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Abstract. A scaling function 4 associated with a d xd expansive dyadic
integral matrix A can be isomorphically embedded into the family of
scaling functions associated with a sx s,d < s, expansive dyadic integral
matrix B. On the other hand, a scaling function ¢4 associated with a
d x d expansive dyadic integral matrix A and a finite two scaling relation
can be isomorphically embedded into the family of scaling functions
associated with expansive dyadic integral s X s matrix B, for any s.
In particular, for s = 1 and B = [2]. We provide examples for such
isomorphisms.
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1. Introduction

For a vector £ € R?, the translation operator T} is defined as

(Tof)(E) = f(E-10), Vf € L*(RY), Vi€ R? .
Let A be a d x d integral matrix with eighenvalues f1,--- ,84. A is called
expansive if min{|F],- - ,|Bal} > 1. A is called dyadic if |det(A4)] = 2. We

define the operator D4 as
(Daf)(®) = (V2)f(A4), Vf € L*(RY), Vie R? .
The operators T; and D 4 are unitary operators on L?(RY).

Let {s7 | i € Z%} be a solution to the following system of equations
(1.1) associated with a d x d expansive dyadic integral matrix A:

{ rezd Nihy g = g k€ Az, (1.1)
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The set A = {ii € Z¢ | s7 # 0} is the support of {sz | @ € Z¢}. If A is a finite
set, then {sz} is called a finite solution. Define the operator ¥ on L?(R?) as

U= Z SﬁDATﬁ.
neN
When A is finite the operator ¥ has a non-zero fixed point ¢4 (Lawton [18]
and Bownik [3]),

YA = \I/QDA. (12)

This ¢4 is the scaling function associated with matrix A and it induces a
Parseval frame wavelet ¥ 4 associated with matrix A. It satisfies the two-scale
relation:

YA = ZSﬁDATﬁgDA. (1.3)
neA
We will say that @4 is derived from the solution S. This scaling function ¢ 4
associated with matrix A is generated by a solution & = {sz} to the system
of equations (1.1). The scaling function ¢ 4 induces a Parseval frame wavelet
14 associated with matrix A as defined in Definition 1.1.

Definition 1.1. Let A be an expansive dyadic integral matrix. A function
Y € L?(R?) is called a Parseval frame wavelet associated with A, if the set

(D% Ty | n € 2,0 € 7%}
forms a normalized tight frame for L?(R%). That is

112 =" W DaTrva)f, Vf e L*(RY).

nezZ, ez

If the set is also orthogonal, then 14 is an orthonormal wavelet for L2(R%)
associated with A.

2. Definition of Isomorphisms

Let A be an expansive dyadic integral matrix. Let W(A, d) be the collection
of all scaling functions in L?(R?) associated with A and solutions to the
system of equation (1.1). Define W(d) = |J, W(A, d). The union is for all
d x d expansive dyadic integral matrices. Define W = J,;~, W(d). This is
the set of scaling functions in all dimensions. B

In particular, let Wy(A, d) be the collection of all scaling functions in
L?(R9) associated with A and finite solutions to the system of equation (1.1).
Define Wy(d) = U4 Wo(A, d). The union is for all d x d expansive dyadic
integral matrices. Define Wy = |5, Wo(d).

Let A be a d x d expansive dyadic integral matrix and o € W(A, d)
which is derived from the solution {az | i € Z?} to (1.1). Denote the support
of this solution as Ay, and Sa4 = {az | 7 € Aa}.

A reduced system of equations £ , a,q) from system of equations (1.1)
can be obtained by the following steps:
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Step 1. For it € Z%\A 4, replace all variables hjz in (1.1) by 0.

Step 2. Then remove all trivial equations “0 = 0”.

Step 3. If there are redundant equations, choose and keep one and remove
the other identical equations.

Note that, the discussion of the reduced system of equations £, 4.q)
from the support A4 does not depend on the existence of a solution S 4. This
gives flexibility in the discussion.

