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1. Main results

Let H be a separable Hilbert space and let V be a measurable function from R+ to the set of
bounded self-adjoint operators on H. We study the absolutely continuous spectrum of the Schrödinger
operator

(1) H = − d2

dx2
+ αV,

acting in the space L2(R+;H). Here, α is a real parameter. We impose the condition

(2)

∫
R+

‖V (x)‖2dx <∞.

The domain of H consists of W 2
0 (R+,H)-functions. The generalized second derivatives of these func-

tions are square integrable and the functions themselves vanish at x = 0.

Definition. We say that the absolutely continuous spectrum of the operator H is essentially sup-
ported on a set containing [0,∞), if the spectral projection Eα(Ω) of H corresponding to any set
Ω ⊂ [0,∞) is different from zero Eα(Ω) 6= 0 as soon as the Lebesgue measure of Ω is positive.

Operators with square integrable potentials were studied by P. Deift and R. Killip [1] in the case
where H = R. The main result of [1] states that absolutely continuous spectrum of the operator
−d2/dx2 + V covers the positive half-line [0,∞), if V ∈ L2(R+).

We consider the case where the space H is infinitely dimensional and give a different proof of the
following theorem by Denisov [2].

Theorem 1.1. Let V satisfy the condition (2). Then the absolutely continuous spectrum of the
operator (1) is essentially supported on a set containing [0,∞) for almost every α ∈ R.

Besides the article [2], one can also find a close discussion of similar operator families in the papers
[6] and [7]. I all mentioned publications, the properties of the absolutely continuous spectrum are

established for almost every value of a real parameter α. However, if ‖V (x)‖ ≤ C(1 + |x|)−3/2−δ with
δ > 0, then the absolutely continuous spectrum fills the positive half-line R+ for all α (see [3]).

2. Auxiliary lemma

Notations. Throughout the text, Re z and Im z denote the real and imaginary parts of a complex
number z. For a self-adjoint operator B = B∗ and a vector g of a Hilbert space the expression
((B − k − i0)−1g, g) is always understood as the limit(

(B − k − i0)−1g, g
)

= lim
ε→0

(
(B − k − iε)−1g, g

)
, ε > 0, k ∈ R.

The following simple and very well known statement plays very important role in our proof.
1
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Lemma 2.1. Let B be a self-adjoint operator in a separable Hilbert space H and let g ∈ H. Then the
function

η(k) := Im
(

(B − k − i0)−1g, g
)
≥ 0

is integrable over R. Moreover, ∫ ∞
−∞

η(k)dk ≤ π||g||2.

and ∫ ∞
−∞

η(k)

k2 + 1
dk ≤ π||(B2 + I)−1/2g||2.

3. Entropy

Let µ be a positive finite measure on the real line R. As any other measure it is decomposed
uniquely into a sum of three terms

µ = µpp + µac + µsc,

where the first term is pure point, the second term is absolutely continuous and the last term is a
continuous but singular measure on R. Obviously, µ(−∞, λ) is a monotone function of λ, therefore,
it is differentiable almost everywhere. In particular, the limit

µ′(λ) = lim
ε→0

µ(λ− ε, λ+ ε)

2ε

exists for almost every λ ∈ R. It is also clear that

µac(Ω) =

∫
Ω
µ′(λ) dλ, ∀Ω ⊂ R,

which means µ′ = µ′ac.
Let Ω0 = {λ : µ′(λ) > 0} A measurable set Ω ⊂ R is called an essetial support of µac, if the

Lebesgue measure of the symmetric difference

Ω04Ω :=
(

Ω0 \ Ω
)
∪
(

Ω \ Ω0

)
is zero. So, an essential support of µac coincides with the set where µ′ > 0 up to a set of measure zero.
As we see, the study of the essential support of the a.c. part of the measure µ is reduced to the study
of the set Ω0 = {λ : µ′(λ) > 0}. Let Ω be a measurable set. One of the ways to show that µ(λ) > 0
for almost every λ ∈ Ω relies on the study of the quantity

SΩ(µ) :=

∫
Ω

logµ′(λ) dλ.

Due to Jenssen’s inequality, SΩ < ∞, if |Ω| < ∞. So, the entropy can diverge only to the negative
infinity.

But if |Ω| <∞ and

SΩ(µ) > −∞,
then

µ′(λ) > 0, a.e. on Ω.

