THE TYPE B PERMUTOHEDRON AND THE POSET OF
INTERVALS AS A TCHEBYSHEV TRANSFORM

GABOR HETYEI

ABSTRACT. We show that the order complex of intervals of a poset, ordered by inclu-
sion, is a Tchebyshev triangulation of the order complex of the original poset. Besides
studying the properties of this transformation, we show that the dual of the type
B permutohedron is combinatorially equivalent to the order complex of the poset of
intervals of a Boolean algebra (with the minimum and maximum elements removed).

INTRODUCTION

Inspired by Postnikov’s seminal work [14], we have seen a surge in the study of root
polytopes in recent years. A basic object in these investigations is the permutohedron.
Less widely known are the results on Tchebyshev transform of a poset, introduced by
the present author [6, 7] and studied by Ehrenborg and Readdy [4], respectively the
(generalized) Tchebyshev triangulations of a simplicial complex, first introduced by the
present author in [8] and studied in collaboration with Nevo in [9]. The key idea of
a Tchebyshev triangulation may be summarized as follows: we add the midpoint to
each edge of a simplicial complex, and perform a sequence of stellar subdivisions, until
we obtain a triangulation containing all the newly added vertices. Regardless of the
order chosen, the face numbers of the triangulation will be the same, and may be ob-
tained from the face numbers f; of the original complex by replacing the powers of x
with Tchebyshev polynomials of the first kind if we work with the appropriate gener-
ating function. The appropriate generating function in this setting is the polynomial
S fial(@ = 1)/2).

It is easy to verify that the face numbers of the type A and type B permutohedra
are connected by a similar formula. These permutohedra are simple polytopes and
their duals are simplicial polytopes. The suspicion arises that the dual of the type B
permutohedron is a Tchebyshev triangulation of the dual of its type A cousin.

The present work contains the verification of this conjecture. The dual of the type
A permutohedron is known to be the order complex of the Boolean algebra, and the
dual of the type B permutohedron turns out to be an order complex as well, namely of
the partially ordered set of intervals of the Boolean algebra, ordered by inclusion. We
show that the operation of associating the poset of intervals to a partially ordered sets
turns always induces a Tchebyshev triangulation at the level of order complexes. This
observation may be helpful in constructing “type B analogues” of other polytopes and
partially ordered sets.
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This paper is structured as follows. After the Preliminaries, we introduce the poset of
intervals in Section 2 and show that the order complex of the poset of intervals is always
a Tchebyshev transform of the order complex of the original poset. We also introduce
a graded variant of this operation that takes a graded poset into a graded poset. In
Section 2 we show that the dual of the type B permutohedron is the order complex
of the graded poset of intervals of the Boolean algebra. In Section 4 we show how to
compute the flag f-vector of graded a poset of intervals. The operation is recursive,
unfortunately. Finally, in Section 5 we make the first steps towards computing the
effect of taking the graded poset of intervals on the cd-index of an Eulerian poset.

1. PRELIMINARIES

1.1. Graded Eulerian posets. A partially poset is graded if it contains a unique
minimum element 6, a unique maximum element T and a rank function p satisfying
p(0) = 0 and p(y) = p(z) + 1 for each z and y such that y covers z. The numbers
of chains containing elements of fixed sets of ranks in a graded poset P of rank n + 1
is encoded by the flag f-vector (fs(P) : S C {1,...,n}). The entry fs in the flag
f-vector is the number of chains z; < 23 < --- < x| such that their set of ranks
{p(z;) = i€ {1,...,]9}} is S. Inspired by Stanley [16] we introduce the upsilon-
invariant of a graded poset P of rank n + 1 by

Yp(a,b)= Y fsus

SC{1,...,n}

where ug = ug - - - u,, is a monomial in noncommuting variables @ and b such that u; = b
for all ¢ € S and uw; = a for all ¢ € S. It should be noted that the term upsilon
invariant is not used elsewhere in the literature, most sources switch to the ab-index
Up(a,b) defined to be equal to Tp(a — b,b). The ab-index may be also written as a
linear combination of monomials in @ and b, the coefficients of these monomials form
the flag h-vector. A graded poset P is Fulerian if every nontrivial interval of P has the
same number of elements of even rank as of odd rank. All linear relations satisfied by
the flag f-vectors of Eulerian posets were found by Bayer and Billera [1]. A very useful
and compact rephrasing of the Bayer-Billera relations was given by Bayer and Klapper
in [2]: they proved that satisfying the Bayer-Billera relations is equivalent to stating
that the ab-index may be rewritten as a polynomial of ¢ = a + b and d = ab + ba. The
resulting polynomial in noncommuting variables ¢ and d is called the cd-indez.
As an immediate consequence of the above cited results we obtain the following.

Corollary 1.1. The cd-index of a graded Eulerian poset P may be obtained by rewriting
Yp(a,b) as a polynomial of ¢ = a + 2b and d = ab + ba + 2b°.

Note that this statement is a direct consequence of Y p(a — b,b) = Up(a,b) which is
equivalent to Yp(a,b) = Up(a + b, b).

