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ABSTRACT

JIE CHANG. Asymptotic Normality of Higher Order Turing Formulae. (Under the
direction of DR. MICHAEL GRABCHAK)

Higher order Turing formulae, denoted as T, for r € Z™*, are a powerful result
allowing one to estimate the total probability associated with words from a random
piece of writing, which have been observed exactly r times in a random sample. In
particular 7 estimates the probability of seeing words not appearing in the sample.
To perform statistical inference, e.g., constructing the asymptotic confidence intervals,
the asymptotic properties of the higher Turing formulae need to be studied.

In this thesis we extend the validity of the asymptotic normality beyond the previ-
ously proven cases by establishing a sufficient and necessary condition for the asymp-
totic normality of higher order Turing formulae when the underlying distribution is
both fixed and changing. We also conduct simulation studies with the complete works
of William Shakespeare and data generated from different underlying distributions to
check the finite sample performance of the derived asymptotic confidence interval.

Based on our theoretical results we also developed two methodologies for authorship

detection with real twitter data analysis.
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CHAPTER 1: INTRODUCTION

“Those who can imagine anything, can create the impossible.” — Alan

Turing

Given a random piece of an author’s work, how can we estimate the probability of
the author using a word that has not been used before or the probability of using a
word that has been used exactly r times in the sample piece? This problem can be
generalized to many other practical situation where data has no natural ordering and
is categorical in nature, for example, in ecology the words may represent the species
in an ecosystem, in biomedical applications they may represent different types of
cancer cells in a tumor. Statistical properties of the probability when r = 0, which
corresponds to the probability of seeing something that has not been seen before
and is called the missing mass, have been studies in e.g. [I, 2, B, 4]. Applications
of estimating these probabilities arise in many fields including: ecology [5] [6] [7],
genomics [§], natural language processing [9] [10], authorship attribution [11] [12]
[13], and computer networks [14].

It has been long recognized that the usual maximum likelihood estimator does
not work well for estimating such probabilities. However, Alan Turing developed an
alternate approach by giving a mind-bending nonparametric estimator when he was
working to decode the Enigma cipher during World War II. It was first introduced
by his assistant 1.J. Good in [15], and has come to be called Turing’s formula or the
Good-Turing formula. Turing’s intuitive explanation of this formula was claimed to
be given to Good, but has been lost, see [15]. Nevertheless, use of the estimator is
justified by its many statistical properties.

One of the earliest studies of the statistical properties of Turing’s formula is [16],
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where it is shown that the estimator is not unbiased, but that it would be if we had
an additional observation. Detailed formulas for the bias can be found in [I7] and
[13]. Conditions for consistency are given in [18] and a simulation study focused on
the rate of convergence is given in [19]. The problem of asymptotic normality has
primarily been studied in the case when » = 0. In this case, sufficient conditions are
given in [20], [21], and [22] and a necessary and sufficient condition is given in [23].
When r > 0, sufficient conditions are given in [24] and [25]. These results, along
with a wealth of additional information, are summarized in the recent monograph on
Turing’s formula [26].

In this thesis we extend the validity of the asymptotic normality beyond the pre-
viously proven cases by giving necessary and sufficient conditions for the asymptotic
normality of Turing’s formula for any » > 0 when the underlying distribution is both
fixed and changing.

The rest of this thesis is organized as follows. In Chapter 2 we present our theoret-
ical results. First we introduce our mathematical framework, next we prove the case
where the number of observations follows a Poisson distribution, then we extend our
results to a general deterministic case by approximation and introduce a formula to
construct the asymptotic confidence interval only with knowledge of the sample, and
last we give two examples of distributions where our conditions are satisfied. In Chap-
ter 3 we conduct simulation studies with the complete works of William Shakespeare
and data generated from different underlying distributions to check the finite sample
performance of the derived asymptotic confidence interval. In Chapter 4 we use our
theoretical results to develop two methodologies for authorship detection. We further
apply them to analyze real twitter data and present the results. We postponed proofs
to Chapter 5, where details of proofs for the results in Chapter 2 can be found along
with several lemmas that may be of independent interest.

Before proceeding we introduce some notation. For two sequences of real numbers
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{a,} and {b,}, we write a,, ~ b, if a,,/b, — 1. We write |-| and [-] to denote the floor
and ceiling functions, respectively. We write 14 to to denote the indicator function
on set A. We write N (0, 1) to denote the standard normal distribution and Pois(\)
to denote a Poisson distribution with mean A\. We write 1.} to denote the indicator

function on event [---].



CHAPTER 2: NECESSARY AND SUFFICIENT CONDITIONS FOR
ASYMPTOTIC NORMALITY OF HIGHER ORDER TURING FORMULAE

2.1  Introduction

Turing formulae are estimators of the total probability /mass of letters observed
exactly r times in a random sample. It is not a conventional estimator as it estimates
a quantity that depends not only on the population, but on the random sample as well.
Though Turing’s intuitive explanation for the Good-Turing formula has been lost, see
Good [15], attempts to justify its use has never stopped and many applications have
been inspired in different fields. In this chapter we study the asymptotic behavior of
one modification of Turing formulae for any order and give the necessary and sufficient
conditions for it to enrich the literature. Our results allow for many situations that
were not covered by previously available sufficient conditions.

We begin by introducing our mathematical framework. Then the main theoretical
results are presented for the Poisson case and the Deterministic case, respectively,
and their definitions and schemes will be discussed in the following subsections. Two
theoretical distribution examples are given in the last subsection to demonstrate how
our asymptotic normality conditions can be satisfied.

The Poisson case is studied first as a foundation for proving the deterministic case,
nevertheless, it contains results of independent interest. Then the Deterministic case

is approximated by the Poisson case.
2.2 Mathematical Framework

Now we formulate our mathematical scheme in an alphabet context for a simple

fixed case.
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Let the alphabet A = {ay, as, as, ...} be a finite or countably infinite alphabet with

associated probability measure P, = {pam : a € A} for m = 1,2,3,.... If there

is a distribution P with P,, = P for every m, we say that the distribution is fixed.

Otherwise, we say that it is changing. In particular applications the letters of A may

correspond to species in an ecosystem, words in the English language, types of cancer
cells in a tumor, or another quantity of interest.

Let X1, X5, ..., X, be arandom sample on alphabet A with distribution P. For each

Z?:l I[Xi:a] —

a€ A lety, =" lix,=q be the sample count of letter a and let p, =

s

be the sample proportion of letter a. For r =0,1,2,...,n, let

Ny = Ly

acA

be the number of letters observed exactly r times in the sample, and let

o= Paly—r)

acA

be the total mass of all letters observed exactly r times in the sample. Define further,

forr=0,1,2,...,(n — 1),

T

N/
T == (r+1).

We call T) the rth order Turing formula. It is an estimator of .. We notice that
there are slightly different versions for Turing’s formula used in [24] and [25] for r > 1.
Specifically, they use T} = %(r + 1). Asymptotically there is no difference and we
use 77 for convenience. We note that 7 is the form that was originally introduced in
[15].

Our ultimate goal is to find conditions for asymptotic normality, specifically when



there exists a function g such that
g(n)(T} — ) > N(0,1).

2.3 Poisson Case

In this section we discuss two cases where the sample size is random and follows
a Poisson distribution. One case is when there is one Poisson distribution P on the
alphabet A, which we say that the distribution is fixed. The other case is when there
is a sequence of Poisson distributions P, on the alphabet A, which we say that the

distribution is changing.
2.3.1  Poisson Case with Fixed Distribution

We begin with the Poisson case with a fixed distribution, where the sample size
N ~ Pois(A\) and A — oo. Let y,(\) be the number of times that we saw letter a
in the sample. By Poisson thinning, these are independent Poisson random variables

with

Blya (V] = Apa-

Forr=0,1,2,...,n, let
N, =N, (\) = Z Lya(n)=r]
acA

be the number of letters observed exactly r times in the sample, and let

T =1 () = Zpal[ya(A)ﬂ“]
acA

be the total mass of all letters observed exactly r times in the sample. Define further,



forr =0, 1, 2,....,(n — 1),

NTJrl
A

T,=T.(\) = (r+1).

We call T, the rth order Turing formula. It is an estimator of 7.

Our goal is to find conditions for asymptotic normality.

Note that
e (pa)r
J— A a
E[N,] _a;e =
and
_ —A\Pa ()‘pa)rJrl
E[\r,] = ;e P —
Now set
AT (N) =7 (V) =) Y
aceA
where

Yo=(r+1) Ipaoy=rt1] — Aaljyan=r-

Y!s are independent random variables, because Y, is a function only of y, and they

are independent random variables. Since [y, (A) = 7] N [y, (A) =r + 1] = 0, we have

Y2 = (r+ 1% Ly oy=rs1) + NP2 00=1-



It follows that

r+1 r
a )\ a
E [Y,] e~ \Pa (APa) — Apae e ( pl ) =0
T r!
and
02,,\ = Var (Y,)
=E[Y/]
)\ . T'Jrl )\ . 7"+1
— <T+ 1) e—)\pa( D ) —f-)\pa@_)\p“( P )
7! 7!
)\ . T‘+1
=(r+ 1+ Apa) e‘Ap“—( P |) .
r!
Let
2 _ 2 _ —/\pa< a)ﬂrl
sy = 0a7,\—2(r+1~|—)\pa)e —,
acA acA

and note that
2= (r+1)2E[Ny] + (r+2) (r+ 1) E[N,o].

Now we give main results for this case.

Theorem 1. Assume that sy, — oo as A\ — oo. We have

lim s> Z e_kpa(/\pa)(”z)lp\pazﬁsﬂ =0 Ve>0

A—00
acA

if and only if

(2.1)



Corollary 1. If the conditions in Theorem and (2.1)) hold, then

—1‘>e)—>0 Ve > 0,

(i.c., 2653 1),

Corollary 2. Let
(33 = (r + 1)’ Noga + (r +2)(r + 1) Ny .

If the conditions in Theorem |1 hold, then (5x)? is a consistent estimator of s3, i.e.,
as A\ — 0o, for all e >0
(5,)°

2
Sy

-1

(

2.3.2  Poisson Case with Changing Distribution

>e)—>0.

Now we come to the Poisson case with a changing distribution. Consider a sequence
of positive real numbers {\,} such that A\, — co. We assume the sample size N,, ~
Pois(A,,), and the corresponding underlying distribution P,, = {p,., : a € A} where
A = {ay,a9,as,...} is a countably infinite alphabet. We are given a random sample
of size N,, on alphabet A with distribution P,.

Let Y (An) be the number of times that we see letter a in the sample. These are

independent Poisson random variables with

E[ya,n ()‘n)] = )\npa,n
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For r=0, 1, 2,..., let

Nr,n = Nhn(/\n) - Z ]‘[ya,n()\n)zr]
acA

be the number of letters observed exactly r times in the sample, and let

Trmn = Trn ()\n) = Zpa,nl[ya,n()\n):T]
acA

be the total mass of all letters observed exactly r times in the sample. Define further,

forr =0, 1, 2,...,(n-1),

Nfr—l—l,n

Tr,n = Tr,n (>\n> = \

(r+1).

We call T, ,, the rth order Turing formula. It is an estimator of 7, ,. Our goal is to

find conditions for asymptotic normality.

Note that
— —An a,n ()\npam’)r
E[N,,] —;46 e B
and
B A p )7‘+1
E )\TL | = )\npa,n( ni-a,n
[ 7, ] ;e rl
Now set



where

Ya,n = (/r + ]‘) ]‘[ya,n()\’n):T""l] - Anpavnl[ya,n()‘n):T]

are independent random variables. Since [yan (An) = 7] N [Yon (An) =7+ 1]

have

}/a2,n - (T + 1)2 ]‘[ya,n(An):""f’l] + )\zl,pz,nl[ya,n()\n):r]

It follows that

)\n a,n i )\n n r
E [Ya TL] = e_Anpa,n% _ Anpa ne—)\npam( p s ) _ 0
’ r! ’ r!
and
Tar, = Var (Yan)
=E[Y7]
>‘n a,n T >\n an T+l
= (7" —+ 1) e—Anpa,n ( % ) ) + Anpa ne—)\npa’n%
rl 7 r!
)\n a,n rH
= (T + 1+ /\npa,n) G_A"pa’"%
T
Let
rpen PaPan) ™
PR S T Y FEUE PR

acA acA

and note that

s, = (r+ 1)’ E[Npsin] + (r +2) (r + 1) E [Nyjan)]

n

11
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Note further that, in this case, Turing’s formula is unbiased and we have

BITa(0)] = 3 e en Pl g 1) 22

d
" acA
The main results for this case is given as follows.

Theorem 2. Assume that sy, — 00 as A\, — o0 and A\, — 00 as n — oo. We have
: -2 —AnDPa,n (r+2) _
7}1_{20 Sy, ;e (AnDan) Inppanzesy,] =0 Ve>0 (2.3)

if and only if

ﬁ (T (An) = Trn(An)) — N(0,1).

S>\n n—oo

Corollary 3. If the conditions in Theorem@ and (2.3) hold, then

°(

Tr,n ()\n)
Trr,n (An)

—1’><—:>—>0 Ve > 0,

(i.e., —szzgzg 21).

Corollary 4. Let
(5,)2 = (r + 1)®Noyy + (r +2)(r + 1)Nypo.

If the conditions in Theorem@ hold, then (5x,)? is a consistent estimator of s3_, i.e.,

as A\, — 0o, for all e >0

Proof. Since (r +1)? > 0 and (r + 2)(r + 1) > 0, the result is an application of
Lemma [7] O
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When s,, does not approach infinity we do not get asymptotic normality. Instead,
we get a Poisson distribution in the limit. We now give conditions for the Poisson

approximation in this case.

