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ABSTRACT

LIQIU DENG. Estimation of Semivarying Coefficient Models for Counting Process
with Applications. (Under the direction of DR. YANQING SUN)

Recurrent events are very common in many different fields, including biological,

medical, engineering and finance. Existing research have developed methodologies

to model constant covariate effects and time-dependent covariate effects. However,

in reality, for instance medical cases, covariate effects can be depending on other

covariates as well. Therefore, in this dissertation, we investigate a semiparametric

model for recurrent events, which incorporates both time-varying covariate effects

and covariate-varying effect.

In our model, we use fixed parameters to model constant covariate effects, while

we assume both time-dependent effects and covariate-varying effects to be unknown

functions. An estimation procedure is proposed to estimate the unknow parameters

and functions. Local linear smoothing method is adopted in our estimation procedure.

Detailed computation is carried out by using Newton-Raphson iterative method. The

asymtoptic properties including asymptotic normality and consistency are established

for the proposed estimators.

In order to assess the finite-sample performance of the proposed estimators and

estimation procedure, simulation studies are conducted for different cases. The sim-

ulation results show that the proposed estimators perform very well with small bias

and an empirical coverage probability close to its nominal level 95%.

In addition, the proposed model and methodologies are applied on the data from
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the African American Study of Kidney Disease and Hypertension (AASK) trial. The

data application is aiming to examing the treatment effects of three different design

in the study.
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CHAPTER 1: INTRODUCTION

Survival analysis aims at modeling time to certain event. It is of interest in many

biological, medical, engineering and financial applications. For example, animals life

in control and experimental groups, time to relapse of a certain disease after dif-

ferent treatments, first time failure of a mechanical part, or time to bankruptcy of

a financial institution. By assuming survival time follows a probability distribution

(e.g. Exponential, Gamma, Weibull, or Log-Normal etc.) that depends on covariates,

a variety of parametric regression models are developed in order to investigate how

survival time distributes given the covariates, as well as exploring how strongly sur-

vival time relates to the covariates. Another approach developed by Cox (1972) is a

semi-parametric, which assumes a parametric and proportional structure that relates

covariates to hazard rate while leaves the non-parametric part completely unspecified.

Since Cox model does not require distribution assumption, it soon becomes one of

the most popular survival regression methods.

The ordinary Cox regression model suffices in survival analysis in which events

are assumed conditionally independent given covariates. However, it is common to

observe that the event of interest occurs multiple times on one single subject, which is

referred as recurrent events. Typical examples include recurrent episodes of a disease

in patients, multiple admissions to hospitals, multiple ear infections on young age

children, multiple delinquencies of credit card customers, earthquakes in one city,
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repairs in machines and automobiles, etc. It is of interest to identify risk factors that

are associated with the frequencies of recurrent events. In this dissertation, we aim

at developing new methodologies for analyzing recurrent events data.

1.1 A Motivating Example

This dissertation is motivated by the African American Study of Kidney Disease

and Hypertension (AASK) trial. In this section, we start with a description for the

background of this clinical trial, experimental design and primary/secondary out-

comes of this trial, followed by a short summary of existing research on this clinical

trial study and our research question with this dataset.

1.1.1 AASK Trial

Studies have shown that hypertensive nephrosclerosis is the second leading cause of

renal failure in African Americans and the leading cause of renal failure or end-stage

renal disease (ESRD) (Institute of Medicine (US) Committee for the Study of the

Medicare End-Stage Renal Disease Program, 1991). The AASK trial is a randomized

clinical trial study, which aims to investigate the potential risk factors and the use of

antihypertensive treatments on the progression of chronic kidney disease (CKD) on

African Americans with hypertension.

A total of 2802 African American participants were recruited for the AASK trial.

Physical measurements were taken for a screening process to determine patients’ el-

igibility for this trial. Based on the results from a pre-trial screening process, 1708

participants were excluded from this study due to a variety of reasons, for instance,

Patient refusal, medical exclusion, study team preference, etc. A total of 1094 par-
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ticipants were enrolled in this clinical trial and randomized into different treatment

groups.

A 3*2 experimental design was applied to randomize participants into different

groups. The treatments considered in this trial include two levels of blood pressure

(BP) control and three different anti-hypertensive regimens. The BP controls were

defined by mean arterial pressure (MAP). Details for the two levels of BP controls are

given by Table 1. Participants were randomized to one of the two BP control groups.

The BP controls allocation was not blinded to neither investigators nor participants.

The anti-hypertensive regimens considered in this trial include Angiotensin Convert-

ing Enzyme Inhibitors (ACEI), Calcium Channel Blocker (DHPCCB) and β-Blocker

(BB). Different dose levels for each of those three regimens were used to maintain

the patient’s blood pressure within the assigned goal range. Table 2 below shows the

different dose levels used in this trial. The allocation process of regimens was double

blinded to both investigators and patients. A so-called ”Double Dummy” system was

used to accomplish medication masking in this trial. Each patient takes one tablet

from either placebo or BB plus one capsule from either ACEI, DHPCCB or placebo.

Table 3 summarizes the allocation of participants into different treatment groups.

The enrollment dates of patients range from March 1995 to September 1998. Pa-

tients were followed up until the end of this clinical trial September 2001. During

follow up visits, a variety of physical measurements were recorded by AASK-certified

personel, including glomerular filtration rate (GFR), central serum measurements

(for instance, sodium, urea nitrogen, phosphorus, etc.), central 24-hour urine mea-

surements, fasting lipid profiles and quality of life measurements. Table 4 shows the
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schedule for taking different measurements during follow up visits.

The primary outcome of AASK trial is GFR measure, which can measure how

well a kidney is functioning. Specifically, GFR estimates the amount of blood that

passes through the golomeruli each minute. Waste from the blood can be filtered by

glomeruli in the kidneys. Besides the primary outcome, AASK trial defined several

items as secondary outcomes, including the reduction in GFR measure by 50% or

by 25 ml/min/1.73m2, ESRD, and death. In addition, the AASK Clinical Outcome

Committee also reviewd hospitalizations and deaths and then determined those events

as cardiovascular (CV) events.

The objectives of AASK trial included the following.

1. To identify risk factors that are associated with progression of CKD on African

Americans with hypertension.

2. To deterime the effects of the anti-hypertensive drugs and the effects of lower

than usual blood pressure control on African Americans with hypertension.

In addition, it is of interest to model the secondary recurrent CV events and explore

the risk factors that are associated with such CV events. The following subsection

summarizes some of the existing studies based on the data from AASK clinical trial.
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Table 1: Blood pressure goals in AASK study and corresponding MAP range.

BP goal MAP range
lower goal MAP102− 107mmHg( BP135/85to140/90mmHg)
usual goal MAP < 92mmHg( BP115/80mmHg)
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Table 2: Anti-hypertensive regimens and different dose levels in AASK study.

Regimen Dose Level (mg)
ACEI 2.5 5 10

DHPCCB 5 5 10
BB 50 100 200
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Table 3: Allocation of participants in different treatment groups in AASK study.

BP Goal ACEI DHPCCB BB Total
low goal 215 215 110 540

usual goal 221 226 107 554
Total 436 441 227 1094
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Table 4: Follow up visit schedule and measurement schedule for patients in AASK
study.

Measurements Schedule
GFR 3, 6, 12 months,

then every 6 months thereafter
serum measurements every 6 months
urine measurements;
fasting lipid profiles;

quality of life measurement annually



9

1.1.2 Existing Research on AASK Trial

Many studies have been conducted based on this clinical trial (Norris et al., 2006;

Beddhu et al., 2009; Ku et al., 2016; Wright et al., 2002; Lea et al., 2008; Brooks et al.,

2008; Lea et al., 2003; Sika et al., 2007; Contreras et al., 2005; Raphael et al., 2010;

Hong et al., 2015; Astor et al., 2008; Wang et al., 2006; Lea et al., 2005; Lewis et al.,

2004; Gassman et al., 2003; Chen et al., 2015; Ku et al., 2018). In particular, Norris

et al. (2006) examined 38 baseline risk factors by applying Cox regression and found

a subset of factors associated with increased risk for progression to ESRD, including

baseline proteinuria, serum creatinine, urea nitrogen, and phosphorus. By using Cox

model, the research conducted by Beddhu et al. (2009) investigated the associations

of serum alkaline phosphatase with cardiovascular (CV) events and all-cause death.

Positive association between them were found to be significant. Ku et al. (2016)

evaluated the association between APOL1 genotype and mortality risk. Their results

show that Strict blood pressure control is significantly associated with decreased risk

for death by APOL1 genotype.