1.2. Tchebyshev triangulations and Tchebyshev transforms. A finite simplicial
complex A is a family of subsets of a finite vertex set V. The elements of A are called
faces, subject to the following rules: a subset of any face is a face and every singleton
is a face. The dimension of a face is one less than the number of its elements, the
dimension d — 1 of the complex A is the maximum of the dimension of its faces. The
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number of j-dimensional faces is denoted by f;(A) and the vector (f_1, fo,..., fa—1) is
the f-vector of the simplicial complex. We define the F-polynomial Fa(x) of a finite
simplicial complex A as

Falr) = zi;fj_m- (mgl)j. (1)

The join Ay * Ag of two simplicial complexes AA; and A, is the simplicial complex
A xDNg ={oUT : 0 € Ay, € Ay}, Tt is easy to show that the F-polynomials
satisfy Fa,«n,(z) = Fa,(x) - Fa,(x). A special instance of the join operation is the
suspension operation: the suspension A x9(A!) of a simplicial complex A is the join of
A with the boundary complex of the one dimensional simplex. (A (d — 1)-dimensional
simplex is the family of all subsets of a d-element set, its boundary is obtained by
removing its only facet from the list of faces.) The link of a face o is the subcomplex
linka(o)={r€A: onT=10, cUT € K}. A special type of simplicial complex we
will focus on is the order complex /A(P) of a finite partially ordered set P: its vertices
are the elements of P and its faces are the increasing chains. The order complex of a
finite poset is a flag complex: its minimal non-faces are all two-element sets (these are
the pairs of incomparable elements).

Every finite simplicial complex A has a standard geometric realization in the vector
space with a basis {e, : v € V} indexed by the vertices, where each face o is realized
by the convex hull of the basis vectors e, indexed by the elements of o.

Definition 1.2. We define a Tchebyshev triangulation T'(A) of a finite simplicial

complex A as follows. We number the edges ey, ez, ... ez (n) in some order, and we
associate to each edge e; = {ui,vi} a midpoint w;. We associate a sequence /N\g :=
ANSAL Dy Dy of simplicial complexes to this numbering of edges, as follows.

For each i > 1, the complex /\; is obtained from /\;_1 by replacing the edge e; and the
faces contained therein with the one-dimensional simplicial complexr L;, consisting of
the vertex set {u;,v;,w;} and edge set {{u;, w;},{w;, v;}}, and by replacing the family
of faces {e; Ut : 1 € link(e;)} containing e; with the family of faces {o’ Ut : 0o’ € L;}.
In other words, we subdivide the edge e; into a path of length 2 by adding the midpoint
w; and we also subdivide all faces containing e;, by performing a stellar subdivision.

It has been shown in [9] in a more general setting that a Tchebyshev triangulation of
A as defined above is indeed a triangulation of A in the following sense: if we consider
the standard geometric realization of /A and associate to each midpoint w the midpoint
of the line segment realizing the corresponding edge {u, v} then the convex hulls of the
vertex sets representing the faces of T'(A) represent a triangulation of the geometric
realization of A. Furthermore, a direct consequence of [9, Theorem 3.3] is the following
theorem.

Theorem 1.3 (Hetyei and Nevo). All Tchebyshev triangulations of a simplicial complex
have the same f-vector.

The following result has been shown in [8, Proposition 3.3] for a specific Tchebyshev
triangulation. By the preceding theorem it holds for all Tchebyshev triangulations and
motivates the choice of the terminology. The Tchebyshev transform of the first kind of
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polynomials used in the next result is the linear map 7" : R[z] — R[] sending 2™ into
the Tchebyshev polynomial of the first kind 7),(z).

Theorem 1.4. For any finite simplicial complex /\, the F-polynomial of any Tcheby-
shev triangulation T'(A) is the Tchebyshev transform of the first kind of the F'-polynomial
of A\:

Fray (@) = T(Fa(z)).

The notion of the Tchebyshev triangulation of a simplicial complex was motivated
by a poset operation, first considered in [6] and formally introduced in [7] .

Definition 1.5. Given a locally finite poset P, its Tchebyshev transform of the first
kind T'(P) is the poset whose elements are the intervals [x,y] C P satisfying x # v,
ordered by the following relation: [x1,y1] < [xa,ys] if either y1 < x5 or both x1 = x5 and
Y1 <y hold.

A geometric interpretation of this operation may be found in [7, Theorem 1.10]. The
graded variant of this poset operation is defined in [4]. Given a graded poset P with
minimum element 0 and maximum element T, we introduce a new minimum element
~1 < 0 and a new maximum element 2. The graded Tchebyshev transform of the first
kind of graded poset P is then the interval [(—1,0), (1,2)] in T(PU{=1,2}). By abuse
of notation we also denote the graded Tchebyshev transform of a graded poset P by
T(P). Tt is easy to show that T'(P) is also a graded poset, whose rank is one more than
that of P. The following result may be found in [8, Theorem 1.5].

Theorem 1.6. Let P be a graded poset and T(P) its graded Tchebyshev transform.
Then the order complex A(T(P)\{(—1,0), (1,2)}) is a Tchebyshev triangulation of the
suspension of A(P\ {0,1}).

As a consequence of Theorem 1.6, we have

Faaen@n.aay = 1@ Fapaiy)- (1.2)
It has been shown by Ehrenborg and Readdy [4] that there is a linear transformation
assigning to the flag f-vectors of each graded poset Pof rank n + 1 the flag f-vector of
its Tchebyshev transform of the first kind 7'(P). For Eulerian posets, they also compute
the effect on the cd-index of taking the Tchebyshev transform of the first kind.