Theorem 3. Fiz r € {0,1,2,...}. Assume that sy,, — ¢ € (0,00) and set ¢* =

A/(r+1)% If [2.3) holds, then E[N,y1,) — ¢*, E[Nyy2,] — 0,

2
E (r)—\lflﬂmv\n) — c*) — 0, T)_\{_—nlm,n(/\n) LN c*, (2.4)

and

)\n d . %
mTr’n(ATJ — POIS(C )

2.4  Deterministic Case

In this section we move to the case where the sample size is deterministic, hereafter
called the Deterministic case. We consider situations when the underlying distribution
is both fixed and changing. Here when we say that the distribution is fixed, it means
that there is one P, for all m = 1,2,3,.... Otherwise, we say that the distribution
is changing.

2.4.1  Deterministic Case with Fixed Distribution
First we introduce the deterministic case when the underlying distribution is fixed.
Now consider the case of a deterministic sample size n. Without loss of generality

let C' = {Cy: A >0}, which is a Poisson process with rate 1, thus E[C)] = A. Let

y! (n) be the counts in the first n observations and let y,(\) be the counts in the first
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C'\ observations. For r =0,1,2, ..., let

= =

acA

= Palpm—r

acA

For r=0,1,2,...,(n — 1), let

It is readily checked that

( )Zp’"“ 1 —p,)"" and E[N]] :( )Zpa 1 —pa)"

acA acA

Its bias is given by

BT - ( ) > oot —pa) (pa - %) : (2.5)

acA

We now give our main results for this case.

Theorem 4. Fizr € {0,1,2,...}. Assume that s,, — o0 as n — oo and

In this case

lim s, 2 E e (npa) " pposes) =0 Ve >0 (2.6)
n—o0 -
acA
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of and only iof

L (Tl (n) = 7(n) & N(0,1).

Sy

Corollary 5. In the Poissonized case
o= +1)?E[Ney1] + (r+2) (r + 1) E[Nyya]
and in the deterministic case

()’ =(r+1)’E [N/ 4]+ (r+2) (r+ )E[N/,,].

Fizr € {0,1,2,...}. If s, — 00 as n — oo, then (s,)? ~ s2, i.e.

Corollary 6. If the conditions in Theorem hold, then (2.6)) if and only if

2T (n) — 7 (n)) % N(0,1). (2.7)

/ T
S’I’L

Corollary 7. If the conditions in Theorem and (2.7) hold, then

(

77 (n)

r

™ (n)

—1‘>e>—>0 Ve > 0,

Corollary 8. For the deterministic case let

sy = (r+1)°B[N/ ;1] + (r + 2)(r + 1)E[N/,,]

(én)Q = (7’ + 1)2N;+1 + (r + 2)(7" + 1)N7{+2‘
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If the conditions in Theorem || hold, (5,)* is a consistent estimator of s, i.e., as
n — oo, for alle >0

(5n)"

2
Sh

(

2.4.2  Deterministic Case with Changing Distribution

—1‘>€)—>0.

In this subsection we show results for Deterministic case when the underlying dis-
tribution is changing.

Consider the deterministic case of a fixed sample of size n. C'={C): A >0} is a
Poisson Process with rate 1, where E,,[Cy] = A. Let g ,(n) be the counts in the first
n observations and let y, () be the counts in the first C) observations.

Forr=0,1,2,..., let

n) = Ly, -

acA

n) = Panly, (-

acA

For r=0,1,2,...,(n — 1), let

It is readily checked that

( )Zp’"“ — Pa)"" and E[N],] ( )ZPM — Pan)" "

acA acA
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Its bias is given by

E (T, - ( ) > P = pan)” (pa,n - %) . (2.8)

acA

We now give our main results for asymptotic normality in the Deterministic case

with a changing distribution.

Theorem 5. Fizr € {0,1,2,...}. Assume that s, , — 00 as n — oo and

— =0

NLD
In this case

nh_}rgo S Z e P (0Pan) " Lppy v sesnn] =0 Ve >0 (2.9)
a€A
if and only if
n / / d
Sn,n ’ '

Corollary 9. In the Poissonized case
s2, =+ 1) E[Nin) + (r+2) (r + 1) E [Nrjan)
and in the deterministic case
(Sé,n)Q = (r+ 1)2 E [N;—H,n] +(r+2)(r+1)E [N;+2,n} :

If the conditions in Theorem@ hold, then (s, ,)* ~ sp ., i.c.

n,n’
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Corollary 10. If the conditions in Theorem@ hold, then (2.9)) if and only if

!
Sn,n

N(0,1). (2.11)

Corollary 11. If the conditions in Theorem[J hold, then (2.11)) if and only if
T/

P r,n(n)
(1)

rmn

-1

>e)—>0 Ve > 0,

(i.c., Znl) 2y,

T ma(n)

Corollary 12. For the deterministic case let

(sp.0)° = (r+1)’E[N/ ;)] + (r + 2)(r + 1)E[N/,,,,]

(8h,)> = (r+1)°N 1+ (r+2)(r+ )N} 5,..

n,n

If the conditions in Theorem@ hold, then (8),,)% is a consistent estimator of (s, ,)?,

i.e., as n — oo, for all e > 0

(8),)°

Gh)E !

(

In practical applications it is most useful to take &, in (2.10) as this can be

>e)—>0.

done without any knowledge of P,,. This leads to the following asymptotic confidence

interval

T! S T + S (2.12)
r,n ZO&/Q n Y r,n Za/2 n b .

where z,/9 is a number such that P(Z > z,/2) = o/2 with Z ~ N(0,1). We conduct

simulation studies in Chapter [3| mainly based on this result.

Theorem 6. Fiz r € {0,1,2,..}. Assume that s,, — ¢ € (0,00) and set ¢* =
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A/(r+1)% If [2.9) holds, then E[N],,,] = ¢*, E[N],,] =0,

2
n—r n d o .
E ( i c*) — 0, x5t and Ty, — Pois(c").

7r
r4+1 """ r+1"" r+1
For r = 0 this is Theorem 2 in [23]. See also [27] for related results in this case.

Note that the assumptions of Theorem [0 never hold for fixed distributions. This is

because, for such distributions, s,,, — ¢ € (0, 00) implies that (2.9) does not hold.
2.5 Example Distributions

In this section we give two examples to show how conditions of our main theorems

can be satisfied when the distribution is both fixed and changing, respectively.
2.5.1  Fixed Discrete Pareto distributions

Consider that f(z) = (Laﬂ where 5 > 0, « > 0 and x > 0. Let p; = f(k), where

z+1)
k=0,1,2,..

First we show that sy, — oo.

Proof. Note that s3 = (r + 1)?E[N,11] + (r + 2)(r + 1)E[N,12], so the result can be
shown if E[N, 1] or E[N, 2] goes to cc.

Since

B ()\pa)(T+1)
E[N, 1] = Ze Mo 28
= (r+1)!

oo )(r+1)

—Apy, (Ap
“ X

k=0

Let g\(x) = e 2" for x > 0. Since g}(z) = "¢+ (r + 1 — 2), it follows that

max ga(z) = gx(r + 1),

and gy (x) is increasing on (0, 7+ 1] and decreasing on (r+1, 00). Then the summands
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in E[N,;1] can be expressed by ﬁg,\(/\f(k‘)) Since

(r(Af(2)))" =

and

max gx(Af(z)) = gr(Af(z7)),

z>0

_1
where z* = (%) et — 1 for large enough A\. Thus for z > 0, gx(Af(z)) is increasing
n (0,z*) and decreasing on [z*, 00).

Therefore, by a version of Euler-Maclaurin Lemma, see Lemma 1.6 in [26],

i S ¢ Q)

A—00 —0 (7“ + 1)'

— lim = *>\f M d
A—oo o (r+1)!

= lim — —_—
rooo Jo P\ @) ) \@ Do) 1)

Changing variable t = A\ f(x) = (H’}% gives

(r+1) 0

L0
(/\5) ot / ot +1) d(t_a%l)
(T + ].) A8

_ ()‘5)““ A ot (r+1) =5
RCES /O £t
(AB)= /W

T+ Dl(a+1)
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Since a > 0,r > 0, we have r > a+r1 —1,ie r— QLH + 1 > 0. It follows that

AB ) > . 1
lim e ) dt = / et a ) dt = T(r — +1),
A—o0 Jo 0 a+1
which is well defined. Hence,
(r+1) - AB
im [ @M@y, A9 / e~ ) dt
Ao f (r+1)! A—oo (r+ DI(a+1) J
: (AB)=+1 1
1 r 1
Aingo(wrl)( + 1) (r atrl )
and
lim E[N,;1] « lim AT = 00, (2.13)
A—00 A—00
Similarly,

B ()\pa)(T+2)
B[N,y = Y e
acA (T’ - 2)

)(T-‘r?)

_Z *Apk T+2' :

. 1
andsmcer—a—ﬂ—l—2>0,

0 (r+2)

lim e AP —O\pk)
A—r00 (r+2)!

o [T e @)
- )\l—>oo 0 (r + 2) d
= lim (AB) =+ L(r—

A—oo (r+2) (a4 1)
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and thus,
)\11_}1210 E[N, 2] /\11_>r{>10 AT+ = 00, (2.14)
Therefore,
s3 N 00,
and
S\ — 00.
O

Then we show that % — 0.

Proof. Since

s (r+1)2E[N,41] n (r+2)(r + 1)E[N,49]

A A A ’

it follows from ([2.13]) and (2.14)) that

3 2 1)E|N,
lim 3 = gy CEDEWNea] o (04 2+ DE[No]

A—00 A—00 A A—00 A

. o . 1
x lim Aem 17t 4 lim Aeri—t
A—00 A—00

where =4~ — 1 < 0, so that
a+1



and therefore

By (2.13) and (2.14)) we can let

Sp = C\/(r + 1)2na%r1 +(r+2)(r+ 1)nﬁ+l,
where ¢ is a constant. Then

Sp >\ (r+ 1)271#1,

and
1
sy, (r 4+ 1)2nett
nn = Inn ’
) : ) 1
where by L’Hospital’s rule and Mot > 0
(T + 1)271%“ 1
lim ¢ = lim ¢(r + 1)n?@FD = oo,
n—o00 lnn n—o00
thus,
Sn
— = 00
Inn

Last, we show that for the Poisson case when A = n, if s,/Ilnn — oo, then

nh—glo 5.2 Z g "Pa (npa)(”ml[npazﬁn] =0 Ve>D0.
acA
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Proof.

where the last equality holds because for x > 0, e

j{:e_MM(npayT+m1Uma2wM
acA
= Z e " (npk)(rJr?) Linpy>esn)

=5 e (np) D e (M = es,)

00
- 2)
< Z e~ Pk (npk 7“+ Z 1[21M<npk<23+1M]

k=0 7=0
(o.9]
< Z 672JM(2J+1M (r+1) Z npkl[QJM<npk<27+1M]
j=0 k=0
e .
< Z 6—23M(2]+1M>(7‘+1)n
7=0
[e.e]
—n M Z 6—21M(2j+1)(r+1)
j=0
[e.e]
—n M Z 672J'M+M7M(2j+1)(r+1)
j=0

—nM"™ e fMZ (29-1)M 2j+1>(7’+1)

<nMr+1 _MZ —(27-1) (21+1)(7"+1)
7=0

—n MM Z 62r+16—2j (2j)(r+1)

=0

SnMrJrlefM Z 62r+167(r+1)(7, + 1)(r+1)7
=0

—a::cr+1

takes the maximal at z =
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7+ 1. Then let C' =37 e2r e~ (p 4 1)+

37_12 Z e " (npa)(H—Q) Lnpe>esn]
acA

<s;2n6_MM(T+1)C’

:CEQTLS_M/2€_M/2M(T_1),

where

€sn

—M/2 i) 0,

—€sn/2 _ elnn—esn/Z — 6lnn(l—

ne = ne

if P2 — oo; and
e M2 )= 5,

because M = es,, — 0.

Therefore,

lim s;,2 g e (npe) " L ppuses,] =0 Ve > 0.
n—oo -
acA

2.5.2  Changing Geometric Distributions

Now we consider a sequence of positive real numbers a,, such that a,, — oo and
an/n — 0. Let (e'/% — 1)e=%/% for x > 0 and py,, = fu(k) = (e'/* — 1)e~*/a where
k=1,2..

First we show that s, , — oo.

Proof. Note that s,.,, = \/(r + 1)?E[N,11,) + (r + 2)(r + 1)E[N,42,], so the result
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can be shown if E[N, 1 ,] or E[N,;2,] goes to co. Since

r+1
v (122)

rrDr

s )(TH)
k=

Z e~ Pk.n (npkm
(r+1)!

B [Nr-l—l,n] -
acA

—_

Let g(x) = e ®2"*! for 2 > 1. Since ¢'(z) = 2"e "™V (r + 1 — ), it follows that
max,~1 g(x) = g(r+1), and g(x) is increasing on (1, r+1] and decreasing on (r+1, 00).
Then the summands in E[N,;1,] can be expressed by ﬁ g(nfu(k)).

Since f,(x) is monotone decreasing, max,~1 g(nf,(z)) = g(nf.(z})), where =} =

—ap|/In(r +1) —nln(e*/* — solving r 4+ 1 =n(e/* — 1)e " =nf,(xr). An
In(r +1) —nln(e"/* —1)] by solving (e!en —1)e=*/ fa(z). And



x; — 00. Then
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npk )('I’Jrl)
3 — _npk n n
Ji BN 1] = fim 3o (el
k?i—l (r+1)
2 hm Z e_”pk,nw Wlth k‘* = L[L‘*J
n—00 (r+1)! " "
k=1
kX (r+1)
> lim / pnfu@) (Wn(@)" 77 (2.15)
T n—oo 1 (’/“ -+ ]_)
nr+1 k il .
— @) (£, () d
i gy )
n(el/an —1)e~1/an
= lim — / te”tdt with t = nf,(z)
n—00 (7” + 1)' n(el/an_l)e—k;g/an "
. (07% . n(el/a"—l)eil/a” r —t
= lim ' lim te " dt
a, n(el/a"—l)efl/“"
> lim ' / tre " dt (2.16)
n—reo (T + 1) el/an (r+1)
a l/an 1) —1/an
= lim -  lim / te "t dt (2.17)
n—00 (7“ —+ 1) n— 1/an (r41)
a
n—oo (1 +1)! /r+1 ( )
= lim —~— 1 2.1
nl1_>ngo(r+1)!1“(r+1,'r’+ ) (2.19)
= lim a,c; (2.20)
n—00
= 007

where (2.16)) holds because n(e'/

e~ 1/an — n(l— 6_1/“") — oo with n/a, — 0;



and with nf,(z})=r+1land 0 < R, <1,

nfulet) < nfalk) = nfalat — Ry)
= n(et/o — 1)(6_90:1/(1"61%"/@")
= /0 (n f(a7,))
<o, ()

= elan(r 4 1).

