<ta z, y) - ml(tv x)ml(t7y)7 tends to -Z\~42('r - y) = MQ(U) € L2(Zd)

The Fourier transform of M,(-) is equal to

MQ(H) =

R S
M_/B’2 M—ﬁ’g /"L

where ¢; =

Let’s compare our results with the corresponding results for the critical contact
model [3] (where k = 0, = ). In the last case, the limiting distribution for the field
n(t,r),t > 0, z € Z%, exists if and only if the underlying random walk with generator
L, is transient. In the recurrent case, we have the phenomenon of clusterization. The
limiting correlation function is always slowly decreasing (like the Green kernel of L,).

In the presence of immigration, the situation is much better: the limiting correlation
function always exists and we believe that the same is true for all moments. The decay
of My(u) depends on the smoothness of a(f). Under minimal regularity conditions,
correlations have the same order of decay as a(z), z — oo. For instance, if a(z) is

finitely supported or exponentially decreasing, the correlation also has an exponential

decay. If a(z) has power decay, then the same is true for correlation My(u), u — oo.



CHAPTER 4: PROCESSES IN A RANDOM ENVIRONMENT

The final four models involve a random environment. Two are Galton-Watson
models with immigration and lack a spatial component. In the first, the parameters
are random functions of the population size; in the second, they are random functions
of a Markov chain on a finite space. The last two models are spatial and feature
immigration, migration, and, most importantly, a random environment in space, still

stationary in time for the third but not stationary in time for the fourth.
4.1  Galton-Watson processes with immigration in random environments

4.1.1  Galton-Watson process with immigration in random environment based on

population size

Assume that rates of mortality u(-), duplication (), and immigration k(-) are
random functions of the volume of the population x > 0. Namely, the random
vectors (p, 3, k)(z,w) are i.i.d on the underlying probability space (€, Fe, P.) (e:
environment).

The Galton-Watson Process is ergodic (P,-a.s) if and only if the random series

< 00, P.-a.s.

g_ i k0)(B(1) + k(1)) (26(2) + k(2)--- (n = 1DB(n — 1) + k(n — 1))
p(1)(20(2)) - - - (npa(n))

n=1
Theorem 3. Assume that the random variables 5(z,w), pu(z,w), k(x,w) are bounded

from above and below by the positive constants C*: 0 < C~ < B(x,w) < CT < 0.
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Then, the process n(t,w.) is ergodic P.-a.s. if and only if (In fjg:);) = (Inp(+)) —

(In(u())) <0

Proof. 1t is sufficient to note that

k(n—1,w)+ (n=Df(n —1w) R 4 B — 1w) it o(t)

nu(z,w) p(n, w)

]

It follows from the strong LLN that the series diverges exponentially fast for
(InB(+)) — (Inu(-)y > 0; it converges like a decreasing geometric progression for
(Inp(+)) — (Inp(-)) < 0; and it is divergent if (InF(:)) = (Inp(-)). It diverges even

when 5(z,w.) = p(z,w.) due to the presence of k=~ > C~ > 0.

Note that ES < oo if and only if <’\Ef(;)1)> = <)\>(%) < 00, i.e., the fluctuations of

S, even in the case of convergence, can be very high.
4.1.2  Random non-stationary(time dependent) environment

Assume that k(t) and A = (u— 8)(t) are stationary random processes on (2., Pyy,)
and that k(¢) is independent of A. For a fixed environment, i.e., fixed k(-) and A(),

the equation for the first moment takes the form

dm1 (t, wm)

o = —A(t,wp)my + k(t,wn)

m1(0,w,) = mq(0)

Then

t
(10, = ma(0)e 680ty [ (s, o I A
0
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Assume that 3 > A(-) >0 >0, + 2 k(-) > 6 > 0. Then

t
my(t, wy,) = / ko (s, wp e~ ds Aluwmldugg L (e,

—0o0

Thus, for large ¢, the process m1(t, wy,) is exponentially close to the stationary process

t

Assume now that k(t) and A(s) are independent stationary processes and —A(t) =
V(z(t)), where x(t), t > 0, is a Markov Chain with continuous time and symmetric
geometry on the finite set X. (One can also consider z(t), t > 0, as a diffusion process

on a compact Riemannian manifold with Laplace-Beltrami generator A.) Let

u(t, x) = E,eho V0 f(z,)

= Byel ~Aed f ()

Then
([ Ou
% Lu+Vu=Hu
(23)
| ul0.9) = £(2)
The operator £ is symmetric in L?(x) with dot product (f,g) = > f(x)g(z).

zeX

Thus, H = £+ V is also symmetric and has real spectrum 0 > —§ > A\g > A\ > -+~
with orthonormal eigenfunctions ¢y(z) > 0,31(x) > 0, --- Iinequality Ay < 0 < 0
follows from our assumption on A(-).