1.3. Permutohedra of type A and B. Permutohedra of type A and B have a vast
literature, the results cited here may be found in [5] and in [17].

The type A permutohedron Perm(A,,_;) is the convex hull of the n! vertices
(m(1),...,m(n)) € R", where 7 is any permutation of the set [1,n] := {1,2,... ,n}.
The type B permutohedron Perm(B,) is the convex hull of all points of the form
(£7(1),£7(2)...,£7(n)) € R™. Combinatorially equivalent polytopes may be ob-
tained by taking the A, _i-orbit, respectively B, orbit, of any sufficiently generic point
in an (n—1)-dimensional (respectively n-dimensional) space, and the convex hull of the
points in the orbit. [5, Section 2].

The type A and B permutohedra are simple polytopes, their duals are simplicial
polytopes. The boundary complexes of these duals are combinatorially equivalent to
the Cozeter complexes of the respective Coxeter groups. The Coxeter complex of the



THE POSET OF INTERVALS 5

symmetric group A,_; on [1,n] is the order complex of P([1,n]) — {0, [1,n]}), where
P([1,n]) is the Boolean algebra of rank n. The Coxeter complex of the Coxeter group B,,
is the order complex of the face lattice of the n-dimensional crosspolytope [17, Lecture
1]. In either case we consider the order complexes of the respective graded posets
without their unique minimum and maximum elements: adding these would make the
order complex contractible, whereas the boundary complexes of simplicial polytopes
are homeomorphic to spheres. The standard n-dimensional crosspolytope is the convex
hull of the vertices {xe; : i € [1,n]|}, where {e1,ea,...,e,} is the standard basis of
R™. Each nontrivial face of the crosspolytope is the convex hull of a set of vertices of
the form {e;,;i € KT} U{—e;,i € K™}, where K™ and K~ is are disjoint subsets of
[1,n] and their union is not empty. Keeping in mind that each face of a polytope is the
intersection of all the facets containing it, we have the following consequence.

Corollary 1.7. Each facet of Perm(B,,) is uniquely labeled with a pair of sets (K+, K™)
where KT and K~ is are subsets of [1,n], satisfying KT C [1,n]— K~ and (K*,[1,n]—
K=) # (0,[1,n]). For a set of valid labels

{(K7 Ky, (K5 Ky ), (B K )

the intersection of the corresponding set of facets is a nonempty face of Perm(B,,) if
and only if

Kf CKyC---CK,;Cllin-K,C[ln-K,

m—1

C---C[l,n] — K{ holds.

The triangle of f-vectors of the duals to the type B permutohedra is given in sequence
A145901 in [13].

2. THE POSET OF INTERVALS AS A T'CHEBYSHEV TRANSFORM
Corollary 1.7 inspires considering the following operation on partially ordered sets.

Definition 2.1. An interval [u,v] in a partially ordered set P is the set of all elements
w € P satisfying u < w < v. For a finite partially ordered set P we define the poset
I(P) of the intervals of P as the set of all intervals [u,v] C P, ordered by inclusion.

We may identify the singleton intervals [u,u] in I(P) with the elements of P. This
subset of elements forms an antichain in I(P), however, under this identification, the
order complex of I(P) looks like a triangulation of the order complex of P, see Figures 1
and 2. Figure 1 shows a partially ordered set and its order complex. The poset of its
intervals and the order complex thereof may be seen in Figure 2.

us us
U2 Uy U2 g
Uy Uy

FIGURE 1. A partially ordered set P and its order complex A(P)

In Figure 2 we marked the vertices of the order complex associated to non-singleton
intervals with white circles.
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[, us] [us, us]
[z, us] o 11y, 0]
[, ] [z, us] g, U]
(w1, us) (1, Uy

[ub ul]

[r, ua] [ug, ug] [us, us) [ua, ud]

FIGURE 2. The poset I(P) of intervals of P and its order complex

Theorem 2.2. For any finite partially ordered set P the order complex A(I(P)) of its
poset of intervals is isomorphic to a Tchebyshev triangulation of A(P) as follows. For
each u € P we identify the vertex [u,u] € A(I(P)) with the vertex u € A(P) and for
each nonsingleton interval [u,v] € I(P) we identify the vertex [u,v] € A(I(P)) with
the midpoint of the edge {[u,u], [v,v]}. We number the midpoints [uy, v1], [ug, va],. .. in
such an order that i < j holds whenever the interval [u;, v;] contains the interval [u;, v;].

Proof. We illustrate the Tchebyshev triangulation process with the poset shown in
Figure 2. We list its nonsingleton intervals in the following order: [ui,us], [u1,us],
[ug, ug), [u1,us]. Figure 3 shows the stage of the process when we already added [uy, us]
and [uq, us] but none of the remaining nonsingleton intervals. The following statement

[U3> U3]
[Uh U3]
[ug, us] (14, U4
[ub uQ]
[ub ul]

F1GURE 3. The second step of the Tchebyshev triangulation process

may be shown by induction on the number of stages in the process: in each stage, the
resulting complex is a flag complex, whose minimal nonfaces are the following:

(1) Pairs of singletons {[u, u], [v,v]} such that u and v are not comparable in P.