Very often one can obtain an estimate for µ′ by an analytic function from below. In this case we
will use the following statement
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Proposition 3.1. Let a function F (λ) 6= 0 be analytic in the neighborhood of an interval [a, b] ⊂ R.
Suppose that

(3) µ′(λ) > c0|F (λ)|2, for all λ ∈ Ω ⊂ [a, b].

Then

SΩ(µ) :=

∫
Ω

logµ′(λ) dλ ≥ C > −∞,

where the constant C = C([a, b], c0, F ) depends on the interval [a, b], c0 and F .

The proof is left to the reader as an exercise. We only mention that zeros of an analytic functions
are always isolated zeros of a finite order.

In applications to Schrödinger operators, one often has an estimate of the form (3) for a sequence
of measures µn that converges to µ weakly

µn → µ weakly.

In this situation, one can still derive a certain information about the limit measure µ from the infor-
mation about µn.

Definition. Let ρ, ν be finite Borel measures on a compact Hausdorff space, X. We define the
entropy of ρ relative to ν by

(4) S(ρ|ν) =

{
−∞, if ρ is not ν−ac

−
∫
X log( dρdν )dρ, if ρ is ν−ac.

Theorem 3.1. (cf.[4]) The entropy S(ρ|ν) is jointly upper semi-continuous in ρ and ν with respect to
the weak topology. That is, if ρn → ρ and νn → ν as n→∞, then

S(ρ|ν) ≥ lim sup
n→∞

S(ρn|νn).

Now, we will use this theorem in order to prove the following statement.

Proposition 3.2. Let a < b. Let F (λ) 6= 0 be a function analytic in the neighborhood of [a, b]. Let
µn be a sequence of positive finite measures on the real line R converging to µ weakly. Suppose that

µ′n(λ) > c0|F (λ)|2, for all λ ∈ Ωn ⊂ [a, b],

where the measurable sets Ωn satisfy ∣∣∣[a, b] \ Ωn

∣∣∣ < b− a− ε.

Then µ′(λ) > 0 on a subset of [a, b] whose measure is not smaller than b− a− ε

Proof. Let us denote the characteristic function of the set Ωn by χn. Since L2-norms of χn are
uniformly bounded, this sequence of functions has a weakly convergent subsequence. Therefore without
loss of generality, one can assume that

χn → χ, weakly in L2(R).

This, of cause, implies that the corresponding measures χndλ also converge weakly to χdλ. Even
though, R is not compact, we can still use Theorem 3.1 and show (see [6]) that∫

R
log
(µ′(λ)

χ(λ)

)
χ(λ) dλ ≥ lim sup

n→∞

∫
R

log
(µ′n(λ)

χn

)
χn(λ) dλ > −∞
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Thus, we see that µ′ > 0 on the support of the function χ. However, we still need to know how big
this set is. On the one hand,∫ b

a
χ(λ) dλ = lim

n→∞

∫
R
χn(λ) dλ ≥ b− a− ε.

On the other hand, it is easy to show that 0 ≤ χ ≤ 1. Therefore, the Lebesgue measure of the support
of the function χ is not smaller than b− a− ε. �

Since we deal with a family of operators depending on a parameter α, we also need a modification
of the previous statement, suitable in the case when measures depend on the parameter α as well.

Proposition 3.3. Let a < b. Let F (λ) 6= 0 be a function analytic in the neighborhood of [a, b]. Let
µn(·, α) be a sequence of α-dependent families of positive finite measures on R converging to µ(·, α)
weakly for every α ∈ R. Suppose that the derivatives of µn with respect to dλ satisfy

µ′n(λ, α) > c0|F (λ)|2, for all (λ, α) ∈ Ωn ⊂ [a, b]× [α1, α2],

where the measurable sets Ωn obey∣∣∣[a, b]× [α1, α2] \ Ωn

∣∣∣ < (b− a)(α2 − α1)− ε.

Then µ′(λ, α) > 0 on a subset of [a, b]× [α1, α2] whose measure is not smaller than (b−a)(α2−α1)−ε.

The proof of this statement is a counterpart of the proof above and it is left to the reader as an
exercise. A similar statement is proven in [6].

We conclude this section by a discussion of the following simple claim.

