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Abstract. For an un-oriented link K, let L(K) be the ropelength of K. It is known that in general

L(K) is at least of the order O((Cr(K))3/4), and at most of the order O(Cr(K) ln5(Cr(K)) where Cr(K)
is the minimum crossing number of K. Furthermore, it is known that there exist families of (infinitely
many) links with the property L(K) = O(Cr(K)). A long standing open conjecture states that if K is
alternating, then L(K) is at least of the order O(Cr(K)). In this paper, we show that the braid index
of a link also gives a lower bound of its ropelength. More specifically, let B(K) be the largest braid
index among all braid indices corresponding to all possible orientation assignments of the components
of K (called the maximum braid index of K), we show that there exists a constant a > 0 such that
L(K) ≥ aB(K) for any K. Consequently, L(K) ≥ O(Cr(K)) for any link K whose absolute braid index
is proportional to its crossing number. In the case of alternating links, the absolute braid indices for
many of them are proportional to their crossing numbers hence the above conjecture holds for these
alternating links.

1. Introduction

An important geometric property of a link with n components is its ropelength, defined as the
minimum length of n unit thickness ropes needed to tie the link. Let K be an un-oriented link, Cr(K)
be the minimum crossing number of K and L(K) be the ropelength of K. In general the determination
of the precise ropelength of a non-trivial link is a difficult problem with few exceptions (for example,
the ropelength of a simple chain of n ≥ 2 rings, namely the connected sum of n − 1 Hopf links, is
(4π + 4)n − 8 = 2(π + 1)Cr(K) + 4(π − 1) [4]). In the case of a knot (namely a link with n = 1
component), it is known that L(K) ≥ 31.32 for any nontrivial knot K [5], but the precise ropelength
of any nontrivial knot is not known and may never be known. In the past two decades, much effort
has been devoted to finding good estimates of the ropelength in the forms of lower or upper bounds
of the ropelength. For example, it has been shown in [1, 2] that in general L(K) ≥ 1.105(Cr(K))3/4

and that this 3/4 power can be attained by a family of infinitely many links [3, 7], and that L(K) is at
most of the order O(Cr(K) ln5(Cr(K))) [10]. Furthermore, not all links obey this 3/4 power law since
there exist families of infinitely many links such that the ropelength of a link from such a family grows
linearly as the crossing number of the link [12]. On the other hand, no families of links are known to
have a ropelength growth rate that is super linear in terms of the crossing numbers.

It is intuitive that links with smaller ropelengths tend to be highly non-alternating such as the
(n, n+ 1) torus knots that obey the 3/4 power law [3, 7], while the ones with larger ropelengths tend
to be “more alternating”. The intuition here is that it is “cost effective” for creating multiple crossings
if this is achieved by a (near) straight strand to cross over (under) many strands. One cannot help
but wonder what happens to alternating links. In fact the following conjectures had been proposed
more than a decade ago and are still open:
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Conjecture 1.1. There exists a constant a0 > 0 such that L(K) ≥ a0Cr(K) for any alternating link
K.

Conjecture 1.2. There exists a constant a1 > 0 such that L(K) ≤ a1Cr(K) for any link K.

It is well known (and easy to prove) that the ropelength of a link is bounded below by the bridge
number of the link (multiplied by some positive constant) and the links constructed in [12] have bridge
numbers proportional to their crossing numbers. Of course, if a link has a small bridge number, then
this approach would not provide us a good ropelength lower bound of the link. In this paper we
show that for any oriented link, its braid index (corresponding to the given orientation) bounds the
ropelength of the link from below (again up to the multiple of a positive constant). Note that different
orientation assignments to components of a link may lead to different braid indices. Since this result
applies to all of them, the largest braid index among all braid indices corresponding to all possible
orientation assignments of the components of K will thus give us the largest lower bound. We will call
this largest braid index the maximum braid index of K and denote it by B(K) in the rest of the paper.
On the other hand, the smallest braid index among all braid indices corresponding to all possible
orientation assignments of the components of K is still greater than or equal to the bridge number of
K. This, together with the facts that the braid index is much easier to determine or estimate (due to
its relationship with the HOMFLY-PT polynomial) than the bridge number in general, and that the
braid indices for many classes of alternating links are now computable due to some recent results [9],
makes our result much more applicable. As one will see in Section 4, Conjecture 1.1 holds for many
classes of alternating links.