(2) Pairs of singletons {[u, u|, [v,v]} such that v < v holds in P, but the interval
[u, v] has already been added to the triangulation.

(3) Pairs of intervals from I(P) such that neither one contains the other.

In each stage of the process, the nonsingleton interval [u, v] added is the first midpoint
of any edge whose endpoints are contained in the interval [u, v] of P. At the beginning
of the stage the restriction of the current complex to intervals contained in [u,v] only
contains singleton intervals, and it is isomorphic to the order complex of [u,v]. Sub-
dividing the edge {[u,u], [v,v]} and all faces containing this edge results in a complex
where both [u, u] and [v,v] can not appear in the same face any more, each such face is
replaced with 2 faces: one containing {[u, u], [u, v]} the other containing {[v, v], [u, v]}.
All intervals [u/, v'] containing [u, v] have already been added in a previous stage, and
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now we add the edge {[u,v], [/, v']}. The cumulative effect of all these changes is that
we obtain a new flag complex satisfying the listed criteria. O

When P is a graded poset then [u/,v'] covers [u,v] in I(P) exactly when the rank
function p of P satisfies p(v') — p(u') = p(v) — p(u) + 1. Hence we may define the
following graded variant of the operation P +— I(P).

~

Definition 2.3. For a graded poset P we define its graded poset of intervals I(P) as
the poset of all intervals of P, including the empty set, ordered by inclusion.

A~ A

[0, 1]

FIGURE 4. The graded poset of intervals of a chain

Remark 2.4. Figure 4 represents the graded poset of intervals of a chain of rank 3. It
is worth comparing this illustration with [7, Figure 2] where the Tchebyshev transform
of a chain of rank 3 is represented. The two posets are not isomorphic, not even after
taking the dual of the Tchebyshev transform to make the number of elements at the
same rank equal.

The following statement is straightforward.

Proposition 2.5. If P is a graded poset of rank n with rank function p then I(P)
is a graded poset of rank n + 1, in which the rank of a nonempty interval [u,v] is
p(v) = p(u) + 1.

In analogy to Theorem 1.6 we have the following result.

~

Proposition 2.6. Let P be a graded poset and I(P) its graded poset of intervals. Then

the order complex A(I(P)—{0,[0,1]}) is a Tchebyshev triangulation of the suspension
of A(P —{0,1}).

Proof. By Theorem 2.2, the order complex A(I(P)—{0}) is a Tchebyshev triangulation
of A(P). The order complex A(P) is the join of A(P—{0,1}) with the one-dimensional
simplex on the vertex set {6, T} Performing the Tchebyshev triangulation results in
subdividing every simplex containing the edge {0,1} into two simplices. The removal
of the midpoint [6, T] leaves us exactly with those faces which are contained in a face of
A(P) that does not contain the edge {0,1}. Hence we obtain a Tchebyshev triangula-

tion of a suspension of A(P — {0,1}): the suspending vertices are 0 and 1. O
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We conclude this section with the following observation regarding the direct product
of two graded posets. Recall that the direct product P x () of two graded posets P and
@ is defined as the set of all ordered pairs (u,v) where u € P and v € @, subject to the
partial order (u1,v1) < (ug,v2) holding exactly when u; < wus holds in P and v; < vy
holds in Q).

Proposition 2.7. If P and Q) are graded posets then I(P x Q) is isomorphic to I(P) X
1(Q).
The straightforward verification is left to the reader.

Remark 2.8. It is worth comparing Proposition 2.7 above with [4, Theorem 9.1] where
it is stated that the Tchebyshev transform of the Cartesian product of two posets is the
diamond product of their Tchebyshev transforms. The diamond product is a different
operation.

3. THE DUAL OF THE TYPE B PERMUTOHEDRON AS A T'CHEBYSHEV
TRIANGULATION

After introducing X := KT and Y := [1,n] — K, we may rephrase Corollary 1.7 as
follows.

Corollary 3.1. We may label each facet of the type B permutohedron Perm(B,,) with a
nonempty interval [ X, Y] of the Boolean algebra P([1,n]) that is different from P([1,n]) =
[0,[1,n]]. The set {[X1,Y1],[Xo, Y], ..., [Xom, Y|} labels a collection of facets with a

~

nonempty intersection if and only if the intervals form an increasing chain in I(P([1,n]))—
{010, 1,n]]}.

As we have seen, the representation of each face of Perm(B,,) as an intersection of
facets is unique. Hence we obtain the following result.

Proposition 3.2. The dual of Perm(B,,) is a simplicial polytope whose boundary com-
plex is combinatorially equivalent to the order complex A(I(P([1,n])) — {0, [0, [1,n]]}).

As a consequence of this statement and of Proposition 2.6, we obtain the following
result.

Corollary 3.3. The dual of Perm(B,) is a simplicial polytope whose boundary com-
plex is combinatorially equivalent to a Tchebyshev triangulation of the suspension of

A(P([L,n]) = {0, [1,n]}).

It is worth noting that the order complex A(P([1,n]) — {0,[1,n]}) is known to be
combinatorially equivalent to the boundary complex of the permutohedron Perm(A4,,_1).
We may also think of this complex as the barycentric subdivision of the boundary of
an (n — 1)-dimensional simplex.