Denote the family of all such reduced systems of equations by €. A
reduced system of equations &5, a,q) has the following form:

{ REAA hﬁhﬁﬂ? = o5z, k € AE? (2.1)

The index set A§ in (2.1) is a subset of AZ4. The equation in E(Aa,A,a) that
corresponding to k € A is

nEAA
This set Aﬁ might not be unique due to the Step 3 above. However, it is fixed
in discussion. It is clear that S4 is a solution to (2.1).
Similarly, for an s x s expansive dyadic integral matrix B and Ag C Z°,
the reduced system of equation is
T 7~ AE
himh'. =057 L€ AR,

. meAp 4l
el { s M = V2.
Definition 2.1. £, 4,4),E(Ap,B,s) € € are isomorphic, or Ea , .4) ~ EAp,B,s)
if there exist

(A). a bijection §: Ay — Ap and
(B). a bijection 7 from an index set A% of £, 4,4y onto an index set A%
of Eap,B.s)

(2.2)

with the following properties: for each ke Af, the equation in £, B
generated by /= n(l;) is obtained by replacing h; by h’g(ﬁ) and 05z by d57 in
the equation in 4 , 4.4y generated by k.

In each of the examples in Sections 4 and 5 we will list the correspond-
ing matrices A and B, sets A4, A4, mappings 6,7. The related systems of
equations (Sa,&,,4.4)) and (SB,E,,B,s)) are reduced. We check each of
the cases with computer programs. For simplicity we omit the details.

Let S4 = {an | T € Aa} be asolution to (2.1) and Sg = {bz | m € A}
be a solution to (2.2). Let w4, pp € W be the scaling functions derived from
(Sa,Ea4,4,a)) and (SB,E L, B,s)) Tespectively. Notice that d and s can be
different.

Definition 2.2. The scaling functions @4, ¢p are algebraically isomorphic, or
wa =g, if En, a,4) ~ Ep,B,s) With bijection § and 1. And

bg(ﬁ) =ap,Vn € Aa.
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It is clear that the isomorphism of the reduced system of equations guar-
antees the isomorphism of the scaling functions derived from the solutions of
the reduced system of equations. We have

Lemma 2.3. For isomorphic systems En, Ay and Epy, B,s) With bijection
0 from Aa to Ap, if Sa = {an | @ € Aa} is a solution to En, a.q), then
the set Sp = {bm = ag-1(m) | M € Ap} is a solution to Ex, p.s). More-
over, the scaling functions derived from (Sa,En,,a,a)) and (S, EAp.B,s))
are algebraically isomorphic.

Definition 2.4. Let &/ and V be subsets of W.

1. The set U is isomorphically embedded into V,
Uucy,
if for each @y in U there is an element ¢y € V such that ¢y ~ py.
2. FUC YV and VE U, U and V are isomorphically identical, or
u=vy.
We have
Theorem 2.5.
WL EWR)EWE)E -,
that is, the sequence {W(d) | d € N} is an ascending sequence.

In [11], we proved that

Theorem 2.6.
Wo(1) = Wo(2) EWe(3) = -+,
that is, each @ € Wy is isomorphic to a one dimensional scaling function in

Wo(1).

The purpose of this paper is to prove Theorem 2.5 and present examples
for both Theorem 2.5 and Theorem 2.6.

3. Proof of Theorem 2.5

Let s be a natural number and d < s and B be a sx s expansive dyadic integral
matrix. To prove Theorem 2.5, we need to find a function ¢ € Wy(s) for
any given ¢4 € Wy(d) such that ¢4 ~ ¢p.

