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Abstract

We derive the Simon-Wolff localization criterion from the spectral averaging using an intuitive
measure theoretic lemma.

1 Introduction

Let A be a cyclic self-adjoint operator in a (separable) Hilbert space H, ¢ (||| = 1) its cyclic vector, and
P = P, the orthogonal projection onto the one-dimensional subspace Cy (Pz = (z, )y forall z € H).

Define the operator family A; by
Ay =A+1tP, teR.

Denote by p%(d\) the spectral measure of the vector ¢ for A (see [RS]).

The celebrated Simon-Wolff theorem says [SW]:

Theorem 1 Let A be a Borel subset of R. The operator A, has only pure point spectrum on A for
Lebesgue a.e. t € R if and only if

g (dX
/R(l;\ff—E;? < 00 for Lebesgue a.e. £ € A. (D)

This theorem plays a fundamental role in localization theory (for some of its applications see [SW],
[CL], [PF]). Several proofs of this theorem and its generalizations are known [SW], [H], [CHM], [P],
[S]. The proof in [S] is particulary short, but it uses the so called Aronszajn-Donoghue theory [Ar], [D]
formulated in terms of boundary values of a certain analytic function. The goal of the present work is to
give an intuitively clear proof the Simon-Wolff theorem which does not mention analytic functions at all.



The remaining part of the paper is organized as follows. Section 2 contains several simple auxiliary
statements. The Simon-Wolff theorem is proved in Section 3. The proof uses a lemma that may be
interesting in its own right. The proof of the lemma is contained in the last section.

2 A different formulation of the Simon-Wolff theorem and a defini-
tion of the function 7

Throughout the paper we will use the following notations

I(E) ::/RO‘M(:%))Q and  J(E) ::/RM

where p = p7 is the spectral measure of ¢ for A. Let also
S:={FeA|I(E)<o}. (2)
The Simon-Wolff theorem states that

Ay has only pure point spectrum in A fora.e.t € R iff |A| =]S].

In this statement, we are going to replace .S by the set
D :={E € A| 3t € R for which E € 0,(A,)}, (3)

where 0,(A;) denotes the set of eigenvalues of the operator A;.

Proposition 1 The integral J(F) is well-defined for any E € S. If
EeS and J(E)#0, “4)

then E € D. Any point of D \ S is an eigenvalue of A.

Proof. The Spectral Theorem (see [RS]) states that, for a cyclic self-adjoint operator A and its
normalized cyclic vector ¢, there exists a unitary operator U: H — L?*(R, i) such that A = U~'M,\U
and Uy = 1. Here 1(\) = 1 and M, is the operator of multiplication by the identity function m(\) = A
in L*(R, p).

If, for some E,
I(F) < oo,

then the function z(\) = (A — E)~! belongs to L*(R, it). Hence the equation (A — E)z(\) = 1 has a
solution in L?(R, 11); equivalently, the equation

(A—E)z=¢ )
has a solution in H. Observe now that (z, ) = J(F). Therefore, if J(E) # 0, then we can rewrite the
equation (5) as Az — ¢ = Ez, or Az — (Z—lw(z, ) = Ez. Since (z,¢)p = Pz, the previous equation
means that

Az = Ez, (6)
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where t = —1/J(F). Therefore, conditions (4) imply that £ € D.

Let now £ € D\ S. According to the definition of the set D, there is a number ¢ € R such that the
equation
(A—E)z=—tPz (7)

has a non-trivial solution z € H. Obviously, —tPz = —t(z, )y is a vector of the form cy.

Let us show that ¢ = 0. For that purpose, assume the opposite, i.e. that ¢ # 0. In this case, (7) can be
re-written in the equivalent form
(A= E)z(A) = 1,

where z(\) := Uz. Hence, z(\) = ¢/(\ — E), which tells us that

2 p(dX) N 2
o [ A = el < .