Figure 5 represents “half” of the dual of Perm(B3). The boundary of the triangle
whose vertices are labeled with singleton intervals [{i}, {¢}] is shown in bold. (In general,
the reader should imagine the boundary of a simplex, whose vertices are labeled with
[{i},{i}].) The vertices of the barycentric subdivision of the boundary are marked with
black circles. These correspond to singleton intervals of the form [X, X|, where X is a
subset of [1,3]. (In general, X is a subset of [1,7n].) The suspending vertex () is marked
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[{3}, {3}

[{1,3}, {1.3)] {2,3},{2,3)]

= ’/// . - =
({1} {1}] {1 {128 HL2h{L2H [{2h {128 ({2} {2}

FIGURE 5. Half of the dual of Perm(Bs)

with a black square. The other suspending vertex [1, 3] (in general: [1,n]) is not shown
in the picture. One would need to make another picture showing the boundary of the
triangle with the suspending vertex, and “glue” the two pictures along the boundary
of the triangle. The midpoints of the edges are marked with white circles. These are
labeled with intervals [X, Y] such that X is properly contained in Y. The edges arising
when we take the appropriate Tchebyshev triangulation are indicated with dashed lines.
Note that this part of the picture is different on the “other side” of the dual of Perm(Bs):
on the side shown the largest intervals labeling midpoints are of the form [0, [1, 3] — {i}]
(in general [0, [1,n] — {i}]) whereas on the other side the largest such intervals are of
the form [{i},[1,3]] (in general: [{i},[1,n]]). We leave to the reader as a challenge to
draw the other side of the dual of Perm(Bs).

Remark 3.4. As a consequence of Corollary 3.3, we may compute the F-polynomial
of the dual of Perm(B,,) using (1.2), and obtain that these polynomials have the same
coefficients (up to sign) as the derivative polynomials for secant. For the Tchebyshev
transform of a Boolean algebra this was first observed in [7, Corollary 9.3], and at
the level of counting faces in the order complex of a graded poset there is no difference
between considering the operator P +— T'(P) and the operator P — [(P). However, this
observation is not new. The interest of the present section is to provide more detailed
information regarding the face structure of the dual of the type B permutohedron,

which may allow a more refined face count in the future.

4. COMPUTING THE FLAG f—VECTOR OF THE GRADED POSET OF INTERVALS

In this section we show that for any graded poset P, the flag f-vector of its graded
poset of intervals 1 (P) may be obtained from the flag f-vector of P by a linear trans-
formation. By “chain” in this section we always mean a chain containing the unique
minimum element and the unique maximum element. This treatment is equivalent to

excluding both of these elements from all chains.
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PN

Definition 4.1. Given a chain O C [uy,v1] C [ug,v2] C -+ C [ug, vi] C [tgs1, Ve+1][0, 1]

~

in the graded poset of intervals I(P) of a graded poset P, we call the set

{Ul,Ul,Uz,Uz, e ,Uk+1,vk+1}

the support of the chain.

~

Obviously the support of a chain in I(P) is a chain in P containing the minimum
element 0 and the maximum element 1. R

The next statement expresses the number of chains in I(P) having the same support
in terms of the Pell numbers P(n). These numbers are given by the initial conditions
P(1) =1 and P(2) = 2 and by the recurrence P(n) =2-P(n—1)+ P(n—2) for n > 3.
A detailed bibliography on the Pell numbers may be found at sequence A000129 of [13].

Proposition 4.2. Let P be a graded poset and let ¢ : 0= Z0< < < Zpe1 < Zm =
1 be a chain in it. Then the number of chains O C [uy,v1] C [ug,va] C -+ C [up, vi) C
[tpr1, Vrsr] = [0, 1] whose support is ¢ is the sum P(m)+ P(m+1) of two adjacent Pell
numbers.

A~ A~

Proof. We proceed by induction on m. For m = 1 there are three chains: () C [0, 1],
) € [0,0] C [0,1] and @ C [1,1] C [0, 1]. For m = 3, there are the following seven chains
with support 0 < z; < 1:

(2) 0 c [070] - [ 7/\21] - [ ’/}]/7\

(3) 0 C [z1,21] C [0,24] C[0,1],

(4) @C[/Z\l,/\l]C[ a/\]’ PR

(5) 0 C [1,1] C [z, 1] C [0,1],

(6) @C [21,21] C [Zl, ]_] C O, 1], and
(

~

Let us list the elements of the chain in /(P) in decreasing order. The largest element

A~ A

of the chain must be [0, 1], the unique maximum element. The next element is either
the interval [z1,1] or the interval [0, z,] or the interval [z1, z,]. We can not make the
minimum of this next interval larger than z; because that would force skipping 2; in
the support, similarly the maximum of this next interval is at least zp,. Applying the

induction hypothesis to the intervals [z, 1], [0, z,,] and [z1, z,,,], respectively, we obtain
that the number of chains is

2-(P(m)+P(m+1))+ (P(m—1)+ P(m)) =P(m+1)+ P(m+2).
O
Remark 4.3. The numbers P(n) + P(n + 1) are listed as sequence A001333 in [13].
They are known as the numerators of the continued fraction convergents to v/2, and
have many combinatorial interpretations. The even, respectively odd indexed entries in

this sequence may also be obtained by substitutions into the Tchebyshev polynomials
of the first, respectively second kind.
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It is transparent in the proof of Proposition 4.2 that the contributions of chains
of I(P) with a fixed support to Tz (a,b) depends only on the contribution of their
support to YTp(a,b). This observation motivates the following definition.

