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ABSTRACT
PEILIN CHEN. Statistical Estimation and Inference for the Associations of
Multivariate Recurrent Event Processes. (Under the direction of DR. YANQING
SUN )

In this dissertation, we aim to develop a brand new method with a two-stage pro-
cedure to investigate the association between multivariate recurrent event processes.

First, under the assumption of independent censoring, we model each recurrent
event process marginally through a mean rate model. There are two popular mean
rate assumptions - multiplicative or additive to an unspecified baseline rate function.
The robust semi-parametric approaches can be applied to estimate the covariate ef-
fects as well as the baseline rate function.

Second, inspired by Kendall's tau, we propose the rate ratio as an association
measurement, which is the quotient of two conditional rates - the mean rate of two
joint events over the marginal rates, both conditional on the covariates. Utilizing the
information from the first stage, an unbiased and consistent estimator of the rate ratio
is developed under the Generalized Estimation Equation method. The asymptotic
properties of the rate ratio estimators are derived theoretically. Without modeling the
joint events directly, the rate ratio can measure the association between two recurrent
processes over time.

Since the rate ratio we proposed can be parametric, time and covariate dependent,
it has a good interpretability. We developed a formal hypothesis testing procedure
to validate the parametric assumption of the rate ratio. Simulation studies shows it

is quite powerful under moderate to strong association.
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CHAPTER 1: INTRODUCTION

This chapter aims to review related works and introduce the benefits and challenges
of estimating the association between multivariate recurrent event processes. The
structure of this chapter is as following. In section 1.1 -1.2 we review the basic
background for Recurrent Event Data and popular approaches to estimate the mean
event rate or the intensity of Hazard. Literatures that focus on modeling multivariate

Recurrent Event Data are discussed in Section 1.3.

1.1  Bivariate /Multivariate Recurrent Event Data

Recurrent events involve repeat occurrences of the same type of event over time,
whereas a process that generate such data are called recurrent event process. Exam-
ples of recurrent events include multiple relapses from remission for leukemia patients,
wild fires, and hurricanes. In Recent years, recurrent event data raises in many fields
such as public health, business and industry, reliability, the social sciences, and insur-
ance, and keep receiving fast growing attention. For instance, the tumor development
time for 48 rats who were injected with a carcinogen represented Gaill980; the au-
tomobile warranty claims data for a specific car model considered by Lawless and
Nadeau (1995).

Bivariate or multivariate recurrent event processes are often encountered in longi-

tudinal data studies involving more than one type of event of interest. Unlike Life
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Data which is valid to assume events are independent, recurrent event data are usu-
ally correlated because they represent the event time measured for the same subject

over a time period.

1.2 Modeling Recurrent Event Data

Many statistical methods focus on modeling the rate or intensity of the event
recurrence. Nelson (1988, 1995) proposed the nonparametric estimation of the mean
function for general processes and Aalen (1978) studied the properties of the Nelson-
Aalen estimate in the Poisson case. Early development was extended from survival
analysis for the Cox Proportional hazards model (Cox, 1972a). Anderson and Gill
(1982) introduced the semiparametric regression model for the rate functions and
derived the asymptotic results based on the counting process theory.

Aalen (1980) proposed semiparametric additive regression models for the rate func-
tion. Later literatures worked by McKeague and Sasieni, Martinussen and Scheike
provide more comprehensive discussion of semiparametric additivie models. Studies
based on Poisson and related processes have been discussed in literatures such as An-
dersen (1982) , Cheuvarte (1988), Lawless (1987a, 1987b) Thall (1988) Lawless and
Nadeau (1995). Pepe and Cai (1993) considered robust methods for parametric or
semeparametric regression analysis for the rate and mean functions. Lin et al. (2000)
developed the asymptotic properties for the semiparametric regression analysis of Cox
proportional mean functions whereas H Scheike (2002) considered the additive model.

Event rate models recently became more popular than the intensity based model

because they are easier to interpret. Lin et al. (2000) compared the intensity and
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rate based model. In their paper, N*(¢) denotes the number of events occur over
time [0,¢] and Z(-) is a p-dimensional covariate process, whereas F; is the history of
{N*(s),Z(s) : 0 < s <t} and Agz(t) is the intensity of N*(¢) associated with F;.

The Anderson -Gill intensity model
Az(t) = %072\ (1) (1.1)

is a special case under the assumptions that (a) E[dN*(t)|F] = E[dN*(t)|Z(t)] and
(b) E[dN*(t)|Z(t)] = e 2O\ (t)dt.

Lin (2000) proposed a mean rate model
E[AN*(1)|2(1)] = dyuz (1 (1.2)

without assumption (a), which is impractical to verify if the time-varying covariates
adequately captured the dependence of the recurrent events. The regression coeffi-
cients in the mean event rate model nicely reflect covariate effects on the frequency.

Compared to the Anderson- Gill model (1.1), which is a special case of equation

(1.2) by taking

dpz(t) = %70 dpo(t),

dpo(t) = Ao(t) dt,

model (1.2) is more versatile.



1.3 Modeling Multivariate Recurrent Event

Here, we introduce the Random Effect Models for Multitype Events here. for more
details consult Cook and Lawless (2007). Let k& index the subjects (or clusters) and
j index the event type. The event rate at time ¢ for events of type j conditional on

subject and type-specific positive random effect r;; is denoted by

Pr(ANg(t) =1 .
A (8| Fre, ) = lim (AN (¢) | Fts Txj)

1.
At—0+ At ( 3)

j=12,..,J, k=12 ., K where r;; denote the multivariate random effect. With
multivariate random effects, it is often assumed that conditional on 74; and Fj =

{Nk;(s), Zrj : 0 < s < t}, type ¢ and type j event are independent if ¢ # j, that is
Ak (| Fhts Tj) = Trj Mg (8 Fee) (1.4)

Random effect models are usually parameterized by assuming rj; comes from an
underlying distribution G(ry; ¢) so that E(ry;) = 1, var(ry;) = ¢; and cov(rg;, rij) =
®ri- The corresponding likelihood conditional on ry; is

Nk 5 Th
H { H’l“ijkj(tkﬂLFkt)el‘p( —T’kj/ )\k](u|.7:kt) du))}, (15)
j=1 =1 0

and the marginal likelihood for individual k as

J N T
/H { Hrkj)\kj(tkﬂ]fkt)exp( _Tkj/ )\kj(u\]:kt) du))}dG(’r’k,qﬁ) (16)

j=1 " i=1 0

Analogous to the derivation above, we obtain Mixed Poisson Models as well as their

overall and marginal likelihood function by letting Ag;(t|Fit) = Ax;(f). Related es-

timation approaches have been developed such as Abu-Libdeh et al. (1990),Lawless



and Nadeau (1995), Ng and Cook (1999) and Chen et.al (2005).

If the covariance or association parameters are not of interest, modeling multivari-
ate recurrent event can be adapted from the analysis of univariate recurrent event
under the working independence assumption. Schaubel and Cai (2004, 2005) devel-
oped the estimation and inference for marginal analysis for the Cox type model and
H Scheike (2002) formulated a similar robust approach for the additive. Both of their

work did not incorporate the association structure.

1.4 Study of Associations

Association measurement such as Kendall’s tau (Oakes, 1989), the correlation coef-
ficient (Clayton, 1978), Cross Ratio (Anderson et al., 1992) and Odds Ratio (Scheike,
2012) are designed for Life Time data. These methods only considered first occur-
rence of each event type and are not suitable for censored recurrent event data. Most
recently (Ning et al., 2015) proposed a time-dependent measure, termed the rate ratio

as
p(s,t) = ———, s,t>0, (1.7)

where the conditional rate function is defined as
Aija(slt) = Ali_}][gl+ Pr{Ni(s + A) — Ni(s) > O|No(t + A) — No(t) > 0} /A (1.8)

to assess the local dependence between two types of recurrent event processes. A com-
posite likelihood procedure was developed for model fitting and estimation. However,

the composite likelihood based method lacks clear interpretation and is hard to con-
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struct. It is not clear how the method can be extended to a regression model of
recurrent event processes for multiple types of events when the covariates are present.
Here, we develop an alternative approach to model the rate ratio parametrically by
a score function and provide a model checking procedure to test the parametric form

of the rate ratio.



CHAPTER 2: CONDITIONAL RATE RATIO AS ASSOCIATION MEASURE
FOR MULTIVARIATE RECURRENT EVENT PROCESSES

2.1 Preliminaries

Let N,;*j(t) be a counting process registering the number of event occurrences by
time ¢ for the jth subject in cluster k (or equivalently the type j event for subject k),
for j=1,2and k =1,..., N. Suppose (Nj,(s), Niy(t)) are iid. and let Zy;(s), Zy;(t)
represents the associated covariate vector.

The event times for subjects within a cluster, which would be a family or a clinical
center, or the sequentially observed times for a subject, are naturally correlated.
Therefore we did not put any restriction here. The goal of this project is to characterize
and model the association between the occurrences of events.

The marginal conditional rate function for Ny;(¢) is defined by

. PLAN () | Ziy = 25} )
it = tim B Do j=12
Let puopi(s,t; zp1, 2k2) = E{dNj(t) = 1|dNy(s) = 1,2 = 2w, Zka = zk2}. The

conditional rate ratio is defined as

2 (s, t; 2k, 2k2)
pa(t; 2k2)

p(S,t; 21, 22) = for 57t Z 07 (21)

which is a measure of how the occurence of an event for subject 1 (or type 1 event)

at time s modifies the likelihood of event occurrence for subject 2 in the same cluster
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(or type 2 event of the same subject) at time ¢. It is natural to see that p(s,t; 21, 2x2)
measures the dependence of {N} (), Nj5(-)} at time (s,t).If the two processes are
independent then p(s,t; zx1, 2k2) = 1.

Under the definition of rate ratio,

E{dN}(8)dN (1) | Zk1 = 21, Zra = zk2} = p(S, t; 21, 2k2) 101 (S5 261 ) o (t; 2k2) dsdt,
(2.2)
where the marginal conditional rates pi(¢; zx1) and po(t; zx2) can be modeled, for
example, by the semiparametric models such as the additive model of H Scheike
(2002) and the multiplicative models of Lin et al. (2000). The association measure
p(s,t|zi1, zi2) can be modeled through parametric or semiparametric models. Conse-

quently, a two-stage estimating procedure can be adopted.
2.2 Estimation and Inference Procedures

Let Yy;(t) = I(Cy; > t) be the at-risk process and Ny;(t) = fot Yij(u)dNi; (u) be
the observed recurrent process. Let fi1(s; zx1) and fia(t; zx2) be the estimates of the
marginal rates p;(s; zx1) and usa(t; zx2), respectively, which is considered as the first-
stage estimation. There are a number of options to estimate the conditional rate ratio
p(s,t; 21, zio) including nonparametric, parametric and semiparametric approaches,
each with commonly known strengths and weaknesses. The nonparametric approach
may suffer from the curse-of-dimensionality while the parametric models can be mis-
specified. On the other hand, the association measure based on parametric models
can be more interpretable.

Suppose that p(s,t,0; z;1, zi2), 0 € O, is a parametric model for p(s, t; z;1, 2i2), where
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O is a dimensional compact set. The estimating equation for # can be constructed as

U (0, fur (5 21), fin (5 202))= Sopy Iy W{ dNk1(8) dNg2(t)
—p(5,1,0; 211, 202) Yer (5) 11 (85 281) Yo (t) fia(t; 282) ds dt}-
(2.3)
The model checking is an essential part of the parametric approach. We proposed
a goodness-of-fit procedure to test the parametric form of the rate ratio base on

the supremum test statistic given by T' = supy ;cjo.2 [V (8, , 0, i1 (5 211, fio (-5 z2) |

where
V(s,t,0, /(5 201), fia (5 242))
= N2 o fo W, v) 22022 LN (1) dNa(0)
—p(u, v, 0; 21, 2k2) Yir (w) o1 (w5 2x1) Yo (v) f12(v; 212) du dv}, (2.4)
W, (u,v) is prespecified weight function and || - || is the Euclidean norm. The critical

values can be approximated by implementing the Gaussian multiplier method (cf.

Sun, Li and Gilbert (2016*)).



CHAPTER 3: ESTIMATION AND INFERENCE OF THE RATE RATIO UNDER
THE ADDITIVE MARGINAL MODEL

3.1  Estimation by a two-stage approach

We illustrate the two-stage approach described in Chapter 2 when the marginal

conditional rate model is additive. Let Ny;(t) follows the additive rates model

E[dNg;(6)|Zx; ()] = dp (11215 (2)),

dpj (t| Zij) = dpoj(t) + B] Zi(t) dt, k=1,..,N;j=1,2 (3.1)

where 110,(t) is an unspecified baseline rate function and ; an unknown p-dimensional
vector. We consider the parametric approach by assuming p(s,t,0; 21, 2x2), where 0
is the g-dimensional parameter of interest.

In the following sections, we first review the estimation procedure of 3; and p;(t)
from the additive marginal mean rate model by adapting the method proposed by
H Scheike (2002). Then we develop the estimation procedures for parametric rate ratio
and investigate its asymptotic properties. A goodness-of-fit procedure is also proposed
to test the parametric assumption of the rate ratio. Lastly, we conduct simulations
to validate the estimation and inference procedures, with the results presented at the

end of this chapter.
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3.1.1  Review of the estimation of the marginal model

We define a zero-mean stochastic process as

My;(t, B5) = Ni;(t) — /0 Vij (w){dpoj(u) + B} Zyj(u) du}. (3.2)

Following the Generalized Estimating Equations proposed by (GEE; Liang and Zeger

1986), the estimating functions for p;(t) and j; are as
N t
Z/ Vij(u) dMyj(u; 8;) =0, 0 <t <. (3.3)
k=10

> [ i) Zustu) dbteus ) =0 5.4

respectively. By solving (3.3), we obtain the fig;(¢; 5;) as an estimate of 10;(t), where

/ Sy [ AN (u) — Yig (w) B Zij () du]'

S V() (82)

:&0]
With some simple algebra, equation (3.4) is equivalent to

L;(8) = Z [ 000 = 2,003 [ Voo Va5 20 ]

where Z;(t) = % Substituting fip;(¢; 5;) into equation (3.2) and solve

equation (3.4) gives us the estimate of 3; as

[i | Ytz - j<u>}®2du]‘1kZN1 | 250 - 2z aviyw.