The solution of equation 23 is given by

u(t,x) = M () (t, ).
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Now, we can calculate < m (¢, x,w,,) >.

t
< >= / < k() >< Epels VEdu 5 gg (24)
Here, (z) = & = % is the invariant distribution of z5. Then

= 1
- _ — (Y1)’ —
<k> )\k(wk ) N
k=0
__<k:>i(z/)k]l)2
N N —~ A

4.1.3  Galton-Watson process with immigration in random environment given by

Markov chain

Let x(t) be an ergodic MCh on the finite space X and let 5(z), u(z), k(z), the
rates of duplication, annihilation, and immigration, be functions from X to R*, and,
therefore, functions of ¢ and w,. The process (n(t), z(t)) is a Markov chain on Z} x X.

Let a(x,y), v,y € X, a(z,y) >0, > a(z,y) =1 for all z € X, be the transition

yeX
function for x(t). Consider E, ) f(n(t), z(t)) = u(t, (n,)). Then

u(t+dt, (n,z)) = (1 — (nB(x) + nu(z) + k(z) — a(z, x))dt)u(t, ) + nf(x)u(t, (n + 1, z))dt

+ k(x)u(t, (n + 1, 2))dt + np(x)u(t, (n — 1,2))dt + Z a(z,y)u(t, (n,y))dt

YYyF£T
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We obtain the backward Kolmogorov equation

S 3 alt ) (1)) — ult, (n,2))) + (05 () + k) ult, (n +1,2) — it (n, )
YYFZ
+ nu(az)(u(t, (n - 17 35)) - u(t’ (n’ x)))
u(0, (n,z)) =0

Ezxample. Two-state random environment.

Here, x(t) indicates which one of two possible states, {1,2} the process is in at time t.
The birth, mortality, and immigration rates are different for each state: £, and s, 11
and 9, and k; and ky. For a process in state 1, at any time the rate of switching to
state 2 is ai, with as the rate of the reverse switch. This creates the two-state random

environment. Let G be the generator for the process, as diagrammed in Figure 3.

mn - BiN+k
e Trsandt Dy

oy oL 4
L O

0 1 2 s n-1 n n+1
Sapmarher i
e BN+k,

Figure 1: GW process with immigration with random environment as two states

The following theorem gives sufficient conditions for the ergodicity of the process

(n(t), ().
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Theorem 4. Assume that for some constants é > 0 and A > 0

Then, the process (n(t), z(t)) is an ergodic Markov chain and the invariant measure of
this process has exponential moments, i.e., £ e*® < ¢y < oo if A < )¢ for appropriate

(small) A\g > 0.

Proof. We take as a Lyapunov function f(n,z) = n.
Then, Gf(n(t),x(t)) = (B — pa)n + ki So for sufficiently large n, specifically

n>%,wehaver§O. O]

4.2 Models with immigration and migration in a random environment

For this most general case, we have migration and a non-stationary environment
in space and time. The rates of duplication, mortality, and immigration at time ¢
and position z € Z% are given by B(t,x), u(t,x), and k(t,x). As in the above models,
immigration is uninfluenced by the presence of other particles; also set §; < k(t, z) <
02, 0 < 61 < 99 < oo. The rate of migration is given by k, with the process governed
by the probability kernel a(z), the rate of transition from x to = + 2, z € Z%.

If n(t, z) is the number of particles at x € Z% at time t, n(t+dt, x) = n(t,x)+£(t, z),
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where
( 1 w. pr. n(t,x)B(t,x)dt + k(t,z)dt + > a(—2)n(t,x + z)dt
z#0
—1 w. pr. n(t,z)u(t,z)dt + > a(z)n(t, x)dt
§(tw) = 7
0 w.pr. 1—(8(tz)+ pu(t,z))n(t,z)dt — %a(z)n(t, x+ z)dt
— > a(z)n(t,x)dt — k(t, x)dt

\ z7#0

For the first moment, m; (¢, z) = E[n(t, x)], we can write
my(t +dt,z) = E[E[n(t + dt, z)|F]] = E[E[n(t, z) + €(t, z)| F]]
=my(t,z) + (B(t,z) — u(t,x))m(t, x)dt + k(t, z)dt

+) a(2)[ma(t,x + 2) — ma (¢, x)]dt

z7#£0
and so, defining, as above, L,(f(t,z)) = >_ a(2)[f(t,x + z) — f(t, x)], we obtain
2#0
Omilh ) _ (B4, 2) - pu(t, 2))ma(t, @) + k(L 2) + Lama(t, )
ot (25)
ml(O, $) =0