The aforementioned studies focused on identifying risk factors for progression of

CKD and CV events or the effects of treatments (drugs and blood pressure level)

on progression of CKD or death. However, it is natural for one to wonder if the

treatment effects would change after a specific event happens, for example patients

enter ESRD, GFR drops by 20%, etc. If yes, one would further wonder how the

treatment effects change after that specific time point? This dissertation aims to

answer these questions. Therefore, a model that can incorporates not only covariate
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effects but also covariate-varying effects is desired.

1.2 Literature Review

In the recent decades, it has become a great interest to model the occurence of

recurrent events. Intensive studies have been conducted to develp methodoligies to

analyze recurrent event data. For example, the hazard functions of gap times between

recerrent events were considered by Prentice and others (1981) and marginal hazard

function of each recurrent event by Wei and others (1989). Andersen and Gill (1982)

proposed a multiplicative intensity model, in which recurrent events were considered

as non-homogeneous Poisson process. Later on, Pepe and Cai (1993), Lawless and

Nadeau (1995), Lin et al. (2000, 2001) studied a mean/rate model with the Poisson

assumption removed.

E{dN∗i (t) | Xi(t)} = exp{βTXi(t)}λ0i(t)dt, (1.1)

The aforementioned models assume that the covariate coefficients are constant over

time. For many applications, however, the covariate effects change over time instead

of staying constant. For example, in clinical study, the treatment effects may change

over time, and the temporal effects of treatment may be of interest. Chiang and Wang

(2007) modified the above the model to allow the coefficients to be time-dependent.

E{dN∗i (t) | Xi(t)} = exp{β(t)TXi(t)}λ0i(t)dt, (1.2)

Amorim et al. (2008) developed a semiparametric rates model allowing covariate

effects to be time-dependent. Regression splines techniques are incorporated in its

estimation procedure for estimating the time varying covariate coefficients. More
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recently, Sun et al. (2011) proposed a marginal rates model, which allowed some

covariate coefficients to be time-varying while others constant.

E{dN∗i (t) | Xi(t), Zi(t)} = exp{β0(t)TXi(t) + γT0 Zi(t)}dµ0(t), (1.3)

where β0(t) is an unknown p-vactor of time-varying regression coefficients, γ0 is a q-

vector of unknown constant regression coefficients, and µ0(t) is an unspecified baseline

mean function.

In many applications, for instance the motivating example mentioned above, the

covariate effects can not only be time dependent but also vary with other covari-

ates. Thus, a model that can consider such covariate-varying coefficients is desired.

However, to our best knowledge, existing models and methodologists have not yet con-

sidered such covariate-varying effects on recurrent event data. In this dissertation,

we propose a semiparametric model which incorporates both time-varying covariate

effects and covariate-varying effects motivated by our motivating example.

The remainder of the dissertation is organized as follows. In Chapter 2, we in-

troduce the proposed semiparametric model, estimation procedure for estimating the

unknow parameters and functions in the model followed by a detailed computational

algarithm, and bandwidth selection for smoothing. Chapter 3 defines some notations

and presents the asymptotic properties of the proposed parameter estimates, the

proofs for which are given in Appendix. In Chapter 4, the finite-sample performance

of the proposed method is evaluated by two types of simulation studies, one of which

is survival analysis with single-event data and the other is for recurrent event data.

Chapter 5 is a real data application of the proposed method, followed by a discussion
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of our findings on the application.



CHAPTER 2: SEMIPARAMETRIC MODEL WITH NONPARAMETRIC
COVARIATE-VARYING EFFECTS

In Chapter 2, the contents are organized as follows. We introduce the proposed

model in Section 2.1, along with related notations. In Section 2.2, we propose a proce-

dure to estimate the nonparametric parameters and parametric parameters contained

in our model. The detailed algorithm procedure for estimation is given in Section 2.3.

Since bandwidth selection is involved in our estimation procedure, we use cross val-

idation method to choose the optimal bandwidth, details of which are presented in

Section 2.4.

2.1 Model Description

In this section, we start with introducting the notations that are used in our pro-

posed model and methodology.

Let n be the total number of subjects in a random sample, t be the follow up time,

and t ∈ [0, τ ]. Suppose the event of interest can be repeated for the same subject i

and the recurrent event times can be recorded by Tij, which means the jth event time

for the ith subject. Let Ki be the total number of recurrent events for subject i, then

we have the event times 0 ≤ Ti1 < Ti2 < · · · < TiKi ≤ τ for subject i.

During the follow up period, it is common that subjects could drop out at somepoint

due to a variety of reasons. For instance, in clinical trial, patients could die due to

unrelated causes or lose interest and thus stop following up with the study. Let Ci be
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the minimum of end of the study τ and censoring time for subject i. For subject i, only

obervations at time points before Ci are possible, which means that the observation

for subject i is terminated at Ci. Thus, if we define N∗i (t) =
∑ni

j=1 I(Tij ≤ t) to be

the number of events recorded for subject i by time t, then the observed event process

can be written as Ni(t) = N∗i (t ∧ Ci). Note that I(·) is the indicator function, and

a ∧ b means the minimum of a and b.

Suppose Qi(t) and Ui(t) are covariates that are associated with subject i. Ui(t)

is a scalor process and has support U . Qi(t) consists three parts Xi(t), Zi(t) and

Wi(t), the dimentions of which are p1, p2 and p3, respectively. Each part of Qi(t) =

(XT
i (t), ZT

i (t),W T
i (t))T is allowed to be either time-dependent or time-independent

over the time interval [0, τ ]. Note that AT means the transpose of matrix/vector A.

We assume that the random processes {Ni(·), Qi(·), Ui(·), i = 1, · · · , n} are inde-

pendent identically distributed (iid). In this dissertation, we only consider the case

that the censoring is caused by the termination of the study or random loss of follow

up, therefore it is reasonable to assume that the censoring time Ci is noninforma-

tive and independent of event time Tij. In other words, we have E{dN∗i (t) |Qi(t),

Ui(t), Ci ≥ t} = E{dN∗i (t)|Qi(t), Ui(t)}. However, the censoring time Ci is allowed

to depend on covariates Qi(t) and Ui(t). Some researchers, for instance Ghosh and

Lin (2003), have developed methodologies to deal with recurrent events data in the

presence of dependent censoring.

Let Ft− denote the filtration, which is the σ-algebra generated by the observed

information. Let λi(t) = E{dN∗i (t)|Ft−} be the intensity or the mean rate λi(t) =

E{dN∗i (t)|Xi(t), Ui(t)}. We propose the following semiparametric varying-coefficients
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intensity model:

λi(t) = exp{αT (t)Xi(t) + βTZi(t) + γT (Ui(t))Wi(t)}, (2.1)

for 0 ≤ t ≤ τ , where

1. α(t) = (α1(t), α2(t), · · · , αp1(t))T is a vector with the same dimension p1 as

Xi(t), each element of which is an unspecified function over the time period

0 ≤ t ≤ τ . By setting the first element of Xi(t) to be identity vector I, the

accoresponding α1(t) is the nonparametric baseline function.

2. β = (β1, β2, · · · , βp2)T ) is a vector of unknown time-independent parameters

with the same dimention p2 as Zi(t);

3. γ(Ui(t)) = (γ1(Ui(t)), γ2(Ui(t)), · · · , γp3(Ui(t)))T is a p3-dimensional vector of

functions of corativate Ui(t).

In the proposed model, we model the time-varying effects by the non-parametric

part α(t), constant effects by the parametric part β, and covariate-varying effects by

the non-parametric part γ(u). γ(u) models the effects of covariate Wi(t) at the level u

of another covariate Ui(t). Compared with model (1.3) proposed by Sun et al. (2011),

our model adds the ability to model the covariate-varying effects, which is common in

reality. For example, in a clinical trial, it is common that patients switch to another

treatment due to a variety of reasons. In this case, it is of interest to model the effects

of certain covariates after the patient switches treatments. Let Si(t) denote the time

point that patient i switches treatment, then we can define Ui(t) = t−Si(t) to model

the treatment switching effects.
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2.2 Estimation Procedure

In this section, we describe the estimating procedure for the parameters in our

model. Since the proposed model contains both non-parametric functions α(t) and

γ(u) and parametric parameters β, we divide our estimating procedure into two parts.

First, we estimate the non-parametric part by using Taylor expansion and local linear

approximation. Secondly, we estimate the parametric part by using profile likelihood

method. Details are as follows.