By the Smith Normal Form for integral matrices [2] A = UDV, where
U,V are integral matrices of determinant £1, and D a diagonal matrix with
the last diagonal entry 2 and all other diagonal entries 1. Let €7, ..., €y be the
standard basis for Z¢. Note that VZ? = Z¢ and UZ? = Z¢. We have

74 = span{€y, ..., €q—1,2€4} U (spcm{é’l7 ey €41,2€q} + é’d)
= D7 U (DZ% 4 &;) = DVZ? U (DVZ® + &)
=UDVZ* U U(DVZ* + &) = AZY(AZ? + Ug,).
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Let 4 = Uéy. It follows that, for any d x d expansive dyadic integral matrix
A, there exists a vector £4 € Z%\ AZ? such that

74 = A7, + AZY).
The same proof shows that there exists a vector / € 75\ BZ? such that
7Z° = BZ°Y(lg+ BZ®).

Since d < s, we can consider R? as subspace of R®. Let {&), 5, , &5}
be the standard basis for R®. We will further assume that the first d vectors
of the basis, {€1,&,---,;} be the standard basis for R?.

Define the mapping © from Z< to Z*.

BA~Y (R if i € AZY,
omy={ A7, o dAedr, (3.1)
lp+BA (T —{a), iffels+ AZ".

This is a well-defined mapping on Z4 since Z? = AZI(l4 + AZ?) with
range ©(Z?) C Z*. Since det B # 0 and A has an inverse on AZ? with range
contained in ©(Z%) C Z*, the mapping © is an injection. We have ©(0) = 0.
Also, if ©(&) = 0 for some & € Z% then & = 0.

Lemma 3.1. For ii € Z and k € A7, we have
Ot + k) = O(i1) + O(k).
Proof. Since k € AZ%, ©(k) = BA™'(k). We have
Since k € AZY, i+ k € AZY iff i € AZL. Also ii + k € 4 + AZ iff
i € L4 + AZ%. So we have

o(it) + O (k) = BA™' (k) + { BAZ(7), il € AZ

| BA Y@+ k), e Az?
| lg+BAYN(R+k)—Lly), i€ lq+ AZ?

= O(7t + k).
O

Lemma 3.2. If iiy, 7y € Z% and { = ©(fy) — O(i1y) € BZ*, then there exists
a vector k € AZ® such that £ = O(k), and iia = iy + k.

Proof. Since O(ity) — O(ii1) = £ € BZ*, by Equation (3.1) we have only two
cases.

Case (1), both O(7;),O(7iz) are in BZ®. By Equation (3.1), n; =
A1, ng = A for some vectors A1, Ao € Z%. Denote k= AXg—AN; € AZ?. So
0= O(fiy)—O(ity) = BA™L(A\y)—BA™1(AN) = BA™Y (AN —ANy) = O(k).
We have £ = O(k) and iy — iy = k.

Case (2). Both O(7;), ©(f2) are in {5 + BZ*. By Equation (3.1), ny =
ZA—i—A/\h ng = ZA-FA)\Q for some vectors A\, A € Z¢. Denote k= Ado— AN €
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AZ?. So = O(iiy) — O(i1) = (fa + BA (AXg)) — (£a + BATH(AN)) =

BA Y (AXy — AXy) = O(k). We have £ = O (k) and 1y — iy = k. O
For matrix B, the system of equation in (1.1) becomes

P s 7 s
{ Sen Wl =05 T € BZ?, 5.

Consider the reduced system £, 4.4) With index set A%. Define 6 =
©|a, and n = O|,z. Denote Ap = 0(A4). Since © is an injection from 7% to
75, 0 is a bijection from A4 to Ag.

Let Sa = {an | 7 € Aa} be a solution to Ea, a,q)-

Define
bﬁ‘l = CLQ*l(WL)’ lf T?L € AB7
0, if 1 € Z°\Ag.
Sp = {bm | € Ap}.

To prove that ¢p =~ @4, by Definition 2.2, we only need to show that
1. The system of equation
MmEAR hm = \[~
is the reduced system of equations &, ps). Or equivalently, the set
n(A%) is an index set for E(Ap,B,s), denoted as AE. This is Lemma 3.3

below.
2. The set Sg = {bs | m € Ap} is a solution to (3.3) by Lemma 2.3.