We consider two cases. The first is where the duplication and mortality rates
are equal, 5(t,x) = p(t,z). Because of the immigration rate bounded above 0, we
find that the expected population size at each site tends to infinity. In the second
case, to simplify, we consider 5(t,z) and (¢, x) to be stationary in time, and assume
the mortality rate to be greater than the duplication rate everywhere by at least a

minimal amount. Here, we show that the interplay between the excess mortality and
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the positive immigration results in a finite positive expected population size at each

site.
421 Casel
If B, ) = plt, )
omq (t,
IUL) e, 2) + Lo 1,
mi (0, l‘) =0
Taking Fourier transforms,
om (t, ~ e~
L)t ) + Lo 4.0)
m1(0,z) =0
0 - _— - Lo (v)t —~ —La(v omy v
a(e_ﬁa(”)tml) = —Lq(v)eLWlmy 4 e~ Eal )ta—tl = L (t, v)

t = —~
my(t,v) = / e~ (5TIL (5, v)ds
0
Taking the inverse Fourier transform,

1 ! —(s=t)La(v) T —i(v,x
my(t, ) = W/T /0 e~ 0L (5, v)dse P dy
d

¢ t
:/ dsZk(s,y)p(t—s,x—y,O)Z/ 01ds = 61t

0 yezd 0
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where

d
1 ; , 1 —t 3- (cos (vj)—1)—i(v,z—y)
t7 = _tﬁa(v)_l(’u7$_y)d — / j=1 d
) = o ] ECOTY '

Ast — 00, 01t — oco. Thus, when the birth rate equals the death rate, the expected

population at each site x € Z? will go to infinity as t — co.
4.2.2  Case Il

Here, 5(t, x) # p(t, x). For simplification we assume that only immigration, (¢, z),
is not stationary in time. In other words, we us assume that the duplication and
mortality rates are stationary in time and depend only on position: §(t,x) = 5(z),

w(t,z) = p(x) and p(z) — B(x) = §; > 0. From Eq. 25, we get

amg—(tt’x) = k(t,x) + Loma(t,z) + (B(t, x) — u(t, x))my(t, x)
m1(0,z) =0

This has the solution

t
mi(t.) = [ ds 3 st~ s,5.0)
0 yezd
where ¢(t — s, z,y) is the solution for
( aq

5 = Laa+ (Bt w) — plt,2))g

Q(vaay) = 5(1’ - y) =
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By the Feynman-Kac formula,

q(s,,y) = Ey[elo ) -pledug 4]
— E[efo“’(ﬂ(wu)—#(ru)du(;(xs —y)|zo = ]
— E[B[eh e meiug (g, — )z, = 7,5, = yl|zo = 1]
= P(x, = y|zo = x)EgHy[efdg(ﬂ(xu)*u(ru)du]
= (5,2, y) Eaesy [ef(f(ﬁ(ru)—u(xu)du]

where

1 —tLa(v)—i(v,z—y)
l e HalTHITY) dy,

p(t,z,y) =

Finally

t
tlggo my(t,z) = lim [ ds Z k(s,y) Epylefo " Bld—n@adu), g g )

t—r00 0 pezd
and letting w =t — s
t
< hm/ dw”k||ooEm_>y[efow(ﬂ(m“)_u(x“)d“]
t—oo Jo

< Ikl /0 e since B(x) — u(x) < —8y < 0

&1l oo
o

Thus, when p(z) — f(z) > 0, tlim my (t, z) is bounded by 0 and Wgﬁ, so this limit
—00 1

exists and is finite.



CHAPTER 5: SPATIAL PROCESSES WITH IMMIGRATION ON ZP IN
HOMOGENEOUS ENVIRONMENT FOR MULTIPLE OFFSPRING

5.1  Description of the Model
We now consider our process with birth, death, migration, and immigration on a
countable space, specifically the lattice Z¢. We denote N(t,z), t < 0, x € Z% as
the global population at time ¢ in the position y € Z¢ and denote n(t,x,y) as the
subpopulation generated by one particle at the initial time 0 in the position y € Z¢.
Those subpopulations are independent and

N(t,z) =Y n(t,z,y), N0,z)=1

xzcZd

Notations:

(i): the birth rate of j — 1 particles: §; > 0, j = 2,3,4,5,---, the rate of birth
that one particle will split into j particles at moment ¢, in other words, the birth
rate that each parent particle will generate j — 1 offsprings independently.During
a period of time (t,t 4 dt), the probability that one particle will split into j par-
ticles is B;dt. Let us introduce the corresponding infinitesimal generating function
Fz)=p—(u+ gﬁj)z + ;@zj. We will assume that F'(z) is an analytic function

3> J>

in the circle |z| < 14, § > 0, i.e the rate of birth /; as a function of j is exponentially

decreasing. And we also assume that the new offsprings start their evolution from the
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same birth place independently on others, like in the classcial paper of Kolmogorov,

Petrovski and Piskunov(1937)[5]

(ii):the rate of death:ys > 0. During a period of time (¢, ¢+ dt), the probability that

one particle will die is udt.