In order to use Taylor expansion, we first assume that α(·) and γ(·) are smooth

functions such that their first and second derivatives α̇(·), γ̇(·), α̈(·) and γ̈(·) exist.

With this assumption, α(·) and γ(·) can be approximated by the first order Taylor

expansion as follows.

For any t that belongs to a neighborhood of t0, t ∈ Nt0 , we have

α(t) = α(t0) + α̇(t0)(t− t0) +O((t− t0)2),

and similarly for any u that belongs to a neighborhood of u0 u ∈ Nu0 , we have

γ(u) = γ(u0) + γ̇(u0)(u− u0) +O((u− u0)2).

Therefore, for t ∈ Nt0 and Ui(t) ∈ Nu0 , the proposed model (2.1) can be approxi-

mated by the following

λ∗i (t, ϑ
∗, β; t0, u0) = exp{ϑ∗T (t0, u0)Q

∗
i (t, t0, u0) + βZi(t)}, (2.2)

where ϑ∗(t0, u0) consists a total of four parts, not only the functions themselves

but also their first derivatives, as follows.
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ϑ∗(t0, u0) = (αT (t0), γ
T (u0), α̇

T (t0), γ̇
T (u0))

T

And similarly for Q∗i (t, t0, u0), we have

Q∗i (t, t0, u0) = (XT
i (t),W T

i (t), XT
i (t)× (t− t0),W T

i (t)× (Ui(t)− u0))T

In our estimation procedure, we adopt kernal smoothing method. Suppose

1. K1(·) and K2(·) are kernel functions,

2. ht and hu are bandwidth parameters,

3. Kht(·) = K1(·/ht)/ht and Khu(·) = K2(·/hu)/hu.

Then, at each t0 and u0, we define Kht,hu(t, Ui(t); t0, u0) = Kht(t− t0)Khu(Ui(t)− u0)

as a two dimentional product kernel function.

For fixed β, at each t0 and u0, by Cook and Lawless (2007), the local log-likelihood

function for α(·) and γ(·) can be written as follows.

`ϑ(ϑ∗; β, t0, u0) =
n∑
i=1

∫ τ

0

[log(λ∗i (t, ϑ
∗, β; t0, u0)) dNi(t)− λ∗i (t, ϑ∗, β; t0, u0) dt]

Kht,hu(t, Ui(t); t0, u0). (2.3)

By taking the first derivative for (2.3) with respect to ϑ∗, at each t0 and u0, the

local score function for α(·) and γ(·) for fixed β is

Uϑ(ϑ∗; β, t0, u0) =
n∑
i=1

∫ τ

0

[dNi(t)− λ∗i (t, ϑ∗, β; t0, u0) dt]Q
∗
i (t, t0, u0)Kht,hu(t, Ui(t); t0, u0)

(2.4)

By setting Uϑ(ϑ∗; β, t0, u0) = 0, we can solve it and denote the solution by ϑ̃∗(β, t0, u0).

We define the following notations:
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1. ϑ̃(β, t, u) be the first p1 + p3 components of ϑ̃∗(β, t0, u0),

2. Q̃i(t) be the first p1+p3 components of Q∗i (t), i.e., Q̃i(t) = ((Xi(t))
T , (Wi(t))

T )T ,

3. λ̃i(t, β) = exp{(ϑ̃(β, t, Ui(t)))
T Q̃i(t) + βTZi(t)}.

Then the profile likelihood function can be written as follow:

`β(β) =
n∑
i=1

∫ t2

t1

[
log(λ̃i(t, β)) dNi(t)− λ̃i(t, β) dt

]
. (2.5)

By maximizing the profile likelihood function (2.5), we can obtain the profile maxi-

mum likelihood estimator β̂ of β.

By taking derivative of (2.5) with respect to β, the profile estimating equation for

β can be obtained by Uβ(β) =
∂`β(β)

∂β
as follows:

Uβ(β) =
n∑
i=1

∫ t2

t1

[
dNi(t)− λ̃i(t, β) dt

]{∂ϑ̃(β, t, Ui(t))

∂β
Q̃i(t) + Zi(t)

}
, (2.6)

where ∂ϑ̃(β,t,Ui(t))
∂β

is the first p1 + p3 columns of

∂ϑ̃∗(β, t, Ui(t))

∂β
= −

{
∂Uϑ(ϑ∗; β, t, Ui(t))

∂ϑ∗

}−1
∂Uϑ(ϑ∗; β, t, Ui(t))

∂β

∣∣∣∣∣
ϑ∗=ϑ̃∗(β,t,Ui(t))

.

By setting Uβ(β) = 0, we can solve it and denote the solution by β̂.

In this dissertation, we adopt the Newton-Raphson iterative method to find the

estimators of the nonparametric components ϑ̂(t0, u0) and the parametric components

β̂.

We define the following notations.

1. ϑ̂(t0, u0) = (α̂(t0, u0), γ̂(t0, u0))
T
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2. α̂(t0, u0) as the first p1 elements of ϑ̂∗(t0, u0) corresponding to the position of

α(t0) in ϑ∗(t0, u0).

3. γ̂(t0, u0) as the p3 elements of of ϑ̂∗(t0, u0) corresponding to the position of γ(u0)

in ϑ∗(t0, u0).

When we estimate α(t0) by using α̂∗(t0, u0), only those local observations with

Ui(t) within the neighborhood of u for t within the neighborhood of t0 are utilized

during estimation process. Thus, the estimator α̂∗(t0, u0) is not efficient. Similar issue

applies to the estimator of γ(u0). In order to improve the efficiency, an aggregation

step can be adopted to have more efficient estimators. The following are the proposed

estimators α(t0) and γ(u0), respectively:

α̂(t0) =
1

n

n∑
j=1

α̂(t0, Uj(t0)), γ̂(u0) =
1

nu0

nu0∑
j=1

γ̂(tu0,j, u0), (2.7)

where tu0,j ∈ U−1j (u0) = {t : Uj(t) = u0}, and nu0 is the number of points in the

union ∪nj=1{U−1j (u0)}.

2.3 Computational Algorithm

The previous section derives the estimators α̂(t0) and γ̂(u0) for the non-parametric

functions and β̂ for the parametric parameters in our model. In this section, we

sketch the detailed computational algorithm to accomplish those estimators by using

Newton-Raphson iterative method.

First, we define some notations that will be used in the algorithm as follows.

• Let ϑ̂(t, u){0} be the initial values of ϑ̂(t, u) and β̂{0} be the initial values for β̂.
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• Let ϑ̂{k}(t, u) be the kth step estimator of ϑ(t, u) and β̂{k} be the kth step esti-

mator of β

The steps of computational algorithm are given as follows.

1. Generate equally spaced grid points (t0, u0) over t and u.

2. Initialize ϑ̂(t, u){0} and β̂{0} by using arbitrary values;

3. For each grid point (t, u), plug β̂{k−1}, the (k − 1)th step estimator of β, into

the local score function (2.4). Find the root and denote it as the kth step

estimator ϑ̂∗{k}(t, u) = ϑ̂∗(t, u, β̂{k−1}). The kth step estimator satisfies that

Uϑ(ϑ̂∗{k}(t, u); β̂{k−1}, t, u) = 0

4. Obtain the estimates α̂{k}(t0) and γ̂{k}(u0) by doing aggregation through (2.7)

such that the estimated curves are smooth enough.

5. Plug in α̂{k}(t0) and γ̂{k}(u0) to (2.5). The kth step estimator β̂{k} can be

obtained by maximizing the profile likelihood (2.5).

6. Repeat step 3, 4, and 5 and update the estimators ϑ̂∗{k}(t, u) and β̂{k} at each

iteration until the convergence criteria is met. The estimator β̂ is β̂{k} at the

convergence.

2.4 Bandwidth Selection

Kernel smoothing method is adopted in our estimation procedure, which involves

selecting the optimal bandwidths. Cross-validation method has been commonly used

for bandwidth selection. In this dissertation, we choose the optimal bandwidths for
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estimating the non-parametric functions α(t) and γ(u) by using the K-fold cross-

validation method, where K represents the number of groups that a given sample is

to be split into.

In our estimation procedure, we use a two dimentional product kernel function,

which involves two bandwidths ht and hu parameters. We use K-fold cross-validation

method to choose the optimal bandwidths h∗t,K and h∗u,K parametersfor ht and hu,

respectively. Briefly, we go through each combination of (ht, hu) to see which one

results in the least negative log-likelihood define as follows. The optimal bandwidths

combination (h∗t,K , h
∗
u,K) is the one corresponding to the least negative log-likelihood.