Definition 4.4. Given an ab-word w of degree n, we define t(w) as the contribution of
all chains of I(P) with a fized support to TT(P)(a, b), whose support is the same chain
of P, contributing the word w to T p(a,b).

Theorem 4.5. The operator 1 may be recursively computed using the following formu-
las.

(1) v(a™) = (a+2b)a™ holds for n > 0. In particular, for the empty word € we have

t(e) = (a+ 2b).

(2) t(a’ba’) = (a + 2b)(a'ba’ + a?ba’) + ba™ T holds fori,j > 0.

(3) t(a’bwba’) = (a'bw)ba’ + 1(wba?)ba’ + t(w)ba™ T holds for i,j > 0 and any
ab-word w.

Proof. The only chain that contributes a” to the ab-index of a graded poset is the chain
0<1lina graded poset P of rank n + 1. As seen in the proof of Proposition 4.2, there
are 3 chains in [ (P) whose support is 0 < 1, and their contribution is to the ab-index
of I(P) is (a + 2b)a"

Similarly, the only chains that contribute a’ba’ to the ab-index of a graded poset
are the chains 0 < z; < 1 in a graded poset P of rank i + j 4+ 2, where the rank
of z; is i + 1. As seen in the proof of Proposition 4.2, there are 7 chains in f(P)
whose support is 0 < 2z, < 1, and their contribution is to the ab-index of 1 (P) is
(a+ 2b)(a’ba? + a’ba’) + ba'*.

Finally, consider a chain c : 0 < 21 < 29 < o0 < 2 < Zpy1 = 1 that contributes
a‘bwba’ to the ab-index of a graded poset P of rank n + 1. In such a chain the rank of
z1 is © + 1 and the rank of of z; is n — 7. The largest element below [6 /1\] of any chain
in 7(P) with support c is either [0, 2] (of rank n — j 4 1) or [z1,1] (of rank n + 1 — i)
or [z1, 2] (of rank n —i — j 4+ 1). The three terms correspond to the contributions of
the chains of these three types. [

Corollary 4.6. There is a linear map I, : R?" — R2""" sending the flag f-vector of
each graded poset P of rank n + 1 into the flag f-vector of its graded poset of intervals
I(P). This linear map may be obtained by encoding flag f-vectors with the corresponding
upsilon-invariants, and extending the map v by linearity.

Example 4.7. Using Theorem 4.5 we obtain the following formulas.
n=1: (a) = a* + 2ba, 1(b) = (a + 2b)(b+ b) + ba = 40> + 2ab + ba.
n=2: 1(a?) = a®+2ba?, 1(ab) = (a+2b)(ab+ba) + ba* = a*b+ aba + 2bab + 2b*a + ba?,
t(ba) = a®b + aba + 2bab + 2b*a + ba* = 1(ab), and
1(b*) = 2u(b)b + 1(e)ba = 2(4b* + 2ab + ba)b + (a + 2b)ba
= 8b* + 4ab® + 2bab + aba + 2b%a.
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5. THE GRADED POSET OF INTERVALS OF AN EULERIAN POSET

Theorem 5.1./\If a graded poset P is Fulerian then the same holds for the graded poset
of its intervals I(P).

Proof. 1t is well known consequence of Phillip Hall’s theorem (see [15, Propositition
3.8.5]) that a graded poset is Eulerian if and only if the reduced characteristic of the
order complex of each open interval (u,v) is (—1)?® =2 where p is the rank func-
tion. Since taking the graded poset of intervals results in taking a triangulation of
the suspension of each such order complex, the reduced Euler characteristic remains
unchanged. O

As a consequence of Theorem 5.1, the linear map I,, takes the flag f-vector of any
graded Eulerian poset of rank n 4+ 1 into the flag f-vector of a graded Eulerian poset of
rank n+2. It has been shown by Bayer and Billera [1] that for each n, one may make a
list of F},11 graded Eulerian partially ordered sets of rank n+ 1 whose flag f vectors are
linearly independent, where F,,;; is the (n + 1)st Fibonacci number (F; =1, F;, = 2).
The upsilon invariants of such a basis span the vector space of upsilon invariants of all
Eulerian posets of rank n 4+ 1, and the images under ¢ of these basis vectors have the
property that the resulting upsilon invariants are also polynomials of ¢ = a + 2b and
d = ab + ba + 2b®>. The same observation also holds for all linear combinations, hence
we obtain the following result.

Theorem 5.2. Eztending the operator ¢ to linear combinations of ab-words by linearity,
results in a linear operator that takes each polynomial of ¢ = a+2b and d = ab+ba+ 2b*
into a polynomial of ¢ = a+ 2b and d = ab+ ba + 2b*. This operator takes the cd-index
of an Fulerian poset P into the cd-index of its graded poset of intervals T(P)

By abuse of notation, we will use the same symbol ¢ to denote the induced operator
on cd words.

Example 5.3. Using the formulas listed in Example 4.7 we obtain the following:
n=1: 1(c) = t(a + 2b) = a® + 2ba + 2(4b*> + 2ab + ba) = c* + 2d.
n = 2: (we use t(ab) = t(ba))

1(d) = 1(ab+ ba + 2b?)