2. Elementary tangles and their Seifert diagrams

Definition 2.1. Let Tn be an n-string tangle with the end points of the strings α1, α2, ..., αn fixed
on the boundary of the tangle. We say that Tn is elementary if (1) Geometrically Tn is of the shape
of a cylinder; (2) if Tn is positioned in R3 so that its axis is parallel to the z-axis, then there exist
constants zj , z

′′
j for j = 1, 2, ..., n such that the “slabs” defined by z′j < z < z′′j do not overlap and

that each αj is bounded within the slab z′j < z < z′′j and (3) each αj is a simple curve, that is, if its
end points are joined by an arc on the boundary of Tn, then the result would be a trivial knot.

Figure 1 shows the top view of an elementary tangle. From this point on, we will assume that an
elementary tangle Tn has been positioned so that the conditions in Definition 2.1 are satisfied.

Figure 1. The top view of an elementary tangle.

Remark 2.2. The strings of an elementary tangle Tn can be ordered by a “height index” such that
when the strings are projected to the xy-plane, the string with higher index is always the over strand
when two strings cross each other in the projection. In fact, the definition of an elementary tangle
given in Definition 2.1 is purely for the sake of convenience and simplicity as it suffices for the purpose
of this paper. It certainly can be generalized to any tangle for which a projection direction can be
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chosen such that the strings can be ordered by a height index so that when the strings are projected in
this direction to a plane, the string with higher index is always the over strand when the projections
of two strings intersect.

Remark 2.3. Let T ′n be an elementary tangle obtained from Tn by replacing each αj with a simple
curve α′j that is bounded in z′j < z < z′′j and shares the same end points of αj . Then by conditions

(2) and (3) in Definition 2.1, there exists a boundary preserving ambient isotopy from Tn to T ′n that
takes each αj to α′j . We say that T ′n is equivalent to Tn.

We say that Tn is oriented if each string in it is oriented. The projection diagram of an elementary
tangle is the diagram obtained by projecting the tangle and its strings to the xy-plane. Two projection
diagrams are said to be equivalent if their corresponding elementary tangles are equivalent. The Seifert
diagram of an elementary tangle is the diagram obtained from its projection diagram by smoothing all
crossings in the diagram as shown in Figure 2. Since there will be no crossings in the Seifert diagram
of an elementary tangle, there are only two kinds of curves in the Seifert diagram: the ones that are
topological circles (which we will call Seifert circles) and the ones that are open arcs whose end points
are the projection points of the strings of the tangle (which we will call partial Seifert circles).

Figure 2. Smoothing a crossing in the projection of two oriented strands.

Remark 2.4. Consider a projection diagram P ′n with n strings in which each projected string share
end points with one and only one projected string of the projection diagram Pn of Tn and the same
height index. Then by Remark 2.3, there exists an elementary tangle T ′n that is equivalent to Tn with
P ′n as its projection. That is, P ′n is equivalent to Pn.

Remark 2.5. Since the projection of each of the 2n end points of the strings of Tn belongs to one and
only one partial Seifert circle in the Seifert diagram of Tn, we see that the number of partial Seifert
circles in the Seifert diagram of Tn is exactly n. On the other hand, the number of Seifert circles in the
Seifert diagram varies depending on the tangle itself. It is easy to see that some Tn may not have any
Seifert circles in its Seifert diagram, but up to how many Seifert circles it may have? A generalization
of the example shown in Figure 3 tells us that this number can be as large as the order of n2/8.

Figure 3. The projection diagram of an elementary tangle with 10 strings and its
Seifert diagram.