Suppose we have a given sample. The detailed computational procedure for carry-

ing out the K-fold cross-validation are given as follows.

1. Create combinations for ht and hu.

2. Shuffle the sample randomly, split it into K groups and denote them as (G1, G2, · · · , GK).

3. For each combination of (ht,K , hu,K), do the following:

3.1. Hold out group Gk (k = 1, 2, · · · , K) as a test data set and take the

remaining groups as a training data set.

3.2. Fit the proposed model on the training set and evaluate it on the test data

set by calculating the negative log-likelihood.

3.3. Retain the evaluation score and discard the model.

3.4. repeat Steps 3.1 - 3.3 until each group gets a turn to be the test data set.
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3.5. Take the simple average of all K evaluation scores from the loop, and

denote it as the Score for current testing bandwidth combination.

4. Repeat Step 3 until each bandwidth combination is used to fit the model.

5. Compare all scores corresponding to different bandwidth combinations and de-

note the one corresponding to the lowest score as the optimal bandwidth com-

bination (h∗t,K , h
∗
u,K)



CHAPTER 3: ASYMPTOTIC PROPERTIES

In Chapter 2, we propose estimators α̂, γ̂ and β for the non-parametric functions

α(t) and γ(u) and the parameter β, respectively. It is naturally of interest to explore

the asymptotic properties for those estimators. Therefore, in Chapter 3, we will es-

tablish the asymptotic properties for those proposed estimators, including asymptotic

normality, consistency, etc. Chapter 3 are organized as follows. In Section 3.1, we de-

fine all related notations. Section 2 presents all theorems that we establish regarding

the asymptotic properties of our estimators.

3.1 Notations

We define the notations as follows.

• Let I1 = {Iij}p1×(p1+p3) be a matrix with elements like the following.

Iij =


1 for i = 1, . . . , p1, i = j

0 otherwise

• Let I3 = {Iij}p3×(p1+p3) be a matrix with elements like the following.

Iij =


1 for i = 1, . . . , p3, j = i+ p1

0 otherwise

• Let α0(t), β0 and γ0(u) be the true values of α(t), β and γ(u) under model (2.1),
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respectively.

• Let λi0(t) = exp{α0(t)Xi(t) + β0Zi(t) + γ0(Ui(t))Wi(t)}

• Let λ̂i(t) = exp{ϑ̂T (t, Ui(t))Q̃i(t) + βTZi(t)}

• Let fU(t, u) be the density function of U(t) evaluated at u

• Define

e11(t, u) = E
[
(−λi0(t)dt) {Q̃i(t)}⊗2 | Ui(t) = u

]
fU(t, u)

and

e12(t, u) = E
[
(−λi0(t)dt)Zi(t){Q̃i(t)}⊗2 | Ui(t) = u

]
fU(t, u)

• Define

Ê11(t0, u0) =
1

n

n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)
[
−λ̂i(t)dt

]
{Q̃i(t)}⊗2,

and

Ê12(t0, u0) =
1

n

n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)
[
−λ̂i(t)dt

]
Q̃i(t)(Zi(t))

T .

3.2 Asymptotic Properties

In this section, we establish the asymptotic properties for the proposed estimators

α̂(t), γ̂(t) and β̂ in this section. Three theorems are given as follows.

Theorem 3.1. Assuming the conditions given in Appendix are satisfied, then

√
n(β̂ − β0) −→ N(0, A−1β ΣβA

−1
β )
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in distribution, where

Aβ = E

[∫ τ

0

{Zi(t)− (e12(t, Ui(t)))
T (e11(t, Ui(t)))

−1Q̃i(t)}⊗2 dt
]

and

Σβ = E

[∫ τ

0

{Zi(t)− (e12(t, Ui(t)))
T (e11(t, Ui(t)))

−1Q̃i(t)} dMi(t)

]⊗2
.

The matrices Aβ and Σβ can be consistently estimated by the following two for-

mulas, respectively.

Âβ =
1

n

n∑
i=1

∫ t2

t1

{Zi(t)− (Ê12(t, Ui(t)))
T (Ê11(t, Ui(t)))

−1Q̃i(t)}⊗2 dt

and

Σ̂β =
1

n

n∑
i=1

(∫ t2

t1

{dNi(t)−λ̂i(t)dt}{Zi(t)−(Ê12(t, Ui(t)))
T (Ê11(t, Ui(t)))

−1Q̃i(t)}
)⊗2

,

where 0 < t1 < t2 < τ .

Theorem 3.2. Assuming the conditions given in Appendix are satisfied, then

(1) sup
t∈[0,τ ]

|α̂(t)− α0(t)| = op(1);

(2)
√
nht(α̂(t)− α0(t)−

1

2
h2tν2α̈(t))

D−→N (0,Σα(t)) ,

where

Σα(t) = lim
n→∞

htE

[∫ τ

0

{dNi(s)− λi(s)ds}I1e11(t, Ui(s))
−1Q̃i(s)Kht(s− t)

]⊗2
.

The limiting variance-covariance matrix Σα(t) can be consistently estimated by the
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following formula.

Σ̂α(t) =
ht
n

n∑
i=1

[∫ τ

0

{
dNi(s)− λ̂i(s)ds

}
I1Ê11(t, Ui(s))

−1Q̃i(s)Kht(s− t)
]⊗2

.

Theorem 3.3. Assuming the conditions given in Appendix are satisfied, then

(1) sup
u∈[u1,u2]

|γ̂(u)− γ0(u)| = op(1);

(2)
√
nhu(γ̂(u)− γ0(u)− 1

2
h2uν2γ̈(u))

D−→N (0,Σγ(u)) .

where

Σγ(u) = lim
n→∞

huE

[∫ τ

0

{dNi(s)− λi(s)ds}I3e11(u, Ui(s))
−1Q̃i(s)Khu(s− u)

]⊗2
.

The limiting variance-covariance matrix Σγ(u) can be consistently estimated by

Σ̂γ(u) =
hu
n

n∑
i=1

[∫ τ

0

{
dNi(s)− λ̂i(s)ds

}
I3Ê11(u, Ui(s))

−1Q̃i(s)Khu(s− u)

]⊗2
.



CHAPTER 4: SIMULATION STUDIES

In order to assess the finite sample performance of the proposed model and estima-

tion procedure, we conduct a few simulation studies in this chapter. First, we apply

the methodologies on a survival analysis, which is a single-event case. Second, the

methodologies are applied to recurrent event case. Details for simulations for both

cases will be presented in the following subsections.

4.1 Simulation on Single Event Data - Survival Analysis

In this section, we illustrate our method on single event data and check the finite

sample performance of the proposed method. This section first introduces the method

that is used to generate single event counting process data, followed by a simulation

example with a specific model by using the proposed method.

4.1.1 Generating Single Event Data

Some researchers had studied on how to generate single event data for survival

anaysis. For instance, both Bender et al. (2005) and Qian et al. (2010) proposed a

method to simulate survival data with Cox model proposed by Cox (1972).

In the Cox model, the intensity function is written as follows.

λ(t|X) = λ0(t) exp{βTX}, (4.1)

where λ0(t) is the baseline intensity function, β is the parameter vector and X is
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a time independent covariate vector with the same dimention as β. The cumulative

intensity function Λ(t|X)can be written as the integral of λ(t|X) from 0 to t as follows.

Λ(t|X) =

∫ t

0

λ(s|X)ds, (4.2)

The survival function has the following relationship with cumulative intensity func-

tion.

S(t|X) = exp{−Λ(t|X)}, (4.3)

Let F (t|X) = 1− S(t|X), then we have

F (t|X) = 1− exp{−Λ(t|X)}, (4.4)

Supposed Y is a random variable, which follows uniform distribution on [0, 1]. By

setting F (t|X) = Y , we can derive the corresponding T by solving the inverse function

as below. T is the desired time to event.

T = F−1(Y ) = Λ−1(− ln(1− Y )), (4.5)

where F−1() and Λ−1() are the inverse functions of F () and cumulative intensity

function Λ(). In the real world, observations can be censored. For example, patients

do not experience death by the end of the study period and thus are censored. In order

to take into account censoring, we set the study period to be τ . If the T generated by

the equation above is greater than τ , the corresponding subject is marked as censored.

With a given intensity model, a survival dataset with single event can be generated

by following the steps.

1. Set the true value for parameter vector β, true function for λ0(t), study period
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τ , and the total number of observations n (aka. sample size).

2. Simulate the time independent covariates vector X.

3. Plug in all information from step 1 and 2 to (4.1) and calculate (4.1) through

(4.4).