(iii):the rate of immigration: k& > 0. During a period of time (¢,t + dt), the prob-
ability that one new particle outside of the system appears in the site x € Z¢ is kdt.
The appearance of a new particle in the system is uninfluenced by the presence of

other particles.

(iv): the rate of particles’ migration: x > 0. Migration of the parent particle

depends on the probability kernel a(z), a(0) = —1, ; a(z) = 1,2 € Z4, here a(z)
2#0

is the transition rate of parent particle from x to x + 2z, z € Z% at t. The parent

particle jumps from site x to « + z during a period of time (¢, ¢+ dt) with probability

ka(z)dt. The generator of the corresponding (underlying) random walk is the discrete
or lattice Laplacian L,9(z) = K ; [V(z + 2) — P(z)]a(z).
240
This model is similar to the well-known Kolmogorov-Petrovski-Piskunov (KPP)
model(1937)[5]. However, first, for the KPP model, the state space is continuous state
space R? instead of discrete state space Z¢ and the underlying process is Brownian
motion instead of a random walk. These two differences are rather essential technical

points. In the KPP case, the study of stead states was developed by the ideas of
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R. L. Dobrushin [2], who applied a technique involving partial differential equations.
In the case of continuous contact model, in the terminology in Kondratiev, Kutoviy
and Pirogov (2008) [6], there is no immigration (i.e k=0) and the birth rate equals
the death rate (i.e S = u), They applied forward Kolmogrov equation to prove the
existence of the steady states (the limit of the total number of population as ¢t —
00). But with the presence of the immigration, we have to use backward Kolmogrov
equation.

For simplicity, we denote n(t,x,y) as n(t,z), the number of particles at = at time

t, the equation for this process is given by n(t + dt, z) = n(t, z) + &(dt, ), where

1 w. pr. n(t,z)Bedt + kdt + k > a(z)n(t,x + z)dt
270

j w.pr. n(t,z)Bjdt j>2
E(dt,x) =< —1 w. pr. n(t,z)(u+ K)dt (26)
0 w. pr. io: n(t,z)B;dt —n(t,z)(p + K)dt

—k Y a(z)n(t,x + z)dt — kdt
L 2#0

Note that £(dt, z) is independent on F¢; (the o-algebra of events before or including

t) and only one event can happen during (¢,t + dt). Thus

a) F¢(dt,x)|Fe) = Z gn(t,z)Bjdt + kdt + £ Y a(z)n(t,z + z)dt —n(t, z)(p +

j=1 2#0

K)dt.

b) E[&2(dt,x)|Fe] = Z] n(t,x)Bipmdt +kdt+5 ) a(z)n(t,z+2)dt +n(t, z)(p+

j=1 2#0

K)dt.

c) E[&(dt, z)¢(dt,y)|Fet] = ra(x — y)n(t,x)dt + ka(y — x)n(t, y)dt.
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A single particle jumps from x to y or from y to x. Other possibilities have

probability O((dt)?) = 0. Here, of course, x # y.

d) If £y, y # z, and x # z, then FE[{(dt, z)E(dt, y)E(dt, z)] = 0.

We will not use property d) in this paper but it is crucial for the analysis of

moments of order greater or equal to 3.

From here on, we concentrate on the first two moments.
5.2 First Moment
Setting mq (¢, x) = E[n(t, )], we have

my(t+ dt,x) = E[E[n(t + dt,z)|F]] = E[En(t,x) + £(t, z)|F]]

=my(t,x)+ > jma(t,2)Biadt + kdt — pmy (t2)dt + kY a(z)[ma(t, o + 2) — my (¢, 2)]dt
j=1 2#0

(27)

Defining the operator L,(f(t,x)) = > a(z)[f(t,z + z) — f(t,z)], then, from Eq.
2#£0

27 we get the differential equation

om(t, )

ot = (> B —pwma(t,z) + k+ Lomy(t, )
=1

(28)
m1(0,z) = E[n(0,x)]

Because of spatial homogeneity, £,m;(t,z) = 0, giving

omy (t, x)

En = (§j5j+1 —pwymy(t,z) +k

m1(0,2) = E[n(0, )]

Let 8= ) jBj+1. When = f(x), p = p(x), k = k(z) are bounded functions on
j=1

the lattice Z9, we will have exactly same equation as Equation 28. When we have all
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parameters (3,k,;. constants, we can solve this equation and get the following result:

k

k
(B—p)t (B—w)t
e + En(0,x)|e
n— 5 o — ﬁ [ ( )]

my(t,z) =

Thus if 5 > p, my(t,x) — oo, and if u > f,

lim my (t,x) = ——
t—o0

p=5
independently on the initial conditions. The next result presents the Lyapunov sta-

bility of the first moment.