Therefore, if ¢ # 0, then E € S, which contradicts our assumptions. Thus, ¢ = 0 and the right hand side
of (7) is zero, which means that E is an eigenvalue of A. [J

Corollary 1 Let S and D be the sets defined in (2) and (3). Then
S\D=7ZnA, ()

where
Z:={EeR|I(F)<oo and J(E) = 0}. 9

Proof. 1t follows from Proposition 1 that

S\ D C ZnNA.

It remains to prove that if £ € S and J(E) = 0, then £ ¢ D. Assume the opposite, i.e. that £ € SN D
and J(E) = 0. Since a point of the set S can not be an atom of the measure ., we conclude that £ is not
an eigenvalue of the operator A. We also conclude from the relation £ € D, that there is a number ¢ # 0
and a non-zero vector z € H, obeying the condition

Az =FEz. (10)
Observe that t Pz can not be zero, otherwise, (10) would mean that £ is an eigenvalue of A. So,
—tPz = cp, with ¢ # 0. (11)
Therefore, (10) and (11) imply that the function z(\) = Uz coincides with ¢/(\ — E), because
(A= E)z(\) = cl.
In this case, (z, ) = ¢J(E) = 0. Consequently, Pz = 0, which contradicts (11). [

Proposition 2 The set Z is countable.



Proof.  Proposition 2 follows from the observation that if £/, E € Z are distinct, then the two

functions 1/(\A — E’) and 1/(\ — E) are orthogonal to each other in the separable space L*(R, p):

/ p(d\) [ () pdr)
<E_E)/R<A—E>(A—E'>_/RM—E’)_/R(A—E) -

The statement of Proposition 2 follows also from Proposition 8 stating the fact that Z coincides with the

set of eigenvalues of a selfadjoint operator A, acting in the orthogonal compliment to the vector . A
description of this operator is given in the Appendix of the present paper and in Section 1.5 of [S]. [

According to our observations, S \ D = Z N A is countable. We also see that D \ S = 0,(A) N A
is countable as well. Therefore,

D| = |S| and the Simon-Wolff theorem is equivalent to the following
statement:

The spectrum of Ay is pure point in A fora.e. t € R iff |A| = |D|.

Lemma 1 [D] If Ay = Eyandy # 0, then (y, p) # 0.

Proof [D]. Assume the converse. Then Py = 0, hence Ay = Ey. Since y is cyclic for A, the linear span
of the vectors (A — \)7'p (A € C\ R)is dense in H. But

(¥, (A=N)7T"p) = (A= N1y, 0) = (B =X (y,9) =0,
and the above linear span cannot be dense, which is a contradiction. Bl
Consequently, we can normalize eigenvectors y of the operators A; by
(y, ) =1. (12)

In what follows, we always assume that eigenvectors are normalized according to (12).
Lemma 2 If A, y1 = Evy1, Anys = Esys, and (Y1, ) = (Y2, ) = 1, then
ty —ty = (Ex — E»)(y1, ). (13)
Proof.

(Atlyb 3/2) - (?Jl; At2y2) = (E1y17?/2) - (3/1, E2y2) = (El - E2)(?/1>312)-
On the other hand,

(A+t1P)y1,y2) — (y1, (A+ 2 P)y2) = t1(Py1, y2) — ta(y1, Py2)

= t1((y1, ), y2) — ta(yr, (Y2, ©)¢) = ta(y1, ) (0, y2) — ta(ya, ¥) (Y1, ) = t1 — ta.
O

Now, we define the function 7 on the set D as follows:

Definition. For any £ € D the value 7(E) equals the number ¢ € R for which £ € 0,(A;). According to
(13) this ¢ is uniquely defined.



Note that Proposition 1 tells us that 7 vanishes on D \ S, because all points of D \ S are eigenvalues of
A. Observe also that the multiplicity of any eigenvalue E of A, is 1. If it was larger than 1, then one would
be able to find an eigenvector orthogonal to . Thus, for each &/ € D, there is a unique vector yp € H,
such that (yg, ¢) = 1 and A, (g)yr = Eyg. The equation (13) can be now written in the form

T(El) - T<E2) = (B — E2)(yE1>yE2) forall Ey, Ey € D. (14)

3 The proof of Theorem 1

To prove the Simon-Wolff theorem, we use the following lemma.