4. Simulate a number y from the distribution Uniform[0, 1].

5. Plug y into (4.5), find T .

6. Compare T with τ , if T is less than τ , set the censoring indicator to be 0,

otherwise set it to be 1.

7. Repeat step 2 through step 6 for n times to simulate data for n subjects.

4.1.2 Simulation Example

By following the procedure presented in the previous subsection, a single-event

sample is generated to be used for evaluating the finite sample performance of our

model. In this example, we use the following model to illustrate our method.

λ(t) = exp {α0(t) + α1(t)X + βZ + γ(t− S)W} , (4.6)

for 0 ≤ t ≤ τ with τ = 2, with the following settings.

• α0(t) = −1.5 + 0.8t, α1(t) = t, β = −0.5, γ(Ui(t)) = −0.5u;

• Xi is generated from truncated normal distribution N(−0.5, 0.5, 0, 1), Zi is an

uniform random variable on [−0.5, 0.5] and Wi is generated from the distribu-

tion Binary(0.5);
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• Ui(t) = t− Si, where Si is generated from the uniform distribution U [ 0, 0.5] ;

• Censoring time Ci is generated from the uniform distribution U [ 1, 3] .

In the generated sample, about 67 % of subjects are censored. Approximately 33

% of subjects experience an event during the study period [0, 2].

During estimation, cross-validation method described in Chapter 2 is applied for

preliminary bandwidth selection. In this example, three sets of bandwidth combina-

tion for ht and hu are selected to reflect different levels of smoothness, including

• ht = hu = 0.30

• ht = hu = 0.40

• ht = hu = 0.50

Boundaries effect is taking into consideration in all simulation examples in this

study, thus we set t1 = ht and t2 = τ − ht in the estimating functions in chapter

2. For all simulations examples in this study, we use the Epanechnikov kernel for

smoothing, which is given as follows.

K(x) = .75(1− x2)I(|x| ≤ 1)

For all simulation examples in this dissertation, we consider some criterias to val-

uate the performance of the proposed estimators, which are presented as follows.

In order to assess the performance of the estimator β̂, we measure the following

items in all simulation examples.

• Bias = estimate - true value
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• the sample standard error of the estimates (SSE)

• the sample mean of the estimated standard errors (ESE)

• the 95% empirical coverage probability (CP)

In order to assess the performance of the estimators α̂0(t) for baseline, α̂1(t) for

time varying covariate effects and γ̂(u) for covariate-varying covariate effect, we mea-

sure their pointwise Bias, SSE, ESE, and CP at different fixed time points t and u,

respectively.

Besides Bias, SSE, ESE and CP, to better assess the overall performance for those

estimators for unknown functions, we calculate the sqaure root of integrated mean

square error (RMSE) for each of them respectively.

Suppose

• N is the total number of repetitions;

• α00(t) and α10(t) are the true function values of α0(t) and α1(t) at each time

point t ∈ [0, τ ], respectively;

• γ10(u) and γ20(u) are the true function values of γ1(u) and γ2(u) at each point

u ∈ [0, τ ], respectively;

then, the RMSEs for each of estimators in this chapter are defined as follows.

RMSEα0 =

{
1

N(τ − 2ht)

N∑
j=1

∫ τ−ht

ht

(α̂0j(t)− α00(t))
2dt

}1/2

,

RMSEα1 =

{
1

N(τ − 2ht)

N∑
j=1

∫ τ−h

h

(α̂1j(t)− α10(t))
2dt

}1/2

,
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RMSEγ1 =

{
1

N(τ − 2hu)

N∑
j=1

∫ τ−hu

hu

(γ̂1j(u)− γ10(u))2du

}1/2

,

RMSEγ2 =

{
1

N(τ − 2hu)

N∑
j=1

∫ τ−hu

hu

(γ̂2j(u)− γ20(u))2du

}1/2

,

where α̂0j(t), α̂1j(t), γ̂1j(u) and γ̂2j(u) are the jth estimate of α0(t), α1(t), γ1(u)

and γ2(u), respectively, for j = 1, · · · , N .

Sample sizes n = 400, 600, 800, 1000 are considered in this example. All results

presented below are calculated based on 500 simulation repetitions. Table 5 summa-

rizes the Bias, SSE, ESE and CP for the fixed covariate coefficient estimator β̂ under

model (4.6). The results show the following.

1. The bias for the estimator β̂ are small among different sample sizes and band-

width combinations, which indicates that the estimates are unbiased.

2. Both empirical and estimated standard errors presented on Table 5 are reason-

ably close to each other, and thus the coverage probabilities are close to the

nominal level 95%.

Note that for a particular sample size, when the bandwidth gets larger, Bias de-

creases while both empirical and estimated standard errors increases. Fan and Gijbels

(1996) find that bigger bandwidth results in larger variance but smaller bias. Our

results are consistent with their finding. However, the results show that coverage

probabilities are not sensitive to bandwidth selection. To conclude, Table 5 indicates

that the proposed estimator β̂ for fixed covariate effect performs well under model

(4.6).
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Figure 1 and Figure 2 summarize the results produced with the bandwidth ht = 0.40

and hu = 0.40. The results are averaged on 500 simulation repetitions. The red curve

corresponds to the results for sample size n = 400, while blue curve for n = 600,

green curve for n = 800 and black curve for n = 1000, respectively.

The left panel of Figure 1 presents the Bias, SSEs, ESEs and CPs at different fixed

time points for α̂0(t), while the right panel for α̂1(t). The results show that the bias for

both estimators are small. The coverage probability fluctuates around the nominal

level 95%. In addition, the plots show that when sample size is 400 or 600, the

estimated standard errors are not stable for the latter half of study period. However,

when sample size increases (n = 800, 1000), SSE and ESE agree to each other very

well. This could be due to data sparcity when sample size is not considerably large.

The estimators perform better when sample size increases.

Figure 1 show that the pointwise bias for γ̂(u) are very small, which indicates that

the pointwise estimates are unbiased. An agreement is observed between pointwise

SSE and ESE, thus the coverage probability curves slightly fluctuate around the line

of 97%, which shows reasonable performance of the estimator γ̂(u).

Table 6 summarizes the RMSEs based on 500 simulation repetitions for α̂0(t),

α̂1(t) and γ̂(u) under model 4.6. The results show that the RMSEs for all those four

estimators decrease when sample size increases. The same trend is observed for all

three selected bandwidth combinations.



34

Table 5: Summary of Bias, SSE, ESE and CP for β̂ under model (4.6).

n ht hu Bias SSE ESE CP
400 0.30 0.30 -0.0333 0.3481 0.3511 0.966

0.40 0.40 -0.0241 0.3630 0.3855 0.966
0.50 0.50 -0.0097 0.4109 0.4385 0.972

600 0.30 0.30 0.0055 0.4871 0.2822 0.956
0.40 0.40 -0.0047 0.2939 0.3066 0.958
0.50 0.50 -0.0014 0.3315 0.3517 0.968

800 0.30 0.30 -0.0159 0.2283 0.2347 0.964
0.40 0.40 -0.0128 0.2488 0.2622 0.964
0.50 0.50 -0.0103 0.2902 0.3020 0.964

1000 0.30 0.30 -0.0168 0.1989 0.2079 0.968
0.40 0.40 -0.0136 0.2180 0.2330 0.966
0.50 0.50 -0.0146 0.2493 0.2687 0.970
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Table 6: Summary of RMSEs for α̂0(t), α̂1(t) and γ̂(u) under model (4.6).

n ht hu RMSEα0 RMSEα1 RMSEγ

400 0.30 0.30 0.2701 0.6550 1.0922
0.40 0.40 0.2134 0.5475 0.3863
0.50 0.50 0.1849 0.4778 0.3384

600 0.30 0.30 0.2244 0.5154 0.6548
0.40 0.40 0.1648 0.4418 0.2806
0.50 0.50 0.1457 0.3874 0.2384

800 0.30 0.30 0.1659 0.4422 1.1642
0.40 0.40 0.1404 0.3819 0.2240
0.50 0.50 0.1239 0.3374 0.1934

1000 0.30 0.30 0.1451 0.3996 0.5083
0.40 0.40 0.1243 0.3488 0.2057
0.50 0.50 0.1111 0.3114 0.1800
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Figure 1: Plots for Bias, CP, SSE and ESE for n=400, 600, 800, and 1000 with
ht = 0.4,hu = 0.4 for α0(t) = −1.5 + 0.8t and α1(t) = t for 0 ≤ t ≤ 2.
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4.2 Simulation on Recurrent Events Data

The previous section show that the proposed model and estimation procedure work

well under the survival analysis framework. In this section, the goal is to check the

finite sample performance of the proposed methodology when the event of interest

can be repeated for each subject. This section starts with a description on how

to generate recurrent events data by thinning method, followed by two simulation

examples under different models.