Theorem 5. Let coefficients 3, (x),n > 2, u(z), k(z), z € Z¢ are bounded and u(z) —

B(x) > 61 > 0,k(z) > dy > 0. Then for the bounded initial condition, there exists
my (oo, z) = lim my(t, )
t—00

Let us stress that in the contact model (see [5] and [8]),the limiting steady states
exists only in the critical case when p(x) = S(x) and this state is unstable with respect
to any sufficiently small in L*-norm perturbations(including random perturbations)

of the parameters of the model.
5.3  Second Moment

We derive differential equations for the second correlation function my(t, z,y) for
x =y and x # y separately, then combine them and use a Fourier transform to prove

a useful result concerning the covariance.
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. x=y9y
my(t + dt, z, ) = E[E[(n(t, z) + £(dt, z))?| F<]

= ma(t, ,2) + 2E[n(t,2)[>_ jn(t,x)Badt + kdt + £ a(z)n(t,z + z)dt

j=1 z7#£0
—n(t,z)(u+ K)dt)] + B> n(t,z)Bjdt + kdt + £y a(z)n(t, z + 2)dt+
j=1 z7#£0

n(t,x)(pu + K)dt]

=ma(t, 2, 2) + Y 2Brama(t,z)dt + kdt + £ a(2)[ma(t,z + 2)

j=1 z#0

—my(t,x)]dt + my(t,z) (1 + 2k + 2k)dt + 2 ijg(t, z, )P4 dt
j=1

+ 2!{2 a(z)[ma(t,x,x + 2) — ma(t, x, x)|dt — 2ma(t, x, x)pdt

Denote ‘Came(t7 z, y) = Z Q(Z)(mg(t, T+ Z, y) - m2(t7 z, y))
2#0

From this follows the differential equation

( 6 t 0
W =2(8 — wma(t,x, x) + 26Lagma(t, z,2) + > j2Bj0ama(t,x)+
=1

k+ Lomi(t,x) +m(t,x)(p + 25 + 2k)

my(0,z,2) = E[n?0,x)]

\

II. z#£y

Because only one event can happen during dt

P{E(dt, ) = 1,6(dt, y) = 1} = P{(dt, x) = —1,£(dt,y) = =1} = 0,

while the probability that one particle jumps from y to z is

P{&(dt,z) = 1,¢(dt,y) = =1} = ka(x — y)n(t, y)dt,
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and the probability that one particle jumps from x to y is
P{¢(dt, x) = —1,&(dt,y) = 1} = ka(y — x)n(t, z)dt.

Denote Loy = > a(2)(f(t,x,y +2) — f(t,2,y)). Thus
2#0

my(t + dt, z,y) = E[E[(n(t, z) + (1, 2))(n(t, y) + (1, y))[F<]]
=ma(t,x,y) + (B — w)ma(t, z,y)dt + kmq(t, y)dt+

£ a(z)(ma(t,x + 2, y) — mat, 2,y))dt + (B — p)ma(t, z, y)dt + kmy (¢, )dt+
K Z a(z)(ma(t,z,y + z) — ma(t, z,y))dt + ra(x — y)m4(t,y)dt + ka(y — x)mq (¢, z)dt

=ma(t,z,y) + 2(8 — p)ma(t, x, y)dt + kmy(t,y)dt + kmq (¢, x)dt+

F(Lax + Lay)ma(t, 7, y)dt + ra(z —y)(ma(t, z) + kma(t, y))dt

The resulting differential equation is

OMAETY) (L + Loty ) + 208 — wymalt,2,y)
o (29)

+ kmy(t, z) + kma(t, y) + ka(z — y)[ma(t, ) + ma(t, y)]
with the initial condition my(0,x,y) = (En(0,z))?
Due to the fact that for fixed ¢,n(¢, x) is homogeneous in space, we can write ms(t, x,y) =

ma(t,z —y) = ma(t,u). Thus we can combine two cases and recieve the equation for

the second moment:
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(

Oma(t, u)

iy = 26Logmo(t,u) + 2(8 — p)ma(t, u)

+00(w) W (my) + 2ka(u)P(my)

mo(0,2,y) = (En(0,z))%(1 — do(u)) + do(u) En?(0, u)