Notice that as long as we are only interested in the Seifert diagrams of elementary tangles, the
information about the over/under strands at the crossings in the diagrams is not important since
that does not affect how we smooth the crossings. For this reason we shall omit the over/under
strand information in the illustrative figures concerning the Seifert diagrams as we did in Figure 3.
Furthermore, by applying a proper homeomorphism, we can also assume that the cross section of Tn
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is a round disk so that C, the boundary of the projection diagram of Tn, is a geometric circle. This
shall not affect our statement in Lemma 2.8.

Definition 2.6. Let Pn be the projection diagram of an elementary tangle Tn with β1, ..., βn been
the projections of the strings of Tn. Assume that C has been assigned an orientation. We call the
arc β′j of C that shares end points with βj and is parallel to βj (in terms of their orientations) the

companion of βj and the region bounded by βj and β′j the domain of βj (j = 1, 2, ..., n). See Figure

4. We say that Pn is coherent with respect to the given orientation of C if (1) the center O of C does
not belong to the domain of βj for any j and (2) for any point x ∈ βj , the straight line going through
and O and x intersects βj only once (at x) and does so transversely.

Figure 4. Left: An oriented arc in C with its companion on C (highlighted); Middle:
A projection diagram of an elementary tangle that is not coherent; Right: A coherent
projection diagram equivalent to the middle one.

Remark 2.7. The middle of Figure 4 shows a projection diagram that is not coherent since the union
of the domains of the projected strings is the entire disk. By Remark 2.4, it is rather obvious that
any projection diagram of an elementary tangle Tn admits an equivalent projection diagram that is
coherent: one only needs to isotope each βj (with its end points fixed) to a new curve so that is close
enough to its companion, for example by an arc from a circle with radius much larger than that of C
as shown in the right side of Figure 4.

A coherent projection diagram of Tn has an important property as stated in the following lemma,
which provides a key fact in proving our main result in the next section.

Lemma 2.8. Let Pn be a coherent projection an elementary tangle with n strings, then its Seifert
diagram contains exactly n partial Seifert circles and at most n− 1 Seifert circles.

Proof. Assume that C has the clockwise orientation. Connect the end points of each βj by any
simple arc outside of C results in an oriented simple closed curve (with its orientation induced by
the orientation of βj . Furthermore, if choose this arc to be close to the portion of C that is not the
companion of βj for each j, then we obtain a link diagram Dn with n components in which each
component is a simple closed curve such that as one travels along βj following its orientation, the
center O of C is always on one’s right hand side. It is well known that Dn is in a closed braid form
with n strings hence its Seifert circle decomposition has exactly n Seifert circles. Since at least one of
these Seifert circles will contain some end points of the strings βj , at most n − 1 of them contain no
end points of the βj ’s. Since a Seifert circle of Pn corresponds to a Seifert circle of Dn that contains
no end points of the βj ’s, the statement of the lemma follows. �
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3. Maximum braid index bounds the ropelength from below

Let us first consider links realized on the cubic lattice. Let K be an un-oriented link and Kc a
realization of K on the cubic lattice. The length of Kc is denoted by L(Kc) and the minimum of
L(Kc) over all lattice realization Kc of K is called the minimum step number of K and is denoted
by Lc(K). The discrete nature of the lattice polygons allows one to determine the precise value of
Lc(K) (at least for some small knots and links) through exhaustive search. For example, it has been
shown that Lc(K) = 24 for the trefoil [6], Lc(K) = 30 for the figure 8 knot and Lc(K) = 34 for the 51
knot [14]. For our purpose in this paper, its discrete structure also allows us to apply combinatorics
methods for our analysis.