Similarly,
anp .
A, PNzl 2 g G T 24 2) = g aney = 00

2
Therefore, s;,, — oo and s, , — 0.

Then we show that s, ,/y/n — 0.

2
T,n

(r+1)2E[N,

(r+2)(r+1)E[Nr42.n]

+17n] + hmn%oo

. . S .
Proof. Since lim,, ;o =* = lim,

n

n
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(2.21)

, We can
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(npk,n)(TJrl)

oo then

show each limit piece goes to 0. First, let h(k) = e "Pkn

o0 P (e )(Hl)
—NPk,n n
lim E[Nr—i—l,n] — =1°€ (r+1)!
n— o0 n n— oo n
n—00 n
1
o S R) 4 3 gy POR) + B(Ln)) + h([23])
T n—oo n
_ S5 by da+ [ h(w) da + 2h ()
< tim [7° h(x) da + 2h(x,)
T n—oo n
—nfn(z) (nfn(z)) (r+1) d 9 —nfn(z}) (nfn(xZ))(T+ )
— lim he G O G
n—00 n n—00 n
a n(el/an —1)e=1/an
_ n r_—t
nl—>oo—n(7“—{—]_) / the " dt

o (7’ + 1)(r+1) Qefn(r+1)
1m

=0.

Now we show how the last line holds. By the assumption that a, /n — 0,

a n(el/an_l)e—l/an
lim ————— / tret dt
n—oo n(r + 1) 0

1 n(et/an —1)e~1/an
= hm — 1m/ tre tdt

= l‘m i t?"e—t dt




30

and

(r+ 1) + 1) 2e7nr+1)

li =0.
noboo (r+1)! n
Similarly, we can obtain that lim,, . w = 0.
Therefore, s,,,/v/n — 0. O
Last we show that
nh_g)lo Sy Z e Pk (npk,n)(”rz)1[npk’n265m] =0 Ve>0 (2.22)
k=1

if and only if the sequence a,, satisfies the following conditions: 0 < a,, < n/(r + 1),

a, — oo and a,/n — 0.

Proof. For all ¢ > 0 and = > 1 let h(z) = e “2" 21>, ). Since max,-1 h(z) =
h(r +2), and h(x) is increasing on (1,7 + 2] and decreasing on (r + 2,00). Then the
summands in can be expressed by h(nf,(k)).

Since f,,(x) is monotone decreasing, max,~1 h(nf,(z)) = h(nf.(x))), where z, =
—a, In ((r +2)a,/n) with 0 < a, < n/(r +2) by solving r + 2 = n(a;le~%/) =

nfn(x). As lim, oo nfn(z) = lim, %e*‘”/a" = oo for fixed x, we have

lim A(nf,(z)) = lim e_”f"(x)(nfn(x))(TJrz)1[nfn(x)268m} =0.

n—o0 n—oo

Meanwhile, with nf,(2),) =7+ 2 and s,, — 00, lim, o0 1jp125es,,] = 0, thus,

lim A(nf,(2),)) = lim e "2 (r +2)0 1 o0 5= 0.

n—o0 n—oo



Then by Euler-Maclaurin lemma, see Lemma 1.6 in [26], Ve > 0

oo
: —2 —NPk.n r+2

lim 5.2 e () TP s,
n—00 Pt

= lim s ? / e (0 f ()" Lg (2200, do

n—oo 1

n(el/an —1)e~1/an
= lim ans;ﬁ / e_tt(r—i_l)]-[tZesr,n] dt  with t =nf,(x).
0

n—o0
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(2.23)

Here we need to consider two cases as follows. If n(e/ —1)e ™V < es,.,,, ([2.23) =0

with Lyses, ) = 0. If n(et/® — 1)e=Van > es, .. ([2:23) is equivalent to

n—oo ST,TL

n 61/a"— e—l/an
. G ( Y —ty(r+1)
lim — e 't dt.

Sr,n

As in (2.20) and (2.21)) we have

lim St = lim (r + 1)’E[Nrs10) + (r + 2)(r + DE[Nry2,]
n—00 n—00 a,
> lim (r+1)%anc, + lim (1 +2)(r + L)ancs
n—o00 an, n—o00 Qn

=(r+ 1)201 +(r+2)(r+1)cy = cs,

. . a 1
ie., lim, . - < ot Now

=00 Sr,n €Sp.n
1 o0
< lim — 1) gt = 0,
n—oo C3 €S m

where ([2.24)) holds by the following lemma.

(2.24)

]

(Note: Euler-Maclaurin Lemma: Let ¢, be a sequence of positive real numbers
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and ¢, — oo. If f(z) is an integrable function, then

o0

lim f(z)dx =0.

Cn—00
mn Cn

Proof. Since fcio f@)de = [, [(2)le, 00 (@) dz, let fo(z) = f(2)l}, o) (x), where
¢, > 0 and ¢, — 0o. Also we have f,(x) < |f(x)| for all z and f(x) is integrable, so

does |f(z)|. Now by Lebesgue’s dominated convergence theorem for

nh_)rrolo an(x) dx:AJL%fn(x) dx:/Rnh_)rgOf(x)l[cmoo)(x) dx =0,

where the last equality holds because 15 oo)(2) = 0 for large enough n and any fixed

x.) O



CHAPTER 3: SIMULATION STUDY

In this section we perform two simulation studies to check the finite sample per-
formance of the confidence interval in (2.12)), one with data generated from the the-

oretical distributions and another with the real data as the theoretical population.
3.1  Theoretical Data Simulation Methodology and Results

To better understand how asymptotic normality for Turing formulae works, we
perform simulations studies under a variety of distributions and for a variety of sample
sizes. Three different types of distribution are considered: the Poisson distribution,
the geometric distribution and the discrete Pareto distribution. For each distribution
and each choice of the parameters, we simulate samples of size n from 1 to 1000
with increments of 20. After 2000 iterations we calculate the accuracy ratio for the
estimator falling inside the 95% confidence interval with results given in Figure [3.1]
The accuracy ratio should be close to 0.95 if the asymptotic normality works well.

The results are shown in Figure 3.1} Plots of the accuracy ratio of the higher order
Turing Formulae at » = 0, 3,5 are presented. The x-axis is the sample size and the
y-axis is the accuracy ratio calculated. The top line is the distribution name and the
legends give values of different parameter assigned. The horizontal line at 0.95 is for
comparison.

In those three distributions considered, we first consider the Poisson distribution.

The probability mass function of a discrete Poisson random variable X is P(X =

k) = /\k;? for k£ = 0,1,2,... with parameter A > 0. The Poisson distribution

has the lightest tail among those three distributions because the moment generating

function of any Poisson random variables is finite for all £ > 0. We choose parameter
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A = 1,5,10. By the fact that A = E[X] = Var[X], the larger ) is, the heavier the
tails are.

Next is the geometric distribution. The probability mass function of a geometrically
distributed discrete random variable X is P(X = k) = (1 — p)¥p for k = 0,1,2,. ..
with parameter 0 < p < 1. By the fact that the moment generating function of the
geometric distribution is finite for ¢ < — In(1—p) and infinite otherwise, the geometric
distribution has intermediate exponential tails. We choose p = 0.1,0.25,0.5,0.75,0.9,
and smaller parameter p indicates heavier tails.

Last, we consider the discrete Pareto distribution of the random variable X = |Y|,
where Y has the Pareto probability density function f(y) = ST for y > 1 and
with parameter o > 0. The discrete Pareto distribution with finite number of finite
moments has polynomial heavy tails, which is heavier than the exponential tails. We
choose @ = 0.5, 1.5, 2, and smaller values of o implies heavier tails.

The plots shows that for discrete Pareto distributions the simulation performs
better, which suggests that the asymptotic normality seems to work better for heavy

tailed distributions.
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Figure 3.1: Plots of simulation study for data generated from theoretical distributions.

3.2 Literature Work Simulation Methodology and Results

In this simulation study we took all of the words in the complete works of William
Shakespeare as our population. The data is downloaded from http://shakespeare.mit.edu.
We include the titles of the works, since we believe that the titles also contain the
word usage information for the population. In total there are 930,593 words. Ignoring
repetition, it has 28,857 unique words, where we consider words with and without
contractions are two different words.

Our alphabet A is comprised of each of these unique words. For a word a € A, the
probability p, is the number of times that it appears in the population divided by

the size of the population. The most frequent word is “the”, which has a probability
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of 0.031812. There are 12667 words that appear only once. They have a probability
of 1/930593 ~ 1075. For a given order r and sample size n, we sampled N = 1000
samples of size n. All sampling was done with replacement. For each sample, we
calculated the confidence interval in at level & = 0.05 and the true value of
7, .- We then found the proportion of the samples for which the true value is contained
in the confidence interval.

Plots of these proportions for several choices of n and r are given in Figure
and Figure In the plots the x-axis represents the sample size, where sample size
increases from 100 to 1000 with increments of 100, and sample size increases from
1000 to 3000 with increments of 250. Plot (a) shows results for » = 0,1 and 2, and
plot (b) shows results for r = 4,5 and 6. These plots should be close to the horizontal
line at 0.95. We can see that they are generally close to this value. However, for

larger values of r, we typically need larger sample sizes.

1.00 === 1.00
0.95 1= et S 0.95
0.90 A 0.90 A
0.85 A 0.85 A
0.80 - 0.804 i
0.75 0.75
0.70 - 0704 1
—_—— r—o i
0.659 r=1 0.659 |
.......... r=2
0.60 T T T T T T T 0.60 T T T T T T T
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
(a) (b)

Figure 3.2: Plots of simulation study with data from the complete works of William
Shakespeare.



CHAPTER 4: DATA APPLICATIONS

One of the main applications of our results is authorship attribution, i.e., whether
we can detect the difference between writing samples from two different authors. We
propose two methodologies based on our theoretical results, and illustrate them with
tweet datasets from [28]. This dataset contains tweets of the top 20 popular twitter
users with the most followers in 2017. We randomly select and analyze tweets from

two users to show preliminary results and then analyze tweets from the top 5 users.
4.1  Data Application Methodology

In the first methodology we begin by constructing 95% asymptotic confidence in-
tervals for 7, , for a fixed n and different choices of r with tweet samples from two
authors separately, and for all results we let » = 1,2,3,...,7. Then we check the
overlaps of two plotted asymptotic confidence intervals: a lot of overlap suggests that
the datasets are from the same author, while little overlap suggests that the datasets
are from different authors.

In the second methodology we perform a statistical test to check if two tweet
samples come from the same author. The first dataset is treated as the 'corpus set’
to construct an asymptotic confidence interval, and the second dataset is treated as
the ’testing set’ to calculate detecting values, denoted by D,., for different choices of

r, where for r =0,1,2,...,(n — 1),

D — sample count of words that are observed r times in corpus set

I

sample size of testing set

and repetition in the sample count is included. When r = 0, the numerator in D,

is just the number of new words that are not observed in the corpus set. Then the
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detecting values are compared with the asymptotic confidence interval bounds. If
most of the test points fall inside the confidence interval, it suggests that the datasets
are from the same author; while if most of the test points fall outside the confidence

interval, it suggests that the datasets are from different authors.
4.2 Data Application Results

First, we analyze tweets from Ariana Grande and Jimmy Fallon. For both datasets
we put tweets together from each author ignoring punctuation, capitalization and
URLs. In total, the dataset for Ariana Grande contains 52647 words and the dataset
for Jimmy Fallon contains 36365 words.

We begin by randomly dividing each dataset into two parts and comparing the
asymptotic confidence intervals constructed from the two random parts from the
same author. The results are shown in Figure A and B are comparisons of the
asymptotic confidence intervals constructed from two random parts from tweets of
Ariana Grande and Jimmy Fallon respectively; C is a comparison of the asymptotic
confidence intervals constructed from full tweet datasets of Ariana Grande and Jimmy
Fallon. A and B with a lot of overlap for the asymptotic confidence intervals. Then
we compare the asymptotic confidence interval from the full datasets from those two

different authors in [4.1] C with only little overlap.

A B C
0.25 0.200
—Ariana Grande part 1 v —Jimmy Fallon part 1 0.20 —Ariana Grande
---Ariana Grande part 2 0.175 --- Jimmy Fallon part 2 ' === Jimmy Fallon
0.20
0.150
0 9] £20.15
g '§0.125 g
3 g0.100 80.10
9 g 0.075 g
0.050 0.05
0.025 — -
0.000 0.00
01 2 3 456 7 012 3 456 7 01 2 3 456 7
r value r value r value

Figure 4.1: Plots of interval comparison between two twitter account users

Then we use one of the random parts from each author as the corpus dataset to
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construct the asymptotic confidence intervals and the other as the testing dataset
to draw the detecting points. Then we use the full dataset from each author as the
corpus dataset to construct the asymptotic confidence intervals and the full dataset
from the other author as the testing dataset to draw the detecting points. From the
first and fourth plot in Figure 4.2] we can see that most of the detecting points fall
inside or on the boundary of the asymptotic confidence interval, which indicates the
testing dataset is from the same author; while some or most of the detecting points fall
outside of the asymptotic confidence interval in the second and third plot in Figure
[4.2] which indicates the testing dataset is from a different author. We also notice
that at » = 0 all detecting points are outside of the asymptotic confidence interval,
which does not give enough information to tell the author of the dataset, however,
authorship can be attributed if we consider r with higher values.