Lemma 3 Let X be a Borel set in R and 7: X — R be a function such that for any non-isolated point
E € X there exists a finite non-zero limit

* L . T(E/) — T(E)
TE) = e

£ 0. (15)

Define the function 7*(-) at isolated points of X arbitrarily (so that 7*(-) # 0). Then

IX| :/dt 1E (16)
R

EeX: 7(E)=t |T ( )|
where the integrand is a Borel function on R with values in [0, co].

Although Lemma 3 is intuitively clear, a detailed proof seems appropriate. It is deferred until the last
section.

Let N be a positive integer. Define the set Dy by
Dy :={E€D| |ys|* < N}.

Here yg is the (unique) eigenvector of A, g corresponding to the eigenvalue F and normalized by

Proposition 3 Let A be a Borel subset of R. Then the set Dy is Borel for each N.

Proof. Since the sets D \ S and Z are countable, it is sufficient to prove that Dy N (S \ Z) is Borel.
For that purpose, we observe that
DyNn(S\Z)={Ee€S\Z|y(E)< N},
where the function ¢: R — [0, oo] is defined on S\ Z by

_ (&)
- JA(E)

P(E)

The functions [ and J are pointwise limits of Borel measurable functions

) () ) p(d)
WE= [ g /E| (- B)

1
n




Consequently, 1) is Borel measurable. Measurability of [,, and J,, follows from the fact that /,, and J,, are
continuous on the complment of a countable set. [

Lemma 4 Suppose E is a non-isolated point of Dy. As Dy > E' — E € Dy, we have

T(E') — 7(E)

2
5 lyell. (17)

Proof. According to (14), we only need to show that

(e ye) = llyell?,

as Dy 3 E' — E € Dy. Assume the opposite, i.e. that there exists a positive number ¢ > 0 and a
sequence Dy > E, — E € Dy, such that

\(yE,.ye) — llyel’| =&, Vn (18)

It follows from (14) that the function 7 is Lipschitz on Dy:
IT(E') —7(E)| < N|E' — E], E'.E € Dy.

Consequently, the sequence of numbers ¢, := 7(FE,,) converges to t := 7(FE).

For the corresponding eigenvector 4, := yg,, we have A, y, = E,y,; moreover, ||y,||*> < N and
(Yn, @) = 1.

Since any ball of radius /V is weakly compact in H, we may assume without loss of generality that v,
y|[* < Nand (y,¢) = 1.

converges weakly to some vector y; clearly,
In the equality
Ayn + tn<yn’ @)90 = Enyn

we have t, = t, (yn, ) = (y, ) = 1, E, — E, and y, — y. This implies the weak convergence of
Ay, to some vector z. Moreover,

z+t(y, p)p = Ey. (19)
On the other hand, (Ay,,h) = (yn, Ah) for any h € Dom(A). Passing to the limit as n — oo in this
relation, we obtain the relation
(,h) = (y, Ah),  Vh e Dom(A),
which means that y € Dom(A) and Ay = z. This, along with (19), implies the equality
Ay = Ey.
Put differently, the sequence of vectors y,, converges weakly to yg. The latter contradicts (18). ]

If F is an eigenvalue of A,, then FE is an atom of i, the spectral measure of A;, corresponding to the
vector . By the Spectral Theorem [RS], the mass of this atom equals

2 1

- 20
e 0

WD = (Nl = (o 1)

el
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(here £4,(Y), for any Borel set Y, denotes the spectral projection for A; associated with Y; we use the
fact that, by Lemma 5, ¢ is cyclic for A;).

Let us apply Lemma 3 to X = Dy and 7(F) defined in this section. Therefore,

|DN|:/_OOdt 3 T*(lE) :/_OO iy ! :/_oo it S m{E}).

2
0 EeDy: T(E)=t o0 EeDy: 1(E)=t HyEH o0 EeDyn

(The second equality makes use of (17). The third equality follows from (20).) Passing to the limit as
N — oo, we obtain:

D= [a 3wl

EEAWUP(At)

or, equivalently,
DI= [ upiaye e
R
Here the symbol 1} denotes the pure point component in the standard decomposition of ; into its pure
point and continuous components: fi; = jf + f5.