Lemma 3.3. The set n(A%) is an index set for EAp,B,s)-

Proof. Let ke AE. A reduced equation in E(Aa,A,q) generated by k has the

following form:
> hahg ;= g (3.4)

neEAA

We will show that £ = U(E) € BZ? generates an reduced equation in £5 , B s)-
We write

> h Al = O (3.5)

mEAB

By definition of 6,7 and the fact that Ag = 0(A4), we have

;T .
Z hG(ﬁ)he(ﬁ)Jrn(E) = g (k)

neEA A
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By Lemma 3.1, 9(ﬁ+E)=9(ﬁ)+@( k) = 0(i1) + n(k), thus

Replace hg(q) with hz, h’ B+ E) with h ;- and d; (R with d5z, We obtained

the the same equation as (3.4). Since (3.4) is non-trivial, (3.5) is non-trivial
as well. Furthermore, (3.5) is a reduced equation in £, p,s). It is clear that
different elements in 7(A%) generate different equations in E(Ap,B,s)-

Next, we will show that every (non-trivial) equation in E(Ap,B,s) can be
generated by an element in n(A%). Let the following be a non-trivial equation
in Ea,,B,s) generated by ly € BZ°:

PITT T s
> Wl i = Sz, (3.6)
mEAB
Denote 1 = (i), where 7t € Ay C Z%:

Z he(” 6()+2o 67‘0'
0(n)EAB

By Lemma 3.2, there exists ko € AZ4 such that £y = @(lgo):

Z h®(n 7)+6 (ko) = Ogo(io)-

O(n)eAB
By Lemma 3.1,
Z h®(n) O(itko) 06 (o)
)EAR
Replace h@( ) with hm h@(* 7o) with hﬂ+k and 60@(k ) with 55k , we have
hii hﬁ+k = Oy
neAa

It is clear that this is a reduced non-trivial equation in s, a,4) generated
by Ko. On the other hand, since this is a reduced non-trivial equation in
8( AasAd)s it is generated by an element k in its index set Ag. It follows that

0=k e AE generates the same equation as (3.6). Hence AE = n(Af) is
an index set for E(Ap,B,s)-
O

The proof of Theorem 2.5 is completed.

4. Examples from higher dimensions to one dimension

Examples for Theorem 2.6 are presented in this section.
The sublattice AZ? generated by the d x d expansive dyadic integral
matrix A can be further simplified by changing of basis:
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Proposition 4.1. [11] Let d > 1 be a natural number and A a d X d expansive
dyadic integral matriz. Then R® has a basis {f; | 7 =1,...,d} with proper-
ties that, under this new basis, a vector k is in AZ4 if and only if the last
coordinate ofE is an even number. That is, under this new basis, we have

AZ* = {(#,2n) | £ € Z* ' n € Z}. (4.1)

Hence, for simplicity, all matrices discussed in the examples in this sec-
tion will have this property (4.1). Let A be a d x d expansive dyadic integral
matrix with properites (4.1).

For a natural number N > 1, define

Agn=[02M)NZ = {(n1,- ,na) [0 <y, ,ng <2V — 1} (4.2)

The set Ag,n contains 24N glements in Z%.
For vector 7i = (ny,na,--- ,ng_1,nq) € Z¢, define the function Oyn *
74 - 7 as :
d
g, n () =Y nj- 407DV, (4.3)
j=1
Define fyn : Z¢ — Z:
= N — 1Y 5(2d-3)N+2 20, , 5 (Z) yeven . _ 41
fd,N(-T7y)—L2J2 +{ %0, (@) +1 yodd VT eZ" L yel

(4.4)

where [ 4] gives the greatest integer that is less than or equal to .

Define mappings 64 n and 7g v as follows:
Oa.n ((Z,y)) = fan(Z,y), (T,y) € Aan (4.5)
nd,N((f, y)) = fd,N(fa y)v (fv y) € AdE,N

04,5, Ma,n are injections on Ag n and AF y respectively.