(3.6)

®2

where a®? = aa” for a vector a. Once f3; is obtained, jo;(t) can be estimated by

fio; (t; B;) from equation (3.5).
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For convenience we summarize the estimation method of the additive marginal

model developed by H Scheike (2002) here.

Theorem 3.1 (H Scheike (2002) Theorem 1) Under the reqularity (C.1.)-(C.5.),

Bj converges almost surely to B;, and has the following asymptotic approzimation
N
VN{B; — B} = A7INT2D g+ 0,(1)
k=1

where & = fOT{ij(u) — Zj(u)} dMy;(u, B;) and z;(t) = lim Z;(t).

N—oo

vV N(Bj—ﬂj) 15 asymptotically normal with mean zero and covariance matrix Aj_lEjAj_l,

where

T

0

N T

A =NY [ (2w - Z(w)*
k=10

A N ~

Ny
k=1

Theorem 3.2 (H Scheike (2002) Theorem 2) Under the reqularity (C.1)-(C.5),
fio;(t) converges almost surely to po;(t) uniformly in t € [0,7]. V' N{jio;(t) — po; (1)}

converges weakly to a mean-zero Gaussian process with covariance function

Lj(s,t) = Elor;(5)Pr;(t)] (3.7)
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where

Prj () Z/O w5 () dMy (u; B;) — HT (1) A} /OT{ij(U) — Zj(u) } dMy;(u; B;), (3.8)

with H(t) = [} Zj(u)du, 7 (t) = lim Z7(t) and m;(t) = N~* lim 33 Yii(t).

N—o0 N—o0
The consistent estimates of T'(s, ) is denoted by T';(s,t) = N~* S~ qgkj(s)ggkj (1),
with @ (t) = [y 751 (w) dMy (u; B;)—HT (1) A7 [T{Zni(w)—Z;(w) } dMigg (ws; B;), J705(t) =

N=USY Yiy(t) and H(t) = [ Z;(u) du.
3.1.2  Estimation of the rate ratio

The rate ratio can be estimated by equation (2.3), the realization of which under
model (3.1) is
~ ~ N A A
U(ea 617 627 ﬂOl(')? /102()) = Z Uk(ea 617 627 ﬂOl(')v ﬂOQ('))J (39>
k=1

where

o Op(s,t.0; Zn1, Z
Uk(0, B1, B2, froa (+), fo2(- // pls, 50 M kQ){de( ) dNya (1)

— p(s, 4,05 Za, Zka) i (8) [ dfion (5) + BY Zia () ds|Yea (1) dfion () + B3 Zial(t) dt ]}'

Denote 0 the solution to U(6, B1, Ba, fior (+), fo2(-)) = 0. We investigate the asymp-

totic properties of U(é, B1, B, fio1(+), fio2(+)) and 0 in Theorem 3.3 and 3.4 below.

Theorem 3.3 N~V{U(0, b1, B, fro1 (), fioa(-)) U (0, By, Bo, 101 (), p10a(+))} converges

to a mean-zero Gaussian process, with covariance

. 1 = 1 1 ®2
Q= lim N~ Z {hl,meAf + 91Nk T honEre Ay + 92,N,k} .

N—o0
k=1
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The consistent estimates of §2 is

. N T Pt B @2
Q=N Z{hl,kalAl + 1,8k + ho NEka A +92,N,k} ,

k=1

where ;lj7N, fkj, Gink(s,t) ( =1,2) are shown in the appendix.

Theorem 3.4 VN (é — 0) can be approzimated by a mean zero Gaussian process

N
VN —0) = NTV2Z(0)}) " Wi(0) + 0,(1), (3.10)
k=1
for which the formulae for Z(0) and Wy(0) are given in the appendix.
The variance of VN(0 —6) can be estimated by ® = N=H(Z)~' S0 (W) E*(ZT) 7,

where T and W), are the empirical counterparts of Z(0) and Wi (0).

3.1.3  Simulation studies

Before we conduct finite sample studies to investigate performance of the proposed
estimation procedure, we want to show some examples that motivate us to model the

rate ratio parametrically.

Proposition 1 Under shared frailty model
dpj(t) = R - {dpo;(t) + B Zi;(t) dt}, (3.11)

where Ry is identically and independently distributed positive random variable, with
E(Ry)=p and var(Ry)=0?. The rate ratio only depends on the variance of frailty
random variable and can be explicitly expressed as

o2
p(s,t,0) =p= 1+E. (3.12)
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Proposition 2 Let 7 be the mazximum observation time and cqy lies in the middle of

0 and 7. Suppose the shared frailty mean rate model for Ny;(t) is

dp; (| Zyj (), Ri(t)) = Ri(t){dpio; (t) + B Zi;(t) dt} (3.13)

where Ry(t) = I(t < co)Ryko + I(t > co) R
Before we exam the rate ratio in this time varying additive mean rate model, we

introduce the shifted gamma distribution. Define the probability density function of

the shifted Gamma(a,b,0) as

1 —(z—9)
b

f(zla,b,d) = Ta) (x—8)* e

,x € [0,00), §>0 (3.14)

for x € [§,00), § > 0 and here I'(-) denotes the Gamma function. Let X come from
shifted Gamma(a, b, d) then we have E(X )=a-b+§ and var(X )=a-b*. As we can see
when § = 0, the shifted Gamma distribution is reduced to the gamma distribution.

If Ry and Ry are independently from the corresponding shifted gamma distribution

(ag, bo, 00) and (a1, by,01), then the rate ratio is piecewise constant:

aoby
(aghbg + 09)?’

a,b?
(a1by + 61)2

p(0,s < co,t <cp) =1+
p(0,s > co,t >co) =1+

p(0,s < co,t > o) = p(0,s > co,t <) = 1. (3.15)

Proposition 3 For j = 1,2, denote \;(t|z;) the event rate of nonhomogeneous Pos-
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sion Process N;(t). Let No(t) be a monhomogeneous Poisson process with event
rate \o(t|z;). Assume that N;(t) and No(t) be mutually independent, i.c. for any
Uy, Us..., Up, the random vectors {Ny(uy), Ni(u1),, ..., N1(un)}, {Ny(us), ..., No(un)}
and {No(uy), ..., No(u,)} are independent to each other.

Define the counting process N;j(t) as N;(t) = N;(t) + No(t) for j = 1,2. Since
N;(t) is the summation of two independent Poisson processes, N;(t) is also a Poisson
process with rate \;(t |z;) = N;(t|2;) + No(t|z;).

Let po(s,t,0|z1,22) and the p(s,t,0|z1,22) be the rate ratio of {No(s), No(t)} and

{N1(s)}, Na(t)} for s,t >0, then we have p(0, s,t| z1, z2)

4 1po(0; stz 22) — 1pdo(s]21) do(t]22)
)\1(8 ’Zl>)\2(t’22) ’

p(0,s,tlz1,20) =1 (3.16)

The association is introduced by the shared counting process Ny(s) and No(t). If
po(0,s,t|z1,20) = 1, p(0,s,t|z1,20) = 1, thus if {Ny(s), No(¢)} is independent so is
{Ni(s), Na(t)} -

We conduct simulation studies to evaluate the finite sample properties based on
the guidance of Proposition 1, 2 and 3. Let 7 = 5, Cy; follows a uniform distribution
on [0,7], and covariates Zj; are from a uniform[1, 2] for j = 1,2. The observed events
for the jth type in cluster & would be all the event times that are smaller than Cj;.
We consider I, II, III scenarios where the rate ratio is constant, time varying, and
covariate dependent. Scenario IV is an extension from II and III, with the rate ratio

depending on event time and covariates.
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(I) Constant p(s,t,0) = 6

Recall the shared frailty model in equation (3.11)
dpij(t| R, Zj(t)) = Ri - { dpaoj(t) + B8 Zi; (1)} for j =1,2.

Let Ry, follows i.i.d Gamma(a, b) with E(R},) = ab and var(Rj) = ab®. By proposition
1, p(s,t,0) = 6y where 6y = 1 + ab*/(ab)* =1+ 1/a.

Let 81 = 0.5, B2 = 1, po1(t) = po2(t) = 0.25¢,0.5¢,t. The averaged observed type
1(2) events after right censoring are 2.50(4.37), 3.13(5.02) and 4.37(6.26) respectively.
To variate the strength of the association, we take Ry, from the pairs of (a,b) equal
to (4, 0.25), (2, 0.5), (1.33, 0.75) and (1, 1) so that 6, = 1.25, 1.5, 1.75 and 2
correspondingly.

By taking the expectation of Ry in equation (3.11), the mean event rate still follows
model (3.1). In the first-stage, f;, fio; () are evaluated by equation (3.6) and (3.5). In
general, the estimates of §y; and p;(t) agree with the discussions in literatures. We
show part of the numerical results for the first-stage estimates in Table 1, from which
it is observed that Bl and Bg converges to the true values f; = 0.5 and 5, = 1. The
mean Estimated Standard Error of 8; (ESE) is very close to the Sample Standard
Error of Estimates (SSE) and Empirical Coverage Probability (CP) is around to 0.95.
We will skip the marginal model simulation result and focus on the estimation of the
parameters in the rate ratio in the studies.

In the second-stage, ij fup; for j = 1,2 are plugged into equation (3.9) and the
root is derived by the Newton-Raphson method. Convergence is achieved at the

1th iteration if % < 1075 or i > 50. In Table 2, the Bias is negligible for
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all the cases and the Standard Error of Estimates (SEE) is close to the Estimated
Standard Error (ESE). The 95% coverage probability (CP) is also around 0.95. Both
SEE and ESE decrease with a larger sample size. It is also observed that the SEE
and ESE increase when the association between the two processes becomes stronger
(i.e. 0y is larger) and such increment is slowly reduced by increasing the sample size.
A possible interpretation is that for bivariate recurrent event processes, given the
observed dataset with a fixed sample size, less information would be obtained if the
two events are highly related. We might be able to adapt a weight function in the

estimation equation (3.9) to improve the efficiency of this estimating procedure.

(IT) Time Dependent Rate Ratio p(6, s, t)

For the j th individual in the kth cluster, let
Nij(t) = Nij(t) + Nyo(t), for j=1,2 (3.17)

where {Ni1(-), Nia(+), Nio(-)} are independent Poisson process, conditional on co-
variates and frailty. Consider E{dNyo(t) | 2;, Rk} = Ry - Ao(t| Zi;(t) = 2;)dt, where
Moo (t| Zij) dt = dpio(t)+ Boj Zij(t), and Ry, is the frailty and variable is from a positive
i.i.d Distribution. Let E(Ry)=po and var(Ry)=07 the rate ratio of {Nyo(s), Nko(t)}
can be obtained from Proposition 1 as po(s,t,0|z1,22) = 1 + 03 /.

Denote the mean rate for Ni;(t) as Api(t| Ze;(t) = 2;) (for j = 1,2 and t €
(0,7)) and assume A (t| Zi;(t) = 21;) = m;(H) Mo(t] Zij(t) = 2;), with m;(u) > 0.
By equation (3.17), the mean rate of Ny;(t) is Ag;(t|zk;) = [1 4+ m;(t)] Aro(t |2k5)-
Intuitively, it suggests that the mean rate of Nj;(t) is proportional to that of the

underline common counting process Nyo(t). Especially, m;(t) = 0 makes Ny;(t) is
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reduced to the shared frailty in equation (3.1).

Following Proposition 3, the rate ratio of {NNy;(s), Ng2(t)} can be expressed as

1
(1 +ma(t))(1 +ma(s))’

p(0,s,t) =140y x (3.18)

. Let 1/(1 +mqy(t)) = —0.15t + 0.9, 1/(1 4+ ma(s)) = —0.15s + 0.9, by

;:: wloqm

where 6y =

equation (3.18) we obtain
p(0,5,8) =1+ 0y x (—0.15¢ + 0.9)(—0.155 + 0.9). (3.19)

Let Ry are i.i.d Gamma(a,b) so that g = ab and oy = ab®>. We take (a,b) as
(4,0.25),(2,0.5), (1,1) and (0.635,1.6) and therefore the corresponding 6, are 0.25,
0.5, 1 and 1.6. To generate moderate and frequent event observations, we take 5y, =
Bo2 = 0 and set p01(t) = po2(t) to be 0.25¢, 0.5¢, 0.75¢ and ¢, which gives us averaged
events count as 2.13, 4.17, 5.21 and 6.39 respectively.

The Bias of the estimates (Bias), the Estimated Standard Error (ESE), the Sample
Standard Error of Estimates (SSE) and 95% Empirical Coverage Probability (CP)
are calculated from 1000 simulated datasets with sample size N = 200, 500, 800. The
bias of 6y is low, the ESE is close to the SSE and the coverage probability is around
0.95. When the rate ratio of Ny;(-) and Nga(-) become stronger, the ESE and SSE

both increase, which is similar to the scenario I. For details, see Table 3.

(ITI) Covariate Dependent Rate Ratio p(0; Zy) = 611(Z, = 1) + 0,1(Z), = 0)

Let Z; be a cluster level binary covariate. Assume the counting process N,:j(t)
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follows the shared frailty model
EldNy;(8)| Zk, Ri] = Ri{ dpo; (t) + 8;Zx(t) dt}, (3:20)

where E[Ry| Zy] = u(Z;) and var[Rg|Zy] = 0*(Z},). Following Proposition 1, we obtain

o*(Zy)
2(Zy)

p(6;Z) =1+ (3.21)

=

We take 1 = 0.5, B2 = 1, uoi(t) = poo(t) = 0.25¢,0.5¢,0.75t. Let Zj come from
Bernoulli(p = 0.5), so that X}, has equal chance to be 0 or 1. We generate Ry from
Gamma(4,0.25) and Gamma(1.33,0.75) for Z, = 1 and Zj = 0 respectively.