We would also like to have more datasets to see how our methodology performs,
so we analyze tweets from the top 5 twitter account users by then, including Katy
Perry, Justin Bieber, Rihanna, Barack Obama and Taylor Swift.

First, we randomly divide dataset from each author into two parts with the same
number of words. We treat one random part from one author as the corpus to
construct the asymptotic confidence intervals for r valued from 0 to 7, shown as the
black solid lines in Figure and as the black dashed lines in Figure [4.4]

Then we use the other random part from the same author to construct another
asymptotic confidence intervals for different values of r, shown in Figure 4.3| as the
green dashed line in the diagonal plots. And we use the full datasets from other
authors to construct asymptotic confidence intervals shown in Figure [4.3| as the green
dashed line in the off diagonal plots. From the plots we can see compared with the
diagonal plots, a majority of the off diagonal plots have less overlaps, indicating data
for the diagonal plots are from the same author and the off diagonal ones are not.

Next we the other random part from the same author and the full datasets from
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Figure 4.2: Plots of statistical test for two twitter account users.

other authors to calculate the detecting points, shown in Figure [£.4 Similarly, in
the diagonal plots most of the detecting points are inside the asymptotic confidence
intervals, indicating the data are from the same author; while in the off diagonal plots
there are more detecting points outside the asymptotic confidence intervals, indicating
the data are from different authors. Again we notice that at r = 0 all detecting points
are not shown in the plots due to range deduction of y-axis but they are all outside
of the asymptotic confidence intervals, which does not give enough information to

tell the author of the dataset, however, authorship can be attributed if we consider r
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with higher values.
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Figure 4.3: Plots of interval comparison between top 5 twitter users.
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Figure 4.4: Plots of statistical test for top 5 twitter users.



CHAPTER 5: PROOFS

In this chapter we give our proofs. These requires several lemmas, which give

interesting results about the limit theorems for infinite sums and about the Turing

formulae and related quantities in the alphabet scheme. These lemmas may be of
independent interest.

5.1  Limit Theorems for Infinite Sums

We begin with an extension of the classical Lindeberg-Feller central limit theorem
to the case of infinite triangular arrays.

Proposition 1. Suppose that for each n € N, X,1, X,2, X,3,

. 18 a sequence of
independent random variables each having a finite variance and satisfying

E[X,] =0, Var[X,]=02 <00, &= Zafn < 00,
i=1

with liminf s, > 0. We have

: —2 2 _
lim s, Z/ X2dP =0 VYe>0
=1 |Xni|265n

if and only if both

iz Xni 4 N(0,1)

2
0, n—oo
and  sup —+ —— 0.

n

Sn i

Proof. Since s2 < 0o, there exists r, such that Y% 02, < L. Let 572

Note that 5% < s2 < s*2 + 1/n and thus that liminf s, > 0.

By the usual Lindeberg-Feller Central Limit Theorem (see Theorem 27.2 and the



discussions on page 361 in [29]),

lim 5772 / X2dP=0 VYe>0
i=1 7 | Xnil>es

n—oo
if and only if

1'“” Xni
2t X 4 N(0,1)

and

2
g n—00
max —% 0
1<rp 52

First we claim that (5.3 holds if and only if

o n—o00
sup —4 0

( n

It is clear that (5.3) follows from ([5.4)). Now assume that (5.3)) holds. Since

2 2 02
2. ,
= max{max , Su
1<rp Sn i>Tn n
2 1

sup %},

1>7n n

( n
< max{max —*,
1<rp 32

and

. 1
lim sup — = lim — =0
=00 j5p, NSL  N—00 NS;

by the assumption that s, — oo, as n — 0o, it follows that

':0.

n—oo STL

44

(5.1)

(5.3)

(5.4)
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By Chebyshev’s inequality

. >
Sn

1
n
2 ox2 — 2%2)
€255 €25k

Since

Tn oo 1
2 2 2 *2
Sp = E Oni + E Oni < Sn + -,
— n
1=

=7y

then

n =

1
2> 8 — .
n

. . —
Since as n — 0o, s2 — oo and £ — 0, it follows that s3> === oo, and

Thus
o0
Lz Xni 1,
Sn
Since
(e’e} Tn o8] .
21:1 Xni _ i=1 Xni + Ei:rn—i-l X
* - * ¥ )

by Slutsky’s Theorem, (5.2)) holds if and only if

Lt Xni 4, N(0,1). (5.5)

*
Sn
Since

2 *2 o0 2 1
%:5:2+Zi+;1%§1+%%_°°)
sk 5 sk sk

1,



46

and
2
S
n > 17
8*2 -
n
we have
S n—00
n 1,
5*2
n
and
STL n—oo
— — 1.
8*
n

Again by Slutsky’s theorem, ([5.5)) is equivalent to

Lt Xni 4, N(0,1). (5.6)

Sn

Similarly, (5.1) holds if and only if

Tn
lim s,%> / X2dP =0 Ve>0. (5.7)
n—oo i—1 |Xm-\2€s7*1
Next we claim that for any € > 0 and large enough n, | X,;| > es? if and only if there
exists € such that |X,;| > €s,. Since s2 > s if |X,;| > e€s,, then | X,;| > €'s},

where ¢ = e¢. On the other hand, if |X,;| > es*, let s> — s*? = d,,, then for large

1 2 1
| Xoi| > ey/s2 —d,, > 6\/8% — —>e€\/s2 — %n = \/;esn.
n
82

The third inequality holds because we assume s? 2% 50, which means that % <2

enough n

for large enough n. So we can choose ¢ = \/ge. Hence, (5.7)) is equivalent to

lim s,%> / X2dP =0 Ve>0. (5.8)
n—oo i=1 |Xni‘2€3n



Further, (5.8) is also equivalent to

: —2 2 _
lim s, Z/ X2dP =0 Ve>0,
=1 |Xni‘255n

because

0
lim 87;2 E / Xfde
n—oo i=1 |Xni‘255n

I K —2 2 —2 2
= lim (s, > / X2dP 45,2 > / Xm.dP>
i=1 |X |Xni|2€5n

ni|2€5n i=rp+1
Tn e’}
< lim (s,%) / XpdP+s,> Y on
e i=1 | Xni[Zesn i=rn+1
Tn 1
< lim | s,? E / X2dP + 5,2~
n—eo i=1 I—X'nz|2€5n n

Tn 1
e \ " i=1 /IXmlzesn m nggo(s” n)

= lim | s, / XZ2dP | +0
oo ZZ:; |Xni|265n
= lim | s, /

XﬁidP> :

ni | >€eSn

This completes the proof.
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(5.9)

O

We will also need a Poisson approximation for sums of infinitely many independent

Bernoulli random variables.

Proposition 2. Suppose that for each n € N, X,1, X,2, Xy3, ...

is a sequence of

independent random variables such that P(X,, = 1) = 1 — P(Xpx = 1) = pk. If
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Supy, Pnk — 0 and 220:1 Pnk — A€ (O, OO), then
Sy = ZX”’“ KN Pois()).
k=1

Proof. Note that the moment generating function of .5, is given by

M, (t) = exp {Zlog (1 + (et — 1)pnk)} )

k=1

For fixed t and large enough n, (' — 1) sup, pur < 1, thus by the Taylor expansion
of the logarithm (see e.g. 4.1.24 in [30]) and the remainder theorem for alternating

series, it follows that

M,(t) < exp {(et - 1) ank} — exp{A(e’ = 1)}.

k=1

Similarly

M,(t) > exp {(et -1) ank — 5(e' —1)? Zpik}

> exp {(et —1) ank — 5(et — 1) s%p(pnk) ank}
k=1 k=1
— exp{\(e' — 1)}

and the result follows. O

5.2  Proofs for Section ﬂ

5.2.1  Proofs for Section |2.3.1

Lemma 1. Let X,, and Y, be two sequences of random variables. If X,Y, converges

to a distribution and X,, 2 o0, then Y, 0.

Proof. Since X,, 2 oo, by continuous mapping theorem 50. Y, = XLXnYn, SO

1
Xn

if X,,Y, LN N(0,1), by Slutsky’s theorem Y, 0. O
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Lemma 2. Assume that sy — oo as A — oo. If

2T 0 —m(N) —s N(0,1), (5.10)

Sx A—00
then

E[Nr‘Jrl]
SX

— 00.

Proof. Since

Y ZE a(N)=r+2]
aceA

:ZP(ya<)‘):T+2)

acA
=S
(r+2) (r+ 2

acA

plugging E[N, ] into s3 gives that

$3 =+ 1)?E[Nya] + (r+2) (r + 1) E[N,y2]

3 )\p )7"+2
=(r+1)°E[Nui]+(r+2)(r+1 e NPa)
(DBl 2) (4 D e Cee
Then for all € > 0
)\ . r—42
S=r+1’E[N]+(r+1)) e—Apa%hmqw
~— (r+1)!
gy (Aa)™?
+ (’I"‘l‘ 1)26 D ml[,\pazesﬂ

acA

A N r+2
<+ DB+ + DBl Noar] + 3 e Dy

acA
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and dividing s3 on both sides gives that

)\ . r+2
1< 8;2 (7’ + 1)2 E [Nr—f—l] + 8;1(7‘ + l)EE [Nr+1] + 8;2 Z G_Ap“%h,\pazes)\]
aeA (r+1)!
B[Ny ] (r+ 1 —2 A -
= 1 pa 1 €S .
(r+1) " s +5,2) e [Apa>es)]

acA

Assume that sy — oo as n — oo. If (5.10) holds, it follows by Theorem |1| that for all

e>0

lim
A—00

1 Dt AL
(T+ ) Sx ) +8)\ Ze T+1 [Apa>esy]

acA

E|N, 1

= lim (r + 1) [Nos] (T+ —i—e>
A—00 Sx Sx

E[N, 1] (7‘+1 ) +2

> 1.

Since r + 1 € (0,00), % — 0, and so we argue by contradiction to show that
E[NT+1]
Sx

— 00. Suppose that

E[N,
liminfM =c € [0,00).
A Sx

Then for all € > 0 and some ¢ € [0, 00)

E|N, 1
liminf(r + 1) [N (r i + e) =(r+1)ec
A Sa SH

Taking 0 < € < gives that (r + 1)ec < 1. This is a contradiction. Thus, this

_ 1
c(r+1)

completes the proof of the lemma. O

Lemma 3. Fort=20,1,2,...

Var[N;| < E[NV].
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Proof. Since for t =0,1,2, ...

Ne= yaoo=1,

acA

and the indicator function is only of independent random variables y,(\)’s, it follows

that

Var[V;] = Var

> 1[ya<A>=t1]

acA

=) Var [Ty, (0=

acA

<D E[1f,00-0]

acA

=Y B[l =]

acA

=E [Z 1[ya(A)t]]

acA
= E[Nt],
and this completes the proof of this lemma. n

Lemma 4. Forc,d >0 and c+d > 0. Let

V = B[N, 1] + dE[N,.]

~

V= CNr—H + dNT+2.

We have

A ~

Var[V] < 2(c + d)E[V].
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Further, if V. — 00 as A — o0, V is a consistent estimator of V, i.e.,

<<
I

Proof. Set k = 2(c + d). By plugging in V and V in the left hand side and the right

hand side we get

~

Var[V] = Var[cN, 11 + dN, 2]
=c®Var[N,;1] + d*Var[N, o] + 2cdCov[N, 1, N, 2]
<2c*Var[N, 1] + 2d*Var[N, ;o] + 2cdCov[N, 1, N, 12]
<2c*Var[N, 1] + 2d*Var[N, ] + 2cd(Var[N,; 1] + Var[N,])
=2(c + d)cVar[N,41] + 2(c + d)dVar[N, ]
=rcVar[N,41] + kdVar[N, o]
<kCE[N,41] + kdE[N, 42|

A

=k E[V],

where the last inequality follows by Lemma |3[ and the fourth line holds by the fact

that

Cov(X,Y) < Var(X) + Var(Y),

because

Var(X —Y) = Var(X) + Var(Y) — 2Cov(X,Y) > 0.



Now by Chebyshev’s inequality, for all € > 0

where the last inequality holds because ¢, d, N, 11, Ny1o > 0.

The proof of this lemma is completed.

Proof of Theorem[I. For any k > 0, let f(z) = x¥e™® for x > 0. Since
F (@) = (k! — 1)ate s,
it follows that

max f(z) = f(k) = k¥e™".

x>0

Hence,

v ()\pa)rJrl

rl

S (T‘+ 14+ )\pa)r+2€—(r+1+)\pa)€r+1

0<opy=(r+1+Apae

S (’l“ + 2)r+2€—(r+2)€r+1

= (r+2) e !

It follows that since

lim sy = oo,
A—00

53
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we have

2
ga,A

lim sup = 0.

A= ge A Sy

From here Proposition [I| implies that asymptotic normality is equivalent to

lim s3° ) B[V 1y, 5] =0 Ve > 0. (5.11)

A—00
acA

We now show that this is equivalent to our condition (2.1). Since sy — 0o, we can

take A large enough that es), > (r 4+ 1). Recall that

—\pg ify,(N) =7
Yo=q r+1 ify,(N)=r+1

0 otherwise

Thus, for such A, if |Y,| > esy, then Y, = —Ap,, ya(A) =7, and Y2 = A\?p2. We have
1Yol = s3] = [Ya = —Apa] 0 [V = €53] = [0a(A) = 7] 1 Ppe > s3],
It follows that

E Y vazes)] = APilppeses ) P(ya =7) = €
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Proof of Corollary [l Note that

N = Iy

acA

= palp.o-

acA

N,
Tr = Tr <)\) = T)\+1 (T + 1)

sy = (r+ 1)’ E[Nsa] + (r +2) (r + 1) E[N,].