2(a*b + aba + 2bab + 2b*a + ba®) + 2(8b* + 4ab® + 2bab + aba + 2b%a)
2(ba® + 2aba + a*b + 4b%a + 4bab + 4ab* + 8b°)

2(cd + dc).

1(c?) = o(( — 2d) + 2d) = 1(a®) + 2(d)
= (a + 2b)a® + 4(cd 4 dc) = c(c* — 2d) + 4(cd + dc) = ¢ + 2cd + 4de.
We conclude this section with explicitly computing ¢(c¢") for all n. Note that ¢” is the
cd-index of the “ladder” poset L, of rank n 4 1. This poset has exactly 2 elements: —i

and ¢ for each rank 7 satisfying 0 < ¢ < n+1, and any pair of elements at different ranks
are comparable. The “ladder” poset Ly of rank 3 is shown in Figure 6. To simplify our
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notation in the proof of Theorem 5.4 below, we write the unique minimum element of
L, as 0 and the unique maximum element as n + 1.

F1GURE 6. The “ladder” poset Ly of rank 3

Theorem 5.4. Assume that the finite vector (ko, ..., k) of nonnegative integers satis-
fies 2r + ko + ko + -+ - + k. = n. Then the coefficient of c*odckrd - - ey, dckr in o(c") is
2"(ky+ 1) (ke + 1) -+ (k. + 1).

o~

Proof. The proof uses an R-labeling on the dual I(L,)* of the graded poset of intervals
1 (Ly) of the ladder poset L,. A R-labeling is a labeling of the cover relations with an
ordered set of labels, such that every interval has a unique maximal chain whose labels
are rising. For more information on R-labelings see [15]. Since we work with the dual
poset, we will show the dual statement, that is, the coefficient of c*dckd - - - ¢y, dc*+! in
t(c™)rv, obtained from ¢(c™) by reversing all monomials, is 2" (k; +1)(ka+1) - - - (k. +1).

All elements, except for the maximum element ¢ of I(L,)* have the form [ - i, 7 - ]
where 0 <i<j<n+1landene{—1,1}. If i =0then ¢ =1 and if j =n + 1 then
n =1

We label the cover relations with the symbols U~,Ut, L™ and LT as follows.

(1) Cover relations of the form [e-i,n-5 < (¢-i,—(j—1)], [e-i,n-(i+1)] < [g-4,e-1],
and [e - 4,e - i] < ) receive the label U~. In other words, if the upper end of
the interval decreases and the upper end becomes a negative letter, or we create
thereby a singleton or (), we record the label U~

(2) Cover relations of the form [e-i,7-j < (¢-4,(j—1)] for j > i+ 1 receive the label
U*. In other words, if the upper end of the interval decreases and becomes a
positive letter, but the resulting interval is not a singleton, we record the label
Ut.

(3) Cover relations of the form [¢-4,n-j] < [—(i+1),n-j] and [e-i,n- (i +1)] <
[n-(i+1),n-(i+1)] receive the label L~. In other words, if the lower end of the
interval increases and becomes a negative letter, or we create thereby singleton,
we record the label L™.

(4) Cover relations of the form [e 4,7 5] < [(i +1),n - j] for j > ¢ + 1 receive the
label L*. In other words, if the lower end of the interval increases and becomes

a positive letter, but the resulting interval is not a singleton, we record the label
LT,
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Next we replace each label U=, U™, L™, and L™ with an ordered pair (U~,r), (U, r), (L™, )
and (L*,r) where r is the rank of the top element of the cover relation labeled. For
example, for n = 5 and the saturated chain

0,6] < [0,—5] < [0,—4] < [1,—4] < [2,—4] <[2,3] <[3,3] <@
we record the sequence of edge labels
(U7,1),(U,2),(L7,3),(L",4), (U",5),(L7,6),(U,7)).
We order the labels as follows:
U, )< U ,2)<--<(U ,n+1)< Ut n-1)<U",n-2)<---<(U"1)<
(L) <(L7,2)<--<(L7,n)<(L",n—1)< (LT, n—-2) <--- < (LT 1).

It is left to the reader to check that there is a unique rising chain in each interval
[[e1 - 41,m1 - 1], [€2 - 92, M2 - Jo]] and in each interval [[e1 - i1,m1 - 71],0]. For example, in
the first case, beginning with [e; - i1, 71 - j1] we want to keep decreasing the top element
to a negative letter, as long as the new top element is larger than j,, then we want
to decrease the top element to 7, - jo. From here on we want to keep increasing the
bottom element to a negative letter, except possibly for the last step when we increase
the bottom element to €5 - 7. Note that, following this pattern we will have at most
one step with label (U™, r) and at most one step of the form (L7, s).