In equation (3.21), p(6;Zy = 1) = 1.25, p(0; Z, = 0) = 1.75 and therefore we

rewrite the rate ratio as
p(0;Zy) = 01 1(Z, = 1)+ 0,1(Z;, = 0), (3.22)

with 6; = 1.25 and 6, = 1.75. Under this setting, the averaged observed type 1(2)

events after right censoring are 2.50(4.37), 3.13(5.02) and 4.37(6.26).

(IV) Time and Covariate Dependent Rate Ratio

Consider the bivariate counting processes { Nj1(+), Ny2(+)} constructed by the sum-
mation of two independent Poisson processes N, ki () and Nio(-), as described in Propo-
sition 3. Denote po(0, s,t|21, z2) and p(0, s, t|z1, z2) be the rate ratio of (Nko(t), Nxo(s))

and ({ Ng1(s), Nka(t)}) respectively. Following from Proposition 3, we have

L+ {po(0,s,t|z1, 22) — 1} Ao(s]21) Ao (t]22)

0,s,t =
p(0, s, t|z1, 22) AL(8 [21) A2 (t |22) 7

where Ago(s|21)ds, Aj(s|z1)ds are the conditional mean rate of Ny(s) and Ny(s),
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whereas A\yo(t|22) ds, As(t]z1) dt are that of Ngo(t) and Nyo(t).

Let Aro(t|Zk, Ri) = Ri(0.254 By, Z)) and ij (t) = 0.5t, where Ry, is generated from
i.i.d Gamma(a,b) and Zy is from Bernoulli(0.5). Consider (a,b) equal to (4, 0.25),
(2, 0.5) and (1.33, 0.75) such that po(0, s,t|21, 22) = 1.25,1.5 and 1.75. Let By = 0.1,
Bo2 = 0.2. The rate ratio of Nij(s) and Ngo(t) is time-varying and dependent on the

covariate Zy;, where

(0.25 + 0.12,)(0.25 + 0.27Z,)

0,5,t|Z) =1+86
p(0,5,t|Zx) =1+ (0.5¢ 4 0.25 + 0.17)(0.55 + 0.25 + 0.2Z;,)’

(3.23)

with 6 = % = 0.25,0.5,0.75 and 1.
To evaluate the influence of observed event frequency on the estimating procedure,

we modified Ayo(t|Zy, Ri) = Ri(0.5 4 Bo;Z;) and kept all the other settings so that

(0.5 + 0.12,)(0.5 + 0.27,)
(0.5t + 0.5+ 0.12,)(0.55 + 0.5 + 0.2, )"

p(0,s,t|Zk) =1+46 (3.24)

1000 datasets are generated from the above settings. With the estimated Jy; and
po;j(t) plugged into equation (3.23), the estimates of 0?/u? can be computed. The
simulation result is summarized in Table 5. The bias is going to zero and the ESE
is getting close to SSE as sample size increase. The coverage probability is getting

around 95% for both 6.
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3.2 Hypothesis testing of the rate ratio

Although the parametric rate ratio model has better interpretability than nonpara-
metric ones, it might suffer from model misspecification and induce model bias. In
this section, we aim at providing a goodness-of-fit procedure to test the parametric as-
sumption of the rate ratio, i.e. Hy : p(s,t,0; 21, 29) = 0y, under the additive marginal
mean rate model. A finite sample study is also conducted to check the performance

of the goodness-of-fit procedure.
3.2.1  Procedure description

The residual process followed by equation (2.4) under model (3.1) is defined as

V(s,t,0, 51, fuon (-). Bo floa ("))
= NN o Jy W, 0) 252 AN (u)dNba )
= plu, v, 0)Yia (u){djior () + BY Zp1 (u) du} Yo (v) {dftoa (v) + B3 Zya(v) dv}}7
(3.25)
where Wi (u,v) is a prespecified weight and for simplicity let Wy (u,v) = 1. With
correctly specified marginal mean rate and p(s,t,6o; zx1, 2k2), one would expect the
value of equation (3.25) to fluctuate around zero at the any (s,t) € [0, 7]%

Let T' = sup; 4ejo.12 | V(s,1, 0,531, i1 (), Bo, fioz(+)) || be the supremum test statistic
which measures the maximum observed residuals across the observable periods of
type 1(2) events. A reasonable small T" value is expected from a fitting. Since the
underlying distribution of 7" is intractable, we apply the Gaussian multiplier method

to approximate its empirical distribution.
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The Gaussian multiplier method.

The first order Taylor expansion of equation (3.25) w.r.t 6 is

V(57 t7 év Bla :0’01(')7 327 ﬂOQ(')): V<57 t, 97 Bla ﬂOl(')u 627 ﬂOQ()>
oV (57 t.0, 51, fior (), Ba, ﬂoz(‘))

N2 NY2(9 —
* 06 =9
+0,(1), (3.26)
which can be further decomposed as
( é Bl flo1(-), Bz;ﬂw(‘))
=V{(s,t,0, B, po1(+), B2, po2(+))
N
+ N_1/2 Z {Tkl(sa l ‘9) + Tk2(87 l 9) + Ckl(sa t 0) + Ck’g(s? 2 6)} + Op(l)’ (327)
k=1

with details shown in Appendix C. Let T = supy ;cp0.- [| V*(s,¢) || and

V*(s,t,0)
= {V(S, t, é, Bla /)01(')7 327 [LUQ())

ANV Tra(s,t,0) + Gea (5,1, 0) + Thals, 1,0) + Gals, 1, é)}Gk, (3.28)

where G = (G1, Ga, G, ...Gy) is a vector of i.i.d standard normal random numbers.
Comparing equation (3.28) and (3.27), the multiplication of a Gaussian Random
variable Gy keeps V*(s,t,é) and V(s,t,é,ﬂl(-; Zkl),Bl,ﬂ()l('),BQ,[LOQ(')) sharing the
same expectation and variance, thus 7™ and T follows the same distribution.

The Gaussian Multiplier re-sampling method is summarized in Algorithm 1. In

a single simulation, one Gaussian random vector {Gy, Gy, ..., Gy} is generated and
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V*(s,t,0) is calculated from equation (3.28). By taking the maximum of V*(s, ¢, 0)
across all the equally distanced grids, we have one sample from the 7™ distribution.
Repeating this simulation procedure 1000 times allows us to obtain 1000 samples and
therefore the empirical distribution of 7*. On the other hand, the supremum test
statistic 7' can be obtained by taking the maximum of equation (3.25). We consider
the 95th percentile among the 1000 realizations of 7™ as the critical value (Cy;) and

would reject Hy if T' > Cys.
3.2.2  Simulation studies

In this section, we conduct simulation studies to investigate the performance of the
proposed goodness-of-fit procedure.

For bivariate counting processes, we will firstly detect the existence of depen-
dency. The null model is the independent bivariate counting processes and the the
constant rate ratio model is treated as its alternative. Secondly, we propose the
Hy : p(s,t,0;21,22) = 0y and Piecewise Constant (PWC), Time Dependent (TD),
Time and Covariate Dependent (TCD) models as H, models. The size and power of

the hypothesis test are also computed via Gaussian Multiplier Method.
3.2.2.1  Testing for independence

The first hypothesis of interest is whether { Ny (-)} and {Ng2(:)} are independent,
which is equivalent to test Hy: p=1 vs H,: p # 1. To investigate the size, events

data are generated from an additive marginal model

dpij(t; Zij(t)) = dpoj(t) + B Ziy (1)
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Let 7 =5, fo1 = 0.5, Bo2 = 1, Cy; follows Uniform[0, 7| and covariates Zy1, Zyo are
from a uniform distribution on [1,2]. We take pg;(t) = 0.25¢, 0.5¢, 0.75¢, and ¢ which
gives the average observed events counts range from 2.50 to 6.26. Datasets under

H, :p(0,s,t) = 0y are generated from the shared frailty model

dpj(t; Zij(t), Re) = Ri{dpo;(t) + B85 Zk;(t) },

where Ry, from Gamma(a, b) with (a,b) = (4, 0.25), (2, 0.5), (1.33, 0.75), (1, 1). Thus
0y in H, are equal to 1.25,1.5,1.75,2. We compare the supreme test statistic under
p(0,s,t) = 0y to the corresponding value obtained by assuming p = 1 and regard the
rejection rate among 1000 simulations as the power of the test.

We only consider the case when pi; = 0.25¢, since it has the smallest number of ob-
served events and other cases would have even more rejection, i.e. higher power. The
empirical size (power) calculated as the rejection rate from 1000 simulated datasets
under Hy: p=1 (H, : p(s,t,0; 21, 29) = ).

Table 8 shows that the proposed testing procedure has size around its nominee
value (5%). The test procedure is powerful at detecting the non-independent case

with probability above 99%.
3.2.2.2  Testing for parametric form with constant rate ratio

We are also interested in testing the parametric assumption of the rate ratio, i.e.

Hy : p(0,s,t) = 6y. The null model is the shared frailty model in equation (3.11),
Shared Frailty: E[dN;;(u)|Ry, Zi;(w)] = Ri{dpo;(w) + B] Zij(u) du}

from which p(s,t,6) = 6y where 6y = 1+ 0%/u?, E[Ry] = p and var[Ry| = o2
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From the first section in Table 9, we see the empirical size of the test under null
model is bounded by its nominee value 0.05. Thus the hypothesis testing can control
the probability of mistakenly reject Hy : p(s,t,6) = 0y under 0.05.

To investigate the power of the test, we propose three alternative models to in-
troduce the time varying and covariate dependency cases: the Piecewise Constant
Rate Ratio Model(PWC), the Time Dependent Rate Ratio Model(TD Model) and
the Covariate Dependent Rate Ratio Model(CD Model). Alternative models and the

corresponding performance are illustrated in the following sections.

(I) The piecewise constant rate ratio model - PWC Model
Described in equation (3.29), the random effect is time varying, which is a natural

generalization of the shared frailty model
PWC: dyyy (¢ [Ri(t), Zig (1)) = Bu®){dpos (t) + BT Zy (1) dt}. (3.29)

For simplicity, we consider Ry (t) come from different distributions only when ¢ falls
in non-overlapping intervals.

Let 7 = 5, Ri(t) = I(t < 2.5)Rgo + I(t > 2.5)Ry1, where Ryo and Ry are in-
dependently from the shifted Gamma(ag, by, dp) and Gamma(ay, by, d;) respectively.
The shifted Gamma Distribution with (a, b, §) as shape, scale and shift parameters is
introduced here to avoid rare event observations. We take g1 (1) = po2(u) = 0.125u2
p1=0.5, Be =1, and Zg1(u), Zka(u) from uniform|[1, 2].

Table 6 summarizes the parameter settings and the corresponding Rate Ratio value.

We see the variation of the association is increasing from PWC1 to PWC4 and one
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can visualize the trend in Figure 1 as well.

Table 6: Summary of simulation settings under the piecewise constant rate ratio
model with the corresponding p values followed from Proposition 2.

Settings PWC1 PWC2 PWC3 PWC4
Rio = (ao,bo,d0) (0.25,1,0.75)  (0.5,1,0.5)  (0.25,2,0.5) (0.25,2,0.5)
Ri1: (a1,b1,01)  (0.25,1,0.75) (0.25,1,0.75)  (0.5,1,0.5)  (0.25,1,0.75)

p(s < 2.5,t < 2.5) 1.25 1.5 2 2
p(s > 2.5,t < 2.5) 1 1 1 1
p(s > 2.5t > 2.5) 1.25 1.25 1.5 1.25

To evaluate the power of the test, first, we generate 1000 datasets and within each
simulation, the rate ratio p(6,s,t) is estimated under (Hy : p(s,t,0) = 6y). The
residual process and supreme statistic 7" are computed and a rejection is made when
T > Cgs, where Cys is the 95% percentile of Gaussian Multiplier samplers. The
overall rejection rate among the 1000 datasets is considered as the empirical power of
the hypothesis test. From Table 9, the power increases with the sample size and it is

more likely to detect the divergence from H, when the association become stronger.

(IT) Time dependent rate ratio model - TD model

Assuming {Ny1(s), Ni2(t)} follows the Bivariate Counting processes below

Nia(s) = Nia(s) + Nio(s),

Nia(t) = Nia(t) 4+ Nio(t), (3.30)

where Ny (+), Nia(+) and Nyo(+) follow Poisson Processes and are also mutually inde-
pendent.
Let Ago(t|Zk;, Ri) dt be the event rate of Nyo(t) and Ao (t|Zk;, Ri) = Ri(dpo;(t) +

BojZi;(t), where Ry is the frailty variable with mean p and variance o?. For j =
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Figure 1: Visualization of Piecewise Constant p(s,t,0) (PWC) under the Additive
Marginal Models. The variation of p(s,t) between different pieces is growing from
PWC1 to PWCA4.
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1,2 and t € (0,7), assume ij(t|ij(t)) = m;(t)Aro(t|Zk;(t)), with a nonnegative
multiplier function m;(¢). Following simulation settings in equation 3.19 to generate

data that share the rate ratio as

TD model: p(0,s,t) =1+ 6y x (—0.15s + 0.9)(—0.15¢ + 0.9). (3.31)
where 0y = Z—; reflects the time varying component in p(6, s,t) proportionally. To

capture different time varying levels, we take Ry from a shifted gamma distribution,
with parameters (a,b,d) = (0.25,2,0.5),(0.2,3,0.4) (0.25,3,0.25) and (0.2,4,0.2) so
that u =1 and 6% = 1, 1.8, 2.25 and 3.2. Let Sy = Boa = 0, 7 = 5, Cy; be uniform

on (0,7), and Zx1, Zgo are i.i.d uniform(1,2). Simulation settings are summarized in
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Table 7 and Figure 2.