Since we assume that s) 27%% 0 and by Lemma ,
E[N,11] — oc. (5.12)

Now for all e > 0

Nr—l—l
P ~1
(‘ E[NrJrl]

~ ) -7 (’E][j\;:l] -F [Eﬁﬁ” - ) ’

and by Chebyshev’s inequality

(‘ N’I’+1
7’+1

It follows from ((5.13]) and Lemma |3| that for all e > 0

(5.13)

_ [ Ny H >€> < Var [E[NTH]} _ Var[N, 1] '
E[N, 1] B € €2 (E[N,41))*

<’ erll ' g ) =2 gg&:ﬂf B 62E{J1Vr+1]’

and together with E [N,;] — oo,

. NrJrl
lim P —1| > =0
i 2 (gt -1 =) =0
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ie.,

Nr+1 p
—_— =1 5.14
E[Nr-i-l] ( )

Since

NrJrl _ E[Nr+1] Nr+1
S\ sy E[Np]

by continuous mapping theorem Lemma [2| and (5.14)) implies that

Since 7+ 1 € (0, 00),

N, 1
i(r+ )g
SX

Now plugging in

NLO) _ Nealr+1) 5

SX SX

By the symmetry of Normal distribution (5.10) implies that

2 (m(\) = To(N) = N(0,1), (5.15)

Sx A—00
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and so

Since

AT,
") 2, o,
SX
it follows from Lemma [ that
7Tr(/\) p
-1 0
oy
Therefore,
LYz
r(A)

]

Proof of Corollary[g. Since (r +1)*> > 0 and (r + 2)(r + 1) > 0, the result is an

application of Lemma [ O

5.2.2  Proofs for Section [2.3.2

Lemma 5. Assume that sy — oo as A — oco. If

M On) = Ten()) —s N(0, 1), (5.16)

S\, Anp—00
then

E[Nr—i-l,n]
S)

n
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Proof. Since

Nyy2,n] Z E [1jyo0)=r+2]]

acA

= Z P (Yan(An) =7 +2)
acA

- Z _)\npa n npa n)r+2
= (r+ 2)

plugging E[N, 2] into s3 = gives that

§2 = (r+1)°E[Npyan) + (r +2) (r + 1) E[Nypo,)]
r+2

= 4+ D ENep + r+2) (r 1) Y e—wa,n%
acA :

Then for all e > 0

2 1 2 E N 1 —AnDa,n ()\npa’n)T‘FQ 1
2, =+ P E [Ny + (ot 1) S ertren Cnbun) 2y
= (r+1)!
—AnPa,n ()\npavn)r+2
+(r+1) 2;46 be Wl[xnpa,@e%]
ac
2 A npa n) 2
S (r + 1) E[NT"F]-/”:I + (/r. + ]‘>€8)\n 7"‘1‘]- n + Z —hnban 1) 1[)\npa n>55)\n]7

acA
and dividing s3 ~on both sides gives that

r+2

— — — — ATL a,n
1< 82 (r+ 1)’ E[Npsan] 483 (0 + 1)eB [Nog1n] + 557 Ze Anpa’n%hknpamanl
acA )

E[NrJrl n] T+ 1 —92 —\ ()‘npa n>r+2
— 1 ) nPa,n ) 1 es .
(r+1) o 5 +e) 455 ;46 Tl ) TPerenzes]

n

Assume that sy, — oo as n — oo. If ((5.16) holds, it follows by Theorem [2| that for
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all e >0

. E[N,j1n] (741 _9 ) (AnPan) 2

1 ]_ ? nPa,n ’ 1 s
Jim (r+1) o . +e) + 55 ;46 Tl )T epenzes]

E[N,i1n 1
= lim (r+1) [ +1’]<T+ +5>
Ap—>00 Sx, Sx,

> 1.

Since r + 1 € (0, 00), 7:—1 — 0, and so we argue by contradiction to show that

M — 00. Suppose that

An

lim inf —E[Nrﬂ’n]

=c € [0,00).
1| - ¢ € [0, 00)

Then for all € > 0 and some ¢ € [0, )

B[N, i1, 1
liminf(r + 1) Mol <T + + e) = (r + 1)ec.
An Sxn, S,

Taking 0 < € < ﬁ gives that (r + 1)ec < 1. This is a contradiction. Thus, this

completes the proof. O

Lemma 6. fort=0,1,2, ...
Var[Nt,n] S E[Nt’n]

Proof. Since for t =0,1,2, ...

Nt’n - Z 1[ya,n(>\7l):t]7
acA

and the indicator function is only of independent random variables v, (A,)’s, it fol-
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lows that

Var[N; | = Var

> 1[ya,n<xn>:t1]

acA

- ZV&I‘ [1[ya,n(>‘n):tﬂ

acA

2
S ZE |:1[ya,n(>‘n):t]i|

acA

= B [Lpaer=t]

acA

=B [Z 1[ya,n(>\n)t}]

acA

= E[Nt,n]a

and this completes the proof of the lemma. n

Lemma 7. Forc,d >0 and c+d > 0. Let

Mn = CE[NT+1,H] + dE[NT‘F?’”]

~

Mn = CNr—l—l,n + dNr+2,n-
We have

Var[M,] < 2(c + d)E[M,,).

Further, if M, — oo as A\, — oo, M, is a consistent estimator of M,, i.e.,

=
!

Proof. Set k = 2(c + d). By plugging M, in the left hand side and the right hand
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side, we have

~

Var[M,] =Var[cN, 11, + dN,12,]
:c2Var[Nr+17n] + dQVar[Ner] + 2¢dCov[N, 41,0, Nrto4)
§202Var[Nr+17n] + 2d2Var[Nr+2,n] + 2¢dCov[Ny 41, Niton)
<2¢*Var|N,11.] + 2d*Var[N,y2.,] + 2cd(Var[N,11 ] + Var[N,12.,])
=2(c + d)cVar[N,41,,] + 2(c + d)dVar|[N, 42,
=rcVar[Ny41,) + kdVar[N,4o.,]
<KCE[Ny 115 + KAE[N;42.,]

~

=rE[M,]

where the last inequality follows by Lemma [ and the fourth line holds by the fact
that

Cov(X,Y) < Var(X) + Var(Y),
because

Var(X —Y) = Var(X) + Var(Y) — 2Cov(X,Y) > 0.



Now by Chebyshev’s inequality, for all € > 0

M,
S|

M, €2

~

Var[M,,]
I
KE[M,]
T e2M?
K

=z 7Y

where the last inequality holds because ¢, d, Ny11, Nyyopn > 0.

This completes the proof.

Proof of Theorem[3. For any k > 0, let f(x) = x%e~® for > 0. Since

it follows that

max f(z) = f(k) = k¥e™".

x>0
Hence,
1
Anpan (AnPan)"

rl

<(r+1+ )\npa,n)r+2e_(T+1+’\“”“’”)eT+1

0<or,, =@+1+XN)e

< (7” + 2)r+2e—(r+2)er+1

= (r42)"*%e !

62
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It follows that since

lim s, = o0,
n—o0

we have

2

o
. a,\

lim sup —= = 0.

n—00 qc A S)\n

From here Proposition [I| implies that asymptotic normality is equivalent to
=2 2 _
lim 537 ;E (Y2 L yanzess,)] =0 Ve > 0.

We now show that this is equivalent to (2.3]). Since s,, — oo, we can take A, large

enough that es,, > (r 4+ 1). Recall that

_)\npa,n it ya,n()\n) =T
Yon=9q4 r+1 if Yon(An) =7 +1 (5.17)

0 otherwise

Thus, for such A, if [Ya| > sy, then Yo = =AnPan; Yan(An) =7, and Y2, = A2p2 .

n.

We have

[|Ya,n| Z 68}\”] - [Ya,n - _)‘npa,n] N [)\npa,n Z €S>\n] = [ya,n()\n) - T] N [/\npa,n Z ES)W].

It follows that

_ (Anpa,n)r+2
E [Ya%nl[\ya,n\ZGSAn]] = )‘Ezpi,nl[)\npa,nZGS,\n}P(ya,n - r) =e Anpa’nTl[)‘npa,nzeskn}'



Proof of Corollary[3. Note that

Now = LyanOr)=r]

acA

- Z p(l,n]'[ya,n(kn):r]

acA
N’r—|—1,n

n

T = (r+1)

S, = (r+ D E[Npan] + (0 +2) (r + 1) E[Ny1a,0].
Since we assume that s, 217 56 and by Lemma ,
E [Ny j1.0] = oc.
Now for all € > 0
Jemiczy )=o) = (e e sl o)

and by Chebyshev’s inequality

r4+1,n
Pl -2 et ) o) Vb | vaiv)

r+1 n [Nr+1,n

It follows from (5.19) and Lemma [6] that for all € > 0

Nr—i-l n E[NT-FI,”] 1
q _‘>0§2 2~ ZE[N, 10
r+1 n € (E[NrJrl’n]) € [ r+1,n]

and together with E [N, 4, ,] — oo,

lim p (| Nt
An—>00 E[Nr+1,n]

>6):O,

e €2 (E[NrJrl,n])z'
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(5.18)

(5.19)
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ie.,

Nr+1 n 14
— T 5] 5.20
E[Nr-i-l,n] ( )

Since

Nr+1,n _ E[NrJrl,n] Nr+1,n
Shn $he E[Nry1n] 7

by continuous mapping theorem Lemma [5{ and (5.20) imply that

N,
+1n P
S\

n

Since 7+ 1 € (0, 00),

Nyiin 1
_ralnd T o/ (T + ) £> Q.
SX

n

Now plugging in

ML (A N,
n r,n( n) _ T+1,TL(T + 1) £> 0.
Sx, S\,

By the symmetry of Normal distribution (5.16)) implies that

ﬁ (Wr,n()\n) - Tr,n()‘n)) —d__> N(O’ 1)’

S, Ap—00
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and so
)\nTr,n()\n) Wr,n()\n) 1 d
Sx, Tr,n(An) An—>00
Since
2T,
) 5,
S,\n
it follows from Lemma [I] that
ﬂ-rn()\n) p
: —1 0.
Tonh)
Therefore,
Linlh) g 2,
ﬂ-r,n()\n)

Proof of Theorem[3. First, for any € > 0 the fact that

(2.3) holds gives

1 s
(r+2)| [)‘npa,n> ’V‘,)\n,n}

2 _)\npa,n
€ 1[)\npa,n >€sr A n]

e_Anpa,n
EI:N’I"+2,TL] = ()\npa,n>T+2 1 )\n a n<€s'r n
anA (r + 2)1 Prpensesnrnanl
- e_Anpa,n
+ Z(Anpa,n) +2
acA
S Sr,)\n,neE[Nr+1,n] + Z()‘npa,n)r—’_
acA
<

acA

2 E 742  —Anpa, 2
S'I‘y)\n,"le _|_ ()\npa,n) € e nl[)""«pa/ﬂ>es7¥>\nxn] _> ¢ 67

which implies that E[N,;2,] — 0 and hence that E[N, ;] — ¢*.
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Next, note that %E[WM] — ¢* by (2.2) and that

A 1
Vi - A = — E A 2Var (1 _
o (r + ol ”)> (r+1)2 aeA( nPan) "Var (L, . (n)=r1)

IN

1 2 -
m ;(Anpa,n) P (ya,n ()‘n) = T)

r -+ 2
= E(N,i9,| — 0.
L BN,z

From here the first convergence in (2.4)) follows by the well known presentation of
mean square error as the sum of the variance and the square of the bias. The second
convergence follows from the first and Markov’s inequality.

Finally, note that

An

’]"—I'-—]_TT,TL()\H) = r—i—l n n Z 1 [Ya,n(An)=r+1]

acA

is the sum of independent Bernoulli random variables. We just need to check that
the Poisson approximation to the binomial holds. By Proposition [2] this holds so long

as supye 4 P(Yan (An) =7+ 1) — 0. Note that

by )7“+1
P a,n )\n - 1 = 7pa,n/\n(])ll,L
e ) =101 ‘ (r+1)!
1

—Pa.nAn(r+2)/(r+1 r42\ (r+1)/(r+2)
N (r+1)! (€770 (P da) ™)

(r+1)/(r+2)
e pan)\n pan n)r+2>
(2

_ ((7" + 2)-)(T+1)/(T+2) e

E|N,ion
(T+1)' [ +2,

IN

Y

and the result follows. O
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5.3  Proofs for Section

The proof of main results in Section is based on approximating the distribution
in the Deterministic case with the distribution in the Poisson case, and we call this
process “depoissonization”. Toward this end, we introduce a model that contains both
of these with both the fixed and changing distributions. Details of the model are given

in the following sections of proofs.

5.3.1  Proofs for Section [2.4.1

First, we explain our model. Assume that we are sampling observations following
a Poisson Process with rate 1, denoted as C' = {C) : A > 0}.

For n = 1,2,3,..., let ¢, = min{\A > 0 : C\ = n} be the arrival time on the
nth observation. If we stop sampling at time ¢,,, then the sample is of size n and we
have the deterministic model studied in Section Whereas, if we consider the
sample taken at time A, then the sample size is C and we have the Poisson model
studied in Section with A = n. Observe that E[C,,] = n = C;,. Thus, we expect
to have the same sample sizes in those two sampling schemes. When the sample
size is the deterministic n at a random sampling time ¢,,, we use notations defined
in Section [2.4.1; while, when the sample size is a random C\ at the deterministic

sampling time A\, we use notations defined in Section [2.3.1] Further, let

&n = n(T7(n) — m.(n))

be the Deterministic version, and

C)\ = )‘<Tr()‘) - 77—7“()‘»

be the Poissonized version. Observe that y.(n) = y.(t,), and t, follows a gamma

distribution with both mean and variance n. Note that for &, we have a deterministic
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sample size n at a random time t,, whereas for {, we have a random sample size N

at a fixed time M. Also note that

tn
Ctn = én .
n

To find a necessary and sufficient condition for asymptotic normality of &,, we use
the asymptotic normality of ¢, and show that &, — (\ 2 0, specifically when \ = n.
Before giving the proof of Theorem [ for the Deterministic case with fixed distri-

bution, we prepare several lemmas.