We may simplify our labeling to recording only the letters U~, U™, L™, Lt if we use
the following convention: when a letter is followed by a different letter then the order
U~ <U*' < L™ < L' determines whether an ascent or a descent is created, for adjacent
pairs of identical letters, the pairs U-U~ and L~ L~ create an ascent, whereas the pairs
UTU" and LT LT create a descent. The labeling of our saturated chains is such that the
last letter is always U~ and the before last letter is U~ or UT. For example, for n = 2,
there are 4 x 4 x 2 = 32 saturated chains, one for each label of the form X{'X5*X; U~
where X, Xy and X3 is any letter from the set {U, L} and & and e, are signs. To
compute the ab-index W(n) := Wz, .(a,b), we record a letter a for each ascent and a
letter b for each descent. Let us denote by Uo(n), Ui(n), ¥s(n) and ¥3(n), respectively
the total weight of all saturated chains in 7| (Ly,)* whose R-labeling begins with U~, U™,
L, L™ respectively. We obtain the following system of recurrences:

Uo(n+1) = a(Vo(n) + ¥i(n) + Uy(n) + ¥3(n)) = a¥(n)

Ui(n+1) =bo(n) + ¥i(n)) + a(¥a(n) + ¥3(n)) (5.1)
Wy(n+1) = b(Wo(n) + ¥1(n)) + a(Wa(n) + ‘Pz(n)) '
Ws(n+1) = b(Wo(n) + W1(n) + Wa(n) + ¥3(n)) = b¥(n)
subject to the initial conditions

W (1) = afa+b)
Uy (1) = ab+ ba 5:2)
Uy(1) = ab + ba '
U3(1) = bla+b)
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It is an immediate consequence of Equations (5.1) and (5.2) that Uy(n) = Ws(n) holds
for all n > 1. Introducing ¢ = a + b and d = ab + ba, as usual, (5.2) may be rewritten

V(1) =c*+2d
(1) = d (5.3)

and repeated use of the recurrence (5.1) yields

Uy(n+1) =a¥(n)

Ui(n+1) =b(To(n) + ¥i(n)) + a(Vay(n) + ¥s(n))
=b(aV(n—1)+¥i(n)) +a(Vi(n) + 0¥ (n—1))
=c¥i(n)+d¥(n—1)

Uy(n+1) =cVy(n) +d¥(n—1) (since ¥i(n+1)=Wy(n+1))

Us(n+ 1) =0b¥(n)

Adding the last four equations and repeating the second, we obtain the recurrence
formulas

U(n+1)=c¥(n)+2c¥(n) +2d¥(n —1)

Uy (n+ 1) = Wy (n) + dU(n — 1) (54)
Subtracting twice the second equation of (5.4) from the first we obtain
U(n+1)—2U(n+1)=c¥(n), thatis,
Ui(nt1) = % (U(n+1) — cU(n)).
Substituting this (with n and n — 1 into the first equation of (5.4) we obtain
U(n+1)=c¥(n)+c(¥(n)—c¥(n—1))+2d¥(n—1),
that is,
U(n+1) =2c¥(n) + (2d — ) ¥(n — 1). (5.5)

The statement follows from the last equation by an easy induction on n. Indeed, for
ky = 0, the coefficient of ck1dck2d - - - c*dcP+1 in W(n+1) is contributed by 2d¥(n—1) in
(5.5) and we may apply the induction hypothesis to the word c*2d - - - cfrdc*+1 | using the
fact that the factor (k; + 1) is 1. If k; = 1 then the coefficient of ¥ dc*2d - - - c*rdckr+1
is contributed by 2¢¥(n) and we may apply the induction hypothesis to the word
Adck2d - - - ckrdck+1 | using the fact that the additional factor of 2 is equal to (k; + 1).
Finally, if k; > 2 then the coefficient of c*dc*2d - - - ¥ dckr+1 is contributed by 2¢¥(n) —
AW (n—1). Applying the induction hypothesis to the words c**~tdc*d - - - ckrdch+1 and
1 =2dck2d - - - cFrdcfr+t we obtain that the coefficient of cFidck2d - - - Frdckr+1 in W(n+1)
is

(2 — (k1 = 1))+ 2 by + 1) (ke + 1) = 27 (k1 + D(ka 1) -+ (ky + 1),
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Remark 5.5. Surprisingly this formula is the dual of the one obtained for the other
Tchebyshev transform see [6, Theorem 7.1] and [4, Corollary 6.6] (see also [6, Table
1] and compare it with Example 5.3), although the two poset operations are very
different. This observation also suggests that, when we comparing it to the Tchebyshev
transform, one would want to consider the dual of the poset of intervals, ordered by
reverse inclusion.

6. CONCLUDING REMARKS

It would be interesting to find a similar interpretation of the type C' permutohe-
dron: the geometric modifications do not seem hard, associating a reasonably general
poset operation seems difficult. Taking the graded poset of intervals seems to be a
fairly straightforward operation, worthy of further study. Finding explicit formulas for
cd-indices would be desirable but it seems harder than for the Tchebyshev transform
studied in [6], [7] and [4]. The source of all difficulties seems that the operator ¢ recur-
sively “rotates” the words involved: the recurrences call for cutting off certain initial
segment of some words and placing their reverse at the end. That said, generalizations
of permutohedra abound, and performing an analogous sequence of stellar subdivisions
on their duals, respectively taking the graded poset of intervals for an associated poset
may result in interesting geometric constructions, producing perhaps new type B ana-
logues. Finally, applying the Tchebyshev transform studied in [6], [7] and [4] to a
Boolean algebra creates a poset whose order complex has the same face numbers as
the dual of a type B permutohedron. It may be interesting to find out whether the
resulting polytope also has a nice geometric representation.
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