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Abstract. In this paper, the authors study the mathematical properties of a
class of alternating links called polyhedral links which have been used to model
DNA polyhedra. The motivation of such studies is to provide guidance and aid in
the research of the properties of certain DNA molecules. For example, such studies
can provide characterizations of the structural complexity of DNA molecules.
In an earlier work, Cheng and Jin studied the mathematical properties of such
polyhedral links and were able to determine the braid index of a double crossover
polyhedral link with 4 turn. However, the braid index of a double crossover
polyhedral link with 4.5 turn remained an unsolved problem to this date, even
though the graphs that admit the double crossover polyhedral links with 4.5
turn have been synthesized. In this paper, we provide a complete formulation
of the braid index of a double crossover polyhedral link with an arbitrary turn
number. Our approach is more general and it allows us to completely determine
the braid indices for a much larger class of links. In the case of the double crossover
polyhedral links, our formulation of the braid index is a simple formula based on
a simpler graph used as a template to build the double crossover polyhedral links.

1. Introduction

The synthesis of topologically interesting structures like braids in the range of
nanometer to micrometer is becoming popular. For example, braiding of nanofibers in
supramolecular gels [1], Molecular braids in metal-organic frameworks [2], and knotted
hydrocarbon complexes [3]. The topological properties of these chemical and biological
braid structures are of great interests in research. Braid index, a fundamental
topological invariant that is sometimes used to describe the complexity of a molecule,
is another potential tool that can be used to study the complexity properties of certain
DNA molecules, some of which have been synthesized in laboratories by chemists and
biologists in recent years. For example, through four arm immobile DNA crossover
junctions, the following DNA polyhedral links with polyhedral shapes have been
synthesized in laboratories: DNA cube [4], DNA tetrahedron [5], DNA octahedron
[6], DNA truncated octahedron [7], DNA bipyramid [8], DNA dodecahedron [9], and
DNA dodecahedron and buckyballs [10].

A common strategy used to build/assemble more complicated DNA polyhedra is
to use simpler structures such as a double crossover as building blocks [10, 11, 12,
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13, 14, 15, 16, 17, 18, 19, 20]. For example, Zhang et al. [18] synthesized 4.5 turn
cubes in a laboratory by “n-point star motif (tiles)”. (Figure 1 shows a few regular
DNA polyhedra built using 3-point or 4-point star motifs.) In the case of the 4 or
4.5 turn cubes (shown in Figures 2 and 3), each of the eight vertices of the cube is
replaced by a three-point-star tile and each face (a square) of the cube consists of four
three-point-star tiles. Such conditions cannot be met by adjusting the concentration
and/or flexibility of the DNA tiles.

Figure 1: [21] Top: DNA polyhedra built with 3-point star motifs (tetrahedron, cube,
dodecahedron and buckyball); Bottom: DNA polyhedra built with 4-point and 5-point
star motifs (octahedron and icosahedron.

4 turn

Figure 2: A 4 turn cube with negative writhe.

In [21, 22], Cheng et al. studied the braid index problem for several polyhedral
links that were proposed by mathematicians as potential candidates as DNA polyhedra
to be synthesized. For the few relatively simple ones with single crossover they
were able to determine the braid indices of these links completely. They were also
successful in determining the braid indices of a more complicated one, namely the
double crossover polyhedral links with 4 turn [21]. However the braid indices of
polyhedral links with 4.5 turn double crossover remain unsolved until now. This is
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Figure 3: A 4.5 turn cube with negative writhe.

the motivation of this paper. Here, we present a solution to this problem as the
consequence of a much more general result, that is, we present a solution that would
allow us to determine the braid index of a double crossover polyhedral link with an
arbitrary turn number.

It is well known that ([23]) every oriented link can be represented as a closed
n-string braid in which all strings in the braid are assigned parallel orientation. The
braid index b(L) of a link L is the least number n of strings needed to present L a
closed braid. Yamada [24] proved that the braid index of a link L is bounded above
by the number of Seifert circles in any given regular diagram of L. Consequently,
b(L) equals the minimum number of Seifert circles among all link diagrams of L.
However, the braid indices for most links remain unknown due to the lack of a universal
method/algorithm that can guarantee the successful determination of the braid index
of any link. Thus it makes sense for one to seek general lower and upper estimates of
b(L). One such result is due to Franks and Williams [25], and Morton [26]. Specifically,
let PL(a, z) be the HOMFLY polynomial of a link L and γ(L), α(L) be the maximal
and minimum powers of a in PL(a, z) respectively, then