Lemma 8. For any A > 0 and A € (0, \), we have

E [ sup | — C,\\] < H(\A)
A<t<A+A

and

E [ sup |G — m] <2H(A - 5.A),

A A
A= S<t<A+F
where for some constant C' > 0,

H(\A) = C%si.

Proof. Recall that for any A > 0 we have
O =AM —m(A) =Y Ya),
and

Yo=(r+1) 1y,00=r+1] — APalya(n)=r-
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Fix ¢ > A and note that y,(t) > y.(\) because greater arrival time yields more or

equal arrivals in a Poisson process and

Ya(t) = Ya(A) =Laony<n Ya(t) + Lpaoyen Yalt)
— YoM)Ly >5a 0] — Ya(A) e t)=ya (0]
= = YoM La)>pa )] + Lgay<r Ya(t)

— YoM paty=pa ) + Lgayzn Ya(t)-

Since

= YoM e =ya 0] + Ligai12n1 Ya(t)
== (" + Dlyay=r+111 a0 =5a 0] + APalfya(0)=r1Lya ()= V)]

+ (1 4+ Dl =r+111 ez = tPaliya=r a1
== (r + Dluy=r+1 ga@=r+1] + Aalfya(n)=r) Liya ()=

+ (r + Dy @=r+1lgay=r+1 + (7 + Dlge@=r+11ga)=r) = tPaliya)=r)Lya(n)=r]
=(r + 1) Lyu () =rt1) Lga =] — (& = N)Pa iy (t)=r] Liga )=r]

=1y, )= ((r + D1y, @=r+1) — (€ = N)Palpy,@)=r);

then

Ya(t) = Ya(A) = = YoM Lpa9>ua ] + ar)<n Ya(t)

+ Ly )=r) (" + D1p.y=r+1) — (¢ = N)Palpyany=r)
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Now note that

> (Va(t) = YaOOD I YaW) aswa] + 1Y Tpay<n Ya(t)|

acA ac A acA
13 L=+ Diomry = (= NPl
acA

<(r+1) Zl[ya r+11[ya(>>ya<x>1+AZpa 9a (N =] Liya (1) >ya (V)]
acA ac A

+(r+ D Tgaw=ri ey T Y Paliyaty=ri lyah) <]
a€A a€A

(r+1) Z Lye)=r La(ty=r+1) + Z |t — AlPalpye)=rLiya(ty=r-
acA acA

Now set

AL = T =rt 1) g 0>5a )
acA

=2 Paljpuy=r Liva (95040
acA

Bf = yu@=ri1 Lya<r]
a€A

2 §
B =1 pa yu. r]l ya( )<T]
acA

Zl[ya(x) 1 L ya(t)=r+1]
acA

Dy =Y |t = Alpaljya=r Lya (=]
acA

then

— Gl =1 (Yalt) = Ya(W))

acA
<(r+DA+ A2+ (r+ 1B+ B2+ (r + 1)Cy + D,

We are going to find the bounds for each element.



72

Bounds for Cy and Dy:

=) 1=l aty=r1

acA

Dy =Y [t = Mpaliyan=rLya(t)=r
acA

By Fubini’s Theorem and the fact that Poisson processes have independent incre-

ments,

AZE<KA+A )\<t<)\+A

[Z Lya)=r1 L [ya 0+ 2)>ya ()]

acA

E{ sup C’t [ sup Zl[ya Miyace >ya(/\)]]

| /\

(Note: t < A+ A)

Z P(ya(X) = r)P(ya(A + A) > y,(N\))(Note: Fubini’s and independent incremer
acA

= Z A’ e Papr (1 — ¢~ Ae)

aGA

= ﬁ Z e~ Wapl (1 — e~ APa)

T acA

<\ Z e_’\p”pZ(l — e_Ap“)
acA

SN e PepiAp,
acA

= AN Z e~ Mpeprtl
acA

where the last inequality follows by the fact that 1 —e™ < x for x > 0.
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By similar arguments,

ZApal[ya()\) =7]| (Note: A >t —X>0)

acA

=A Zpap(ya()‘> = T)

acA

AN —Apa ,,r+1
=A . E e "“Pepl

" acA

< AXTS et
acA

E{ sup Dt} <E

ALE<A+A

Bound for B} and B?:

Z Liya®)=r+1) L ya () <r]

acA

B =t paliya=rlya<r]
acA

Clearly, if r = 0, then

E{ sup Btl} :E[ sup Bf} =0
A<E<A+A A<E<A+A



Now, assume that » > 1. Note that by independent and stationary increments

E{ sup Btl] <E sup ZZl[ya 1511 Lfye (V)=i]
A<E<A+A A\<t<A+A 21 5
=F sup 1 . (N> 1y, ;
)\<t<)\+Aa€ZA; e (®)=3a(N)>r =] Hya (D)= ]]
r—1
< E (1 v 2)-ya 57—l La(0)=i1]
ac A i=0
r—1
=> ) Pya(A) > 1 —i)P(ya(N) = )
acA i=0
r—1 r—i
< (Apa) 1 e_)\pa (pa/\)
< 1 S
acA i=0 (’f’ U 1) L
r—1
< AN pptle™e = rANTY pitler
a€A i=0 acA
where we use the fact that for any integer £ > 0
k
Cape (Apa)? _ (Apg)t
Py,(A) > k)=1— Ap, (AP < a
(5al(2) > ) Z Tl A

74

which follows since for any z > 0 we have 1 —e™* SF 29 /51 < %41/ (k+1)!, see e.g.

Lemma 1 in [3I]. Similarly, for B? we have

E{ sup BE}SE

ALE<A+A

sup tzzpal[ya t)>r— 11[ya() d

ALtE<A+A aeA i—0
r—1

<A+ D paE [Tparra)yeysr1-i L=l

acA =0

A S PR > 71— ) PN = )

aEAi 0

< 2)\2 Zpa Apy) e (Apy )’

acA =0

< 2P AN ) prtler
acA
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Bound for A} and A?%:

AL =) =1 530
acA

=A Z Paliya=r Ly (0)>va (V)]
acA

The proof for A; is similar to the proof for C;. Here

E{ sup Al} <E [Zlya =r+1) Lya A+ 2)>9a (V)]
ALt<A+A vt

= Pya(N) =7+ DP((ya(A + A) — ya(N)) > 0)

acA
)\r—i—l

_ T+1lzpr+l /\pa _epra>

)\ 'l+2 >\a
_p

Next, by Fubini’s theorem and independent increments we have

E{ sup A} <E[A2pa e M) =r] Lya (A4 2)>5a (V)]

ALE<A+A acA

= A> PPN = 1) Pya(A + A) > ya (V)

acA
r+1

>‘ E:prﬂ /\pa _e—Apa)
acA

A Z pr+2 —APa

acA

< )\T—HA Z pr+2 a,
acA

)\r—‘rl

which completes the proof of this part. Now putting everything together gives the
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first bound:

E[ sup |gt—g|} :E{ sup  ((r+1)4; + A7+ (r +1)B} + B} + (r + 1)C; + D)

A<t<A+A A<E<A+A
7"+1
S(T +1 Zpr-i-Z —APa + )\r-HA Zpr+2
acA
+(T—|—1 TA)\TZPT-H /\p“—FQTA)\TZpH_l —A\pa
acA acA
+ (r+1)AN Z e~ e prtl
acA
+ AN Z 6_’\’”“]92+1
acA
)\r+1
=2A Z e WPeprt2 (P 4 dr + 2)AN Z e~ Paprtl
acA acA
A 41 gl ~Npagyr+2
- (r® 4 4r + 2)\ Ze Pap Ze Pap
acA : acA
_H(\, A)
A
:sti

which can be upper bounded as required. From here applying the first bound twice

gives

E sup |G — (,\,n|] <E [ sup |G — Omayom|

A A A A
>\—5<t<)\+7 >\—5<t<>\+5

A
E |:’</\7A/2,n - C)\,n|:| S 2H ()\ - 57 A) 5

Lemma 9. Let 0 < N < X\ < oo. For any e > 0,

!/

by e
(XV”S? <8 <eSB A (r 1+ AN e, (5.21)

Further, let A\, and X, be two sequences of numbers, and if 0 < X, < A, < 00,



A A
Ap ~ A lim supn(ﬁ -

7

)M\ < oo for some § > 0, and liminf, sy, > 0, then

Sx, ™~ S)\;l.

Proof. Let 0 < X < XA < 0o, then

()\X,)sti = ()\X/)”r2 Z ((7“ + 14 Apg)e

acA

o ()\pa)r—i-l)

rl

(e !
=" Z (r+ 1+ Apg)e Pe .

acA

/! B (Alpa)T+l
=33 ((7’ 1+ Apy)e e R

acA

—APa ()\,pa

)r+1

)\/ , Cpe ()\/pa)rJrl
:g(x(r+1)e T—i-/\pae —
(r+1e - p“ pa)r+1 + N pge ?Pe (Npa)™!
aEA r! ‘ r!
— ( r+ 14 XNpg)e NP O‘_pa)m))
2 7!
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and for any € > 0

r+1
5?\/ < Z ((7’ + 1+ )\pa)e_’\/p“ —()\pa) )

|
acA "

Y ()‘pa)r—H
= Z ((7“ + 1+ Apg)e ™ paTl[(A—X)paSG]
acA .

—Np ()\pa)r—i-l
I e et [P WV
~ r!
ac

) , , \ . r+1
_ Z ((T + 1 _|_ )\pa)e—)\ Pa (G(A _)\)pae_(A _)‘)pa)%

acA

i (AP)™
D [+ L4 Apa)e P L g
acA

_ 7/ )\pa r+l
- Z ((r + 14 Apg)e el )pa%lwx')pag}
acA '

—xpy (Apa) !
4 Z ((r + 1+ Apa)e ’\p“%l[(,\_,\')pax]

acA
—Apa E(Apa)r+1
<> ((T 14 Apa)em e =TT x)pa<d

acA

1[(A—X)pa§d>

rl

, A u r+1

n Z <(r 1 )\pa)e—/\ p“%l[(/\/\')pax]) (Note: by the indicator function’s condition)
rl

acA

)\ a i =\ >\ a rH
See Z ((7“ +14+ )\pa)e—kpa%) + Z ((T‘ + 1+ )\pa)e )\Pa%l[()\)\/)pa>e])

acA acA

€.2 —Xpa (/\pa>7”+1
=e“s3+ > _ [ (r+1+Apa)e o Ho=X >
acA ’

Seﬁsi + Z ((7' +1+ )\pa)e_ﬁ)\,()\pa)r+11[(>‘7>‘/)pa>€]) (Note: Pa > ﬁ)
acA

_ e r
e+ Y ((r + 14+ Ne 3V (Apy) +11[<A*A'>pa>4>
acA

_XNe r
=Sy (r+ L+ )N N Y (pa) ™ o xpea)
acA

<e‘ss+ (r+1+ /\))\H'le*ﬁ Z(pa)rﬂ
acA

<est + (r+ 1+ Ve Y p,
acA

=52 + (r+ 14 ANl Tx



This gives (5.39)).
By (5.39), we have

/

An

Since liminf, sy, > 0, by dividing s3 from each side of (5.40) and we get

€

N 3 1 T3
(Sny+2 < 2 < et p - (r+ 14 A )N Fe T
A Sx., Sx,.

By assuming that A, ~ X/, the first half of (5.41)) gets

82/

. b
lim == > 1.
n—,oo S

An

Now we turn to the second half of ([5.41)).

Fix ¢ > 0, we can choose an € > 0 such that

/

€
c<1 4+ —.
e < +2

A __Ape
(75723, <83, Sesh, + (rH L4 A)A e 2,

Ve > 0.
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(5.22)

(5.23)

(5.24)

(5.25)

By assuming that limsup, (# — 1)A\} < oo for some § > 0, there exists an L > 0

such that for large enough n,

exd s
An _1y)\0 eAp
e LT < et

So we have

Ane,
(r+1+ M)A e 2

‘ -

1

»
> o

n

‘ -

Ay
(r+1+ )\n))\ffle’%.