On the other hand, there is a fundamental identity due to Atkinson [At] (which was later rediscovered
and/or cleverly used by Javrjan [J], Wegner [W], Carmona [C], Kotani [K], Delyon-Lévy-Souillard [DLS],
and Simon-Wolff [SW]):

A= / (D)t 22)
R

Subtracting (21) from (22), we obtain:

AADI = [ uiae

o0

It follows that Lebesgue a.e. point of A belongs to D if and only if
H(A) =0 (23)

for Lebesgue a.e. t € R.

Since, ¢ is cyclic for A; for all ¢ (see the lemma below), the equation (23) — the absence of the
continuous component of 1; on A — is equivalent to the fact that the operator A; has in A only pure point
spectrum. This completes the proof of the Simon-Wolff theorem up to the following statement:

Lemma 5 Foranyt € R, the vector ¢ is cyclic for A,.
Proof. Assume the converse. Then there is a nonzero y € H such that ((A; — A) "'y, y) = 0 for all
A € C\ R. By the resolvent identity,

(A=) = (A — M)~" = (A, — M) (tP)(A — AD) 7,

so that
(A— A[)_lgo = (A — )J)‘lgp + (A — )J)‘lgo

with some ¢; € C. By the assumption, this vector is orthogonal to y for all A € C \ R, which contradicts
the cyclicity of p for A. [



4 Proof of Lemma 3

Before we prove Lemma 3, we make several remarks.

Remark 1. The existence of the finite limit (15) for all non-isolated points £ of X implies that the
function 7: X — R is continuous.

Remark 2. Let us denote the integrand in (16) by ¢g(¢). The statement that g(-) is a Borel function
implies that 7(X) = {t € R: g¢(¢f) > 0} is a Borel set. Note that, in general, a set of the form f(Y),
where the set Y is Borel and the function f is continuous, is not necessarily Borel [Ke, Theorem 14.2].

The proof of Lemma 3 consists of justification of several statements.

Lemma 6 7*: X — Risa Borel function.
Proof. Denote the graph of 7(-) by G. Let @ be a countable dense subset of G, and let X := pr E(CA?)

be the projection of G onto the E-axis.

For any non-isolated point &/ € X, we have

7(F) = limsup fg(F) = limsup fe(F),

X>E'—FE )/(:BE’—>E
where (=) (E)
T —_
’ E =
fe(E) E —FE

is a Borel function on X \ {£'}.
By the definition of lim sup,

7 (B) = lim (sup{fi (E) | E' € X NU}4(E)) .
where U}, (E) = [E — 1/k, E 4+ 1/k] \ {E}. Since G is dense in G, we also have
7"(E) = lim (sup{fE/(E) |E' e Xn Uf/k(E)> .
k—oo

Therefore, 7*(E) < a iff there are m, k € N such that fz/(E) < a — 1/m whenever E/ € X and
0 < |E — E'| < 1/k. Inother words, 7*(E) < a iff there are m,k € N such that for any £’ € X we
have either fp/(E) < a—1/m or E ¢ U}, (E'). This means that the set {E' € X | 7*(E) < a} equals

%J ij Q ({E eX ‘ fe(E) <a-— %}U(X \ Ul*/k(E’))

and hence is a Borel set. O

Definition 1 We will say that a Borel subset Y of X is good if the following conditions are fulfilled:
(i) the function gy: R — [0, 00| defined by the equation

1
w= 2

EeY: T(E)=t
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is Borel;
(i1) the equality holds:

1
dt E =1Y]. 24
/R Ty .

EeY: r(E)=
Lemma 3 states that the set X is good.
Lemma 7 Given a Borel setY (Y C X), let
Y :={E eY|theset Y N (E — ¢, E + ¢) is uncountable for all & > 0}.