1

2
spanaPL(a, z) + 1 ≤ b(L), (1)

where spanaPL(a, z) = γ(L)− α(L). Inequality (1) is known as the MFW inequality.
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Of course, in the case that the equality in the MFW inequality holds (which we
shall call it the MFW equality), one obtains the braid index of the link in question.
Much effort was devoted to the identification of links that satisfy the MFW equality.
For example, it was shown that the MFW equality holds for torus links and closed
positive braids with at least one full twist [27]. In fact Franks and Williams first
conjectured that the MFW equality holds for any closed positive braid. This conjecture
was found to be false: a counter example was later given by Morton and Short using
a 2-cable of the trefoil [26]. More work regarding closed positive braids can be found
in [28], where Nakamura identified families of (infinitely many) positive closed braids
for which the MFW equality either holds or fails. In [29], Elrifai classified all 3-braids
for which the MFW equality holds. Murasugi [30] proved that the MFW equality
holds for all rational links and alternating links that are fibered. However the MFW
equality does not hold in general for all alternating links due to counter examples
discovered by Murasugi and Przytycki [31]. Recently, Diao and colleagues [32, 33] used
a diagrammatic approach to establish the MFW equality for a large class of alternating
links that includes all alternating pretzel links and Montesinos links, leading to the
complete determination of the braid index of any such link. It is important to note
that none of these known results provides answers to the polyhedra links discussed in
this paper.

The main result of this paper is the determination of the braid index for any link in
a large class of positive (or negative) alternating links. This link class include all double
crossover polyhedral links with any given turn number. More specifically, we prove
that the MFW equality holds for any link from this class. An immediate consequence
of this main result is the solution to the open braid index problem for double crossover
polyhedral links with 4.5 turn. In addition to providing the determination of an
important measure for characterizing and analyzing the structure and complexity of
DNA polyhedra modeled by the double crossover polyhedral links (with any given
turn number), our research can also be used as tools in the study of topological
entanglement of more general biopolymers encountered in DNA nanotechnology.

2. Basic background knowledge, concepts and terminology

In this section we provide some necessary background knowledge, concepts and
terminology in knot theory and graph theory.

2.1. Knot theory

Figure 4: A nugatory crossing.

A link consists of several simple closed curves
embedded in the 3-space R3 where each of
these closed curves is called a component of the
link. A link with one component is also called
a knot. A link is said to be oriented if each
of its components is assigned an orientation.
A regular diagram, or just a diagram, of a
link is the projection of the link (as a set of
disjoint, closed simple space curves) onto a
plane in which strands can cross each other
only transversely and at most two strands are allowed to cross at the same point.
A point at which two strands cross each other is called a crossing point (or just
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a crossing for short). In such a projection, the under-strand and upper-strand at
each crossing are specified so that the original link can be re-constructed from the
(projection) diagram. The crossing number of a link L, denoted by c(L), is defined
as the least number of crossings in any regular diagram of the link. A diagram with
the least number of crossings for a given link is called a minimal diagram of the link.
A crossing in a link diagram is said to be nugatory if the crossing is as shown in
Figure 4, which can be removed by a simple twist on a part of the diagram. A link
diagram is said to be alternating if one encounters the crossings alternately between
over strand and under strand when traveling along any component of the link following
any orientation. A link is said to be alternating if it has a regular projection that is
alternating. It is a well known result (as a consequence of the Jones polynomial) that
an alternating link diagram without nugatory crossings is a minimal link diagram.

Figure 5: A braid and its closure.

An n-string braid β is an n-
string tangle diagram with fixed
end-points as shown in Figure 5.
The closure of braid β as shown in
Figure 5 is called a closed braid,
and denoted by β̂. It is known
that every oriented link can be
represented as a closed braid with
the strings in the braid assigned
parallel orientation [23]. The
braid index of an oriented link L,
denoted by b(L), is defined as the
least number of strings needed to
present L as a closed braid. It is
obvious that b(L) = b(L∗) if L∗

is the mirror image of L.

Figure 6: The sign convention at a crossing.

The HOMFLY polynomial is
an invariant of oriented links, in-
troduced in [34] and [35] inde-
pendently. Let L be an oriented
link and D be a regular projec-
tion of L. Let D+, D−, and D0

be oriented link diagrams that co-
incide with each other except at a
small neighborhood of a crossing
as shown in Figure 6. The HOMFLY polynomial of an oriented link L, denoted by
PL(a, z), is a two variable Laurent polynomial with integer coefficients satisfying the
following conditions:

PD1(a, z) = PD2(a, z) = PL(a, z) (2)

if D1 and D2 are both regular projections of the same link L;

aPD+(a, z)− a−1PD−(a, z) = zPD0(a, z) (3)

and PD(a, z) = 1 if D is a regular projection of the unknot.