IN
V2)
>0

n
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Since we assume that liminf,, s\, > 0,

lim sup —— < oo.
n Sy
n

Then for such € and 6,

1 xS,
lim ——(r +1+ )\n))\;“e—g% = 0. (5.26)

n— oo 3)\
n

Since ([5.44) holds, there exists an N, > 0 such that if n > N,

1 1 _e)\i 6/
——(r 1+ AN e 2 < (5.27)
S\, 2
By combining ([5.43)) and (5.45)) we get
. 1 1 _>‘—"671
lim (e6 + 5 (r+1+X)A e M )
n—00 S>\n
. . 1 +1 _Af/nefl
= lim e+ lim ( 5 (r+1+ M)\, "e
n—o00 n—o00 8>\n
/ /
<1+9)+<
<(1+3)+3
<1+¢€.
Since €’ is arbitrary, we get
Si/
lim 5= <1 Ve >0. (5.28)

n—oo 3)\
n

Combining (5.42)) and ([5.46]) gets

.Sy
lim 5
n—oo §%

n

=1 (i.e.,siz ~ 53 ),
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then

SxL ™ Sa,;

which completes the proof. O

Lemma 10. If s, — co and

S

then

Sn

Proof. Fix €,0 > 0. We must show that there exists a K > 0 such that, if n > K then
P (&, — Cu| > sne) <0

Fix A, = ,/%”. Let t,, be the nth arrival time of the Poisson process N. Thus

N, = n. Note that y/(n) = ya(t,). It follows that

0= G =D ((r+ Dlpygm=rry) = npalpym=n) = (" + Dlpgm=rr1) = tabalym=n))
a€A

= (tn = 1) > Pal (=

acA
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Further, on the event [|t, —n| < %]

|€n - Cnl S |§n - Ctn + gtn - Cnl
= |tn - 7’L| Zpal[y{l(n):r] + |Ctn - gn|
acA

< (0.5)An Zpal[y{l(n):r] + sup ’Ct - €n|

aeA n— S <t<nt S
We have

A, A,
P(‘fn - Cn’ > Sne) =P <‘§n - Cn| > Spk, |tn - n| > 7) + P <‘€n - Cn’ > Spk, |tn - n| < 7)

<P <|tn —n| > %)

+ P (((0.5)An Zpal[y{z(n):r} + . sup ¢ — §n|> > sne>

acA n—8p<t<nt-Sn

Since t,, has a gamma distribution with both mean and variance n, it follows that,

by Chebyshev’s inequality,

n )
P(|t, — DA, <4— = —.
([tn —n| > .54,) < A2 5

n

By Markov’s inequality,

P <<(O5)An Zpal[yg(n):r] + sup |Ct - §n|> > Sn€>
A

acA n—Spsi<nt Sy

<e's'E sup [ — Gal + (0.5)A0 D palpyyny=r]
|n—8p <t<ntip acA

= 's'B sup G — Cal| +€1s,'E

A A
[n— St St<nt+=5r

(0.5)A, Zpal[ym):r]] :

acA
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Since for large enough n we have A € (0,n), from Lemma [§]it follows that

sglE sup |Ctn7n - Cn,n|

n— 5 <tn<nt Sp

A
< s "2H(\ - 7" A,)

A, 9
n——An/ZS”’A"/Z’"

1
~ 20\/ 8/5%5’” — 07

=2Cs,*

where s,_a, /2., ~ S, by Lemma |§| We just need to verify that the assumptions of
that lemma hold.

Let \, = n— 4, then

A,
and
Ay Ay
A M 1— 2
n n n
Since A,, = %",
A
o )
lim -2 = lim %:O.
n—oo M n—o00 n
Then
N Bn
lim ~2 =1— lim 2 = 1, (5.29)
n—oo N, n—oo M

(i.e. A, ~n).
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Since

6/
n _ 5 n An
(v =" =5, = A

n® ky/n
——y (Note: let k = /2/6)
k

2n1/2=0" — =98’

if we fix ¢’ € (0,1/2),

lim (E —1n® =0.

n—00 )\;1

Thus, there exists an §' > 0 such that limsup, (& — 1)n® < oco.

Now 0 < X, < n < 00, A, ~ n and limsup, (5= — 1)n® < oo for &' € (0,1/2) satisfy
the conditions of Lemma [

Since

i e Sn 53\ _ gy
by Lemma|§| (sx. ~ s,) and the assumption 2= — 0 we have

8/\41

NG




Now, note that

s 'E (0~5)Anzpa1[y;(n)=7“]]
acA
(0.5)s," A, Z( > i (L=pa)""
acA
05 _1An—|2pr+1 1—pa -
" acA
05 —lAn_lzpr—i—l —TL 7)Pa
" acA
A, a)"
= (0.5)s,"=> ”Pa—(npt Lo
n acA "
A (npa)" _
18n a nPa T
< (0.5)s] 7;”}7(176 e
An B B (npa)r-i—l
< (0.5)e"="s," L+ npg)e™" ———
< (0.5)e o on ;(T—i_ +npa)e 7!
WA
0.5)e" —Ls1s?
= (05) 225,153

An
= (0.5)6”7371 — 0

where the third line follows by

" n! nn—1)..n—r+1)
(—):(n—r)!nrz n’ —1

(ie., (7) ~ Z-), the fourth line follows by the fact that (1 —z) < e~

line follows by A,, ~ Miy/n and

— Sy, = —— =8, = ——F—=—F—=8, — 0
n Ml\/ﬁ n Ml\/’ﬁ\/ﬁ

85

* and the last
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Proof of Theorem[]]. (Note:

r+1
NPq
2= (r+ 1 np) el pr? — (r+ 1) E[Npa] + (r+2) (r + 1) E [Ny0]
acA ’
N/
T;(n) = L(n)(r + 1)
n
m(n) = Zpal[yg(n):r]
aceA
N/ = N/(n) = Z Ly (=) ( the deterministic case)

acA

N, = N,.(n) = Z Ly, (n)=r] ( the Poissonized case))
acA

Note that

where

G = n(T;(n) — m(n))
Nr+1 ()\)

1,0 = YW )
N, () = Z 1y, (n)=r] (the Poissonized case)
acA
T (A) = D Palpyu(=ri-
acA

By Theorem [1} (2.6)) holds if and only if

G _ AT (n) —m(n)) 4 N(0,1). (5.30)

Sn Sn n—oo




Since s,, — o0 as n — oo and

Lemma (10 implies that

fn_Cn

Sn

2 0.
Therefore, by Slutsky’s theorem, (2.6 if and only if
fn d

— — N(0,1).
=5 N, 1)

Lemma 11. Forc,d > 0, let

S = ¢B[N, 1] + dE[N, ]

and

T = cE[N; 1] + dE[N],].

1. For any € € (0,1/2),

An<S - Bn) <T< See(r—i-l) + nr+2<c + d)e—e(n—r—Q),

where 0 < A, =+ 1 and 0 < B, — 0 as n — oo may depend on €.
2. We have T — oo if and only if S — oo.
3. If S — oo, then T/S — 1.

Proof. Parts 2 and 3 follow immediately from Part 1. We now prove Part 1.
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(5.31)

(5.32)

Recall



that for the Poissonized case

and for the deterministic case

E[N]]=E [Z 1[y&(n)=ﬂ]

acA
= E [1yy tm)=ri]
acA
= ZP(?J;(W) =)
ac A

= (Z)pZ(l —pa)" "

acA

Now we have

)r+1

S = CZ e~ "Pa (nPa

|
ey (r+1)!

r+1
= Z (npa)™ e (¢4 d—Pa
(r+1)! r+2

acA

acA

pay e (P
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n r n—r n r n—r—
T = (c - 1)pa“(1 Pa) Ty d(r N 2)pa+2(1 Pa) 2)
acA
n . S n—r-—1
= <T’ + 1)pa+1(1 - pa) 2 (C(l - pa) + "+ 9 pa>
acA
r+1
SZ (npa) e NPa (C+d npa ) pa(?“-l-?)
= (r+1)! r+2
< (npa>r+1€ mpa (¢4 d NPq e(r+2)
r+1)! r+2
a€Apq<e ( + ) +
+ nr+2 Z pa<c + d)efe(nfer)
a€A,pg>e

Ssee(r+2) + n?“+2(c + d)efe(nfr72)7

where we use the facts that () < % and (1 —z) < e™. Next, fix § € (3,1). Using

the facts that (1 —z) > /(=% for 2 > 0 and (T%) = (Tﬁl) ”;_:;1 we get

n T n—r— n T n—r—
T=». (C<r+1)pa“(1—pa) 1+d(r+2)pa+2(1—pa) 2)
acA
n r+1 n—r—2 n—r—1
- 1— pa 1—po) +d—"""p,
S D 3 e (R )

n Pa n—r—1
> r+1 —MNPa ,— 1—pa (pan—T—Q) d 1 -
_(T+1> Z Po e e crd— Ty b (1=pa)

a€A,pa<e/nd
n ——&(en!=0—r-2) roel —m n—r—1
>(1—¢/n’ i e d——pa
= 6/”)<r+1)6 PO A (C+ r+ 2 p)
a€A,pq<e/nd
n ——&(en!=0—r—-2) (T + 1)' (npa)r—i-l -n,
~a-e)(, ] )e ey e
r |
r+1 n sl e (r+1)!
o r+2
patmr=h o ),
n (r+2)!
a€A,pa<e/nd
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where using the fact that (TL) ~ (;L;—T),

and

r+1 (npa)™ % _ (npy)™
B, —=d npa npa
R LR DI s v L
a€A,pa<e/nd

a€A,pa>e/nd
)r+2

(7pa _
d NPa
i Z (r+2)! ‘

a€A,pa>€/nd

=BWY + B® + BB

We will show that B,, — 0. First, let M > 0 be a constant with " le=™* < M for

x > 0, then by dominated convergence

BM <dM > p,—0.

a€A,pe<e/nd

Next

B < ce= ' T prtl Zpa —0
acA

and similarly B — 0. O

Proof of Corollary[j. Since (r+1)? > 0 and (r+2)(r+1) > 0, if s, — 00 as n — oo,

applying part 3 of Lemma [11] completes the proof. O]

Proof of Corollary[§. Since we have Theorem 4] and Corollary [5 the proof can be

completed by applying the Slutsky’s theorem. O

Proof of Corollary[7. In (5.12)) in the proof of Corollary [I| we showed that E[N,,1] —

00. Now let ¢ =1 and d = 0 in (5.31)) and (5.32)) of Lemma |11} then using part 2 of




Lemma [T1]

E[N'r{—i-l] — 0,

and using part 3 of Lemma

B[N, ~ E[N,.].

In Lemma 2] we also showed that

E[NTJrl]
S)

— OQ,

here we set A = n and get

E[Nr+1] - 00

Sn

By Corollary [5| (s/,)* ~ s2, thus together with (5.35)) and (5.34]) we have

E[Nia] »
T — OQ.

Since ((5.33)) holds, using part 2 of Lemma

N/
T—,H P
E[NrJrl]

Since

N/

r+1 E[N7{+1] N;+1

s, s, E[N._J]

n n
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(5.33)

(5.34)

(5.35)

(5.36)

(5.37)



by continuous mapping theorem ([5.36) and ({5.37)) implies that

N/
1 p
+1 2 0

/
Sn

Since r + 1 € (0, 00),

Now plugging in

T !
n r(n) — Nr+1(r+ 1) £> 00.
5n S

By the symmetry of Normal distribution (2.7)) implies that

—(w(n) — T!(n)) —— N(0,1),

n—o0

and so

Since

92
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it follows from Lemma [I] that

oL 150
T/(n)
Therefore,
T/
() e
™ (n)

Lemma 12. 1. For any k < n/2, we have
Var(N,) < Ax,E[N/]

where Ay, = (4FH (" F) (n — 2k)F +1) — (l:lfi)! +1
2. If E[N}] — oo, then

Var[N,’g] »
@y

and

To show this, we use ideas from the proof of Theorem 3.3 in [24]. Part 2 can also

be found without proof in Section 4 of [32].

Proof. First note that, for any 1 < k < n/2,

=3 Y 1yuly—n + N

a€A beA,a#b
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and

BT = () 5 X b a4 BN

ac€AbeA,a#b

Next, let and By, = (, " )/(”)2 =

kkn—2k) |k (n;k)/(Z) < 1 and note that By, — 1. We

have

Var(Ny) = E[(N})*] = E[N}] — Bin(E[N)* + (Brn — D(E[NR])® + E[N]]

< E[(N)?] - E[V] — Br(E[N;])* + E[Vy].

We can upper bound E[(N})?] — E[N;] — Bx(E[N}])? by

(k kn— Qk) Z Zpapb (1= pa—po)" 2" = (1 - pa)" (1 — pb)"_k)

acA be A
n2k n—2k n—k n—k
< () St (0 ()
ac€A beA
n2k n—2k
k(kkn_zk)zzpapb P (1 — ) (o 4 1)
ac€A beA

< k k?-‘rl n—ki1 _ n—3k
—Qk(k k n_2k)z Z papb ) (1 pb)

a€AbeA,pa<pp

+2k<k kon _Qk) > 2. - p) A=)

a€AbeApa>py

n ;
< 4 1 o n k k’+1 n—3k
k(k " n_%) Zpa pa)" Y o (1 =)

beA

= 4k( R k)E[Nk] D op 1= )" < AR (n . k)E[N,;] (n — 2k)~*

be A

Here the third line uses the facts that 1 —p, —pp < 1—po—pp+pape = (1—pa) (1 —ps),
that 1—(1—p,)*(1—py)* < 1—(1—p,—pp)¥, and that 1 — (1 —z)* < ka for z € [0, 1],
which is easily checked by induction on k. The last inequality follows by the fact that

k(1 — 2)" 3k < k*(n — 2k)7* for € [0,1], which can be shown using standard
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calculus arguments.

Var(Ny)

For the second part, by Chebyshev’s inequality, it suffices to show that EN 0.
The first part implies that
Var(N, 1
ar( 3 < Apn== — 0.
(E[N;))? T E[N]
This holds since Ay, — (k 1) + 1, which follows by the fact that ( ) 7,’:—’:
O

Lemma 13. Assume that at least one of E[N] ] — oo or E[N/,,] = oo holds. In

the deterministic case for c¢,d > 0 let

T = cE[N;44] + dE[N],,]

T =cN{ 3 +dNy s

T is a consistent estimator of T, 1.e., asn — 00, for all € > 0

>e>—>0.

Proof. Note that E[T] = T. Chebyshev’s inequality implies that for all € > 0

. ) Vo[

~

-1

o

T

~

T
Pll=-1
( T €2
Var[T]
T err
Var|T]

)
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By plugging in T and T, we obtain

Var[T] Var[cN!,, + dN/,,]
e2(E[T])? GQ(CE[N;’H] + dE| r+2])
c*Var[N/ | + d*Var[N] ,] + 2¢dCov[N], ;, N} _,]
e (cE[Ny 4] + dE[N],])?

< *Var[N/, | + d*Var[N] ] + 2cd(Var[N], ] + Var[N/,,])

B e (cE[N; 4] + dE[N],])?

_ (¢® + 2¢d)Var[N], ] + (d? + 2¢d)Var[ N, ,]

e*(cE[N] 4] + dE[N] ,])? 7

(5.38)

where the third line follows by the fact that

Cov(X,Y) < Var(X) + Var(Y).