Table 7: Simulation settings of the Time Varying Rate Ratio (TD models). From
TD1 to TD4, the value of 0%/u? is increasing and so is the association between the
bivariate recurrent event processes.

Settings TD1 TD2 TD3 TD4
(o) (1, 1) (1,18) (1,2.25) (1,3.2)
it 1 1.8 2.25 3.2

=

Figure 2: The contour plot of the Rate Ratio p(s,t) under the additive marginal
mean rate models. The x-axis and y-axis represents the observation time for typel
and type2 events. From upper left to lower right, the heterogeneity of p(s,t) is
increased.

as s
45 45
4 4
3 3
35 35
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(a) TD1 contour plot (b) TD2 contour plot
323. ‘
(c) TD3 contour plot (d) TD4 contour plot

The variation of p(0, s,t) is scaling up from TD1 to TD4, so does the empirical
power of the test shown in Table 9. From our observation, the proposed model

checking procedure performs well with a large sample size, especially when the Rate
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Ratio is very time dependent.

(ITII) Time and Covariates Dependent Rate Ratio Model -TCD Model
Under the same framework of the TD Model, assume Nyo(t) and Nkj(t) are Pois-
son processes with rate conditional on covariates and unobservable frailty Ry as
Meo(t| Zij, Ri) = Ri{0.25 4+ Bo;Zy;} and ij(t) = t respectively. The conditional
rate of Ng;(t) equals to \g;(t|Zxj, Ri) where A;(t|Zx;, Rx) =t + {0.25 + Bo; Zk; }-
Let Bo1 = 0.5, Bo2 = 1, Zy; follow uniform(1,2). Take Ry as i.i.d Gamma(l/v,v)
with v = 0.5,0.8,1,2 so that E(R;) = 1 and var(Ry) = 0.5,0.8,1,2. Denoted by

p(0,s,t|Zk1, Zy2) the rate ratio of {Ngi(s), Nka(t)}, where

(0.25 4 0.5Z11)(0.25 + Zyo)
(t+0.25+0.5Z1)(s + 0.25 + Zpo)’

p(Q,S,ﬂZkl,ZkQ) =1 —f—@ (332)

is obtained by Proposition 3, with true 6 equal to 0.5, 0.8, 1 and 2.
The average rejection of Hy : p(s,t,0) = 6y under equation (3.32) among 1000 are
summarized in Table 9. The test is powerful at detecting violation of Hy and the

rejection rate of the test is consistently increase when the sample size changed from

200 to 800.
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Algorithm 1 Gaussian Multiplier Method
For dataset m =1,2,.... M

1. Calculate T by (3.2.1)

2. Consider a large integer B, say 1000. We generate a B x N matrix G com-
posed by i.i.d Standard Gaussian random numbers, so that each row is an N
dimensional vector:

Gll G12 G13 .. Gln
G21 G22 G23 e ng
Gp1 Gp2 Gps Gpn

For each row, applying equation (3.28) to calculate the realization of V*(s,t)
and T*. Enumerate all the rows to get a list of {V{*(s,t), V5'(s, 1), ..., Vi(s,t)}.

3. Denote the 95th percentile of {Vi*(s,t), V5'(s,t),...,Vi(s,t)} to be Cy;. We
would reject Hy if T' > Cys and fail to reject Hy if T' < Cls.

Calculate the percentage of rejections in a total of M datasets to find the size or the
power of test statistic.
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Table 8: Observed sizes and powers of the test statistic T via the proposed model-
checking procedure under Hy: p=1vs Ha: p(s,t,0) =0 and 6 > 1 , at significance
level 0.05. The numbers in the parentheses represent the count for type 1 and type 2
event across the observation period. Each entry is calculated based on 1000 Gaussian
multiplier samples with 1000 replicates.

Size
event count p  N=200 N=500 N=800
(2.50, 4.37) 1 0.043 0.052 0.051
(3.13, 5.02) 1 0.051 0.057 0.051
(3.76, 5.64) 1 0.043 0.053 0.041
(4.37, 6.26) 1 0.045 0.049 0.054
event count Power

p  N=200 N=500 N=800

(2.50, 4.37) 1.25 0.995 1.000 1.000
1.5 1.000 1.000 1.000

1.75  1.000 1.000 1.000

2 1.000 1.000 1.000
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Table 9: Observed sizes and powers of the test statistic T for the proposed model-
checking procedure under Hy : p(0,s,t) = 6 (i.e. constant) vs Ha : p is not constant,
at 0.05 significance level. Each entry is calculated based on 1000 Gaussian multiplier
samples with 1000 replicates.

Size

event count N p=125 p=15 p= p=2.25
200  0.038 0.038  0.031 0.038

(3.50, 4.67) 500  0.057 0.037  0.032 0.040
800  0.042 0.042  0.051 0.046

Power

event count N PWC1 PWC2 PWC3 PWC4
200 0.173 0.579 0.638 0.755
(2.91, 4.80) 500  0.421 0.912 0.958 0.983
800  0.622 0.979 0.990 0.999

TD1 TD2 TD3 TD4

200  0.197 0.231 0.311 0.307

(4.27,4.27) 500  0.556 0.621 0.760 0.738
800  0.773 0.821 0.887 0.894

TCD1 TCD2 TCD3 TCD4

200 0.250 0.336  0.405 0.455

(6.67,8.54) 500 0.514 0.678  0.756 0.823
800  0.735 0.900 0917 0.933




CHAPTER 4: ESTIMATION AND INFERENCE OF THE RATE RATIO UNDER
THE MULTIPLICATIVE MARGINAL MODEL

4.1  Estimation by a two-stage approach

Additive and multiplicative mean rate models postulate a different relationship be-
tween the underline counting process and the covariates. The multiplicative model,
also known as Cox model is popular due to its easy implementation and clear inter-
pretation of the covariate effect. In this chapter, we develop the estimation procedure
for the rate ratio under the multiplicative marginal event rate model.

Lin et al. (2000) proposed the mean rate of the counting process Nj;(t) as

EldN;; (1) Zij ()] = dpy(t; Zi(t)),

dpj (t; Zrg () = € 790 dpg (1), (4.1)

where f3; is a p-dimensional vector, fi;(t) is an unspecified baseline rate at time t.
Assume p(s,t,0; 21, 2k2) is the rate ratio of Nj;(¢) and N/,(s). 6 is the dependence
parameter which can be approximated by solving the estimation equation (2.3), with
the f1;(t) estimated by the method proposed by Lin et al. (2000). We adjust some
notations from Chapter 3 with a superscription ¢ to represent estimators derived from

model (4.1).
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4.1.1 Review the estimation of the marginal model

Adapting from the approach of Lin et al. (2000), for type j event we define
N
AN (t) = dNy(t),
k=1

t
M () = Nis(0) = [ i) 25 dpn)
0

N
SH(t.8) = N7 YV (0Zg e 0, d=0,1,2 (42
k=1

where a® = 1, a®' = a, and a®? = aa”. Let Zj(t,ﬁ) = Sjl(t,ﬁ)/S?(t,B); Zi(t, B),
s4(t, B) be the limit of Z;(B,t) and S§(t, B) as N — oo respectively.

Denote (; the solution to L§(B,7) = 0, where L§(3,7) = S [T Zi (u) —
Z;(u, 3)}dNy;(u) is the partial likelihood score function.

Under certain regularity conditions, Bj converges almost surely to ; and \/ﬁ(éj —
;) has weak convergence to a zero-mean normal random vector with covariance
matrix [} = (AS)712¢(AS) "L When f3; is available, the baseline function fi;(t) can

be consistently estimated by the Aalen-Breslow type estimator

fioj (t, By) = AN, (w)

=), ¥ iy telo,7]. (4.3)

We investigate the asymptotic properties of 6 under the assumption that the distri-
bution functions of the Cy; are independent from covariates and the counting process.

We recall Theorem 4.1, Theorem 4.2 due to Lin et al. (2000).

Theorem 4.1 Bj converges almost surely to 3; and \/N(B] — ;) is asymptotically
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normal with covariance matriz (AS)~'X5(AS)~", where
A§=E[ | 42500 = 5080 A dp )],
= B[ [ 420~ 5w s)yarts ) [(20) = 50 80aM50] (@4

The asymptotic approrimation of Bj 1

VN(B; = B;) = (A) "Ny /OT{ij(U) — Zij(u, B;)} dMyj (u, ;) + 0,(1), (4.5)

from which the covariance matriz can be consistently estimated by A 12 A , with
~ N T
Aj = N_IZ/ {Zj(u) Zk](“ ﬁ])}@Yk]( ) 5 2ng dMOJ( )

5, =N~ ng] ,
= [ {Z0) = Zugtu ) g o),
My (t) = N (t) — /Ot Yy (w)e™ 200 dfig (u).

Theorem 4.2 For j = 1,2, [iy;(t) = fio;(t, 5;) converges almost surely to juo;(t) in
€ [0,7], and VN {jig;(t) — j10;(t)} converges weakly to a Gaussian process with mean

zero and covariance function given by

F;(Sat>:E[¢zj(3)¢Zj(t)] at (s, 1),
where

C(t):/ow

g 39 (u7 BJ)

~HU 8D [ 20 = 58} i), k=1,
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and

Ht: ;) = / 5o, ;) dpo () (47)

The covariance function F;(s,t) can be consistently estimated by

Di(s,t) = N7UY 7 fij(s) g (1) (4.8)
k=1
where
) = [ G i3 [ 200) =t i
and

4.1.2  Estimation of the rate ratio

In the second stage, the dependence parameter can be estimated by the root to the

following estimation equation

Uc<9,ﬁl7ﬂo1<) Ba, poa (- ) iU (9 B, por(+), 52,,“02(‘))7 (4.9)

k=1

where

Ug (9, Bu pro1(+), B, M02<'))

_// Op(0,s,1)
o Jo 00

{ AN () ANia(t) = (6, 5,1)Yi1 ()™ 1) dpgy (5)Via(D)e 22 dpoa(1) }. - (4.10)
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with SB1, B2, po1(+), po2(+) replaced by estimator By, Bo, fio1(+), fio2(+) from the first
stage.

The resulting estimator 6 does not have an explicit form. We adapt the asymptotic
properties of Bj and figj(-) from Theorem 4.1 and Theorem 4.2 to show the weak

covergence of 6.

Theorem 4.3 N_I/Q{UC<9,5~1,/101(-),5~2,/]02(-)) — UC<9,51,M01(')752,M02(')>} Jfol-

lows a mean zero Gaussian process and has the following approrimation

N=Y2LU(0, B, dfior(+), B2, dfioa(-)) — U0, Br, dpion(-), Be, dptoa(-)) }
N

= NV (AD) T+ v+ o (A2) G g | 0 (NTH2), (411)
k=1

where

Ip(0, s,t)
00

N T T
By = NSO / / 450, 5,6 Z5(5) dptor ()daoa ),
=1

Qf(97 S, t) = _p(ea S, t) Yil (S)GBTZH(S)YZQ(t)GBQTZZQ(t)’

N T T

Moy =Ny / / 050, 5,6) Z5(5) dpoa (t) dpn (5),
=1 0 0
N T T

= NS / / 460, 5, 1) dpioa(t) dos, (5),
=170 0

N T T
Gk =N [ [ a0 0) dpon(s) ot (4.12)
1=1 70 /O

The right hand side in equation (4.11) can be estimated by
N 7 ~ -~ ~ ~ ~
N2 Z {hlvNAl_lékl + Gk + han Ay o + §2,N,k}7

k=1

where by, &1, hon, &2, Gink Gong are obtained by plugging B;, 0, fig;(-) and
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ori(t) into equation (4.12).

Theorem 4.4 We show in the Appendixz that \/N(é — 0) is asymptotically normal

and has the following i.i.d. approximation:

VNG —0)
= N7V2I0, B, por (), By proa ()} Z Wi(0, B, po1(+), B2 po2(+)) + 0p(1) (4.13)
where

8U;§(9a/31,M01(‘)>52,M02('))}T, (4.14)

N
Z°(0, B, por (), B2y proz(-)) = =N 1 Z { a0
k=1

and

W]gc(ea 517 HOl(')a ﬁQa MOQ())

= U(0, B, proa (), Ba, pro2(+)) + {hi,N(Ai)_lf& + giN,k + h%,N(Ag)_1€I§2 + gg,N,k}'

(4.15)

By the central limit theorem \/N(é — 0) is asymptotically normal with mean 0 and
variance which can be estimated by ® = N1 (I)"Y (0, WE)(ZT)™", where T and

Wy are the empirical counterparts of

790, By, po1(+), Ba, pro2(+))

Wi (0, By, po1(+), B2, po2(+))

respectively, obtained by substituting 0, B, fio(+), By, fio2(+) into equation (4.14) and

(4.15).
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4.1.3  Simulation studies

To evaluate the performance of the proposed method, we conduct a finite sample
simulation study with some shared settings. The end of study time is set as 7 = 4,
censoring time follows uniform(3,4), and covariates {Z;} for the two types of disease

are generated from uniform(1,2).

(I) Constant Rate Ratio

Under the shared random effect model, E[dNy;(t)| Ry, Zi;(t)] = Ry {e% 71 ® dpo;(t)},
where {Ry} is the cluster level random effect, and are assumed to be ii.d from a
positive distribution with mean E(Ry) = 1 and variance var(Ry) = o2 Proved in
Propositionl that the Rate Ratio is reduced to p(f) = 1 + o2, which only related to
the variance of random effect Rj.