The set Y is Borel; it is good iff Y is good.
Proof. The set Zy =Y \ Y consists of all points £ € Y such that F is contained in an interval

whose intersection with Y is countable. These intervals can be chosen to have rational endpoints, which
shows that Zy is countable. Consequently, the set Y is Borel. Since the functions

1 1
e D IR A DI v

EcY: 7(E)=t EeY: 7(BE)=t

differ only on the countable set 7(Zy ), they are both Borel or both non-Borel. In the former case they
have the same integral over R. It is also obvious that |Y'| = |Y'|. Therefore, if one of the sets Y and Y is
good, the other set is good as well. [J
Lemma 8
(a) If sets Y1,Ys, ... are good and disjoint, then the set Y : =Y, UY5 U ... is good.
(b) If sets Y1,Ys,...are goodand Y1 C Yo C ..., thentheset Y :=Y, UY,U...is good.
(c)If sets Y1,Ys,...are good, Y1 D Ys D ...and |Y|| < oo, thentheset Y :=Y1NYoN...is good.
(d) The empty set & is good.

Proof. (a)Forany t € R, we have gy (t) =), gv,(t), so gy(:)is Borel and

[avtae=3" [ gr0dt =Sl =1V
R n R n
(b) We have gy, (t) /* gy (t) for all ¢ € R; therefore, gy (-) is Borel and
/gy(t)dt = lim/ gy, (t)dt =1lim |Y,,| = |Y].
R T JR "
(c) We have gy, (t) \, gy (t) for all ¢ € R; therefore, gy (-) is Borel and, since [, gv, (t)dt = |Y;| < oo,
/gy(t)dt - lim/ av. (D)t = lim |Y,| = |V,
R T JR "

(d) Obvious. [



Corollary 2 Suppose a Borel subset Y of X is such that for any n € N the set Y (\[—n, n| is good. Then
the set Y is good too.

Proof. We have Y = | J, (Y [\[—n, n]), so the statement follows from Lemma 8(b). [J

The corollary can be applied to the set X. Therefore, in the rest of the proof we will assume that the
set X is bounded.

In the remaining part of the proof, we will gradually expand the class of subsets of X known to be
good until it includes the set X itself. Every time we state that all subsets of X having a certain property
are good, it will be sufficient (due to Lemma 7) to consider only those subsets that have no isolated points.

Lemma 9 Suppose that, under the assumptions of Lemma 3, a Borel subset Y of X has the property that
there are two constants A, B (0 < A < B < o) such that

A(E' = E)<7(E") —7(E) < B(E' - E) (25)

forall E,E' €Y (E < E'). Then the setY is good.

Proof. Let I = [infY,supY] = [, 5] (o < 8) and J = [7(«a), 7(5)]. By (25), 7(-) can be continued
(uniquely) to a continuous function 7: [ — J that is linear on each connected component of the open set
I'\'Y, where Y is the closure of Y. Then (25) still holds for all E,E’ € I (E < E'). Hence 7: [ — J
is a homeomorphism, and 7(Y), like Y, is a Borel set. In addition, ¢ — 7*(7'(¢)) is a Borel function on
7(Y') as a composition of two Borel functions.

Since (25) holds for all E,E’' € Y (E < E’), the function 77*: J — [ is absolutely continuous and
has, for a.e. t € J, a derivative (77')(t) € [B~!, A~!]. For any u,v € J (u < v), the equation holds:

(o) — 7 (u) = / Y .

In other words, if W is a subinterval of .J, then

= [

It follows (by summation) that the same is true if W is any relatively open subset of the closed interval J
and, by approximation from outside, if ' is any Borel subset of .J. In particular, this is true for W = 7(Y'):

¥ = / L

Since (771 (t) = and 7'(E) = 7*(E) for E € Y, we get

dt
Y= /Tm )

As7: Y — 7(Y) is a bijection, this is equivalent to (24). [

_
C0)
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Lemma 10 Suppose that, under the assumptions of Lemma 3, a Borel subset Y of X is such that for some
constants A, B (0 < A < B < o0) and § > 0 the double inequality

A(E'—E)<7(E") —7(E) < B(E' - E) (26)

holds forall E,E' € Y with0 < E' — E < 0. Then the setY is good.