Proposition 3.4. Let a < b. Let F (λ) 6= 0 be a function analytic on a neighborhood of the interval
[a, b]. Let µ(·, α) be an α-dependent family of positive finite measures on R. Suppose that the derivatives
of µ with respect to the Lebesgue measure dλ satisfy the estimate

µ′(λ, α) ≥ |F (λ)|2(1−Ψ(λ, α)), where

∫ α2

α1

∫ b

a
|Ψ(λ, α)|dλdα < ε/2.

Then

µ′(λ, α) ≥ 1

2
|F (λ)|2, for all (λ, α) ∈ Ω,

where the measureable set Ω obeys

(5)
∣∣[a, b]× [α1, α2] \ Ω

∣∣ ≤ ε.
Proof. According to Chebyshev’s inequality,

Ψ(λ, α) ≤ 1/2

on a set satisfying the condition (5). �

4. The case of a compactly supported V

In this section, we assume that V belongs to the class V described below.

Definition. We say that V belongs to the class V if
1) there is a bounded the interval [0, R] containing the support of V and such that V (x + R/2) is

an odd function of x:

(6) V (x+R/2) = −V (−x+R/2), ∀x ∈ [0, R/2].

2) the range of the operator V (x) is a finite dimensional sub-space H0 ⊂ H which stays the same
when one changes x.
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Our proof of Theorem 1.1 is based on the relation between the derivative of the spectral measure and
the so called scattering amplitude. Both objects should be introduced properly. While the spectral
measure can be defined for any self-adjoint operator, the scattering coefficient will be introduced only
for a Schrödinger operator. Let f be a square integrable function from R+ to H. It is very well known
that the quadratic form of the resolvent of H can be written as a Cauchy integral

((H − z)−1f, f) =

∫ ∞
−∞

dµ(t)

t− z
, Im z 6= 0.

The measure µ in this representation is called the spectral measure of H corresponding to the element
f .

Let us introduce the scattering amplitude. Since the support of the potential V is compact, there
exists an R.), such that V (x) = 0 for x > R. Take any compactly supported function f that also
vanishes for x > R. Then[

(H − z)−1f
]
(x) = eik|x|Af (k), for x > R, k2 = z, Im k ≥ 0, Af (k) ∈ H.

Clearly, the relation

µ′(λ) = π−1 lim
z→λ+i0

Im ((H − z)−1f, f) = π−1 lim
z→λ+i0

Im z||(H − z)−1f ||2

implies that

(7) πµ′(λ) =
√
λ‖Af (k)‖2, k2 = λ > 0.

Formula (7) is a very important equality that relates the absolutely continuous spectrum to so-called
extended states. The rest of the proof will be devoted to a lower estimate of ‖Af (k)‖.

For our purposes, it is sufficient to assume that f is the product of the characteristic function of
the unit interval [0, 1] times a unit vector τ ∈ H. Traditionally, H is viewed as an operator obtained
by a perturbation of

H0 = − d2

dx2
.

In its turn, (H − z)−1 can be viewed as an operator obtained by a perturbation of (H0 − z)−1. The
theory of such perturbations is often based on the second resolvent identity

(8) (H − z)−1 = (H0 − z)−1 − (H − z)−1 αV (H0 − z)−1,

which turns out to be useful for our reasoning. As a consequence of (8), we obtain that

(9) Af (k) = F0(k)τ −Ag(k), z = k2 + i0, k > 0,

where g(x) = αV (H0 − z)−1f and the number F0(k) ∈ C is defined by

(10) (H0 − z)−1f = eik|x|F0(k)τ, for x > 1.

We will shortly show that, without loss of generality, one can assume that V (x)τ = 0 inside the unit
interval [0, 1]. In this case,

(11) g = F0(k)hk, where hk(x) = αeik|x|V τ.

According to (9),

2‖Af (k)‖2 ≥ |F0(k)|2 − 2‖Ag(k)‖2,
which can be written in the form

(12) 2πµ′(λ) ≥ |F0(k)|2
(√

λ− 2 Im
(

(H − z)−1hk, hk

))
, z = λ+ i0,

due to (7) and (11). Therefore, in order to establish the presence of the absolutely continuous spectrum,

we need to show that the quantity Im
(

(H − z)−1hk, hk

)
is small.
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Let us define η setting

α2k−2η(k, α) :=
1

k
Im
(

(H − z)−1hk, hk

)
≥ 0, z = k2 + i0.