Let 81 = 0.2 By = 0.4. Take po1(t) = po2(t) = 0.125¢%, 0.25¢2, 0.375t%, and 0.5¢>
such that the averaged observed type 1(2) events after right censoring are 2.06(2.84),
4.18(5.67), 6.25(8.48), 8.3(11.3) respectively. Ry are independently simulated from a
Gamma distribution with mean 1 and variance 0% = 0.25,0.5,0.75, which leads to
p=125151.75.

In the first-stage, we estimate (31, 2 based marginal mean rate model (4.1). From
the result in Table 10, Bl and Bg converges to true the values f; = 0.2 and [y =
0.4, and the ESE (Estimated Standard Error) is close to SEE (Standard Error of
Estimates). The empirical coverage probability is close to its 95% nominee value.

In the second-stage, we substitute 31, (s, fio1(+), fioz(+) into the estimation equation

(4.9) and obtain 6 by solving U(@,Bl,ﬂ()l('),ég,ﬂgg(')) = 0. The average Bias, SEE
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(Standard Error of Estimates), ESE (Estimated Standard Error), CP (coverage prob-
ability of the 95% confidence interval) of p are summarized in Table 11, where each
entry based on 1000 replicates.

p is unbiased and the estimated standard error can be reduced by increasing the
sample size. Similar to the estimation result shown in table 3, the standard error
is underestimated which cause the coverage probability consistently slightly smaller
than 95%, especially when the p increases. One possible explanation is that the
information gains from increasing the sample size is offset by the stronger association
between two recurrent event processes. An extreme condition is that the two processes
are identical, then we are actually observing and utilizing the information for a single

process and therefore the rate ratio would be underestimated.

(IT) Time varying Rate Ratio

Assume the counting process for j th type event in cluster A at time u as
Nij(t) = Nij(t) + Nio(t), for j=1,2

where {Ny;(t)}, and {Nyo(t)} are mutually independent. Denote po(6, s,t) be the rate
ratio of Nyo(s) and Nio(t). By proposition 3, we have the rate ratio of { Ni1(s), N2 ()}

as

Aro(s]21(8)) Ao (t|22(2))
Ak1(8]21(8)) Ara(t]22(2))

p(973’t|21(3)’ ZQ(t)) =1+ {PO(Q, $>t) - 1}

where E{dNgo(s)|z1} = Meo(s]|21(8)) ds, E{dNk1(8)|z1(5)} = Ar1(s]z1(s)) ds, while
E{dNia(t)|22(t)} = Aga(t|z2(t)) dt. Tt is straight forward to show Agi(s|z1(s)) =

Mro(s]21(5)) 4+ Me1(s|z1(s)), with Agi(s|z1(s)) be the mean event rate for counting
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process Nkl(s). The same logic applies to type 2 event.
For simulation, we start with a simple model by letting A1 (s|21(s)) = m(s) Ao (s]21(s))
and N (£]22(t)) = m(t)Aro(t|z2(t)),where m(s), m(t) > 0, for s,t € [0, 7]. Therefore

the rate ratio would be

p<97 3>t) =1+ {90(97 87t) - 1}

(1+m(s))(1+m(t)
By specifying m(-), the rate ratio could be designed to be time varying under certain

patterns. Here we let 1/(14+m(s)) = (—0.155+0.9) and 1/(1+m(t)) = (—0.15¢40.9).

To specify the po(0, s,t), we assume that

and

ElAN; ()| Ry, Zia(t)] = Ry - {72020 dpugy ()},

where Ry is the cluster level random effect which is , independent and identically from
a positive distribution. The coefficient of covariates for typel and type 2 events are
B1 = By = 0. Ry are generated from Gamma distribution with mean 1 and variance
0.25, 0.5, 1, 1.5, and 2, and therefore py(6, s,t) = 1.25,1.5,2 and 2.5. The rate ratio

p(0,s,t) can be represented as
p(0,5,8) =1+ 0(—0.155 + 0.9)(—0.15¢ + 0.9), (4.16)

with the parameter 6 equal to 0.25, 0.5, 1 and 1.5.
A simulation study for the Rate Ratio with sample size K = 200, 500, 800 is sum-

marized in Table 12, with each entry based on 1000 simulations. The estimator is
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unbiased and the estimated standard error is very close to its true value, with coverage
probability around 95%. The SSE and ESE is decreasing while increasing the sample
size showing that the estimation procedure is more efficient with a large sample size.
We observe consistently higher standard error when the association between bivariate

recurrent processes increases.

(ITII) Covariate Dependent Rate Ratio

Let Zy; = Zj denote the cluster level covariates. Assume the shared Frailty model
E[dN};()| Zy, Ri] = Ry, - €770 dpig(t) (4.17)

where F[Ry|Z;] = p(Zy,) and var[Ry|Zy] = 02(Z},). Following Proposition 1, p(s, t,6) =

1+ —i;g’;; Denoted by the 6; and 6, the value of p(s,t,6) when Z;, = 1,0, i.e.

p(s,1,0) = 0,1(Zy = 1) + 0.1(Zy = 0). (4.18)

Let Bo1 = 0.2, Boa2(t) = 0.4. We consider p;(t) = 0.125¢%,0.25t% for moderately
observed event process, whereas ;(t) = 0.375¢t* and 0.5¢? stand for more frequently
observed ones. Zj; from Bernoulli(p = 0.5) and Ry from Gamma(l/vy,vi) so that
E[Ry]=1 and var[Ry] = vi. To represent the weak and the strong association, consider
v equal to 0.25 and 0.75 for Z, = 1 and Z;, = 0 respectively which gives us 6; = 1.25
and 6, = 1.75 correspondingly.

Simulation result for sample size 200, 500, 800 and 1100, each with 1000 replicates
are shown in Table 13. The estimator is unbiased and the ESE is close to SEE. The
coverage probability is approaching to 0.95 when the sample size increases from 200

to 1100. The ESE and SEE of 6, are consistently larger than that of #;, even through
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both are reduced in a larger sample size.
(IV)Time and Covariate Dependent Rate Ratio
For j = 1,2, we construct a bivariate counting process Ny; with Ny () = Ny (t) +

Nk() (t) . Let

E{dNy;(t) Zij, Ri} = i (£) dt

where \yo(t|Z1;, Ri) = Riei%ri0.25t and ij(t) = 0.25.

We take Ry from i.i.d Gamma(a, b) with (a, b) equal to (4, 0.25), (2, 0.5), (1.33, 0.75)
and (1, 1) such that pg(0,s,t) = 1.25,1.5, 1.75 and 2. Let Zj is from Bernoulli(0.5),
Bor = 0.1 and By = 0.2. By Proposition 3, the rate ratio of Nyj(s) and Ny (t) is

time-varying and dependent on the covariate Zj; which is denoted by

(0.25¢ %-12%1)(0.255 e0-22k2)
(0.25 4+ 0.25¢t €017k1)(0.25 + 0.255 €0-2%x2)

p(07 57t|Zk1a ZkZ) =1+40 (419)

where 0 = po(0,s,t) — 1 =0.25,0.5,0.75 and 1.

To evaluate the performance difference between moderate and high frequency event
processes, we consider A\yo(t|Zy;, Ry) = Ry, - 0.5¢%i%ki. While keeping other settings
the same, the event process Ny;(t) would expect to have more observations than the

previous setting and following equation (4.19) we have

(0.5t €212k (0.55 e0-2212)
(0.25 4 0.5t %1%k2)(0.25 4 0.55 €0-2Zk2)

p(0,s,t|Zy) =1+0 (4.20)

The simulation result from Table 14 shows that the estimating procedure works

well for both settings. The bias is going to zero and the ESE is getting close to SSE
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as sample size increase. The coverage probability is getting around 95% for both 6.
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4.2 Hypothesis testing of the rate ratio
4.2.1  Procedure description

For the case that the marginal mean rate model is additive, we developed a supreme
test statistic to check the null hypothesis p(s,t,0) = 6. We apply the same procedure
and illustrate the test statistic below for hypothesis testing purposes. Define the

residual process under the Multiplicative Marginal Mean Rate Model as

Ve(s,t,0) =
N ¢ s
- op(u,v,0)
12 op\u, v, 9)
N ;/ﬂ /0 w(u,v) 50 ‘eze{del(u)de(m
— p(u, 0, 0) Vi (u)dpagn (w)e™ 7411 %2(1))01#02(?))6552&@)}- (4.21)

Denote V (s, t, 5) the empirical value of V¢(s,t,60) as

V(s,t,0) =

N t s
= Ip(u,v, )
2y op, v, b)
N kzl/o /0 a0 ’9:(;{ ANy (u)dNys(v)

— plu, v, 0) Y (w)djior (w)e™ 2100 . Vi (v) dfigo(v)e™ ZM@}.
and the Supreme Test Statistic as

T= sup || Vi(s,t8)]. (4.22)

5,t€[0,7]
Similarly, to access the empirical distribution of T, firstly we approximate it by the

first-order Taylor expansion,

¥ j 1/2 af/(sa l, é)

V(s,t,0) =V(s,t,0) + N~ 0 NY2(0 —0) + 0,(1) (4.23)
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where

N
V(s,1,0) = V(s 1,0) + N2 3 {18 (5,1) + T, 1) | + 0,(1),

k=1
_1/2017(8,15,9)]\]1/2

N 00

(é - 0) = N_1/2{C121(87 t? 6)) + CgQ(& tv 9)} + OP(1>‘ (424)

Next, we apply the Gaussian multiplier method by multiplying random numbers

(G), from normal distribution, so that

V*(s,t)

N
= {Vls.1.0) + N7V2YT T (5,1,0) + Tils,1,0) + G (s,0) + Gl D) | - G

k=1

(4.25)
By taking the supremum of V*(s, t) among mesh grids of (s, ), we obtain 7* from the
empirical distribution of supy ;cp . || V*(s,t,6) ||. Repeating above the process 1000
times enables us to have enough observations and we would reject the Hy : p(s,t,0) =

6, when T* excesses the 95th percentile of the observations.

4.2.2  Simulation studies

Here, we hope to answer two questions: (1)Are the two event processes indepen-
dent? (2) If not, is the association constant? Firstly, to detect the dependency, we
consider the independent bivariate counting processes as the null model and the con-
stant rate ratio as alternative model. Secondly, we propose the constant rate ratio
model as the null and Piecewise Constant (PWC), Time Dependent (TD), Time and
Covariate Dependent (TCD) models as the corresponding alternatives.

To investigate the performance of the model checking procedure, finite sample
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studies are conducted, with multiplicative mean rate marginal model. The size and

power of the hypothesis test are also computed via Gaussian Multiplier Method.
4.2.2.1  Test for constant association with multiplicative marginal models

We consider the Shared Frailty Model below as the null model

B[N}, ()| Ry, Zia(5)] = Rie™ 290 dpgy (s),

BlAN;(1)| Ry, Zyo(t)] = Rye® 22O dpugy (1),

where Ry is independent and comes from a Gamma Distribution. Following from
Proposition 1, under the null model, we have p(f,s,t) = 1 + 02/u* where 02 and p?
represent E(Ry) and var(Ry,). Let Bo1 = 0.2, Boa = 0.4, 7 = 4 and the censoring time
follow uniform(3,4). We take baseline rate po;(t) = po2(t) and set the values equal
to 0.25t2,0.375t2,0.5t% to represent moderately or more frequently observed events.
The event count after censoring ranges from 4.18 to 11.30. To accommodate the
association strength, we generate R from Gamma distribution with E(Ry) = 1 and
var(Ry) = 0.25,0.5,0.75, 1 so that p = 1.25,1.5,1.75 and 2 respectively.

As we can see, the null model corresponds to Hy : p(6, s,t) = 6. Implementing the
Gaussian Multiplier method enables us to approach the empirical distribution of the
supreme residuals under the Hy. Therefore the rejection rate under the Hy can be
used as an empirical size of the test and should be around its nominee value. The
simulation result summarized in Table 16 shows the test has size below or around
0.05 consistently which agrees with the theoretical value.

Similar to the illustration in section 3.2.2.2, we propose the PWC, TD and TCD
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model as alternative models to exam the power of the testing procedure. The ad-
justment is concerned with the marginal mean rate, which should be multiplicative

in the following sections.

(I) The piecewise constant rate ratio model - PWC Model

Assume 7 = 4 and analogous to equation (3.29),the counting process Ny;(¢) is from
E[ANG; (8)| Ri(t), Zrj (£)] = Ri(t){dpao; (t)e” 750} (4.26)

where Ri(t) = I(t < 2)Ryo + I(t > 2)Ry; is time varying frailty. Let fp; = 0.2,
Boz = 0.4, Ci; be uniform on (3,4) and Zj; follows Uniform(0,1). To modify the
events observed before censoring, we take fi;(t) equal to 0.125¢%, 0.25¢%, 0.375¢2,
0.5t2. Consider Ry and Ry, are independently generated from Gammal(ag,by) and
Gamma(ay, by), where the choice of parameters represent the value of the piecewise
rate ratio. The simulation settings are summarized in the Table 15 and Figure 3.
PWC models are alternatives to the null model and therefore the residuals calcu-
lated under Hy should depart far away from zero. We would expect the supreme test
statistic to go beyond threshold with high likelihood and a high rejection rate is an
indicator of the power. 17 shows the proposed procedure can correctly detect non
constant Rate Ratio at or above 95% of the cases when sample size is large (N = 800)

and the accuracy is improved by increasing the sample size.

(IT) Time dependent rate ratio - TD Model

Consider the Bivariate Counting Process described by equation (3.30). Assume the
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Poisson process Nio(t) has conditional mean rate
E[dNyo(t)| Zk;(t), Rk] = Ako(t| Zk;(t), Ry,) dt

and

Neo(t| Zr; (1), R) dt = Ry - dyag;(t)e i Zki®, (4.27)

with R}, is the cluster level random effect. Let the conditional mean rate of Poisson
process be ij (t|Zkj(t)) and by assigning an appropriate value, we can generate the

counting processes Ny (t) and Nio(s) with rate ratio
p(0,5,t) = 1+ 0(—0.155 + 0.9)(—0.15¢ + 0.9).

where 0 = Z;. To consider rare, moderate and high time dependent association, we

generate # = 0.5,1,1.5,2 by taking Ry from Gamma distribution, where the shape
and scale parameter pairs in the Gamma Distribution are (2,0.5), (1,1), (0.67,1.5)
and (0.5,2). The color plots for the four settings are also illustrated by Figure 4.
The goodness of fit procedure is more likely to detect non-constant rate ratio for a
more varying scenario or a larger sample case. It is observed in Table 18 that the time

dependent rate ratio and piecewise constant rate ratio model have similar simulation

performance.