Proof. Partition Y into a countable set of Borel sets of diameter < ¢ each. All of them are good by

Lemma 9, so Y is good by Lemma 8(a). [

Lemma 11 Under the assumptions of Lemma 3, for any a,b € R such that 0 < a < b < oo, the set X,
of all E € X for which
a<7t(E)<b (27)
is good.
Proof. As we did before, denote by X a countable subset of X such that the set {(E, 7(E)) | E € X}

is dense in the graph of 7, and denote by g (-) the function

g (E) = % EecX\{E}.

Fix m € N such that 1/m < a and define a sequence of sets X" (k € N) as follows: the set X" consists

of all ' € X such that
a-Lcgpm < L (28)
m m
forall E' € X with 0 < |E' — E| < 1/k.
The set X} is Borel. To show this, let us verify that the set (X;*)~ of all E € X satisfying the first
inequality in (28) for all £ € X with 0 < |E' — E| < 1/k is Borel. The arguments are similar to those in

the proof of Lemma 6. A point E € X belongs to (X;")™ iff gp/(E) > a — = forall E' € Xn Ul (E).

This is equivalent to the fact that for any E’ € X , IV satisfies at least one of the two conditions: either
gp/(E) 2 a—1/mor E ¢ Uj,(E'). Since the functions gp(-) (E € X) are Borel and the set X is
countable, this shows that the set (X}")~ is Borel. Similarly, the set (X}*)* (defined in an obvious way)
is Borel, so the set X;* = (X")~ N (X;")" is Borel too.

Now note that in the definition of the set X" the set X can be replaced by X:

m

1 1 1
X,T:{EGX ‘gE/(E)e {a——,b+—1 if E'€ X and O<|E’—E\§E}. (29)
m

The sets X} (k € N) are nested: X;* C X", for all k¥ € N. The Borel set

xme=Jxpr (30)

keN

consists of all points £ € X such that gp/(E) € [a —1/m,b+ 1/m| forall ' € X (E' # E) close
enough to E. Consequently, the Borel set

X=X (31)

11



coincides with the set X[, ;) of all £ € X such that 7*(E) € [a, b].

The set X[,y is good. To see why, we first note that for any m, k € N the set X" defined by (29)
is good: this follows from Lemma 10, which should be applied with A = a — 1/m, B = b+ 1/m and
d = 1/k. Second, the set X™ defined by (30) is good by Lemma 8(b). Finally, the set X ap = X
defined by (31) is good by Lemma 8(c) (we use the assumption that the set X is bounded and hence
| X| < 00). O

Corollary 3 Under the assumptions of Lemma 3, let a,b € R be two constants such that 0 < a < b < oo.
The set
X(a,b] = {E e X ’ a < T*(E) < b}

is good.
Proof. We have

Xap) = U Xz,

neN: n>1/(b—a)

so the statement follows from Lemma 8(b). [

End of proof of Lemma 3.

We partition X into countably many disjoint Borel sets
X = Xppry={E € X |2 <7%(E) <2} (keZ)
and

X, =X g1 _ony={E€X| =2 <%(E) < -2} (ke ).

Each set X;" is good by Corollary 3. Each set X, is good by Corollary 3 applied to the function —7()
instead of 7(-). By Lemma 8(a), the set X is good. [J

5 Appendix: infinite coupling

In this section, we give a natural definition of a certain operator A, playing the role of A; for t = oc.
First, we extend the function J(F) originally defined on the set S to a functionon (C\ R) U S

J(2) = /R ’;(i), 2 €C\R (32)

Proposition 4 Let J(z) be defined by (32). Then
+ImJ(z) >0  for +Imz > 0.