4.2.1 Generating Recurrent Events Data

There are many different existing methods for generating a non-Homogeneous Pois-

son Process (NHPP). For instance, a NHPP can be generated through time-scale

transformation of a Homogeneous Poisson Process (HPP) or it can be generated by

using order statistics. Lewis and Shedler (1976) generated a NHPP with log linear

rate function. Another approach for generating a NHPP is the thinning method pro-

posed by Lewis and Shedler (1979). Compared with other methods, the thinning

method has many advantages. For instance, the thinning method does not require

numerical integration of the rate function, ordering of points, or generating Poisson

variates. Thus, in this dissertation, we adopt the thinning method for simulating

recurrent events data.

Given the intensity function λ(t) for 0 ≤ t ≤ τ , choose a constant λ̄ s.t. λ(t) ≤ λ̄

for all t. The detailed procedure for generating recurrent events by using thinning

method are given as follows. By repeating the procedure below, we can generate the

recurrent event times for each subject i in a sample. The recurrent event times are
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recorded by Tij (i = 1, 2, · · · , n and j = 1, 2, · · · , Ki)

1. Set T0 = 0, T ∗ = 0, and j = 1.

2. Generate an random variable V from exponential distribution exp(1/λ̄)

3. Update T ∗ = T ∗ + V .

4. If T ∗ > τ , stop; otherwise generate a random variable R from uniform distribu-

tion U(0, 1).

5. Compare R with λ(T ∗)/λ̄. If R ≤ λ(T ∗)/λ̄, then accept the arrival time, store

it by Tij = T ∗, and j = j + 1; otherwise reject the arrival time and return to

Step 2.

In the following subsections, this procedure is used to generate recurrent event

samples to conduct simulation studies.

4.2.2 Simulation Example 1

We start with a simple model to illustrate the proposed method and evalute the

finite sample performance of the proposed estimators. The model given as follows

considers an intercept term as the baseline, time-independent effect and covariate-

varying effect.

λi(t) = exp {α0(t) + βZi + γ(Ui(t))Wi} , (4.7)

for 0 ≤ t ≤ τ with τ = 5, with the following settings.

• α0(t) = 1.5− log(1 + t), β = 1.5, γ(Ui(t)) =
√
Ui(t)− 2;
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• Zi is an uniform random variable on [−0.5, 0.5] and Wi is generated from trun-

cated normal distribution N(−0.5, 0.5, 0, 1),.

• Ui(t) = t− Si, where Si is generated from the uniform distribution U [ 0, 0.5] .

• Censoring time Ci for the ith subject is generated from the uniform distribution

U [ 4, 9] .

In the generated sample, about 20% of subjects are censored. Approximately a

total of 12 recurrent events are observed per subject during the study period [ 0, 5] .

Three sample sizes (n = 400, 600, 800) are considered in this example. All results

presented below are calculated based on 500 simulation repetitions. Cross-validation

method is applied for bandwidth selection. The following three sets of bandwidth

combinations for ht and hu are selected to reflect different levels of smoothness.

• ht = hu = 0.25

• ht = hu = 0.30

• ht = hu = 0.35

Table 7 summarizes the Bias, SSE, ESE, and CP for the fixed covariate coefficient

estimator β̂ under model (4.7) based on 500 simulation repetitions. The results show

the following.

1. The bias for the estimator β̂ are small among different sample sizes and band-

width combinations, which indicates that the estimates are unbiased.
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2. Both empirical and estimated standard errors presented on Table 7 agree to

each other, which results coverage probabilities that are close to the nominal

level 95%. In addition, coverage probabilities are found to be not sensitive to

bandwidth selection.

3. Bias, empirical standard errors, and estimated standard errors all decrease when

sample size increases.

4. For a particular sample size, when the bandwidth gets larger, Bias decreases

while both empirical and estimated standard errors increases, which is again

consistent with the finding by Fan and Gijbels (1996).

To conclude, Table 7 indicates that the proposed estimator β̂ for fixed covariate

effect performs well under model (4.7).

Figure 3 plots the pointwise bias, empirical standard errors, estimated standard

errors and coverage probabilities for the estimate of the baseline function α0(t), while

Figure 4 shows the plots for γ̂(u). All plots are generated based on the results from

500 simulation repetitions. The bandwidth combination used to generate these plots

is ht=0.3, hu=0.3. The red curve represents result for sample size n = 400, while blue

for n = 600 and green for n = 800. The plots reveal the following findings.

1. The pointwise bias for α̂0(t) is reasonably small. When sample size increases,

bias decreases. Bias tends to become relatively larger at the end of study period,

which could be the boundary effects.

2. The pointwise bias for γ̂(u) is reasonably small and the curve fluctuates around
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the zero line.

3. For both α̂0(t) and γ̂(u), the pointwise empirical standard error and estimated

standard errors are very close to each other, and consequently the curves for

pointwise coverage probabilities fluctuate around the nominal level 95%.

Besides pointwise bias, SSE, ESE and CP, RMSEs are also calculated to assess the

overall performance of both α̂0(t) and γ̂(u). Table 8 shows the results under model

(4.7) with different sample sizes and bandwidth combinations. It appears that RMSEs

for both α̂0(t) and γ̂(u) drops when sample size increases, regardless of bandwidth

combination.

To conclude, based on the results given by Figure 3, 4 and Table 8, the proposed

estimator α̂0(t) and γ̂(u) show satisfied performance under model (4.7).



43

Table 7: Summary of Bias, SSE, ESE and CP for β̂ under model (4.7).

n ht hu Bias SSE ESE CP
400 0.25 0.25 0.0173 0.0724 0.0697 0.934

0.30 0.30 -0.0016 0.0736 0.0702 0.938
0.35 0.35 0.0088 0.0754 0.0722 0.938

600 0.25 0.25 0.0112 0.0580 0.0567 0.944
0.30 0.30 -0.0051 0.0579 0.0572 0.950
0.35 0.35 0.0063 0.0596 0.0589 0.954

800 0.25 0.25 0.0070 0.0498 0.0490 0.936
0.30 0.30 -0.0089 0.0509 0.0495 0.938
0.35 0.35 0.0031 0.0529 0.0510 0.940
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Table 8: Summary of RMSEs for α̂0(t) and γ̂(u) under model (4.7).

n ht hu RMSEα0 RMSEγ

400 0.25 0.25 0.0862 0.2981
0.30 0.30 0.0781 0.2770
0.35 0.35 0.0728 0.2643

600 0.25 0.25 0.0683 0.2395
0.30 0.30 0.0625 0.2230
0.35 0.35 0.0584 0.2126

800 0.25 0.25 0.0584 0.2089
0.30 0.30 0.0536 0.1934
0.35 0.35 0.0502 0.1846



45

−0.1

0.0

0.1

B
ia
s

α̂1(t)

0.80

0.95

C
P

0.00

0.25

0.50

S
S
E

0 1 2 3 4 5
0.00

0.25

0.50

E
S
E

N=400 N=600 N=800
Figure 3: Plots for bias, CP, SSE and ESE for n=400, 600, 800 with ht=0.3, hu=0.3
for α0(t) = 1.5− log(1 + t) for 0 ≤ t ≤ 5.
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4.2.3 Simulation Example 2

The previous simulation example considers fixed covariate effects and covariate-

varying effects. The results show that the proposed method performs well. In example

2, a more complicated model is considered to illustrate the proposed method, which

incorporates fixed covariate effects, time-varying effects and covariate-varying effects.

The model is given as follows.

λi(t) = exp {α1(t) + α2(t)Xi(t) + βZi + γ1(t)W1i + γ2(Ui(t))W2i} , (4.8)

for 0 ≤ t ≤ τ and τ = 5, with the following settings.

• α1(t) = 2− log(1 + t), α2(t) = sin(0.2t);

• β = 1.5;

• γ1(Ui(t)) = Ui(t)− 1, γ2(Ui(t)) =
√
Ui(t)− 2;

• Covariate Xi(t) is time-dependent; it is generated from truncated normal dis-

tribution N(−0.5, 0.5, 0, 1);

• Zi is generated from uniform distribution U [−0.5, 0.5] ;

• W1i and W2i are generated from truncated bivariate normal with marginal

N(−0.5, 0.5, 0, 1) and correlation ρ = 0.2;

• Cencoring time Ci is generated from an uniform distribution U [ 4, 9] ;

• Ui(t) = t− Si, where Si is generated from an uniform distribution U [ 0, 0.5] .
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With the above settings, about 20% of subjects are cencored. Approximately a

total of 12 recurrent events are observed per subject during the study period [ 0, 5] .