Equation (3) in the above is called the skein relation of the HOMFLY polynomial,
which can be rewritten as the following two equivalent forms:

PD+(a, z) = a−2PD−(a, z) + a−1zPD0(a, z), (4)
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PD−(a, z) = a2PD+
(a, z)− azPD0

(a, z). (5)

It is well known that PD(a, z) = PD∗(−a−1, z), where D∗ is the mirror image of
D. This implies that

spanaPL(a, z) = spanaPL∗(a, z).

2.2. Notations and terminologies in graph theory

We assume that our reader will have some knowledge in graph theory hence this
subsection will only provide a list of notations and terminologies used in this paper
for the purpose of easy referencing. The required knowledge is basic and elementary,
and can be found in any graph theory textbook. Let G be a graph. The following is
a list of notations concerning G:

• V (G) and E(G): the vertex set and edge set of G respectively;
• |V (G)| and |E(G)|: the number of vertices and the number of edges in G respectively;
• κ(G): the number of connected components of G;
• G− e: the graph obtained from G by deleting the edge e;
• G/e: the graph obtained from G by contracting the edge e (namely deleting e first
and then identifying its two end vertices);
• a bridge edge e: an edge e satisfying the condition κ(G− e) > κ(G);
• a loop edge e: an edge e with its two end-vertices being the same;
• degree of a vertex v (d(v)): the number of edges connected to v;
• a k-regular graph: a graph in which every vertex has degree k;
• a bipartite graph: a graph whose vertices can be partitioned into two non-empty sets
such that no edge of G is between vertices belonging to the same set;
• a simple graph: a graph in which any pair of vertices can be connected by at most
one edge;
• a path in a graph: an (ordered) sequence of distinct vertices such that two adjacent
vertices is connected by an edge but no other pairs of edges are connected by any
edges;
• a cycle in a graph: a path in the graph with an additional edge added that connects
the first and the last vertices in the path;
• a planar graph: a graph that can be embedded in a plane such that edges will not
cross each other;
• a plane graph: a specific embedding of a planar graph in a plane.

It is well known that a graph is bipartite if and only if every cycle contained in
the graph (as a subgraph) has even length.

2.3. The Seifert graph of an oriented link diagram

Given a diagram D of an oriented link L, if we “smooth” every crossing in D (as in
the case of D0 in Figure 6), then we obtain a collection of disjoint topological circles
called Seifert circles. One can construct a graph GD in which each vertex corresponds
to a Seifert circle of D, and two vertices in GD are connected by k edges if there are
k crossings between the two Seifert circles corresponding to these vertices. Figure 7
shows an oriented link diagram, its Seifert circle decomposition and its corresponding
Seifert graph. It is easy to prove that the Seifert graph of any link diagram is bipartite
(hence loopless) and planar. On the other hand, given any plane bipartite graph G,
one can construct an alternating link diagram D such that its Seifert graph GD is G.
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Figure 7: The Figure-eight knot, its Seifert circle decomposition and the
corresponding Seifert graph.

3. The main results concerning double crossover polyhedral links

We know that DNA is a double helix formed by base pairs attached to a sugar-
phosphate backbone. The orientations of the two strands in the double helix are
antiparallel. A nanostructure used by DNA can have many link component pairs with
antiparallel orientations. A double crossover polyhedral link L is an alternating link
that is constructed from its Seifert graph by the following procedure. We first start
from a simple plane graph G that is loopless, called the template graph. We then
construct the Seifert graph of the link L from G by replacing its vertices and edges
with some particular kind of cycles. More specifically, we define the following types
of cycles. A Type (1A) cycle is a cycle of even length with two of its vertices marked
(we call these vertices attaching vertices), and the two paths between them both have
odd length. A Type (1B) cycle is a cycle of even length with two attaching vertices,
and the two paths between the attaching cycles both have even length. Finally, a
Type (2) cycle of degree j ≥ 2 has j attaching vertices, and the path between any two
adjacent attaching vertices contains an even number of edges. We note that the cycles
and the paths between adjacent attaching vertices of these cycles can have different
lengths. We can now construct two types of double crossover polyhedral links L(G)
by constructing their Seifert graphs G∗ first from a template graph G as shown in
Figure 8, followed by detailed descriptions.

Type A double crossover polyhedral link. Let G be a simple bipartite plane
graph and we construct the Seifert graph G∗ of L as follows: each edge of G is replaced
with a Type (1A) cycle, and each vertex of degree j ≥ 2 in G is replaced by a Type
(2) cycle with j attaching vertices, and then identifying the corresponding attaching
vertex pairs in a natural way.

Type B double crossover polyhedral link. Ditto the construction of G∗ for a
Type A double crossover polyhedral link above, however in this case Type (1B) cycles
are used in the place of Type (1A) cycles and G does not have to be bipartite.