In particular, J(z) ¢ R forall z € C\ R.
Proof. Indeed,

Im J(z) = Im 2 /R

12



Proposition 5 Forany z € C\ R,
t

(A—2)'=(A-2)"" ~ 560

(A—2)'P(A—2) (33)

Proof. Obviously, the range of the operator in the right hand side of (33) is contained in Dom(A).
Therefore, we can multiply this oparator by A; — z from the left. The product is equal to I, because
(A —2)(A—2) ' =T 4+tP(A—2)"*

and
P(A - z)*lP = J(2)P.
O

Corollary 4 Forany z € C\ R,

(A —2)' — R(z) = (A—2)"" - (A—2)'P(A -2, as t — oo, (34)

1
J(2)
in the operator norm topology.

Proposition 6 The range of the bounded operator R(z) is contained in the space H,, of vectors orthogonal
to . In particular, H,, is invariant for R(z).

Proof. 1t is sufficient to show that PR(z) = 0. The latter follows once one combines the equality

PR(z) = P(A—2)""' - P(A—2)'P(A—2)!

1
J(2)
with the fact that P(A — 2)"'P = J(2)P. O
Proposition 7 Let A, be the operator in H, defined on Dom(A) = Dom(A) N H, by

Ay = (I — P)Ay.
Then A, is densily defined and selfadjoint in H,. Moreover,
(A — 2) 7t = R(z)‘Hw Vz € C\R. (35)

Proof. The operator A, is symmetric, because

(Asou,v) € R, Vu,v € Dom(As) C Hy.

This opertor is densily defined. Indeed, let y € H, be given and let h € Dom(A) be a vector such that
(h, ) = 1 (such a vector exists, because A is densily defined). Suppose that h,, € Dom/(A) is a sequence
of vectors converging to y. Then
hn - (hna (p)h < DOm(Aoo)
converges to ¥y, as n — oo.
To establish that A, is selfadjoint, we observe that the definition of R(z) given by (34) leads to
1 _

(A = Ry, = (I = P = 5 P(A=2) )]y = 1], (36)
Consequently, the range of the operator (A., — z) is the whole space H,,, which implies that A is
selfadjoint. The relation (35) follows from (36). [
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Proposition 8 A real number E is an eigenvalue of A, if and only if E € S and J(E) = 0.
Proof. Again, we use the Spectral Theorem (see [RS]) which states that, for a cyclic self-adjoint

operator A and its normalized cyclic vector ¢, there exists a unitary operator U: H — L*(R, i) such that
A = U'M\U and Up = 1. Here 1(\) = 1 and M, is the operator of multiplication by the identity
function m(\) = X in L3(R, p).

If, for some E,
I(E) < > and J(E)=0, 37

then the function z(\) = (A — E)~! belongs to L*(R, i) and is orthogonal to 1. Hence the equation
(A — E)z(\) = 1 has a solution in L*(R, y) orhtogonal to 1; equivalently, the equation

(A-E)z=¢ (38)

has a solution in H orthogonal to . Observe now that (Az, ) = ((A— E)z,¢) = (¢, ¢) = 1. Therefore,
we can rewrite the equation (38) as Az — (Az, p)¢ = Ez. Since (Az, p)p = P Az, the previous equation
means that

Aoz = FEz. 39)

Therefore, conditions (37) imply that £ € 0,(Aw).
Let now E € 0,(Aw). Then the equation
(A— E)z = PAz (40)

has a non-trivial solution z € H,,. Obviously, PAz = (Az, @)y is a vector of the form c¢p.

Assume that ¢ # 0. In this case, (40) can be re-written equivalently as
(A= E)z(\) =1, 41)
where z(A) := Uz. Hence, z(\) = ¢/(A — E), which tells us that

1B) = [ s =l I < o,

Therefore, if ¢ # 0, then £ € S. On the other hand, since

Oz(z,go):c/]l%%:cj(ﬁ?),

we obtain also that J(E) = 0.

It remains to consider the case ¢ = 0. In this case, (41) tells us that the support of z(\) consists of the
point A = E. The latter implies that

(.9) = [ =0 ud) = (B (D) £0,
which contradicts the assumption z € H,. [

Corollary 5 Let the sets S and D be defined by (2) and (3) correspondingly. Then
D\ S =0,(A)NA and S\ D =0,(Ax) NA.
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