Similar to previous examples, we set t1 = ht and t2 = τ − ht in the estimating

functions to deal with boundary effects. Cross-validation method is applied for band-

width selection, and the following three sets of bandwidth combination for ht and hu

are selected to reflect different levels of smoothness.

• ht = hu = 0.25

• ht = hu = 0.30

• ht = hu = 0.35

Three sample sizes (n = 400, 600, 800) are considered in this tudy. All results

presented below are calculated based on 500 simulation repetitions.

Table 9 summaries the Bias, SSE, ESE, and CP for the fixed covariate coefficient

estimator β̂ under model (4.8), averaging over 500 simulation repetitions. The results

show that the bias for the estimator β̂ are small among different sample sizes and

bandwidth combinations, which indicates that the estimates are unbiased. Both em-

pirical and estimated standard errors presented on Table 9 agree to each other, and

thus the coverage probabilities are close to 95%. In addition, Bias, empirical stan-

dard errors, and estimated standard errors all decrease when sample size increases.

However, the results show that coverage probabilities are not sensitive to bandwidth

selection. To conclude, Table 9 indicates that the proposed estimator β̂ for fixed

covariate effect performs well under model (4.8).
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To assess the performance of the estimators for time varying covariate effects α̂1(t)

and α̂2(t) and those for covariate-varying covariate effects γ̂1(u) and γ̂2(u), we calcu-

late their Bias, SSE, ESE, and CP at different fixed time points t and u, respectively.

Figure 5 and Figure 6 summarize the results produced with the bandwidth ht = 0.30

and hu = 0.30. The results are averaged on 500 simulation repetitions. The left panel

of Figure 5 presents the Bias, SSEs, ESEs and CPs at different fixed time points for

α̂1(t), while the right panel for α̂2(t). The left panel of Figure 6 shows the Bias, SSEs,

ESEs and CPs at different fixed time points for γ̂1(t), while the right panel for γ̂2(t).

The plots from Figure 5 and Figure 6 show the following findings.

1. The pointwise bias for all four sets of estimates α̂1(t), α̂2(t), γ̂1(u) and γ̂2(u)

are very small, thus the pointwise estimates are unbiased. In addition, bias

decreases along with increasing sample size.

2. For each of all four estimators, an agreement is observed between pointwise

empirical standard error and estiamted standard error. The coverage probability

curves slightly fluctuate around the line of nominal level 95%.

To assess the overall performance of α̂1(t), α̂2(t), γ̂1(u) and γ̂2(u), the RMSE is

calculated for each of them. Table 10 summarizes the RMSEs based on 500 simulation

repetitions for α̂1(t), α̂2(t), γ̂1(u) and γ̂2(u) under model 4.8. The results show that

the RMSEs for all those four estimators decrease when sample size increases. The

same trend is observed for all three selected bandwidths.

To conclude, the proposed estimators α̂1(t), α̂2(t), γ̂1(u) and γ̂2(u) for unknown

non-parametric functions shows strong performance under model 4.8.



50

In this chapter, in order to illustrate our proposed method and assess the finite

sample performance, two simulation examples are conducted on survival analysis

framework and another two simulation examples on recurrent events data framework.

All examples show reasonably small bias for our estimates and an agreement between

empirical standard errors and estimated standard errors, which result in coverage

probabilities that are close to the nominal level 95%. Therefore, the proposed method

performs very well with finite samples.
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Table 9: Summary of Bias, SSE, ESE and CP for β̂ under model (4.8).

n ht hu Bias SSE ESE CP
400 0.25 0.25 0.0164 0.0532 0.0521 0.930

0.30 0.30 -0.0018 0.0539 0.0525 0.936
0.35 0.35 0.0082 0.0559 0.0540 0.936

600 0.25 0.25 0.0099 0.0436 0.0422 0.934
0.30 0.30 -0.0067 0.0444 0.0426 0.932
0.35 0.35 0.0046 0.0459 0.0439 0.940

800 0.25 0.25 0.0072 0.0371 0.0364 0.942
0.30 0.30 -0.0082 0.0380 0.0368 0.938
0.35 0.35 0.0035 0.0396 0.0379 0.938
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Table 10: Summary of RMSEs for α̂1(t), α̂2(t), γ̂1(u) and γ̂2(u) under model (4.8).

n ht hu RMSEα1 RMSEα2 RMSEγ1 RMSEγ2

400 0.25 0.25 0.0722 0.2051 0.2190 0.2091
0.30 0.30 0.0643 0.1891 0.2016 0.1948
0.35 0.35 0.0597 0.1786 0.1917 0.1855

600 0.25 0.25 0.0567 0.1672 0.1787 0.1685
0.30 0.30 0.0511 0.1549 0.1654 0.1566
0.35 0.35 0.0476 0.1463 0.1574 0.1491

800 0.25 0.25 0.0482 0.1451 0.1528 0.1451
0.30 0.30 0.0437 0.1349 0.1417 0.1353
0.35 0.35 0.0407 0.1278 0.1349 0.1288
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Figure 5: Plots for bias and CP for n=400, 600, 800 with ht = 0.3, hu = 0.3. Left
panel is for α1(t) = 2− log(1 + t). Right panel is for α2(t) = sin(0.2t).
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APPENDIX A: PROOFS OF THE THEOREMS

Conditions

The following conditions are needed for our derivation of asymptotic properties in

this study.

• The censoring time Ci is noninformative in the sense that E{dN∗i (t)|Qi(t), Ui(t),

Ci ≥ t} = E{dN∗i (t)|Qi(t), Ui(t)}, while the censoring time Ci is allowed to

depend on the left continuous covariate process Qi(·);

• The processes Qi(t) and λi(t), 0 ≤ t ≤ τ , are bounded and their total variations

are bounded by a constant; E|Ni(t2)−Ni(t1)|2 ≤ L(t2− t1) for 0 ≤ t1 ≤ t2 ≤ τ ,

where L > 0 is a constant; E|Ni(t+ h)−Ni(t− h)|2+v = O(h), for some v > 0;

• The kernel function K(·) is symmetric with compact support on [−1, 1] and

Lipschitz contimuous; Bandwidths ht � hu; ht → 0; nh2t → ∞ and nh5t is

bounded;

• α0(t), γ0(u), e11(t) and e12(t) are twice differentiable; (e11(t))
−1 is bounded over

0 ≤ t ≤ τ ; the matrices Aβ and Σβ are positive definite;

• The following two limits exist and are finite.

limn→∞ htE
[∫ τ

0
{dNi(s)− λi(s)ds}I1e11(t, Ui(s))

−1Q̃i(s)Kht(s− t)
]⊗2

,

and

limn→∞ huE
[∫ τ

0
λ̇i(s)
λi(s)
{dNi(s)− λi(s)ds}I3e11(u, Ui(s))

−1X̃i(s)Khu(s− u)
]⊗2

.
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Proof of Theorems

Proof of Theorem 3.1

By Lemma 1 and Lemma 3 in (add citation) and application of the Glivenko-

Cantelli theorem to the estimating function defined in (2.6), we have

1

n
Uβ(β)

=
1

n

n∑
i=1

∫ τ

0

[dNi(t)− λ̃i(t, β)dt]{∂ϑ̃(β, t, Ui(t))

∂β
Q̃i(t) + Zi(t)}]

P−→E
∫ τ

0

[dNi(t)− λ{ϑTβ (t, Ui(t))Q̃i(t) + βTZi(t)}dt]

× {Zi(t)− (eβ,12(t, Ui(t)))
T (eβ,11(t, Ui(t)))

−1Q̃i(t)}

= E

∫ τ

0

[ϕ{ϑT0 (t, Ui(t))Q̃i(t) + βT0 Zi(t)}dt− ϕ{ϑTβ (t, Ui(t))Q̃i(t) + βTZi(t)}dt]

× {Zi(t)− (eβ,12(t, Ui(t)))
T (eβ,11(t, Ui(t)))

−1Q̃i(t)}

= u(β), (A.1)

where β0 is the unique root of u(β). Then by Theorem 5.9 of Van Der Vaart (1998),

β̂
P−→β0.
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By Glivenko-Cantelli theorem and Lemma 3 of (add citation),

− 1

n

∂Uβ(β)