\

Here x — y = u, ¥U(x) and ®(x) are known functions and depend linearly on the
first moment m;.
Without loss of generality, to simplify the calculation, assume for each site, in the

beginning, the number of population is ;%5’ then we can obtain final differential

equation:
67712—(;7,&) = 2’€£aum2<t7 u) + 2(6 - N’)mQ(ta ’LL)
K G — DBy +2
- B owka(u) i (j;J(J )Bj1 +2) (30)
p—p  p-p " w—p
\ m2(0>u> = (MEZBP

To solve this equation, we can make a transformation of (30). The solution of

equation (30) is ma(t, u) = ma: (¢, u) + (uEQﬁ)Z'

k(2p + ij(j —1)Bj11)

J]=

Oma(t,u) + 8o(u) — 8 (31)

ot
mgl(O, U) =0

2kka(u)
p—p

= 2/<;£aum21(t, u) —

For equation (31),we can apply discrete Fourier transform to mo; (¢, u):

o (t,0) = Z maoy (t,u)e' @, 0 € [—m, 7]?

ueZd
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and use the following lemma:

Lemma 6. Define ﬁ(go) = §0(1 — cos(p, 2))a(z). Then Z\f(gp) = —f(gp)ﬁ(go) =

(a(p) — 1L(y)

Proof.
Lorf(p) = Z e!(7) g a(z)(f(x+2) = f(x))
:;a( o) ZZdeZ(‘”*Z)fx—l—z sze
= §a<z><ei<w> ~ 1)f(p)
= —f(p) ;u — cos(g, 2))a(2)
=—L()f(¢)
And
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After applying Fourier transform at both sides of equation (31), we get

k(2p + ij(j —1)Bj11)

on ,0 . . 2kka(0 ]
m21<0,6) — 0

(32)

The solution of equation (32) is in the following form:

k(2u + i 7§ —1)Bj11) — 2ka(0)

Mo (t,0) = =1 _ 2n(a() -1yt
0 1= a@u—5 )

Then we can find the inverse Fourier transform.

mgl(t7 u) =

1 —i(0,u) ~
L /Tde @) g (¢, 0)d6

1 .
= @ ) £(0)e®tdp

where 7% = [—7, 7|4 and f(0) = e~ @O =0wp5,, (¢, 0).
a(0) is twice continuously differentiable and has a maximum at the point 6 = 0, see
E. Yarovaya [11]. Then using the Laplace method, we get mo; (¢, u) has the following

asymptotic property:

21

/2 f(0)+0¢™)
t | detagy(0)]

k(2p + ij(j = 1)Bjs1)
~ (2_7T)d (2'%” — B)
t ety 0)]

mo (t,u) = etd(e)(

(1 o 672/{7&) 4 O(tfl)

as t — o0o.

Hence, we have already proved the following theorem:

Theorem 7. Let coefficients 3,(x),n > 2, u(x), k(x), x € Z¢ are bounded and pu(x) —
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B(x) > > 0,k(x) > b > 0. Then for the bounded initial condition, there exists
mQ(OO, €, y) = lim m?(ta Z, y)
t—ro00

Let’s compare our results with the corresponding results for the critical contact
model [3] (where k = 0, = ). In the last case, the limiting distribution for the field
n(t,x),t >0, v € Z¢, exists if and only if the underlying random walk with generator
L, is transient. In the recurrent case, we have the phenomenon of clusterization. The
limiting correlation function is always slowly decreasing (like the Green kernel of £,).
In the presence of immigration, the situation is much better: the limiting correlation

function always exists and we believe that the same is true for all moments.



CHAPTER 6: LOCAL AND NONLOCAL PERTURBATIONS OF THE
HOMOGENEOUS ENVIRONMENT

6.1  Nonlocal Perturbations

Let my(t,x) = En(t,z), m(0,2) =0, V(z) = p(z) — p(z).

% = Lomy + V(2)my + k() (33)

Let

B(z) = fo+ €(z), €] <1
p(x) = po +en(x), || <1

k(x) = ko +eC(x), (] <1

and e is a sufficiently small constant. Denote A = pg — Sy > 0

Then

0<hkyp—e<k(r)<ky+e

—A—2e<V(zr) < —A+2¢

Due to Kac-Feinman Formula,

t
my(t,z) = Em/ k;(xs)ef(f V(zu)du g
0

t ko + € ko + €

First, mq (¢, ) < (k ARy < S0 —— -

1rs,m1(,i€)_(o+€)/oe S_A—Qe o — Bo — 2¢
ICO—E

Second, mq(t,x) > (kg — € Le(-A-29sqg y 0 =
(62) > (ho =) ——
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Thus my(t,z) — £ + O(e) + O(e™") as t — oo uniformly in t. and we proved the

Lyapunov stability of the first moment.
6.2  Local Perturbations

We now consider our process with birth, death, migration, and immigration on a
countable space, specifically the lattice Z¢. We have 3 = By + odo(z) > 0, the rate
of duplication at + € Z% u = uy > 0, the rate of death; and k& > 0, the rate of
immigration. Here, we add migration of the particles with rate x > 0 and probability
kernel a(z), z € Z2, 2 # 0, a(2) = a(—=z), ; a(z) = 1. That is, a particle jumps from

2#0
site x to « + z with probability ka(z)dt.