Notice that it is a necessary condition for G to be bipartite in the case of a Type
A double crossover polyhedral link (since G∗ is bipartite). An alternating link L(G)
so constructed is apparently minimum as it has no nugatory crossings. A double
crossover cube link with 4.5 turn is a Type A double crossover polyhedral link, while
a double crossover cube link with 4 turn is a Type B double crossover polyhedral link.
The top of Figure 8 shows how the Seifert graph of a double crossover cube link with
4.5 turn is constructed from a 3-regular template graph G using Type (1A) cycles of
length 10 and Type (2) cycles of length 12. The Seifert circle decomposition of the
corresponding link, which is the link shown in Figure 3, is shown in Figure 9. The
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s

Figure 8: The attaching vertices are marked by large dots. Top: howG∗ is constructed
from the graph G by using 12 Type (1A) circles with length 10 and 8 Type (2) circles
with length 12 and 3 attaching vertices. Bottom: how G∗ is constructed by using
Type (1B) cycles of length 8 and Type (2) cycles either with length 6 and 3 attaching
vertices, or with Type (2) cycles with length 4 and 2 attaching vertices.

bottom of Figure 8 shows how the Seifert graph of a double crossover cube link with
4 turn is constructed from a template graph G that is not bipartite nor regular using
Type (1B) cycles of length 8 and Type (2) cycles either with length 6 and 3 attaching
vertices, or with Type (2) cycles with length 4 and 2 attaching vertices.

Figure 9: The Seifert circle decomposition of the link shown in Figure 3 whose Seifert
graph corresponds to G∗ in the top of Figure 8.

A main motivation of this paper is to solve the braid index problem for a double
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crossover polyhedral link L(G) with 4.5 turn, we have succeeded in achieving this goal.
In fact, we have obtained more general results concerning the braid index of a double
crossover polyhedral link of any given turn number. In particular, for some special
classes of G, we can express b(L(G)) in terms of a simple formula using the numbers
of vertices and edges in G. We state one such result below.

Theorem 1 Let G be a simple, k-regular (k ≥ 3) plane graph. If G is bipartite
and L(G) is a Type A double crossover polyhedral link with G as its template graph
and by replacing its edges by Type (1A) cycles of length 2m1 with m1 ≥ 2, and
replacing its vertices by Type (2) cycles of length 2km2 with m2 ≥ 1, then b(L(G)) =
(km2+1)n(G)+(m1−1)e(G). On the other hand, if L(G) is a Type B double crossover
polyhedral link with G as its template graph and by replacing its edges by Type (1B)
cycles of length 2m1 with m1 ≥ 2, and replacing its vertices by Type (2) cycles of
length 2km2 with m2 ≥ 1, then b(L(G)) = (km2 + 1)n(G) + (m1− 1)e(G) + f(G)− 1,
where f(G) is the number of faces of G.

We shall delay the proof of Theorem 1 to Section 4. In the following we state a few
results that are immediate consequences of Theorem 1. These include the previously
open case of double crossover polyhedral links with 4.5 turn.

Corollary 1 Let G be a simple, 3-regular plane graph that is bipartite. Let L(G) be
a double crossover polyhedral links with 4.5 turn, then b(L(G)) = 7n(G) + 4e(G) =
(26/3)e(G). On the other hand, if L(G) be a double crossover polyhedral links with 4
turn, then b(L(G)) = 6n(G) + 4e(G) + 1 = 8e(G) + 1.

Notice that in the case of 4.5 turn, c(L(G)) = e(G∗) = 12n(G)+10e(G) = 18e(G)
hence b(L(G)) = (13/27)c(L(G)). In the case of 4 turn, c(L(G)) = 12n(G) + 8e(G) =
16e(G) hence b(L(G)) = (1/2)c(L(G)) + 1.

Proof. In the case of 4.5 turn, the Type (1A) cycles are used and have length 10. The
Type (2) cycles have length 12. Thus m1 = 5 and m2 = 2, it follows that b(L(G)) =
(km2 + 1)n(G) + (m1 − 1)e(G) = (3 × 2 + 1)n(G) + (5 − 1)e(G) = 7n(G) + 4e(G).
In the case of 4 turn, Type (1B) cycles are used and have length 8. Thus m1 = 4
and m2 = 2, it follows that b(L(G)) = (km2 + 1)n(G) + (m1 − 1)e(G) + f(G)− 1 =
(3×2+1)n(G)+(4−1)e(G)+f(G)−1 = 7n(G)+3e(G)+f(G)−1 = 6n(G)+4e(G)+1
by using the Euler’s formula n(G) + f(G) = e(G) + 2.

For example, for the double crossover cube links L(G) with 4.5 turn given in
Figure 3, we have n(G) = 8, e(G) = 12, thus b(L(G)) = 7×8+4×12 = 56+48 = 104.
On the other hand, if L(G) is with 4 turn given in Figure 2, then we obtain
b(L(G)) = 6×8+4×12+1 = 48+48+1 = 97, which is the same as (1/2)c(L(G))+1
since c(L(G)) = 192.