Denote

Ay = Agn.

AR = {i=(3,2)) €20, (@) >0;ii € (-2, 2")" N7z}
0 = 0Oun.

n = MNdN-

Ay = O(An).

AP = n(A%).

With the above settings, the following Theorem collects some results from
Section 4 of [11]. This is a special version of Theorem 2.6.

Theorem 4.2. 1. The systems of equations Ez, a,q) 1S a reducing system
and A is an index set.
2. The systems of equations E, [2),1) 8 a reducing system and AF is an
index set.
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3. The systems of equations En, a,q) and Ea, 2,1y are isomorphic with
bijections 6 and n:

Ena,ad) ~ E21,1)-

-1 2
5 o ] and B = [2].

Choose Ay = Aoq = {(0,0),(0,1),(1,0),(1,1)}. It is clear that &, a2
below is a reduced system of equation:

Ezxample. Let A =

hoo + hio + ko1t +hii = V2
a2 Y hoo+hig+hs +hi = 1
hoo - h1g + ho1 - hi1 = 0.

The bijections defined in (4.5) and (4.6) become

_ 1Y 2x y even
6,y) = L2J4+{ 2z +1 yodd

Y 2z Yy even
n(@,y) = L§J4+ { 2x+1 yodd

(xay) € AA;
(z,y) € AZ = {(0,0),(1,0)}.

The mappings are:

Ay |Ap=0(Aa) || AE | AE =n(AR)
(0,0) 0 (0,0) 0

(0, 1) 1

(1,0) 2 (1,0) 2
(1,1) 3

Under the above mapping ,the corresponding isomorphic systems of
equations are

Ehn,A2) " EAp,B,1):
hoo + hio + hor +hi1 = V2 ho+hi+ho+hys = V2
h3,+h3,+h3, +h = 1 h3+h?+h3+h: = 1
hoo - hio + ho1 - h11 = 0 ho-hg +hy-hs = 0.

-1 2
-2 2
0 < z,y <23—1}. The index set A for Eaaaz is{(z,y) | -T<2<Tye
{2,4,6} or 0 <z <7,y =0}}.

The bijections defined in (4.5) and (4.6) become

Ezample. Let A = ] and B = [2]. Choose Ay = Ay 3 = {(z,y) |

2x

y even

_ 1Y 9342 )

e(i,y)— L2J2 +{ 22 4+ 1 yOdd (I7y)EAAa
Y 2x even

nwy) = 5127 { 2041 yodd (@) EAL
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The mappings are:

Ozy) |01 [2]3[4]5] 6 |7
0 0| 1(32(33|64|65]| 96 | 97
1 213 (34(35|66|67| 98 | 99
2 4 | 5 1361|37]68|69|100 | 101
3 6 | 7 (383970 ]| 71102 | 103
4 819 |40 41| 72|73 ]| 104 | 105
5 10 | 11| 42|43 | 74 | 75| 106 | 107
6 12|13 |44 | 45| 76 | 77 | 108 | 109
7 14115 |46 | 47 | 78 | 79 | 110 | 111

n(z,y) H 0 ‘ 2 ‘ 4 6
-7 18 | 50 | 82
-6 20 | 52 | 84
-5 22 | 54 | 86
-4 24| 56 | 88
-3 26 | 58 | 90
-2 28 | 60 | 92
-1 30 | 62| 94
0 0 [32]64] 96
1 2 |134]66| 98
2 4 36|68 |100
3 6 | 38|70 | 102
4 8 |40 | 72 | 104
5 10 | 42 | 74 | 106
6 12 | 44 | 76 | 108
7 14 | 46 | 78 | 110

For example, 6(4,3) = 41 according to the above mapping table. A =
O(A ) is the content listed in the table for # and AL = n(Af) is the content
listed in the table for 1. The corresponding isomorphic systems of equations

can be

obtained:

EAnA2) "