Obviously, η is positive for all real k 6= 0, because we agreed that z = k2 ± i0 if ±k > 0. This is very
convenient. Since η ≥ 0, we can conclude that η is small on a rather large set if the integral of this
function is small. That is why we will estimate

(13) J(V ) :=

∫ ∞
−∞

∫ ∞
−∞

η(k, α)

(α2 + k2)

|k| dkdα
(k2 + 1)

=

∫ ∞
−∞

∫ ∞
−∞

η(k, tk)

(k2 + 1)(t2 + 1)
dkdt.

We will employ a couple of tricks, one of which is related to the involvment of an additional parameter
ε. Instead of dealing with the operator H, we will deal with H + εI where ε > 0 is small. We will
first obtain an integral estimate for the quantity

ηε(k, α) =
k

α2
Im
(

(H + ε− z)−1hk, hk

)
.

The latter estimate will not be uniform in ε, but we can still pass to the limit ε → 0 according to
Fatou’s lemma, because

η(k, α) = lim
ε→0

ηε(k, α) a.e. on R× R.

The second trick is to set α = kt and represent ηε in the form

(14) ηε(k, kt) = Im
(

(B + 1/k)−1H−1/2
ε v, H−1/2

ε v
)

where v = V τ , Hε = −d2/dx2 + εI and B is the bounded selfadjoint operator defined by

B = H−1/2
ε

(
−2i

d

dx
+ tV

)
H−1/2
ε .

The reader can easily establish that B is not only self-adjoint but bounded as well. Note that it is the
parameter ε that makes B bounded.

In order to justify (14) at least formally, one has to introduce the operator U of multiplication by
the function exp(ikx). Using this notation, we can represent ηε in the following form

ηε(k, tk) = kIm
(
U−1(H + ε− z)−1Uv, v

)
.

Since we deal with a unitary equivalence of operators, we can employ the formula

U−1(H + ε− z)−1U = (U−1HU + ε− z)−1.

On the other hand, since H is a differential operator and U is an operator of multiplication, the
commutator [H,U ] := HU − UH can be easily found[

H,U
]

= kU
(
−2i

d

dx
+ k
)
.

The latter equality implies that

U−1HU + ε− z = Hε + k
(
−2i

d

dx
+ tV

)
= H1/2

ε (I + kB)H1/2
ε .

Consequently,

(15) kU−1(H + ε− z)−1U = H−1/2
ε (B + 1/k)−1H−1/2

ε .

Let us have a look at the formula (14). If k belongs to the upper half plane then so does −1/k.
Since B is a self-adjoint operator, π−1ηε(k, kt) coincides with the derivative of the spectral measure of
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the operator B corresponding to the element H
−1/2
ε v. According to Lemma 2.1, the latter observation

implies that ∫ ∞
−∞

ηε(k, kt)

(1 + k2)
dk ≤ π

(
(B2 + I)−1H−1/2

ε v,H−1/2
ε v

)
,

which leads to

(16)

∫ ∞
−∞

ηε(k, kt)

(1 + k2)
dk ≤ π

(
B−1H−1/2

ε v,B−1H−1/2
ε v

)
= π||B−1H−1/2

ε v||2.

Our further arguments will be related to the estimate of the quantity in the right hand side of (16).
We will show now that

(17) lim
ε→0
||B−1H−1/2

ε v||2 ≤
∫
R+

‖V (x)‖2dx.

In order to do that we use the representation

(18) B−1H−1/2
ε = H1/2

ε T−1,

where T ⊂ T ∗ is the first order differential operator, defined by

T = −2i
d

dx
+ tV, D(T ) = D(H1/2

ε ).

The representation (18) is a simple consequence of the fact that B = H
−1/2
ε TH

−1/2
ε .

Let us discuss the basic properties of the operator T . Since it is a first order differential operator,
one can derive an explicit formula for the resolvent of T . For that purpose, one needs to recall the
theory of ordinary differential equations, which says that the equation

y′ + p(t)y = f(t), y = y(t), t ∈ R,

is equivalent to the relation (
e
∫
p dty

)′
= e

∫
p dtf.

Put differently,

y′ + p(t)y = e−
∫
p dt
(
e
∫
p dty

)′
.

This gives us an idea of how to handle the operator T . Let U0 be the unitary operator of multiplication
by the solution of the equation

U ′0(x) =
it

2
U0(x)V (x), U0(0) = I.

Then

T = −2iU−1
0

[ d
dx

]
U0, and T−1 =

i

2
U−1

0

[ d
dx

]−1
U0.