Similarly we have the following corollary. It is fairly easy for one to generalize it
to a k-regular graph.

Corollary 2 Let G be a simple, 4-regular plane bipartite graph. Let L(G) be a
double crossover polyhedral links with 4.5 turn, then b(L(G)) = 9n(G) + 4e(G).
On the other hand, if L(G) is a double crossover polyhedral links with 4 turn, then
b(L(G)) = 9n(G) + 3e(G) + f(G)− 1 = 8n(G) + 4e(G) + 1.
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4. Pseudo double crossover polyhedral links

Let L(G) be a Type A or Type B double crossover polyhedral link constructed from
the template graph G. Let us start this section by first introducing an operation called
a reduction move. The total sum of all reduction move is called by reduction number.
The top of Figure 10 illustrates how a strand can be re-routed to obtain a new diagram
with one less Seifert circle. The middle of Figure 10 shows the effect of a reduction
move on the corresponding Seifert graph when the middle vertex is not an attaching
vertex. Notice that the reduction move affects three vertices on the Seifert graph of
the link and the middle vertex cannot be an attaching vertex. The total number of
such reduction moves we can take on G∗ is called the reduction number of L(G) and
denoted by r(L(G)). In the following we would like to determine r(L(G)).

Figure 10: The re-routing of the top strand at a single crossing reduces the number
of Seifert circles by one.

In the case that L(G) is a Type A double crossover polyhedral link, the reduction
operation can be repeated j times on a path of length 2j+1 connecting two attaching
vertices. The top of Figure 11 shows an example of how a path of length 5 connecting
two (distinct) attaching vertices is reduced to a single edge connecting the two
attaching vertices, with two vertices attached (by multiple edges) to one of the
attaching vertices. Thus in the case of a Type (1A) cycle Cj with 2j1 + 1 and 2j2 + 1
edges on the two paths connecting the two attaching vertices, we can perform exactly
j1+j2 = `(Cj)/2−1 reduction moves (where `(Cj) = 2j1+2j2+2 is the length of Cj),
and in the Seifert graph of the resulting diagram, the two affected attaching vertices
are connected by two edges hence no more reduction moves can be made on Cj . So

the reduction number of Cj is r(Cj) = j1 + j2 =
`(Cj)

2 − 1, which is the contribution
of Cj to r(L(G)).

On the other hand, in the case of a path of even length 2j ≥ 2 connecting two
distinct attaching vertices, j reduction moves can be applied and the result is a “petal
graph” with the leaf vertices attached to the attaching vertex as shown in the middle
of Figure 11. Finally, in the case of a cycle of length 2j ≥ 2 with only one attaching
vertex, j−1 reduction moves can be applied and the result is also a “petal graph” with
the leaf vertices attached to the attaching vertex as shown in the bottom of Figure
11. Thus for a Type (2) cycle Cj with 2j1, 2j2, ..., 2jkj

edges on the paths connecting

the adjacent attaching vertices, we can apply r(Cj) = −1 +
∑

1≤i≤kj
ji =

`(Cj)
2 − 1

reduction moves and the resulting Seifert graph is a petal graph.
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It follows that if L(G) is a Type A double crossover polyhedral link with C1, C2, ...,
Ck being the Type (1A) and Type (2) cycles used in its construction (k = n(G)+e(G)),
then

r(L(G)) = −k +
∑

1≤j≤k

`(Cj)

2
(6)

with `(C1), `(C2), ..., `(Ck) being the lengths of C1, C2, ..., Ck.

In the case that L(G) is a Type B double crossover polyhedral link with C ′1, C ′2,
..., C ′k′ (k′ = e(G)) being the Type (1B) cycles and C ′′1 , C ′′2 , ..., C ′′k′′ (k′′ = n(G)) being
the Type (2) cycles used in its construction, then each C ′′j still contributes `(C ′′j )/2−1
to r(L(G)) as before. If we choose any spanning tree T of G, then for each Type (1B)
cycle C ′j used to replace an edge on T , we can perform `(C ′j)/2− 1 reduction moves.
At the end all attaching vertices in G∗ are combined into a single attaching vertex.
For any Type (1B) cycle C ′j that is used to replace an edge of G that is not on T , the
two paths connecting its two attaching vertices now have both become cycles with one
attaching vertex, hence we can only perform a total of `(C ′j)/2 − 2 reduction moves.
Since G has f(G)− 1 edges not on T , the total contribution of the Type (1B) cycles
to r(L(G)) is −f(G) + 1 +

∑
1≤j≤k′ r(C

′
j) (keep in mind that r(C ′j) = `(C ′j)/2 − 1).