(ITII) Time and covariate dependent model - TCD Model
The Time and Covariate Dependent Rate Ratio can be derived by comparing to

section 3.2.2.2. Assume the Poisson process Nio(t) has marginal conditional rate

Ao(t) where \o(t|Zy;(t), Ry,) dt, = Ry, - dpio;(t)e’s%%® with Ry, the random frailty. By
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Proposition 1, p(0, s,t|z1, 22) = 1+ 02/u?, where o and u represent the variance and
mean of Ry. Let the Poisson process Nkj () has rate ij =1. Following Proposition

3, conditional on covariates

)\0(8’21))\0(15’22)

pll: 5821, 22) = 10 S 0T N+ o))

where p(0, s,t|z1, 22) represents the rate ratio of { Ny (s), Nx2(t)} and 6 is 02 /.

To generate § = 0.25,0.5,1,2, we consider Ry be from Gamma distribution with
p=1and 6 = 0.25, 0.5, 1, 2. Let 7 =4, 81 = 0.1, Boa = 0.2 and pp;(¢) = 0.125¢%,
0.25¢t2, 0.375t2, 0.5t% for j = 1 or 2. Take the censoring time and covariates from

uniform distribution on (3, 4) and (1, 2) respectively. The rate ratio is in form of

)\Q(S|Zl))\0(t|22)
(14 Ao(s]20)) (1 + Ao(t]22))’

p(0,s,tlz1,20) =140

Table 19 summarizes of the simulation result for the above settings, from which
similar patterns of PWC and TD Models are shown. In general the test performs
well and can distinguish the null model and alternative models with high precision,

especially when the sample size is large or the variability of association is increasing.
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Table 15: Summary of simulation settings under the PWC model with the corre-
sponding p values followed from Proposition 2. The Marginal model is multiplicative.

Settings PWC1  PWC2 PWC3 PWC4
Rro: (a0, bo) (4,025) (4,025) (2,05) (4,0.25)
Rpi: (a1,b)  (2,05) (1.330.75) (1,1)  (1,1)

pls < 2,t<2) 1.25 1.25 1.5 1.25
pls > 2,t<2) 1 1 1 1
p(s >2,t > 2) 1.5 1.75 2 2

Figure 3: Visualization of Piecewise Constant p(s,t,0) (PWC) under the Additive
Marginal Models. The variation of p(s,t) between different pieces is growing from
PWC1 to PWCA4.

Graph of p at different region under PWC1 Graph of p at different region under PWC2
4 4
35 3
3 pls;t,0)=1 ps;t,0)=1.5 2 pls,td) =1 pls,t0)=1.75
25 2.
- 2 ':‘ 2
1.5 1
1 o(s;t,0)=1.25 o(s,t,0) =1 ' pls,t,0) =1.25 pls,t0) =1
05 0.
0 0 -
0 0.5 1 15 2 25 3 3.5 4 ] 05 1 15 2 25 3 35 4
O<s<4 D<s<4
Graph of p at different region under PWC3 Graph of p at different region under PWC4
4 T 4 T
35 3
s plst.0) =1 plst.0) =2 : plst.0) =1 plsto) =2
25 2
- 2 -~ 2
1 1
1 pls,t,0) =1.5 pls,t,0) =1 1 pls,t,0)=1.25 pls,t,0) =1
a5 o
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Figure 4: The contour plot of the Rate Ratio p(s,t) under the Multiplicative Marginal
Models. The x-axis and y-axis represents the observation time for typel and type2
events. From upper left to lower right, the heterogeneity of p(s,t) is increased.

TD1 TD2
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Table 16: Observed size of the test statistic T for the proposed model-checking pro-
cedure under Hy : p(0,s,t) = 0 is parametric vs Ha : p(0, s,t) is not parametric, at
significance level 0.05. The numbers in the parentheses represent the average observed
count of type 1 and type 2 event after censoring. Each entry is calculated based on
1000 Gaussian multiplier samples and 1000 replicates.

Size

event counts  p;(t) K p=125 p=15 p=17 p=
(4.18,5.67) 0.25t2 200  0.041 0.025 0.037  0.034
500  0.038 0.042 0.033 0.033
(6.25, 8.48)  0.375t> 200  0.042 0.035 0.030 0.021
500  0.040 0.037 0.039 0.037
(8.34,11.30) 0.5t 200  0.040 0.037 0.003 0.030
500  0.043 0.043 0.032  0.037




Table 17: Power of Hj :
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p(0,s,t) = 0y vs Ha : p(6,s,t) is not parametric. The H,
model has Piecewise Constant Rate Ratio (PWC model). Each entry is calculated
based on 1000 Gaussian multiplier samples with 1000 replicates.

Power
event counts () K PWClI PWC2 PWC3 PWC4
(2.09, 2.83) 0.125t2 200 0443 0882 0.777  0.942
500  0.934 0999 0.994  0.999
800  0.995 1.000  1.000  1.000
(4.16, 5.65)  0.25t> 200 0.867 0.977  0.951  0.987
500 0.998  1.000  1.000  0.999
800 1.000  1.000  1.000  1.000
(6.25, 8.48) 0.375t2 200 0.955 0.993  0.968  0.991
500 1.000  1.000  1.000  1.000
800 1.000  1.000  1.000  1.000
(8.34,11.32) 0.5t 200 0.985 0.994 0.986  0.995
500 1.000  1.000  0.999  1.000
800 1.000  1.000  1.000  1.000
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Table 18: Power of Hy : p(0,s,t) = 6y vs Ha : p(f,s,t) is not parametric. The H,
model is Time and Dependent (TD). Each entry is calculated based on 1000 Gaussian
multiplier samples with 1000 replicates.

Power
fo; (1) K TD1 TD2 TDC3 TD4
0.125¢* 200 0.129 0.252 0.308 0.355
500 0.295 0.560 0.706 0.782
800 0.463 0.817 0.906 0.932
0.25t2 200 0.238 0.415 0.524 0.556
500 0.587 0.862 0.929 0.940
800 0.768 0.974 0.990 0.986
0.375¢2 200 0.337 0.518 0.598 0.675
500 0.748 0.933 0.961 0.947
800 0.931 0.991 0.994 0.995
0.5t2 200 0.433 0.578 0.691 0.674
500 0.826 0.949 0.962 0.968
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Table 19: Power of Hy : p(0,s,t) = 6y vs Ha : p(f,s,t) is not parametric. The H,
model is Time and Covariate Dependent (TCD). Each entry is calculated based on
1000 Gaussian multiplier samples and 1000 replicates.

Power

TCD2 TCD3 TCD4

0.125¢% 200
500
0.25t% 200
200
0.375¢% 200
200
0.5t2 200
500

0.102
0.208
0.175
0.508
0.246
0.650
0.210
0.658

0.226
0.520
0.417
0.923
0.480
0.946
0.437
0.952

0.453
0.916
0.704
0.988
0.701
0.983
0.566
0.972

0.706
0.991
0.798
0.977
0.727
0.963
0.631
0.949




68
REFERENCES

Abu-Libdeh, H., Turnbull, B. W.; and Clark, L. C. (1990). Analysis of multi-type
recurrent events in longitudinal studies; application to a skin cancer prevention
trial. Biometrics, 46(4):1017-1034.

Anderson, J. E., Louis, T. A., Holm, N. V., and Harvald, B. (1992). Time-dependent
association measures for bivariate survival distributions. Journal of the American
Statistical Association, 87(419):641-650.

Clayton, D. G. (1978). A model for association in bivariate life tables and its appli-
cation in epidemiological studies of familial tendency in chronic disease incidence.
Biometrika, 65(1):141-151.

Cook, R. J. and Lawless, J. (2007). The Statistical Analysis of Recurrent Events.
Springer.

H Scheike, T. (2002). The additive nonparametric and semiparametric aalen model
as the rate function for a counting process. Lifetime data analysis, 8:247-62.

He, S., Wang, F., and Liuquan, S. (2013). A semiparametric additive rates model for
clustered recurrent event data. Acta Mathematicae Applicatae Sinica, 29(1):55-62.

Lawless, J. F. and Nadeau, C. (1995). Some simple robust methods for the analysis
of recurrent events. Technometrics, 37(2):158-168.

Lin, D. Y., Wei, L. J., Yang, 1., and Ying, Z. (2000). Semiparametric regression for
the rate and mean function of recurrent events. J Royal Statistical Society B, 62.

Ng, E. T. M. and Cook, R. J. (1999). Robust inference for bivariate point pro-
cesses. The Canadian Journal of Statistics / La Revue Canadienne de Statistique,
27(3):509-524.

Ning, J., Chen, Y., Cai, C., Huang, X., and Wang, M. C. (2015). On the depen-
dence structure of bivariate recurrent event processes: Inference and estimation.
Biometrika, 102(2):345-358.

Oakes, D. (1989). Bivariate survival models induced by frailties. Journal of the
American Statistical Association, 84(406):487-493.

Pepe, M. S. and Cai, J. (1993). Some graphical displays and marginal regression
analyses for recurrent failure times and time dependent covariates. Journal of the
American Statistical Association, 88(423):811-820.

Schaubel, D. E. and Cai, J. (2004). Regression methods for gap time hazard functions
of sequentially ordered multivariate failure time data. Biometrika, 91(2):291-303.



69

Schaubel, D. E. and Cai, J. (2005). Analysis of clustered recurrent event data with
application to hospitalization rates among renal failure patients. Biostatistics,
6(3):404-419.

Scheike, T. H. (2012). On cross-odds ratio for multivariate competing risks data.
pages 680-694.



70
APPENDIX A: PROOFS OF THE PROPOSITIONS IN CHAPTER 3

Proof of Proposition 1
By the conditional expectation property and the conditional independent increment

of Ni1, Nio, we have :

E{dNi1 (s)dNk2 ()| Zra (s), Zia (1)}

= B{ B{dNu(s)ANia(t)| Zia (5), Zia (1), R} |

— E{ B{dNy(5)|Z1(s), Fa} E{ANia (1) Zia(t), R} }

= B{Ri{dpon(s) + 5 Zua(s) ds} Ru{dpuoa(t) + BF Zio(t) dt} |

= E{RyHdpou(s) + BY Zia(s) dsH{dpoz(t) + By Zia(t) dt} (A1)

and

E{dNu(5)| Zu1(5)} = E{ E{aNu(5)| Zua(s), Re} |} = E{RHdpor(5) + 5 Zaa (s) ds},

E{dNia(t) | Zia(D)} = B E{dNw ()| Zia(t), Bi} b = E{RxHdpuoa 1) + B3 Zia(t) dt).

Therefore, follows from the definition of the rate ratio in (2.1),

p— E{dNk1(8)dNka(t) | Zr1(s), Zka(t)} _ E{R?} _ u? + o g 0_2
E{dNy1(s) | Zp1(s)}E{dNiao(t) | Zia(t)}  E{Ri}E{ Rk} p? p
A2

(

)

Proof of Proposition 2
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Similar to the proof of Proposition 1,
E{del(S)deQ(t)|Zk1(S), Zkg(t)}
— B{ E{dNu ()| Z1a (5), R} E{dNio (1) Zia(0), R} |

= E{Ry(s)Ri(t)} - {dpor(s) + B{ Zr1(s) ds}{dpoa(t) + B3 Zro(t) dt} (A.3)
and

E{dNyi(s) | Zia(s)} = E{Ri(s)Hdpor(s) + B Zua(s) ds}

E{dNia(t) | Zra(t)} = E{Ri(t) Hdpoa(t) + By Zea(t) it }. (A.4)

Since Ry (u) is piecewise constant, we have

’

E(RkoRko) = ((lobo + 50)2 + (lob% if S, te (0, Co]

E{Ry()Bx()} = § E(RjRy) = (b + 6> + i} if s,t € (co,7] (A.5)

E(RkoRkl) = ((lobo + (50)((11()1 + (51) otherwise
\

.