A line segment on Kc between two neighboring lattice points is called a step. A step that is parallel
to the x-axis is called an x-step. y-steps and z-steps are similarly defined. Let x(Kc), y(Kc) and z(Kc)
be the total number of x-steps, y-steps and z-steps respectively, then x(Kc) +y(Kc) + z(Kc) = L(Kc).
Without loss of generality, let us assume that z(Kc) ≥ max{x(Kc), y(Kc)} hence z(Kc) ≥ (1/3)L(Kc)
and x(Kc) + y(Kc) = L(Kc) − z(Kc) ≤ (2/3)L(Kc). We now consider the projection of Kc to the
xy-plane. Let p1, p2, ..., pm be all the square lattice points in the xy-plane occupied by the projection
of Kc to the xy-plane. For each pj , consider the unit square Pj centered at the lattice point pj as
shown in Figure 5, which is the projection of the square based infinite tube Qj = Pj × (−∞,∞),
together with the projections of the arcs of Kc ∩Qj .

Figure 5. A unit square centered at a lattice point (indicated by the solid dot) oc-
cupied by the projection of Kc. The line segments that are part of the projection of
Kc are marked by thick lines (they are on the square lattice), and the boundary of the
unit square is marked by dashed line segments. Notice that the boundary of the square
are not part of any lattice lines and are not part of the projection of Kc either, except
the 4 mid points on its sides. This is not a exhaustive list: the ones that symmetric to
one of the above are not listed.

Notice that each connected component of Kc∩Qj consists of two half x, y steps and possibly several
connected z steps as shown in Figure 6. It is thus apparent that these components are separated by
planes parallel to the xy-plane.

Figure 6. Several typical examples of connected components in Kc∩Qj where a circle
indicates a lattice point in the cubic lattice and a solid dot indicates points of Kc on
the boundary of Qj .
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Furthermore, since the pre-image of an open x or y step (without its end points) in Pj consists of
parallel (open) x or y steps of Kc (so they have different z coordinates), we can deform these steps
without changing their z-coordinates as shown in Figure 7. This results in a link K ′ that is ambient
isotopic to Kc. Furthermore, each Qj bounds an elementary tangle (denoted by T j) by Definition 2.1
whose strings are the connected components of Qj ∩ K ′ as the end points of the strings project to
different points on the boundary of Pj .

Figure 7. Left: A example of several Pj ’s (with the projections of Kc ∩ Qj) sharing
common boundaries; Right: The projection of corresponding K ′ ∩ Qj (the deformed
Kc) in these Pj ’s. The circles are the square lattice points occupied by the projection
of Kc and the solid dots indicate the projections of the strings of the corresponding
elementary tangles defined by Qj ∩K ′.

Let nj be the number of connected components in Qj ∩Kc, namely the number of strings in the
elementary tangle T j . As noted before, each such component contains exactly two half x, y steps hence
it makes a contribution of length 1 to the total length of the x and y steps in Kc. Thus the connected
components in Qj ∩Kc makes a total contribution of nj to the total length of the x and y steps in Kc.
It follows that

∑
1≤j≤m nj = x(Kc) + y(Kc). Now assign Kc an orientation so that it yields B(K). By

Remark 2.7, we can modify each T j by a boundary preserving ambient isotopy so that the result tangle
has a projection diagram that is coherent. Thus we can modify the entireK ′ by an ambient isotopy such
that the resulting link K ′′ has the property that K ′′∩Qj defines an elementary tangle whose projection
diagram is coherent. By Lemma 2.8, each such projection diagram has nj partial Seifert circles and at
most nj − 1 Seifert circles. Each partial Seifert circle must be connected to at least one other partial
Seifert circle in order to form a complete Seifert circle, thus the total number of Seifert circles in the
projection of K ′′ formed by the partial Seifert circles is at most 1

2

∑
1≤j≤m nj . It follows that the

total number of Seifert circles in the projection diagram of K ′′ (denoted by s(K ′′)) is bounded above
by 1

2

∑
1≤j≤m nj +

∑
1≤j≤m(nj − 1) < 3

2

∑
1≤j≤m nj = 3

2(x(Kc) + y(Kc)) ≤ 3
2(2/3)L(Kc) = L(Kc).