Notice that at the end we obtain a petal graph with its leaf vertices attached to a
single attaching vertex by multiple edges. Thus if we rename the Type (1B) and Type
(2) cycles as C1, C2, ..., Ck (k = k′ + k′′ = e(G) + n(G)), then

r(L(G)) = −f(G) + 1 +
∑

1≤j≤k

(
`(Cj)

2
− 1), (7)

where f(G) is the number of faces in G.

The above discussion then leads to the following lemma.

Lemma 1 Let L(G) and r(L(G)) be as defined in (6) or (7), then L(G) admits
a different link diagram L′ such that s(L′) = s(L(G)) − r(L(G)), or equivalently,
n(G′) = n(G)− r(L(G)), where G′ is the Seifert graph of L′.

Now let us consider a sequence of three consecutive Seifert circles connected by
single crossings as shown in Figure 12 as part of an alternating link diagram. If one

Figure 11: How the repeated reduction move changes a path of odd length (top) and
even length (middle), and a cycle (bottom).
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crossing is “flipped”, then a Reidemeister move II can be applied afterward to reduce
the number of crossings by 2. This reduces the number of Seifert circles by 2 and
the resulting link diagram is still alternating, whose corresponding Seifert graph is
obtained from the previous one by contracting the two edges as shown in Figure 12.
Let us call the above operation on the link diagram this a special contraction if the
middle vertex is not an attaching vertex.

Figure 12: Flipping a crossing followed by a Reidemeister move II reduces the
number of Seifert circles by two, and corresponding to a special contraction on the
corresponding Seifert graph.

By comparing the special contraction with the reduction move (defined in the
proof of Lemma 1), we have the following two cases.

Figure 13: The end product of the Seifert
graph of the L(G) in Figure 3, after all
possible special reductions are performed.

(a) If L(G) is a Type A double crossover
polyhedral link, then we can perform
exactly r(L(G)) special contractions, and
the resulting link diagram contains no
lone crossings (a lone crossing is the only
crossing between two Seifert circles). The
resulting Seifert graph G0 is the graph
obtained from G by doubling each edge of
G into two parallel edges, and attaching a
vertex to each vertex of G by two edges.
An example is shown in Figure 13 for the
link L(G) shown in Figure 3.

(b) If L(G) is a Type B double
crossover polyhedral link, we can also per-
form r(L(G)) special contractions where
r(L(G)) is defined in (7). The Seifert
graph of the resulting link diagram is a
petal graph with its leaf vertices attached to a single attaching vertex by multiple
edges. Figure 14 shows an example of a template graph G, a link diagram constructed
from it using Type (1B) and Type (2) cycles, and how its Seifert graph is changed to
a petal graph by performing r(L(G)) special contractions.

Let q = r(L(G)), D(q) = L(G), D(q−1) be the (alternating) link diagram obtained
from D(q) by performing one special contraction, D(q−2) be the link diagram obtained
from D(q−1) by performing one special contraction, and so on, and finally D(0) be the
link diagram obtained from D(1) by performing the last available special contraction.
We shall call the link diagrams Dj (0 ≤ j ≤ q) pseudo double crossover polyhedral
links. It is clear that the reduction number of D(p) (0 ≤ p ≤ q) is p. Furthermore,
L(G) and any D(p) are the special alternating link diagram as defined in [31]. As such,
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all crossings in L(G) and D(p) have the same sign. Since passing to the mirror image
of a link does not change the braid index, we can assume all crossings in L(G) are
positive in the rest of this section. Thus the main theorem (Theorem 1) holds as well
when the crossings in L(G) are negative. The following lemma is well known, we state
it here as it is needed for the proof of our main theorem in this section.

Lemma 2 [32, 33] Let L be any link diagram with only positive crossings, then
γ(L) = s(L)− w(L)− 1, where w(L) is the writhe of L.

Recall that the writhe w(L) of L is simply the sum of the signs (±1) of all
crossings in L. Since L has only positive crossings, we have w(L) = c(L) where c(L)
is the number of crossings in L.

Lemma 3 Let L be any link diagram with only positive crossings and let r(L) be the
maximum number of Seifert circles that can be reduced by the reduction operations
as described in Figures 10, then α(L) ≥ −s(L) − w(L) + 1 + 2r(L). Furthermore, if
α(L) = −s(L)− w(L) + 1 + 2r(L), then b(L) = s(L)− r(L).

Proof. By Yamada [24] and Lemma 1, we have b(L) ≤ s(L)− r(L). Combine this
with Lemma 2 and the MFW inequality, we have

γ(L)− α(L) + 2 ≤ 2b(L) ≤ 2s(L)− 2r(L).