Since [ ddx ]−1 is just the simple integration with respect to x and U ′0τ = i
2 tU0V τ ,[

T−1v
]
(x) =

i

2
U−1

0 (x)

∫ x

0
U0(y)V (y)τdy =

1

t
U−1

0 (x)(U0(x)− I)τ =
1

t
(I − U−1

0 (x))τ.

(19)

Note that due to the condition (6), the function T−1v is compactly supported, which leaves no doubt
about the relation v ∈ D(T−1). Combining (18) with (19), we conclude that

lim
ε→0
||B−1H−1/2

ε v||2 = lim
ε→0
||H1/2

ε T−1v||2 =

∫
R+

‖V (x)U−1
0 (x)τ‖2dx.
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Thus, (17) is established. The relations (16), (17) lead to the inequality

J(V ) ≤ π2

∫
R+

‖V (x)‖2dx.

where the quantity J(V ) from (13). However, we can say more:

Lemma 4.1. Let T > 0. Let V be a potential of the class V such that

(20) V (x)τ = 0, for all x < T.

Then

(21) J(V ) ≤ π2

∫ ∞
T
‖V (x)‖2dx.

5. Approximations of potentials and spectral measures

Proposition 5.1. Let T > 0. Let Ṽ be the potential

(22) Ṽ (x) = V (x)− (·, τ)V (x)τ − (·, V (x)τ)τ + (V (x)τ, τ)(·, τ)τ, for all x < T.

and

(23) Ṽ (x) = V (x), for all x > T.

Then

(24)
(
H − z

)−1
−
(
− d2

dx2
+ αṼ − z

)−1
∈ S1

is a trace class operator for any z with Im z > 0.

Proof. Using the Hilbert identity, we obtain(
H − z

)−1
−
(
− d2

dx2
+ αṼ − z

)−1
= α

(
H − z

)−1
(Ṽ − V )

(
− d2

dx2
+ αṼ − z

)−1
.

Consequently, it is sufficient to prove that

Γ :=
(
− d2

dx2
− z
)−1

(Ṽ − V )
(
− d2

dx2
− z
)−1
∈ S1.

Observe now that Ṽ (x)− V (x) is a finite rank operator of the form

Ṽ (x)− V (x) = w1(x)(·, e1(x))e1(x) + w2(x)(·, e2(x))e2(x), ,

where wj ∈ L1(R+) are real valued compactly supported functions and ej(x) are unit vectors in H.

Since (− d2

dx2
− z)−1 is an integral operator whose integral kernel r(x, y) satisfies

sup
x

∫ ∞
0
|r(x, y)|2dy + sup

y

∫ ∞
0
|r(x, y)|2dx <∞,

the operators Gj(z) defined by[
Gj(z)u

]
(x) =

∫ ∞
0
|wj(x)|1/2

(
r(x, y)u(y), ej(x)

)
ejdy

are Hilbert-Schmidt operators. It remains to note that

Γ = G∗1(z̄)Ω1G1(z) +G∗2(z̄)Ω2G2(z)

where Ωj are bounded. �

According to one of the fundamental theorems of Scattering Theory, we can now state the following
result.
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Proposition 5.2. Let Ṽ be defined as in (22). Then the absolutely continuous parts of the operators

H and − d2

dx2
+ αṼ are unitary equivalent.

The latter proposition allows one to assume that V has the following properties:
1) V (x)τ = 0 for all x < T .
2) the number T is so large that

∫∞
T ‖V (x)‖2dx < δ is small.

Let us use the inequality (12) and employ Proposition 3.4 with

F (λ) = (2π)−1/2F0(
√
λ)λ1/4 and Ψ(λ) =

2Im((H − z)−1hk, hk)√
λ

.

According to Lemma 4.1, we obtain the following result.

Theorem 5.1. Let 0 < a < b < ∞, let 0 < α1 < α2 < ∞ and let T > 1. For any ε > 0 there is a
number δ > 0 such that for any potential V of the class V having the properties

1) V (x)τ = 0 for all x < T, and 2)

∫ ∞
T
‖V (x)‖2dx < δ,

the derivative µ′(λ) = µ′(λ, α) of the spectral measure satisfies the inequality

µ′(λ, α) ≥ (4π)−1|F0(
√
λ)|2λ1/2, for all (λ, α) ∈ Ω,

where the measurable set Ω obeys ∣∣[a, b]× [α1, α2] \ Ω
∣∣ ≤ ε.