It is well known that for any oriented link diagram D, we have b(D) ≤ s(D) where s(D) is the
number of Seifert circles in D [15]. Since Kc has the orientation that yields b(Kc) = B(K), we have
B(K) = b(Kc) = b(K ′′) ≤ s(K ′′) < L(Kc). Since Kc is arbitrary, replacing it by a step length
minimizer of K yields B(K) < Lc(K). Finally, it has been shown that Lc(K) < 14L(K) [11], thus we
have proven the following theorem:

Theorem 3.1. Let K be an un-oriented link, then B(K) < Lc(K) < 14L(K), that is, L(K) >
(1/14)B(K).

4. Applications

In a recent paper, the author and his colleagues derived explicit formulas for braid indices of many
alternating links including all alternating Montesinos links [9]. Using these formulas one can easily
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identify many families of alternating links with small bridge numbers but with braid indices propor-
tional to their crossings numbers, these provide us new examples of link families whose ropelengths
grow at least linearly as their crossing numbers. The following are just a few such examples.

Example 4.1. Let K be the (2, 2n) torus link, a two component link with 2n crossings. There are
two different choices for the orientations of the two components. One of them yields a braid index of
2 while the other yields a braid index of n + 1. Thus we have B(K) = n + 1 = Cr(K)/2 + 1, hence
Lc(K) > n+ 1 and L(K) > (n+ 1)/14 > Cr(K)/28.

Example 4.2. Let K be a twist knot with n ≥ 4 crossings. We have B(K) = b(K) = k + 1 =
(Cr(K) + 1)/2 if n = 2k + 1 is odd, and B(K) = b(K) = k + 2 = Cr(K)/2 + 1 if n = 2k + 2 is even.
It follows that L(K) > (Cr(K) + 1)/28 for any twist knot K.

2n+12k+1 2m+1

Figure 8. An alternating pretzel knot with three columns containing 2k + 1, 2m+ 1
and 2n + 1 crossings respectively (k, m and n are non-negative integers and the case
of k = m = n = 0 gives the trefoil knot).

Example 4.3. Consider the pretzel knot K a projection of which is given in Figure 8. Cr(K) =
2(k + m + n) + 3 since it is alternating. It can be calculated from the formulas given in [9] that
B(K) = b(K) = 2 + k +m+ n > (1/2)Cr(K). It follows that L(K) > Cr(K)/28 as well.

Notice that in the above examples, the bridge numbers are either 2 or 3. Furthermore, since the link
diagrams given in the above examples are all algebraic link diagrams, it is known that the ropelengths
of these links grow at most linearly as their crossings numbers [8]. Thus the ropelengths of these links
in fact grow linearly as their crossing numbers.

For an oriented linkK with a projection diagramD, consider the HOMFLY-PT polynomialH(D, z, a)
defined using the skein relation aH(D+, z, a)− a−1H(D−, z, a) = zH(D0, z, a) (and the initial condi-
tion H(D, z, a) = 1 if D is the trivial knot). Let E(D) and e(D) be the highest and lowest powers of
a in H(D, z, a) and define b0(K) = (E(D)− e(D))/2 + 1. It is a well known result that b0(K) ≤ b(K)
where b(K) is the braid index of K [13]. In the case that K is un-oriented, similarly to the definition of
B(K), we define B0(K) = max{b0(K′) : K′ ∈ O(K)} where O(K) is the set of oriented links obtained
by assigning all possible orientations to the components of K. Apparently we have B0(K) ≤ B(K)
hence we have the following theorem, which is handy when we do not have a precise formula for the
braid index of the link.

Theorem 4.4. Let K be an un-oriented link, then B0(K) < Lc(K) < 14L(K) and L(K) > (1/14)B0(K).

It has been conjectured that the ropelength of an alternating link K is bounded below by a constant
multiple of its crossing number. Our result shows that this conjecture holds for many alternating links.
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A remaining challenge is about the alternating links whose absolute braid index is small, for example
the (2, 2n + 1) torus knot whose braid index is 2. While its minimum projection looks so much like
the minimum projection of the (2, 2n) torus link and it is quite plausible that its ropelength should
behave linearly as its crossing number, we do not have a way to prove it! We end this paper with this
problem as a challenge to our reader.
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