It follows that

α(L) ≥ γ(L) + 2− 2s(L) + 2r(L)

= s(L)− w(L)− 1 + 2− 2s(L) + 2r(L)

= − s(L)− w(L) + 1 + 2r(L).

If α(L) = −s(L)−w(L)+1+2r(L), then the MFW inequality becomes b(L) ≥ s(L)−
r(L), the last statement of the lemma follows since we also have b(L) ≤ s(L)− r(L).

Finally, before we state and prove our main result of this section (namely Theorem
2), we state the following lemma. It is a known result. A proof of this for general link
diagrams can be found in [32], while a proof for the case of special alternating link
diagrams can be found in [31].

Lemma 4 [32, 33] If L is an alternating link diagram such that its Seifert graph
does not contain any single edge, that is, two vertices in its Seifert graph either
are not connected by any edge, or are connected by more than one edge, then
γ(L) = s(L)− w(L)− 1 and α(L) = −s(L)− w(L) + 1. In particular, b(L) = s(L).

Figure 14: The process of reducing the Seifert graph G∗ of a Type B double crossover
polyhedral link L(G) to a petal graph using special contractions.
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Theorem 2 Let D be a pseudo double crossover polyhedral link, then b(D) = s(D)−
r(D), where r(D) is defined by either (6) or (7), depending on the type of the double
crossover polyhedral link.

Proof. Let q = r(L(G)), D(q) = L(G), D(q−1), D(q−2), ..., D(1), D(0) be
the pseudo double crossover polyhedral links obtained from L(G). Recall that the
reduction number of D(p) (0 ≤ p ≤ q) is p. It suffices to prove that α(D(p)) =
−s(D(p))−w(D(p)) + 1 + 2p for any p, 0 ≤ p ≤ q. We will prove this by induction on
p.

If p = 0, D(0) is a positive alternating link diagram without any lone crossings,
and the statement follows from Lemma 4.

Assume that the induction hypothesis holds for some p0 ≥ 0, that is, α(D(p)) =
−s(D(p))−w(D(p))+1+2p holds for any p such that 0 ≤ p ≤ p0, to prove the theorem,
it suffices for us to show that α(D(p0+1)) = −s(D(p0+1))−w(D(p0+1)) + 1 + 2(p0 + 1).

Choose a crossing corresponding to an edge in the special contraction taking
D = D(p0+1) to D(p0) and apply the skein relation equation (4) to it. Notice that
D = D+ = D(p0+1) and D− simplifies (via a Reidemeister II move) to D(p0) with
s(D̃−) = s(D) − 2 and w(D̃−) = w(D) − 2. As an easy exercise, we leave it to our
reader to verify that r(D0) ≥ p0 + 2, s(D0) = s(D) and w(D0) = w(D) − 1. By the
induction hypothesis we have:

−2 + α(D−) = − 2 +
(
− s(D̃−)− w(D̃−) + 1 + 2r(D̃−)

)
= − 2− (s(D)− 2)− (w(D)− 2) + 1 + 2p0

= − s(D)− w(D) + 1 + 2(p0 + 1).

On the other hand, by Lemma 3 we have:

−1 + α(D0) ≥ − 1 +
(
− s(D0)− w(D0) + 1 + 2r(D0)

)
≥ − 1− s(D)− (w(D)− 1) + 1 + 2(p0 + 2)

= − s(D)− w(D) + 3 + 2(p0 + 1)

> − s(D)− w(D) + 1 + 2(p0 + 1).

It follows that a−2PD−(a, z) is the only term on the right side of (4) making the
lowest power α(D) = −s(D) − w(D) + 1 + 2(p0 + 1) contribution to PD(a, z), hence
α(D) = −s(D)−w(D)+1+2(p0+1), that is, α(D(p0+1)) = −s(D(p0+1))−w(D(p0+1))+
1 + 2(p0 + 1).

Theorem 2 provides us a powerful tool. On the one hand, it enables us to compute
the braid index of any pseudo polyhedral link easily since the reduction number of
such a link is easy to find. On the other hand, the class of all pseudo polyhedral links is
a large one: it contains all double crossover polyhedral links with given turn number.
In particular, for specific double crossover polyhedral links constructed using either
special template graphs such as regular graphs, or double crossover polyhedral links
with specific turn numbers, their braid indices can be formulated using information
only depending on the template graphs. The proof of Theorem 1 is a simple application
of it, which we give below.

Proof of Theorem 1. In the case that Type (1A) cycles are used, we have s(L(G)) =
(2m1)e(G) + 2km2n(G) − 2e(G) = 2(m1 − 1)e(G) + 2km2n(G). By Lemma 1,
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r(L(G)) = (m1 − 1)e(G) + (km2 − 1)n(G). It follows that

b(L(G)) = s(L(G))− r(L(G))

= 2(m1 − 1)e(G) + 2km2n(G)

− (m1 − 1)e(G)− (km2 − 1)n(G)

= (km2 + 1)n(G) +m1e(G).