For n(t,z) the number of particles at = at time ¢, the forward equation for this

process is given by n(t + dt, x) = n(t,z) + £(dt, x), where

/

1 w. pr. n(t,x)Bdt + kdt + k> a(z)n(t,x + z)dt
z#0

fdt,x) = ¢ —1 w. pr. n(t,z)(u+ k)dt

0 w.pr. 1—(B+p+r)n(tz)dt—rd> alz)n(t,x+ z)dt — kdt
\ 2#0
(34)
Note that £(dt, z) is independent on F¢; (the o-algebra of events before or including
t) and
a) El¢(dt,x)|Fe] = n(t,x)(f — p— k)dt + kdt + > a(z)n(t,x + z)dt.
2#0

b) E[E3(dt,z)|Fet] = n(t,z)(B+ p+ w)dt + kdt + >~ a(z)n(t, x + 2)dt.
z#0

c) El&(dt,x)€(dt,y)| Fer] = ra(z — y)n(t, x)dt + ra(y — x)n(t, y)dt.

A single particle jumps from = to y or from y to x. Other possibilities have
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probability O((dt)?) = 0. Here, of course, x # y.

d) If x #vy, y # 2z, and x # z, then E[{(dt, z)¢(dt, y)E(dt, z)] = 0.

We will not use property d) in this paper but it is crucial for the analysis of

moments of order greater or equal to 3.

6.2.1 First Moment

Theorem 8. There is a critical value of o, denoted as o,.. If o is large enough (o > o),

then H1 = \ptp has positive eigenvalue \o(o) with positive eigenfunction ¢ (x) and

0
% = rLomy + (B — p)my + odp(z)my + k (35)
: k Aot

has solution my(¢,z) = e + Cotp(z)e™" + - -
Proof. Denote m; = —— + my, then

p—p

om . . . kdo(z
8151 = kL my + (B — p)my + odo(x)my + UM _0<5) (36)

Denote kL,u + (8 — p)u + 0dp(x)u = Hu, H is the Schrédinger operator.

Applying Fourier transform to Hy = A\,

—r(1 = a(0))1(0) — A (0) + 0 (0) = At (0)

<=

ap(0) = (Ao + k(1 —a(f)) + A)

)
Mo+ A+ k(1 — a(6))
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o 1 O-¢<O> —i0x
V)= Gy /Td A sl —a@)” "

Thus

! ay)(0)
YO = Gy /T Mo ARl al) "

1 1 do
o (2n) /T Mo+ A+ r(l—ald) 1) (37)
1 df

This is the equation for \g. Since 1—a(6) > 0, A > 0, thus I(0) = @) AT (1= a)
)¢ Jra k(l—a

is positive and finite in any dimensions , and I()¢) is a decreasing function of Ay, thus
e | . 1
positive eigenvalue \g exists if — < I(0), that is 0 > o, where acr:m and at most
o
one positive eigenvalue exists.

o0

= > a;1)(x), when we substitute
i=1

odo(x)k

Then we can express my = > Ci(t)vi(x), =3
i=1

this into 36, we have

Z Ci(t)i(x) = Z AiCi(t)y(x) + Z a;ii(x) (38)

6/\it+D)\0

Ao

Thus C; = \,C; + a;, which leads to C; = . Thus m4(t,z) has the

solution my (¢, x) = u_ﬁﬁ + Cotbo(z) et + - -

O
Theorem 9. If 0 < 0 < o,, for the first moment,
om, (t,
0L, fma(t,2) + (8 — pms + oo +
ot (39)
m1(0,2) =0

Where p— > A; > 0,0 < k < Ay. Then the solution of 39 is bounded and has a



limit if ¢ — o0

Proof. This has the solution
t
mi(t,z) = / ds Y k(s,y)q(t — s, ,y)
0 yezd

where ¢(t — s, z,y) is the solution for

(

0

8_3 = Laq+ (B — p+ 0do())q
1l y==2
0 y#=x

\

By the Feynman-Kac formula,

q(s,z,y) = Ex[efos(ﬁ(wu)—u(xu)+050(wu))du5($s — )]
— E[efos(ﬂ(xu)_ﬁ"(a?u)du‘f'a‘so(ivu)6(1»5 —y)|zo = 2]
— E[E[efos(ﬂ(wu)—u(ru)+oéo(wu))du5<xs — y))|zo = 2, 25 = y]|zo = 2]
= P(x, = y|zog = I)EHy[ef(f(B(mu)fu(fcu)w:?o(xu))du]