5 ha

neEAA

> b

neAa

Z hii - hﬁ—i—k

neEAA

Ezxample. Let A =

T = Qh,ng)

is {<07

Y
0,0), (1,

0.0)

(-1

Ep,B1):
V2 > hm =V2
meEAB
Z h'ln = 1
meApB
=0, ke A > B hmpe =0,0€ AR
meEAB
0 -1
0 0 | and B =[2]. Choose Ay = A3 = {(Z,y) |
2 0
ni1,ng,n3 < 2 —1}. The index set A% for EAn,A3)
1,0),(0,1,0), (1 1,0)}.
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The bijections defined in (4.5) and (4.6) become

o1 Y o342 2091 (%) yeven
0y) = 51277+ { 2051(T) +1 yodd (DY) €A
= N 1Y 9342 202,1(Z) yeven E
(@ y) = L2J2 { 2021(F)+1 yodd (#y) € A%

Where o, , (n1,n2) = 23:1 n; - 49~ by Equation (4.3).

The mappings are:
Aa || A =0(Aa)

= O O == OO
=== -0 0O OO

_— O = O = OO
NN AN NN NN

© 00 WN = O

— =
= o

Py

I
—_

Ezample. Let A = and B = [2]. Choose Ay = A3 2 = {(Z,y) |

o = O
N OO
o O

Z = (n1,n2),y = n3,0 < ny,na,ng < 22 —1}. The index set A for EAa,A3)
contains 74 elements as shown later.

The bijections defined in (4.5) and (4.6) become

oy 1Y o642 209,2(%) yeven
e(xay) - L2J2 + { 20,272(:6) + 1 y Odd ( vy) € AA7
2N 1Y o642 202,2(Z) yeven E
(@ y) = L2J2 +{ 2092(%)+1 yodd (#y) € A%

Where o, ,(n1,n2) = Z?:l n; - 49~ by Equation (4.3).
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The mappings are:
@y | 0| 1] 2] 3

(0,00 [ 0 [ 1 [256 257

(1,0) || 2 | 3 |258]|259

(2,0) || 4 | 5 |260 261

(30) || 6 | 7 |262]|263

(0,1) || 32 | 33 | 288 | 289

(1,1) || 34 | 35 | 290 | 291

(2,1) || 36 | 37 | 292 | 293

(3,1) || 38 | 39 | 294 | 295

0,2) || 64 | 65 | 320 | 321

(1,2) || 66 | 67 | 322|323

(2,2) || 68 | 69 | 324 | 325

(3,2) | 70 | 71 | 326|327

0,3) || 96 | 97 | 352 | 353

(1,3) || 98 | 99 | 354 | 355

(2,3) || 100 | 101 | 356 | 357

(3,3) || 102 | 103 | 358 | 359

n(Z,y),y=0

Z=(z1,22) |0 1 | 2 3
-3 26 [ 58 | 90
2 28 | 60 | 92
-1 30 | 62 | 94
0 0]32]64| 96
1 213466 ]| 98
2 413668100
3 6| 38|70 102

(%, y),y = 2

= (.1‘1,.132) -3 —2 -1 0 1 2 3
-3 154 [ 186 | 218 | 250 | 282 | 314 | 346
-2 156 | 188 | 220 | 252 | 284 | 316 | 348
-1 158 | 190 | 222 | 254 | 286 | 318 | 350
0 160 | 192 | 224 | 256 | 288 | 320 | 352
1 162 | 194 | 226 | 258 | 290 | 322 | 354
2 164 | 196 | 228 | 260 | 292 | 324 | 356
3 166 | 198 | 230 | 262 | 294 | 326 | 358

For example, 0(3,2,1) = 71,7(2,1,0) = 36,7(2, 1, 2) = 292 according to
the above mapping tables. Ap = 6(A4) is the content listed in the table for
0 and AL = n(AE) is the content listed in the 2 tables for 1. We omit the
corresponding isomorphic systems of equations as it can be easily populated
from the table content of 7.