On the other hand, if Type (1B) cycles are used, then by the definition (7) of r(L(G)),
r(L(G)) = (m1 − 1)e(G) + (km2 − 1)n(G)− f(G). Again by Lemma 1 and Theorem
2, we have

b(L(G)) = s(L(G))− r(L(G))

= (km2 + 1)n(G) +m1e(G) + f(G),

as desired.

5. Further discussions and ending remarks

In this paper, we are able to solve the braid index problem for a large class of links
that include all double crossover polyhedral links, an application of this result leads to
the solution of a braid index problem unreachable by previous approaches such as the
method used in [21]. As we had already mentioned, Theorem 1 is valid for any double
crossover polyhedral link with any given number turn. That is, the braid index of a
double crossover polyhedral link with any given number turn has now been completely
determined. We would like to compare the results obtained here with some previous
results.

In [21], Cheng and Jin studied a class of double crossover polyhedral links with 4
turn based on connected, bridgeless and loopless plane template graph G (the DNA
polyhedra corresponding to these links have been synthesized [10, 16, 17, 18, 19, 20]).
A main result in [21] is the following theorem which relates the braid index of L(G)
to its minimum crossing number c(L(G)) by a simple formula.

Theorem 3 [21] Let G be a connected, bridgeless and loopless plane graph and L(G)
a double crossover polyhedral links with 4 turn using G as its template graph, then
b(L(G)) = c(L(G))/2 + 1.

A special case of this result has already been established in Corollary 1. We will
provide a proof of this more general result using Theorem 2.

Proof. Let v1, v2, ..., vn be the vertices of G with degrees d1, d2, ..., dn respectively
(where n = n(G)). Keep in mind for a double crossover polyhedral links with 4 turn,
Type (1B) cycles of length 8 are used to replace edges of G, and the path between any
two adjacent attaching vertices of a Type (2) cycle is of length 4. Thus each edge of G
contributes 8 crossings to c(L(G)) and a vertex of degree dj contribute 4dj crossings
to c(L(G)). So we have

c(L(G)) = (4d1 + 4d2 + · · ·+ 4dn) + 8e(G) = 16e(G),

where e(G) is the number of edges in G. Similarly, we have

s(L(G)) = (4d1 + 4d2 + · · ·+ 4dn) + 6e(G) = 14e(G).
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On the other hand, each edge of G corresponds to a Type (1B) cycle of length 8,
hence it makes a contribution of 3 to the reduction number of L(G), while a vertex of
degree dj corresponds to a Type (2) cycle of length 4dj , hence making a contribution
of 2dj − 1 to the reduction number of L(G). Thus (by the definition of r(L(G)), since
Type (1B) cycles are used):

r(L(G)) = 3e(G) +
∑

1≤j≤n

(2dj − 1)− f(G) + 1

= 7e(G)− n(G)− f(G) + 1.

It follows that

b(L(G)) = s(L(G))− r(L(G))

= 14e(G)− 7e(G) + n(G) + f(G)− 1

= 7e(G) + n(G) + f(G)− 1.

By Euler’s formula, n(G)− e(G) + f(G) = 2, hence n(G) + f(G) = e(G) + 2 and we
arrive at

b(L(G)) = 7e(G) + n(G) + f(G)− 1

= 7e(G) + e(G) + 1

= 8e(G) + 1

=
c(L(G))

2
+ 1.

In the case that Type (1A) cycles are used,

c(L(G)) = (4d1 + 4d2 + · · ·+ 4dn) + 10e(G) = 18e(G),

s(L(G)) = (4d1 + 4d2 + · · ·+ 4dn) + 8e(G) = 16e(G)

and

r(L(G)) = 4e(G) +
∑

1≤j≤n

(2dj − 1)

= 8e(G)− n(G).

A proof similar to the above leads to

b(L(G)) = s(L(G))− r(L(G))

= 16e(G)− 8e(G) + n(G)

= 8e(G) + n(G)

= 9e(G)− f(G) + 2

=
c(L(G))

2
− f(G) + 2.

Thus we obtain the following new result.

Theorem 4 Let G be a connected, bipartite plane graph and L(G) a double crossover
polyhedral links with 4.5 turn using G as its template graph, then b(L(G)) =
c(L(G))/2− f(G) + 2.

If we apply this theorem to the link L(G) given in Figure 3, then c(L(G)) =
18e(G) = 18 × 12 = 216, f(G) = 6 hence b(L(G)) = c(L(G))/2 − f(G) + 2 =
108− 6 + 2 = 104, as we have obtained earlier after Corollary 1.
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