The proof of the next statement is left to the reader as an exercise.

Proposition 5.3. Let V be a measurable operator-valued function obeying∫
R+

‖V (x)‖2dx <∞.

Assume that

(25) V (x)τ = 0, for all x < T,

where T > 0 is a fixed number. Then there is a sequence of compactly supported operator-valued
functions Vn ∈ V having the following three properties:

1)

Vn(x)τ = 0, for all x < T,

2) ∫ ∞
T
‖Vn(x)‖2dx ≤ 2

∫ ∞
T
‖V (x)‖2dx,

and
3)∫ K

0
‖
(
Vn(x)− V (x)

)
u(x)‖2dx→ 0, as n→∞, for any u ∈ L∞(R+,H) and any K > 0.

Another statement, that we are going to use, deals with the spectral measures of operators whose
potentials Vn approximate the function V .
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Proposition 5.4. Let V ∈ L2(R+,H) and Vn ∈ L2(R+,H). Let µn and µ be the spectral measures of
the operators with potentials αVn and αV , correspondingly. Assume that∫ K

0
‖
(
Vn(x)− V (x)

)
u(x)‖2dx→ 0, as n→∞, for any u ∈ L∞(R+,H) and any K > 0.

Then

µn → µ weakly, as n→∞, for all α ∈ R.

According to Proposition 3.2, the assertion below follows from Theorem 5.1 and Propositions 5.3
and 5.4.

Theorem 5.2. Let 0 < a < b < ∞, let 0 < α1 < α2 < ∞ and let T > 1. For any ε > 0 there is a
number δ > 0 such that for any potential V ∈ L2(R+,H) having the properties

1) V (x)τ = 0 for all x < T, and 2)

∫ ∞
T
‖V (x)‖2dx < δ,

the derivative µ′(λ) = µ′(λ, α) of the spectral measure is positive

(26) µ′(λ, α) > 0, for all (λ, α) ∈ Ω,

where the measurable set Ω obeys ∣∣[a, b]× [α1, α2] \ Ω
∣∣ ≤ ε.

Let Eα(·) be the operator-valued spectral measure of H. Let also

Ωα = {λ ∈ [a, b] : (λ, α) ∈ Ω}
be the cross-section of Ω. One can conclude from the inequality (26) that, for any measurable subset
X ⊂ [a, b], the condition Eα(X) = 0 implies the relation∣∣Ωα ∩X

∣∣ = 0.

Using the unitary equivalence claimed by Proposition 5.2, we obtain

Theorem 5.3. Let 0 < a < b < ∞, let 0 < α1 < α2 < ∞. Assume that V ∈ L2(R+,H). Then for
any ε > 0, there is a measurable set Ω(ε) ⊂ [a, b]× [α1, α2] obeying∣∣[a, b]× [α1, α2] \ Ω(ε)

∣∣ ≤ ε,
such that, for any Borel set X ⊂ [a, b] and the cross-section Ωα(ε) defined by

Ωα(ε) = {λ ∈ [a, b] : (λ, α) ∈ Ω(ε)},
the condition Eα(X) = 0 implies the equality∣∣Ωα(ε) ∩X

∣∣ = 0.

Take now a monotonically decreasing sequence εn converging to 0, as n→∞, and set

Ω̃ =
∞⋃
n=1

Ω(εn).

Obviously, Ω̃ is a subset of full measure in [a, b]× [α1, α2]. Consequently,

Ω̃α = {λ ∈ [a, b] : (λ, α) ∈ Ω̃}
is a subset of full measure in [a, b] for almost every α ∈ [α1, α2].

Take now an arbitrary Borel subset X ⊂ [a, b]. If |X ∩ Ω̃α| > 0 then there is an integer number n
for which ∣∣Ωα(εn) ∩X

∣∣ > 0.
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The latter condition implies that Eα(X) 6= 0. Thus, the essential support of the absolutely continuous
spectrum of H contains the interval [a, b] for all α such that

(27) |Ω̃α| = b− a.
It remains to note that (27) holds for almost every α ∈ [α1, α2].

This completes the proof of Theorem 1.1
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