E(Rko)E(Rko) = (aobg + 50)2 if s,t € (0, Co]
EAR(s)}E{RK()} = § B(Rp)E(Ry) = (aby + 6)2  if s, € (co, 7]

E(Rio)E(Ry1) = (aobo + do)(aiby + 61) otherwise
(A.6)

\



This yields the piecewise constant rate ratio below :

(

1+ ﬁ
p(l,s,t) = E{E}%{jﬁ;fﬁ‘}%i)(}t)} Y1+ alszle)?
\ 1 otherwise
O

Proof of Proposition 3

By the definition of mean event rate

E[dNy(s) dNy(t) |21, 9]

if s,t € (0, ¢

if s,t € (co, 7]

= P{ le(S) = 1, sz(t) =1 |Zl(8) = Zl,ZQ(t) = 2’2}

= P{ le(S) + dNO(S) = ]_, dNQ(t) + ng(t) =1 | 2’1722}

since {N;(-)} and {Ny(-)} are conditional independent to each other, we have

P{dNy(s) + dNy(s) = 1, dN(t) + dNo(t) = 1| 21, 2}

= P{dNy(s) = 1, dNo(s) = 0, dN5(t) + dNo(t) = 1| 21, 25}

+ P{dN,(s) = 0, dNo(s) = 1, dNa(t) + dNo(t) = 1] 21, 25}

72

(A.8)
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On the right hand side of (A.8),
P{le(S) = 1,dN0(S) = 0, ng(t) + dNo(t) = 1|21,2’2}
= P{le(S) =1 | Zl} . P{dN()(S) = O, dNQ(t) = 0, dN()(t) = 1|Zl,22}
+ P{dN1<S) =1 | 21} . P{dN()(S) == 0, dNQ(t) == ]_, dN()(t) == OlZl,ZQ}

= :\1(5 | Zl) ds - )\0(t | 22) dt + 5\1(8 ‘ 21> ds - S\Q(t | 22) dt (A9)
Similarly,

P{le(S) = O,dN[)(S) = 1, dNQ(t) + dN()(t) = 1| 21,212}
== P{le(S) =0 | Zl} . P{dNo(S) = 1, dNQ(t) = 07 dNo(t) = ]_| 21,22}
+ P{le(S> =0 | Zl} . P{dN(](S) - ]., dNQ(t) == 1, dN(](t) == 0| 21,22}

= 1-po(0, 5, 21, 22)No(5 | 21) ds - No(t| 22) dt + 1 - Mo(t | z0) dt Mo(s| 21) ds  (A.10)
Combine equation (A.9) and (A.10) allows us to represent equation (A.8) as below

E[dN1(s) dNy(t) |21, 2o]
= P{dNy(s) + dNo(s) = 1, dNy(t) + dNy(t) = 1| 21, 2}
= M (s|21)ds - Xo(t]z2)dt + M (s]21)ds - No(t] 25) dt
+1-po(0,5,t] 21, 22) Xo(s | 21) ds - No(t] z0) dt 4+ -No(t | z0) dt - Ao(s|21) ds
= {Mi(s|21) + Xo(s] z1) HNo(t | z2) + No(t | 22)} ds dt
+{po(0,s,t| 21, 22) — 1} Xo(s|21) No(t| 22) dsdt

= A (8]21)Aa(t ] 20) dsdt + {po(0, s, t| 21, 22) — 1} No(s| 21)No(t | 22) dsdt ~ (A.11)
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and

E[dN1(S) | Zl] E[dNQ(t) | ZQ] = )\1(8 | 21))\2(t | 2'2) dsdt. (A12)

By definition the rate ratio of bivariate counting processes { Ni(s), Na(t)} is

E[dN1(8> dN2<t>| 21, ZQ]
E[le(S)l Zl]E[dNQ(t)| 22]

p(0,s,t] 21, 20) = (A.13)

and substituting equations (A.11) and (A.12) into the (A.13) gives us

Ao(s]z1)Ao(t] 22)
)\1(8| ZQ))\Q(t| ZQ)

p(ea S, t| 21, z2) =1+ {pO(ea S, t| 215 22) - ]‘}

The rate ratio of Ni(s) and Ny(t) depends on that of Ny(s) and Ny(t). If Ny(s) and
No(t) are independent, po(0, s, t|z1, z2) would be 1, which leads to p(0, s, t|z1,20) = 1 as
well. If the occurrence of events at time s, t are positively correlated, po(0, s, t|z1, 22)
will be greater than 1 and therefore p(6,s,t|z1,22) > 1. For negatively associated
event occurrence, both po(0, s, t|z1, z2) and p(0, s,t|z1, z5) will be both less than 1.

0

APPENDIX B: PROOFS OF THE THEOREMS IN CHAPTER 3
Condition I.
Adapting from H Scheike (2002), we show the asymptotic properties of the first-
stage estimators in our proposed method. The following regularity conditions are

assumed for j =1, 2:

C.1. {Ng;(+), Ckj, Zyj(+)} are independent and identically distributed for k = 1,2, ..., N.



75

C.2. Pr(Cy; > 1) > 0, where 7 is predetermined constant; Nj;(7) < n < oo are

bounded by a constant almost surely

C.3. Ni;(7) are bounded by a constant;

CA. 1Z;(0)] + [ | dZij(s)] < ¢z < oo, almost surely, where ¢z > 0 is a constant.

C.5. Denote the positive-definiteness matrix A; as

4; = B{ / (Ziy () — 2,(8,, )} ds}

_ _ N
where (t) = lim Z,(t) and Z;(t) = —Zkgi';f;ﬁ%ﬁ”.

Proof of Theorem 3.1

Denote the likelihood function as
N )
L(5) = 3 [ {Z0w) = Z )} a5, (A14)
k=1
and with the first order Taylor expansion with respect to 3; gives us
(B; — B;) = A7 (BN /0 {Zk;(u) = Zj(u)} dMy;(u, ;) (A.15)
where

dMy;(t; B;) = dNj(t) = Vi (0){dpo; (t) + 57 Ziy (t) dt}
A4(8) = -5 [ () - 2,30},

with £* a value falls between Bj and ;.
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By (C.4) and the strong law of large numbers (SLLN), Bj converges almost surely
to ;. From the Slutsky’s theorem and (A.15), \/N(B] — f3;) is asymptotically normal

with mean zero and covariance matrix AjflEjAj’l, where

(/{ZU )h”ﬁju@./{zu ~ Z,(0)} dMyy (v, 5,)

From (A.15) it is straight forward to show

VN{B; = Bi} = A7INTY2Y g+ 0,(1). (A.16)
where
£m—A1amo=wmme%@» (A17)

The asymptotic covariance matrix of v N (Bj — B;) can be consistently estimated by

flj_lfljflj_l, with the corresponding estimators

dMyi(t; B;) = dNij (t) — Yiy () {djio; (t) + B Zu; (t) dt},

by = /kmj (u)} ATy (u; By,

5= Ny
k=1

Proof of Theorem 3.2

Consider

fuoj (t) — p10j () = {0 (£ B;) — froj (£ Bj)} + Loy (£ B;) — po; (1)} (A.18)
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By the first order Taylor approximation, we have

oy (8 ) — oy (£ B) = (3, — By) / Zf(u)du+op<N-1>, (A.19)
fog (1 65) — pog(t) = N~ Z / DI ¢ 0,7 (A.20)

Using the strong convergence of /3; in Theorem 3.1 and the Uniform SLLN (Pollard
1990), {fio;(t; B;) — fio;(t; B;)} converges almost surely to 0 uniformly in ¢ € [0,7].
Similarly, po;(; 5;) converges strongly to fio;(t) uniformly.

By the Triangle Inequality,
|10 (1) — 1o ()] < 1fnoj (15 B5) — fios (& By)| + o (&5 By) — poz (£)].

Therefore, fi9;(t) converges almost surely to p;(t) uniformly in ¢ € [0, 7] as well.

Substituting (A.19), (A.20) into (A.18) and multiplying both sides by v/N gives,

VN{fio;(t) — po; (£)} = Nl/QZcb ) +0p(1), (A.21)

where

brj(t; B;) = /Otw — H'(t)A! /OT{ij(u) — Z;(u)} dMy;(u, B;), (A.22)

mj(u)
with H(t) = [, z
Thus v N {f10j(t) — po;(t)} converges weakly to a mean-zero Gaussian process with
covariance function I';(s,t) = E[¢1;(s; 5;)é1;(t; 5;)], which can be consistently ap-

proximated by
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where
Q;k:j(t;ﬁj) :/0 dM;:jEu BJ /{Zk] Z }de;](u /33)
with
N
N7 v
k=1
HT(t) = tZT d
0= [ Zwau
O

Proof of Theorem 3.3

To prove the asymptotic of {U(Qﬁl,ﬂl(')a@mﬂﬂ‘)) - U(Q,Bhﬂm(‘)a@2;#02('))}
where U(0, 81, fior(), Ba, fioz() = Sopy Ux(8, B, fion (), Ba, fioz(+)), we consider the

following decomposition:

U(6, 1, fion(+), Ba. fioa ("))

= Ui(0, B1, po1(+), B2, po2(+))

+{Ui(6. B fior (-), Be fioz(-)) = Uw(6, B, pon (-), Ba froz ()}
+{U(0, B1, 101 (), Bas fioa(-)) = Uk(0, By, pror (+), B2, pron(-)) } (A.23)

The third term in (A.23) can be further expressed as

// st0 (5.1,0).

{Ym(t){dﬂw(t) + B3 Zia(t) dt — dpoa(t) — B3 Zua(t) dt}Vea (s){dpos (s) + BT Zpa(s) ds}},

(A.24)
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by replacing (2 — ) and fuo;(t) — 1105 () with (A.16) and (A.21) respectively, we have

0. Bu, 101 (), Ba, froa(t)) — Un(8, By, dpior (8), Ba, dpioa(t))
/ / 8/) S, t «9 s,t,0)Ys1(8){dpor(s) + 8] Zpa(s) ds}

N N
Ykg(t){Z,Z;(t)dt AFINTT Z go+ N7* Z doia(t; ﬂg)} +0,(N7h) (A.25)
I=1 I=1

Similarly {Uy (6, 81, fior(5), Ba, fioa(t)) = Ur(0, By, o1 (s), Ba, fioz(t))} in (A.23) is equiv-

alent to

/Or /OT _8p(sét, 9)p(37t, 0)Yi1(5)Yao(t)[ dpioa(t) 4 B3 Zya(t)dt ]

{ Zh(s) ds A7 N Zsmzv dem Bf o,V (A26)

It follows from (A.25), (A.26) and the definition in (3.9) that

N_I/Q{U(evBlaﬂOl(')?B%ﬂU?(')) - U(f),51,H01(')752>M02('))}
N

= N7 Z {hl,kalAfl + gk + ho NG Ay + 9271\”’“} +op(N7V2) (A.27)
k=1

where the terms are denoted by

Ip(s,t,0)

o0 p(S,t, Q)Yh(s)y}?(t)v

q(s,t) = —

N T T
by = NS / / (s, D{dpoalt) + BT Zun(t) di} Z5(s) ds
— Jo Jo
N T T
hon = Nt ;/0 /0 q(s, ){dpo1(s) + BT Zi1(s) ds} Z5 (t) dt
N T T
ginE=N"! ;/0 /0 (s, t){dpoz(t) + B3 Zia(t) dt} depa (s; B1),

N T T
gQ,N,k:N—ll;‘ /0 /0 (s, 0){dor (5) + B Zun (s) ds) dbpa(t: Bs).
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Deriving from (A.27) the covariance matrix can be estimated by

R NoooooL . ®2
Q=N"" Z {hLkaﬂAl_l + 1Nk + hanEr Ayt + Qz,N,kz} ; (A.28)
k=1
with
. dp(s,t,0
s, 1) = =500 o 1 o)y ()Yin(t)
N T T
hn=N">" / / a(s,t){djia(t) + B3 Zin(t) dt} Z1 (s) ds,
1=1 70 0
~ N T T A~
by = NS / / a(s, t){dior(s) + B Zu(s) s} ZL(t) dt,
1=1 70 /O
N T T R R .
ging =N Z/ / q(s, ) {dfioa(t) + B Zia(t) dt} dop (s Br),
=1 /0 JO
N T T N N N
Gang=N"" Z/ / a(s, ){dfior(s) + BT Zin(s) ds} dpa(t; 5a).
=1 /0 /0
(A.29)
OJ

Proof of Theorem 3.4

Denote

Wi (0, By, o1 (+), Ba; proz2(+))

= Ui(0, B, po1(+), B, pro2(+)) + {hl,NﬁmAfl + 1Nk + ho NEr AT + gz,N,k}, (A.30)

which follows from equation (A.27) and let

OUL(0, By, po1 (), Ba, “02(')))T.

Z(0, B, po1(+), Bo, proa(-)) = =N~ Z ( 90 (A.31)
k=1

The First-order Taylor expansion of the estimation equation around the true values
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gives us,
VN0 —0)
= N_1/2{I(‘97 B, por(+), Ba, poa(-))} Z Wi (0, By, por(+), Ba, poa(+)) + 0p(1).
k=1

(A.32)

By the central limit theorem that v/ N (é — 0) is asymptotically normal with mean 0

and its variance that can be estimated by ® = N=Y(Z)~' So0_, (W) ®2{(Z7)} ", with

7= I(éaBl?ﬂOl(')aﬁAQa/}m('))’

Wi, = Wi, By, fior (), Bas fioz()),

obtained with the plugged in estimators 0, Bl, o1 (+), Bl, foz2(+), ékl and ékz.