∂β
|β=β0

=
1

n

n∑
i=1

∫ τ

0

[dNi(t)− λ{ϑ̃T (t, Ui, β0)Q̃i(t) + βT0 Zi(t)}dt]

×

{
∂ϑ̃(t, Ui(t), β0)

∂β
Q̃i(t) + Zi(t)

}

+
1

n

n∑
i=1

∫ τ

0

[−λ̇{ϑ̃T (t, Ui, β0)Q̃i(t) + βT0 Zi(t)}]

{
∂ϑ̃(t, Ui(t), β0)

∂β
Q̃i(t) + Zi(t)

}⊗2
dt

+
1

n

n∑
i=1

∫ τ

0

[dNi(t)− λ{ϑ̃T (t, Ui(t), β0)Q̃i(t) + βT0 Zi(t)}dt]

{
∂2ϑ̃(t, Ui(t), β0)

∂2β
Q̃i(t)

}

(A.2)

The first and third terms go to zero as n → ∞ by Lemma (add citation) and the

Glivenko-Cantelli theorem. Thus, it follows that

− 1

n

∂Uβ(β)

∂β
|β=β0

P−→E
∫ τ

0

λ̇{ϑ̃T (t, Ui, β0)Q̃i(t) + βT0 Zi(t)}

× {Zi(t)− (e12(t, Ui(t)))
T (e11(t, Ui(t)))

−1Q̃i(t)}⊗2dt ≡ Aβ (A.3)

Now we show that n−1/2Uβ(β0) converges in distribution to a normal distribution. By

Taylor expansion,

exp{ϑ̃T (t, Ui(t), β0)Q̃i(t) + βT0 Zi(t)} − exp{ϑT0 (t, Ui(t))Q̃i(t) + βT0 Zi(t)}

= exp{ϑT0 (t, Ui(t))Q̃i(t) + βT0 Zi(t)}[ϑ̃T (t, Ui(t), β0)− ϑT0 (t, Ui(t))]Q̃i(t)

+Op(‖ϑ̃(t, Ui(t), β0)− ϑ0(t, Ui(t))‖2) (A.4)
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We define dMi(t) = dNi(t)− exp{ϑT0 (t, Ui(t))Q̃i(t) + βT0 Zi(t)}dt, then we have

1√
n
Uβ(β0) =

1√
n

n∑
i=1

∫ τ

0

[dNi(t)− exp{ϑ̃T (t, Ui(t), β0)Q̃i(t) + βT0 Zi(t)}dt]

×

{
∂ϑ̃(t, Ui(t), β0)

∂β
Q̃i(t) + Zi(t)

}

=
1√
n

n∑
i=1

∫ τ

0

{
∂ϑ̃(t, Ui(t), β0)

∂β
Q̃i(t) + Zi(t)

}
dMi(t)

− 1√
n

n∑
i=1

∫ τ

0

[exp{ϑ̃T (t, Ui(t), β0)Q̃i(t) + βT0 Zi(t)} − ϕ{ϑT0 (t, Ui(t))Q̃i(t) + βT0 Zi(t)}]

×

{
∂ϑ̃(t, Ui(t), β0)

∂β
Q̃i(t) + Zi(t)

}
dt

(A.5)

By Lemma 1 in Lin et al. (2001), the second term equals to the following

1√
n

n∑
i=1

∫ τ

0

exp{ϑ̃T (t, Ui, β0)Q̃i(t) + βT0 Zi(t)}[ϑ̃T (t, Ui(t), β0)− ϑT0 (t, Ui(t))]Q̃i(t)dt

×

{
∂ϑ̃(t, Ui(t), β0)

∂β
Q̃i(t) + Zi(t)

}
= op(1)

(A.6)

Thus, we have

1√
n
Uβ(β0)

=
1√
n

n∑
i=1

∫ τ

0

{
∂ϑ̃(t, Ui(t), β0)

∂β
Q̃i(t) + Zi(t)

}
dMi(t) + op(1)

=
1√
n

n∑
i=1

∫ τ

0

{Zi(t)− (e12(t, Ui(t)))
T (e11(t, Ui(t)))

−1Q̃i(t)}dMi(t)

(A.7)
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which converges in distribution to N(0,Σβ) by Central Limit Theorem, where

Σβ = E

(∫ τ

0

{Zi(t)− (e12(t, Ui(t)))
T (e11(t, Ui(t)))

−1Q̃i(t)}dMi(t)

)⊗2
.

By Taylor expansion, we have

Uβ(β̂) = Uβ(β0) +
∂Uβ(β)

∂β
|β=β0(β̂ − β0) +Op(‖β̂ − β0‖2).

Thus,

√
n(β̂ − β0) =

(
− 1

n

∂Uβ(β)

∂β
|β=β0

)−1
× 1√

n
Uβ(β0)

Hence, by Slutsky Theorem, we have
√
n(β̂ − β0)

D−→N(0, A−1β ΣβA
−1
β ).

Proof of Theorem 3.2

(a) Since ϑ̂(t0, u0) = ϑ̃(t0, u0, β̂), we have ϑ̂(t0, u0)
P−→ϑ0(t0, u0) uniform in t ∈ [0, τ ]

and u ∈ [u1, u2] by Lemma 1 in (add citation) and Theorem 1. Then

sup
t0∈[t1,t2]

|ϑ̂(t0)− ϑ0(t0)| = sup
t0∈[t1,t2]

|n−1
n∑
j=1

{ϑ̂(t0, Uj(t0))− ϑ0(t0, Uj(t0))}|

≤ sup
t0∈[t1,t2],u0∈[u1,u2]

|ϑ̂(t0, u0)− ϑ0(t0, u0)| = op(1).

(b) Following the proof of Lemma 4 in (add citation), we have

√
nhthu{α̃(t0, u0, β0)− α0(t0, u0)}

= −I1e
−1
11 (t0, u0)

√
hthu
n

n∑
i=1

∫ τ

0

{dNi(t)− λi(t)dt}X̃i(t)Kht(t− t0)Khu(Ui(t)− u0)

+
1

2

√
nhbh2ν2e

−1
11 (t0, u0)bα(t0, u0) +

1

2

√
nhbb2ν2e

−1
11 (t0, u0)bγ(t0, u0) + op(

√
nhb(h2 + b2))
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Note that e−111 (t0, u0)bγ(t0, u0) is zero for the first p1 components and e−111 (t0, u0)bα(t0, u0)

is α̈(t0) for the first p1 components. Then

√
nht{α̂(t0)− α0(t0)}

= −
√
ht
n

n∑
i=1

∫ τ

0

{dNi(t)− λi(t)dt}{n−1
n∑
j=1

I1e
−1
11 (t0, Uj(t0))Qi(t)Khu(Ui(t)− Uj(t0))}

×Kht(t− t0)

+

√
ht
n
n−1

n∑
j=1

{e11(t0, Uj(t0))−1e12(t0, Uj(t0))}(β̂ − β0)

+
1

2

√
nhth

2
tν2α̈(t0).

By Lemma A.1 in Yin et al. (2008),

1

n

n∑
j=1

e−111 (t0, Uj(t0))Khu(u− Uj(t0)) = e−111 (t0, u) +Op(
log hu√
nhu

) +O(h2u)

uniformly in t ∈ [t1, t2] and u ∈ [u1, u2]. It follows that

√
nht{α̂(t0)− α0(t0)−

1

2
h2tν2α̈(t0)}

=

√
ht
n

n∑
i=1

∫ τ

0

{dNi(t)− λi(t)dt}I1e
−1
11 (t0, Ui(t))Qi(t)Kht(t− t0) + op(1)

= n−1/2
n∑
i=1

gi(t0) + op(1),

where gi(t0) = h
1/2
t

∫ τ
0
{dNi(t) − λi(t)dt}I1e

−1
11 (t0, Ui(t))Qi(t)Kht(t − t0) . Following

the arguments of Lemma 2 of Sun (2010),

√
nht(α̂(t)− α0(t)−

1

2
h2tν2α̈(t0))

D−→N (0,Σα(t)) (A.8)
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where

Σα(t0) = lim
n→∞

htE

[∫ τ

0

{dNi(t)− λi(t)dt}I1e
−1
11 (t0, Ui(t))Qi(t)Kht(t− t0)

]⊗2
.

Proof of Theorem 3.3

Following the same argument as the proof of Theorem 3.2, we have γ̂(u)
P−→γ0(u)

uniformly in u ∈ [u1, u2], and
√
nhu(γ̂(u) − γ0(u) − 1

2
h2uν2γ̈(u))

D−→N (0,Σγ(u)) .