= D5 2,) By 500 e i

where

1 —tLg(v)—i(v,z—
p(t,z,y) = 2y /Tde Hoa(W)=i02=Y) gy,

Let V(z) = 8 — p+ 0dp(x) Finally

51
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t —s
lim my(t,2) = lim [ ds Z k(s,y) Epoylelo V@It — 5 2 y)

t—o0 t—00 0
yezd
and letting w =t — s
t w
S hm/ dekHOOE:ﬂ—)y[efO V(l'u)du]
t—00 0

< ||/~€Hoo/O ety since B — p+ 0d(z) < —Ay 4 00 < 0

Ay

Al — O¢r

Thus, when u — 5 > 0, tlim mi(t, x) is bounded by 0 and , o this limit
—00

Al — O¢r

exists and is finite.

6.2.2  Second Moment

We derive differential equations for the second correlation function ma(t, z,y) =
E[n(t,z)n(t,y)] for x = y and x # y separately, then combine them and use a Fourier

transform to prove a useful result concerning the covariance.

. x=y9y

my(t + dt, z, ) = E[E[(n(t, z) + £(dt, 2))?| F<]
=ma(t,z,x) + 2En(t,x)[n(t,x)(f — p — k)dt + kdt + & Z a(z)n(t,x + z)]dt]
z#£0

+ En(t,)(B+ p+ k)dt + kdt + £ Y a(z)n(t,z + 2)dt]
270

Denote ‘Came(t7 z, y) = Z a(z)(mQ(tv T+ Z, y) - mZ(t7 z, y))
2#0
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From this follows the differential equation

W = 2(B8(x) — p(x))ma(t,x,x) + 26Loymo(t, x,x) + kLM (L, )
+(B(x) + p(x) + 25 + 2k)ma (t, ) + k
me(0,z,2) =0
TF#Y

Because only one event can happen during dt
P{e(dt, ) = 1,6(dt, y) = 1} = P{(dt, x) = —1,£(dt,y) = =1} = 0,
while the probability that one particle jumps from y to z is
P{(dt,x) = 1,£(dt, y) = =1} = Ka(z — y)n(t, y)dt,
and the probability that one particle jumps from x to y is
P{&(dt,x) = —1,£(dt,y) = 1} = ka(y — z)n(t, z)dt.
Then, similar to above

my(t + dt, z,y) = E[E[(n(t, z) + (1, 2))(n(t, y) + (1, y)) [ F<]]
=ma(t,z,y) + (B(x) — p(x))ma(t, z, y)dt + k(z)mq (¢, y)dt+

£ a(2)(ma(t,x + 2,y) — ma(t, z,y))dt + (B(y) — p(y))ma(t, v, y)dt + k(y)ma (¢, z)dt+
K Z a(z)(ma(t,z,y + z) — ma(t, z,y))dt + ka(x — y)m4(t, y)dt + ka(y — x)mq (¢, z)dt

=ma(t,z,y) + (B(zx) — p(x) + By) — p(y))ma(t, z, y)dt + k(z)mq(t, y)dt + k(y)ma(t, z)dt +

+ ka(x —y)(my(t, ) + kmy(t,y))dt
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The resulting differential equation is

8m2 (tv Z, y)

5 = K(Laz + Lay)ma(t, z,y) + (B(x) — p(z) + Bly) — pu(y))ma(t, z,y)

+ k(y)ma(t, z) + k(z)mi(t, y) + rka(z — y)[ma(t, ) +ma(t, v)]

(40)

Consider H,, and H,,, two operators applied to x and y respectively. Hymo(t, z,y) =
KLazmo(t, x,y)+ (B(x) — p(x))me(t, x,y), and Hyms(t, x,y) = KLayyma(t, z,y)+

(B(y) — pw(y))ma(t, z,y).

From the theorem we proved in the first moment case, we know if ¢ > o,
then H, and H, both have at most one positive eigenvalue A\o(c) with positive
eigenfunction ¢ (x) and ¢ (y) respectively. (H, + Hy)v;(z)Y;(y) = A\pi(z);(y)
and A\, = A; + \j,where \; and A; are eigenvalues of H, and H, respectively
and my (1,2, ) = i M () (). As = 00, ma(t,x,y) ~ e (a)oly) +
QoA (2)ihy (y) +ePotA Py () wpo(y), thus ma(t, =, ) ~ e o () (y) +

e g () () + o () o ()] = €20 (o ) (y) + o(1))
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