O

APPENDIX C: PROOFS OF THE MODEL CHECKING PROCEDURE IN
CHAPTER 3

Recall (3.26)

~

V(s,t,0, 1(-; Zka), frol-; Zi2))= V<S,t;9,ﬂ1('; Za), fla(+; Zm))

av<87 tu 07 ﬂl() Zk1)7 ﬂ?(a Zk2)>

N—1/2
* 20

N'Y2(0 —6)

+ 0p(1),
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Note that V(s, t,0, (5 Z1), fa(; Zkz)) can be further decomposed by
V(S7 tu 07 ﬂl(’ Zk1)7 IEL2<J Zk:2)>
= V<57 ta 07 Ml(a Zk1>7 /JJ2(7 Zk2>)
+ V<37t79,ﬂ1('5 Zr1)s (s Zkz)) - V(&@@Ml('; Za), iz Zkz))

+V (5,400 (5 Z), a5 Z2) ) = V (5,800 (5 Za) a5 Zi2) ). (A33)

Applying the same techniques in the proof of Theorem 3.3, the third and forth lines

in equation (A.33) are

\/N{V(S t,0, (- Zkl)aﬂQ('QZld)) - V<37t797,u1('§Zk1)7ﬂ2('§Zk2))}
N
op(u,v,0; Zy, Z,
:Z/ / p( 0 i k2),0(U,,’U,9;Zk1,Zk2)
0

N N
Vi1 (u)Yeo (v)[ dptoz(v) + 52TZk2(U)dU]{Z£(S) ds AT'N™! Z &n+ N7 Z d¢11}
=1 =1

o, (N7, (A.34)
and

\/N{V(S t,0, (- Zkl),ﬂg(';zk2)> — V(s,t,Q,/m(';Zkl),m(';Zm))}

N
op(u,v,0; Ziy, Z,
= Z/ / p 0 i k2) (U,'U,(g; Zk17Zk2)

k=1

N N
Vi (0) Yo () { o1 (w) + 57 Zir () du }{Z,Zg(v) doA;'NTY G+ NS d@z}
=1 =1

+0,(N71). (A.35)



83
Combine (A.34) and (A.35), we have

\/N{V<S, t,0, i1 (5 Zra), fia Zk:2)> - V<S, t,0, po1(+; Zr1), proa (5 Zk;z)) }

N
= Z {hLN(Sv DEMAT + ginn(s, t) + han (s, )& Ay + gavi(s, t)}
k=1

+0,(N71) (A.36)

where

dp(u,v,0)
90

(s t) = NS [ [t b, o) o 0 + 57 Zn () ded 25 o

@(u,v) = - p(u, v, 0) Y (u)Yia(v)

N t s
Goni(s,t) = N1 Z/ / w(u, v)q (u, v){dpo (u) + BF Zin (v) du} dere(v)
1=1 /0 70
N t s
hl,N(Sa t) = N_l Z/ / ’LU(U, U)Ql(ua U>{d:u02(v) + 62TZZQ(U) dU}le;(u) du
=1 70 70
N t s
goals ) =N [ [t oo {doa(v) + 55 Zalo) dv} dow) (437
1=1 70 70
To simplify the notation, we define

Lia(s,t,0) = N_l{hl,N(5> AT + gun(s, 75)} +0,(N7H)

Tia(s,t,0) = Nﬁl{hz,N(& )&k A" + gon (s, t)} +0,(N7H) (A.38)

so that (A.36) can be rewritten as

V(5:4.0,iu(5 Z) fials Zia) ) = V (58,0, pn (), pal())

= N2 D (s, £.0) + Tia(s. £,0)} + 0,(1). (A.39)



84

Following the empirical approximation of v/ N (é — 0) in equation (3.10),

—-1/2 OV (s,t,0, fir(+; Zi1), fro(+5 Zi2))
00

= Wo(s, 0 = N V2T, B, 101 (), By o2 ()} D Wil B, pon (), By 1oa()) |
k=1

N

N'Y2(0 — 6)

+0,(1), (A.40)

where Wy(s,t) = limy_o0 N—1/2%. We reform (A.40) as

12 oV <3, t, 07 Bl; ﬂOl(')a BQa ﬂOQ()>

89 N1/2(é - 0) — N_1/2{Ck:1(37 t’ 0) + Ck2<87t7 0)}

N—l

(A.41)

where

Cri(s,t,0) = =Wy(s, ){Z(0, B, M01(')>52,M02('))}_1N_1{h1,N§k1A1_1 + gl,N,k}

Grals.1,0) = =Wy(s, LT, B, 10n (), Bo, ioa (D)} N {haw€io Az + 9o |

(A.42)
Plugging (A.39) and (A.41) back into equation (3.26) gives us (3.27)
V<8at7é>ﬂ1('; Zr), fia(+; Zk2))
= V(s,t,0, 111 (s Zra), b2 (5 Zi2))
N
NN Wi (5,8, 0) + Tials,1,0) + Gaa(5,£,0) + Gea(5,1.60) | + 0, (1),
k=1

APPENDIX D: THE PROOFS OF THEOREMS IN CHAPTER 4
Condition II.

In this section, we investigate the asymptotic properties of 6° under the indepen-
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dent censoring assumption and that the distribution functions of the censoring times
are independent from covariates. Following regularity conditions in Lin et al. (2000):
(C*.1) {Nk;(+), Ya;(4), Zyj () }(k = 1,2,...,N;)(j = 1,2) are independent and identi-
cally distributed;

(C*.2) Pr(Cy; > 1) > 0, where 7 is predetermined constant;

(C*.3)Ny;(7) are bounded by a constant;

(C*.4)Zy;(-) has bounded total variation, i.e. [Zg;(0)] + [, 7|dZy;(t)] < C. for all
Jj=12and k = 1,2,..., N, where Z; is the {th component of dZ;; and C, is a
constant.

(C*.5) [fo {Z1;(u) — Z;(5;, u)}®2ij(u)e’BjTZ’“j(“) dpo;(u)| is positive definite,
where E is the expectation.

We summarize the asymptotic properties of ﬁj in the following theorem, where the
subscription ¢ denote that the estimator is derived when the marginal model is mul-

tiplicative.

Proof of Theorem 4.1
Adapting A.2 in Lin et al. (2000), the partial likelihood score function for f; is
L;(B;,7), where

L5(8;.7) Z / {Zay() — Z;(8;, 1)} AME; (u: By,

with Mg (t; 8;) = Ni;(t) — fot ij(u)eﬂkaj(u)‘

It is shown that N~'2L%(3;,t)(0 <t < 7) converges weakly to a continuous zero-
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mean Gaussian process with covariance function

S (s, t) / {Z1;(u) — %(B;, u) / {Z1j(v) = 2;(B;,v) } dMf;(v)],

0<s,t<T,

between time points s and t.

By Taylor series expansion,

VN(B; = B;) = A7H (BN Z{ij Z;(B; )} dMi;(w), (A.43)
where flj(ﬁj) = —NﬁlaLj(Bj, 7)/0p;, and B* is on the line segment between Bj and
B3;, with j; is the solution to L(Bj, 7) = 0.

The almost sure convergence of Bj and flj (8;) for B; and A imply that VN (BJ —5;)
converges in distribution to a mean-zero normal random vector with covariance matrix
(AS)715(AS) ™ and X§ = X5(7, 7). For future reference, we denote the asymptotic

approximation as

VN(B; = B;) = (A TINTVEY €5 (us B5) + op(1). (A.44)

k=1

where
€5, 35) = [ (Zue) = 5 5} M 0 )
The consistency estimators of A; and >; are denoted by

A= N7 [ {Zy(w) — 2By )} Vi (w)eP 25 dfig (u),

0
N

Y AT—1 FR2

S, =Ny &
k=1
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with
N i
Gy = NS [y (0) — Zagt ) i s ).
k=10
Myj(t; B;) = Nij(t) — / Vi (u)e? 2@ dfig (u). (A.45)
0
L]

Proof of Theorem 4.2

Let fio;(t) = fio;(t, B;) = [, Ncg(\f( “B) and decompose fig;(t) as

fio; (t) — po; (1) = { fio; (¢, B) — fioj (t, B;) } + {fioj (t, B;) — poj () }. (A.46)

The uniform strong law of large numbers Pollard (1990) implies S7(3;,) — s3(6;,t)
and N;(t)/N — E[N;(t)] uniformly in ¢ and 3;, and hence the uniform convergence of
fo; (t, B;) = g#ffg) to p;(t) = tz (Z ?;d,uoj( ). Furthermore, we can represent

the second term in (A.46) as

fioj (t; Bj) — po;(t) = %_d/m]()

—N— / Zk 1dMl§]uB])

)

_N- / i ldM’gf ) N, (A.47)
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The first term in (A.46) can be rewritten as

t dNJ(U) _ d]\_fj(u)
0 NSJO(U,B]) NSjQ(u»ﬁj)’

:/0 _ZJ‘T(“aﬂa)NdS]‘Y(( gy)(ﬂ‘ — B;) +0p(N7H),

fio; (t, B;) — fog (t, B;) =

__ / % (u, ;) dpos (t, B) (B — By) + 0p(N7Y).

The asymptotic approximation of {f; — 8;} in (A.44) entails

fios (£ B5) = fios (¢, 8;)
= [t )T (45) N 12 [} (0 = 505} M 065) 4 0,7,
(A.48)

with H¢(t; 5;) = fot Zi(u, B;) dpoj(u, B;). Plugging (A.48), (A.47) into equation (A.46)

and multiplying both sides by v/N yield

VN s (6) = oy (1) } = WZ% B) + 0p(1), (A.49)
where
iy (8 )
- /Oth’quﬂﬁ”) (0 )] (45) Z [ 00 = 50} 08 05,
(A.50)

Since ¢y;(t) is independent mean-zero normal random variable, v/ N { fuo; (1) — [,L[)j(t)}
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converges to a zero-mean Gaussian process with covariance function at (s,t) as

Lj(s, 1) = Elgg;(s; B;)0k;(t: 55)], (A.51)

which can be approached by its consistent estimator

N
i(s,t) = N7U " Gus(s; ) w15 By),

k=1

where

G (t) = gﬂfﬁ”) (1) A Z / (Zs () — 2oy, By)} Ty (s By,

and

1) = [ 2400, ) diost. ). (A5

Proof of Theorem 4.3

Considering the decomposition:

UE(0, Br, fior (+), Ba, fioa () — Ux(8, Bu, o1 (+), Ba, tioa(-))
- {Uk(e,BbﬂOl(S)aB%ﬁoz(‘)) - Uk(e,ﬁlau(n('),Bmdﬂm(t))}
{00, 81, 101 (), By oa()) = U0, B, pion (), B poa) } (A.53)

The first term on the right hand side of (A.53) is equivalent to

[ ap(0,s,t AT .

{Ya ()6 1) dfigy () = Yia ()¢ 1) dpuoy (s) } (A.54)
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n (A.54), Yiy(s)ePT 2616) dfigy () — Yia ()€ Z16) dyg () can be further rewritten as

}/kl(s){eBlTZ’“(s) dfior (s) — Bt Zka(s) diig1(s) + BT Zra d,um( ) — B Zka(s) dum(s)}
= Ykl(s){eﬁfzkl(s)zii(s) djio1 (s) (B — Bu) + €% 241 (dfign (s) — d#Ol(S))}

+ Op(Bl - ﬁ1>®2

Applying the asymptotic properties of the first-stage estimators from (A.44) and

(A.49) gives

Vi (5)€7 296 dfigy (5) — Yea (5)e” 24 gy (s)
= Yia(5){ A 1O 7 (5) dpios ()(A5) N 12@ + Pl 2o 12 a5, (s) |
+o0,(N71). (A.55)

By Combining (A.54) (A.55), and (A.57) we have

{ 0. By, fio1 (8), Ba, fioa(+)) — UE(0, Br. pon (), Bz,dﬁoz(t))}
/ / —p st 8/) 295 t) ( )eﬁlTZkl(s) 'Ykg(t)eﬁgzm(t)

N Z{ZM ) dpior(5) dpuoa (AT + d6fy () dpioa(t) | +0,(1)  (A.56)

In a similar fashion,

Yio ()€ Z620) Qs (£) — Yia (£) €™ Z20) dpon (¢)
N N

= Yia(){e™ 220 Z1(t) duon (1) (A5) TN &y + e ARONTTS " dofy (1))
=1 =1

+o0,(N7H). (A.57)

Since the Yia(t)e™ 2e2() dfigy(t) and Yy (s)eP 2616 djigy (s) only have o,(N~1) differ-
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ence compared to their true values, the product term has negligible difference of even
higher orders.

The second part of (A.53) via a similar technique can be proved as

{Ul;:(Hv 617 dN01(S)7 527 d/jb()?(t)) - ka(ev 617 dﬂ'Ol(s)a 627 dNOQ(t))}
— / / _pw, s, t)MYM (S)Gﬂfzkl(s) . Ykz(t>€ﬁgzk2(t)
o Jo o0

N
Ny {Z,Z;(t) dpior () dproa(t) (A5) 165 + €% 720 dpugy (s) d¢lcz(t)} + 0p(1)

(A.58)

Since

U(8, By, fior (+), Ba, fioa () — US(8, By, por (+), Ba, oz (+))

= >~ {6, B inr (), B ina () = UEO: B, o (), s pon() }

k=1
by exchanging the order of the double summations, as well as switching the notations

between [ and k, it can be shown that

N=YV2LUO, By, fio1 (5), By fioa(t)) — U0, Br, o1 (), Bos fro2(+))}

= N~'/? Z {hi,N(Ac) Yo 4 95 v+ han (A5) TRy + g5 N} +0p(1). (A.59)
k=1
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where
0p(0. s.t
qlcw, s,t) = —p(6, 57t)%y}l(S)eﬁqu(S)Hz(t)eﬁzTle(t)’
N T T
By = NS / / 050, 5,0)Z5(5) dpton (5)dpoa ),
=170 70
N T T
Gy=NTY / / 450, 5, 1) dpuoalt) dsiy (),
=1 0 0
N T T
o= NS [ [ 400,50 2500) a0 ),
=170 /O
N T T
s =N [ [ a6 s () do(0) (.60
=1 0 0
]

Proof of Theorem 4.4

By the first order Taylor expansion of the estimation equation,

VN - 6)
_ {_Nfl 8U(9, B, dﬂﬁla(e')a Ba, dﬂO2(')) }—1N71/2U<(9, Bh ,&01(‘)7 62’ ﬂ02<)) + Op(N71/2)
(A.61)
Denote

Z°0, By, por (+), Bo, o2 () = =N Z <8Uk(9, o Moég)’ﬁ%MOQ(.)))T (A.62)
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and applying (A.59) and (A.62), (A.61) can be rewritten as

VN0 —6)
= N_I/Q{IC(Q’ By o1 (+), B2 proa ()} Z Wi (0, B, por(+), B2 po2(+)) + 0p(1),
k=1
(A.63)
where

Wi (0, By, o1 (+), B2, po2(+))

= {UE0. B, 101 (), Ba, 102 () + 15 (AS) 76 + 5+ 15 0 (A5) "6 + v |-

(A.64)

By the central limit theorem that v/ N (é — 0) is asymptotically normal with mean 0
and a variance that can be estimated by ® = N='Z-1(2 W&)(Z7)~!, where Z

and W, are the empirical counterparts of

Z(0, 51, po1(+), B2, toz(+))

and
Wk(ea 517 /,601<'), ﬁ27 IMOZ('))?

respectively, obtained by plugging in the estimators of 0, 51, fio1(+), B, oz (+).