So far, all examples are with A4 of the form Ay n. Next we will show
an example with A4 a proper subset of Ag .
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0 0 -1
1 0 0 | and B=1]2].

0 2 0
Choose A4 = {(0,0,0),(0,0,1),(1,0,0),(1,0,1),(2,3,2),(2,3,3),(3,3,2),(3,3,3)}.
Notice that this support set A, is properly contained in Aj o, which is the
support of the previous example. The index set A for E(A4,A,3) contains 5
elements as shown later.

The mappings are:
Aa | Ap=0Aa) | AL | AE=nAd)
0

Ezxample. Let A =

(0,0,0) 0 (0,0,0)
(0,0,1) 1
(1,0,0) 2 (1,0,0) 2
(1,0,1) 3

(1,3,2) 354
(2,3,2) 356 (2,3,2) 356
(2,3,3) 357
(3,3,2) 358 (3,3,2) 358
(3,3,3) 359

The corresponding isomorphic systems of equations are:

EAn,A3) "
ho,0,0 + ho,0,1 + h1,00+ h101 +h232+ha33+h33zo+h3szs = V2
h(z),o,o + h(2),0,1 + h%,o,o + h%,o,l + h%,:s,z + h§33 + h%,g,z + h%,g,s =1
ho,0,0M1,00 + ho,01h1,01 + hosahs s+ hasshsss =
hi,0,0h2,3,2 + hi10,1h233 =
ho,0,0h2,3,2 + hoo,1h2,33 + hi,0,0h332 4+ hi1,0,1h3,3,3 =
ho,0,0h3,3,2 + ho,0,113,3,3 =0;

EAp,B,1):
ho + h1 + ha + hg + hase + hast + hass + hase = V2
hg + h3 + h3 + h3 + h3ss + hisy + h3sg + h3sg =1

hoha + hihs + h3sehass + hasrhasg =0
hahsse + hshssy =0
hohsse + hihss7 + hahsss + hahssg =0
hohssg + hihssg =0.

5. From lower dimensions to higher dimensions

In this section we provide an example for Theorem 2.5.

1 9 1 0 -1 2
Ezxample. LetA:{ },EA:[ },andB: 1 0 -2,
2 -2 -1
0 -1 0
1
lg=| -1 |.Choose Ay ={(z,y) |0<z<1,0<y<3}

0
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The mappings are:
A [Ap=0(Aa) | AR | AR =n(AR)

(0,0) (0,0,0) (0,0) (0,0,0)
(0,1) (1,-2,0)
(0,2) (0,-2,-1) (0,2) (0,-2,-1)
(033> (13'43'1)
(1,0) | (0,1,1) (1L,0) | (0,1,1)
(1,1) (1,-1,1)
(1,2) (0,-1,0) (1,2) (0,-1,0)
(1,3) (1,-3,0)

The corresponding isomorphic systems of equations are:

Era,A2) "
hoo+ho1 +ho2+hos+hio+hii+hiathis =v2
h,(2)70 + h%71 + h%,Q + h/(2)73 + h%70 + h%,l + h%72 + h%)g - ].

ho,0ho,2 + ho,1ho,3 + hi,0h12 + hi1hi 3 =0

ho,oh1,0 + ho1hi1 + ho2hi 2 + hoshi s =0

ho,oh1,2 + ho,1hy 3 =05
5(AB,B,3)¢

ho,0,0 +hi-20+ ho-2-1+Nhi a1 +hoi1+hi1i0+ho10+ P30 =

2 2 2 2 2 2 2 2 _
hg o0+ M 20+tho21+hi aq+hgi1+hi11+ho10thi a0 =1
ho,0,0h0,-2-1 + h12.0h1 a1+ ho,1ho-1,0 +hi11h1 30 =

ho,0,0h0,1,1 + h12,001 1,1 +ho-2-1ho 1,0 + hia1hi3p =0
ho,0,0h0-1,0 + 12,001 -3,0 =0.
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