Now we consider three cases.

Firstly, if both E[N/, ;] = oo and E[N/,,] — oo, then (5.38) can be expressed by

1 c(c+2d)Var[N] ] + d(d + 2c)Var[N]_,]

€ < (cE[N; 1] + dE[N] ,])? )

1 < c(c + 2d)Var[N] ] d(d + 2c)Var[N] ] )

e \(cE[N] ] + dE[N],])?  (cE[N/ ] + dE[N],,])?
1 ((c+2d)Var[N;y] = (d+2¢)Var[N],]

= (@ )

where ¢, d, E[N] ], E[N],,] > 0 gives the inequality and the convergence follows from
Part 2 of Lemma [12]

Secondly, assume that E[N;, ;] — oo, but that liminf E[N],,] < co. Here, along
any subsequence where we have convergence to infinity we can use the above result
and along any subsequence were we have convergence to a finite number we have

lim Var[N/,,] < oo by Part 1 of Lemma[l2] In this case we can use the bound

‘

T 1
T

. 1 ((c+2d)Var[N;,]|  d(d+ 2c)Var[N],]
>><2<<£Wmv T RN )*0

T €
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The remaining case is similar.

]

Proof of Corollary[8. Since (r + 1)> > 0 and (r + 2)(r + 1) > 0, the result is an

application of Lemma [13] O]

5.3.2  Proofs for Section [2.4.2

First, we explain our model containing both the Deterministic case and the Poisson
case with changing distribution.

Assume that we have a countably infinite number of populations indexed by the
natural numbers. Let C'= {C) : A > 0} be a Poisson process with rate 1. Every time
that this process jumps, we sample an observation from each population, where the
observation from population m follows distribution P,,.

Forn=1,2,..., let t, = min{\A > 0: C) = n} be the time of the nth jump. If we
consider the sequence of samples from population n taken at times £,, then the size
of the nth sample is n and we have the deterministic model studied in Section [2.4.2]
On the other hand, if we consider the sequence of samples taken from population n
at time n, then the size of the nth sample is C,, and we have the model studied in

Section with A,, = n. Note that

Thus, in the two sampling schemes, we expect to have the same sample sizes, although
the actual sizes may be different. When dealing with the sampling scheme with
deterministic sample sizes (random sampling times) refered as the Deterministic case
we use the notation from Section [2.4.2; and when dealing with the sampling scheme

with random sample sizes (deterministic sampling times) refered as the Poissonized
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case we use the notation from Section 2.3.2] Further, we define

§nn = (T}, (n) —m,,(n))

be the Deterministic version, where n letters are observed, and for A > 0

C)\7n = )‘(Tr,n<>‘) - ﬂ-nn()‘))

be the Poissonized version. Let ¢,, be the arrival time on the nth observation. Note
that v, ,,(n) = Yan(ty), and t,, follows a gamma distribution with both mean and vari-
ance n. We are going to study our estimator at time n and time ¢,, and approximate

its behavior at time ¢,, by that at time n. Observe that

t
Ctn n o= _ngn,n
n

The idea of the proof is to transfer the asymptotic properties of ¢, to &, by
showing that &, , — C\n 25 0, specifically when \ = n.
Before giving the proof of Theorem [5| for the Deterministic case with fixed distri-

bution, we prepare several lemmas.

Lemma 14. Fix n and only consider the nth population. For any A > 0 and A €

(0, ), we have

E{ sup |<t,n—<m|] < H(MA)

ALE<A+A

and

A
E [ sup |€t,n - C)x,n|] S 2H(/\ - Ea A)7

A A
A=F<t<A+3
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where for some constant C' > 0,

Proof. Recall that for any A > 0 we have
C)\,n = A (Tr,n(A) - 71-7",n()\)) = Z YZL,n()\)a
and

Ya,n = (r + 1) 1[ya,7b()\):T+1] - Apa,nl[yam()\)ir]'

Fix ¢ > A and note that y,,(t) > yan(\) because greater arrival time yields more

or equal arrivals in a Poisson process and

Ya,n(t) - Ya,n(A) :1[ya,n()\)<r]Y;1,n<t) + 1[ya7n(A)]2r]Ya,n<t)
= Yo M) Ly 90>9an )] — Yo (A) L yan(®)=gan (V)]
= = YoM)Ly 9>van )] T Lyan (<) Yan (t)

= Yo ) Ly 9=y )] T Lyan 121 Yo (2)-
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Since

= Yo (M) e =y 0] T L1211 Yan (t)

= (7 + Dl =r+11 o (=0, )] T AP Ly =11 Lo, (=0, (V)]

+ (1 4+ Dlpye =11 gan020] — tPamLiyan(®=r1Lyan(V)2r]

= (7 + Do n=r+11 o n(=r+1] + Main Lo n(0)=r] Lya,n (9)=1]

+ (1 + Do n@=r+1 g n=r+11 + (" + Dy, @=r+1 o n)=r] = tPaimLiya (=11 Ly n()=r]
=(r + Dy, n)=r+1 e )=r) = (t = N)Panyan()=r] Lyan(3)=r]

=Ly =) (" + D1 o y=rt1] — (¢ = NP lpyenty=r);
then

Y;L,n(t) - Ya,n()‘) = - }/;l:n()\)]‘[ya,n(t)>ya,n(>\)] + 1[ya,n(/\)<r}Y:1,n(t>

+ Ly )= (" + Dy @=r+1] = (& = N)Pan iy e)=r])

Now note that

| Z(Ya,n(t> - ‘ <| Zyan 1[yan t)>ya n(>\ ’ + | Z 1[ya n(/\)<7"}ya n(t)|

ac A ac A acA
+ | Z 1 ya n )\ r + 1)1[ya,n(t)27+1] - (t - )\>pa,n]‘[ya,n(t):7"]>|
ac€A
P+ DD =0 e @30 + A D Paim e )=r] Lya.n (>v0.n(0)]
acA acA
(r+1) Z Lo ®=r+1 L yany<r) +1 me Warn ()=r] L yan (V) <7]
acA acA

(r+1 Z Ly ) =r] Lyan ()=r+1] + Z |t = APanliyan)=rLyant)=r-
acA acA
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Now set
Atl - Z Hya ) =r+11 e, () >yan (V)]
acA
A? = )\ Zpa,nl[ya’n(,\):r} 1[ya,n(t)>ya,n(/\)]
acA
Btl = Z 1[ya,n(t):7‘+1}1[ya,n(>\)<7’]
acA
Bt2 - tZpa:nl[ya,n(t)ﬂ]1[ya,n(A)<r]
acA
Ct = Z 1[ya,n(>\):ﬂ1[ya,n(t)=r+1]
acA
Dt - Z |t - )\lpavnl[ya,n(/\):'r]]‘[ya,n(t)zr])
acA
then

‘Ct,n - CA,n| = | Z(Ya,n<t> - Ya,nO‘))l

acA

<(r+DAF+ A2+ (r+1)B! + B+ (r + 1)C, + D,

We are going to find the bounds for each element.

Bounds for C; and Dy:

Cr = Z 1[ya,n(>\)=r}l[ya,n(t)=r+1]
acA

Dy =Y |t = Mpanliyeny=r L (v=r]
acA

By Fubini’s Theorem and the fact that Poisson processes have independent incre-
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ments,

E{ sup Ct [ sup Zl[yanm r]1[ym<>>yan<x>1]

AZt<A+A >\<t</\+A

[Z Ly =)L a0 +2)>pan () | (Note 1 & < A+ A)

acA

= Z P(yan(A) =1)PYan(A+ A) > ys,(N))(Note: Fubini’s and independent incre
aceA

A" A A
— Z ﬁe_ pa,npz’n(]_ — e~ pa,n)

acA
AT’
. 7)\pa,n s 7Apa,n
=7 Z e pavn(l —e )
" acA
S )\T‘ Z epra,an’n(l _ epra,n)
acA
- a,n
< A" Ze Pa, pg,nApa,n
acA
J— _>\ a,n +1
= AN E e Perpn,
acA

where the last inequality follows by the fact that 1 — e™ < x for x > 0.

By similar arguments,

ZApanl[yan(/\) =r]| (Note: A >t —X>0)

E{ sup Dt} <E
acA

ALZE<A+A

=A Zpa,np(ya,n()‘) =)

acA

r

_ —Apa,n ,r+1

—Aﬁg e Do
T acA

< AN Z e~ Panprtl
acA



103
Bound for B} and B?:

Btl = Z 1[ya,n(t):r+1}l[ya‘n()\)<T]
acA

B2 —tzpan yan r]l[yan(A)<T]
acA

Clearly, if r = 0, then

E{ sup Btl] :E[ sup Bf} =0
A<t<A+A A<E<A+A

Now, assume that » > 1. Note that by independent and stationary increments

E{ sup BQ} <E| sup Zzlym 511 Ly (3)= z]]

A<E<A+A >\<t<>\+A

acA i=0
= E SuP Z Z l[ya n ya n >T‘7’L’] 1[ya7n(A):i}
)\<t<)\+A acA i—0

-1
Z Z 1[ya n(A+A)=ya,n(N)>r—i] ]-[ya’n()\):i]]
acA i

ZZ (Yan(A) > 17— 1) P(yan(N) = 1)
acA i

r +1

Apan) - an(pa,nk)i
SZAZO (r—i+1 e T

-1
ZZ 7"+1 e~ Man — AN Zpr-‘rl Apan
aceA i=0

acA

| /\

where we use the fact that for any integer £ > 0

k k+1
Apa,n pa n) (Apa,n)
P(yan(A) 1= e S k1)

Jj=0

which follows since for any = > 0 we have 1 —e™* 32 29 /51 < 2*1/(k 4 1)), sce e.g.
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Lemma 1 in [3I]. Similarly, for B? we have

sup tzzpanl[yan (0>r—1] Lya n (=i

E{ sup Bf] <E
A<IA+A aE.A 1=0

A<E<A+HA

)\ + A Z Zpa n ya n(A+A)—ya,n(A)>r—1—1 1[ya,n(>\):i]:|

acA i=0

NS ipa,nmya,n(m S 1 ) Pan(N) = )

acA i=0
r—1
< 2A Z Z pa,n(Apa,ny_ze_)\pa’n (APan)’
acA =0

< 2rAN Zp’"“ ~HPan,
acA

Bound for A} and A?:

A= 1=t 11 o 0>y V]
acA

= AD  Parn ran)=r1 e (0540 ()]
acA

The proof for A} is similar to the proof for Cy. Here

E{ sup Al] <E [Zl[ym =r+1] Ly n A+ 8) >y n (V)]
AZt<A+A acA

= Pan(N) =1+ D)P((yan(A + A) = yan(N) > 0)
acA
)\r+1

— p7‘+1 )\pa n _ e*Apa,n)
(r + 1 Z

§ pr+2 —APa,n ]
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Next, by Fubini’s theorem and independent increments we have

E{ sup A2] <E A Ponlien)=r o 0t 2)>p0n (3]
A<E<A+A acA

=A Zpa,np(ya,n()‘) = T)-P(ya,n(/\ + A) > ya,n()‘>>

acA
)\r+1
E p7"+1 —APa, n _ e_Apa,n)
acA
r—+1
>\ A § pT+2 Ach,n
acA
)\7‘+1A § pr+2 —APa, n
acA

which completes the proof of this part. Now putting everything together gives the

first bound:

E| sup |Gn— Q,nl} =E { sup ((r + 1)A; + A2+ (r +1)B} + B} + (r + 1)Cy + Dy)

A<t<A+A A<t<>\+A

r+2 Apan+)\r+1A§ pr+2 —APa,n

<(r+

acA
+ (7" +1 TA)\T Zpr—i-l —APa,n 4+ 2r AN Zpr-i-l —APa,n
acA acA
+(r+ AN e renprtl
acA
+ AN Z e~ AP, ”pgfil
acA
)\r—l—l
=2A Z e WanpitZ 4 (1% 4 dr 4+ 2) AN Z e Penprtl
acA acA
r+2

:é 7”2 +4r + 2 )\r+l epra npr+1 2A e*)\pa npr+2

A a,n 7! a,n

acA T acA
_H()\A)
A

:sti

which can be upper bounded as required. From here applying the first bound twice
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gives
E sup |§t,n - C)x,n| S B sup |€t,n - g)\—A/Q,n|
A-L<t<rt s A—L<t<rt s
A
E [’C/\—A/Q,n - Cx\,n” S 2H ()\ - 37 A) )
which completes the proof. O]

(Note: For the Poissonized case

$%om = (1 +1)°E[Nop10] + (r +2)(r + DE[N, 42,

(r+1) Z e Aopn npa n) - +(r+2)(r+1) Z e~ AnPan —()\npa,n)r+2)
C(r+ ) (r+2)!
acA acA
Lemma 15. Let 0 < N < A < co. For any € > 0,
N irio 2 2 2 1 -2
(/\ ) s < Sy S €Sy, (1T H AN T e (5.39)

Further, let A\, and X, be two sequences of numbers. If 0 < X, < A, < 00, Ay ~ X,

limsup, (32 — 1)}, < 0o for some § > 0, and liminf, sy, , > 0, then
Shn,n ~ SN n

Proof. Here we also fix n and only consider the nth population, where the distribution

is fixed.



Let 0 < M < A\ < oo, then

: / r+1
(1)7"-1—23?\7” = (i)r-ﬁ-? Z ((T +14+ /\pam)e_/\pa*"M)

A A acA rl

X -
= ( ) ((7’ +1+ /\pa’n)e_)‘p’%"p_’)

rl
ceA

|

(r+1+ Ap&n)e—xpa,n
T

Il
>|>
7 N o

N a,n r
—(7’ + 1)6_)\pa’”% + )\,pa,ne—)\pa,n
r

APM)

rl

+ X pane '
T

rl

107
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and for any € > 0

, by an r+1
s?\/ﬁn < Z ((7“ +1+ )\pa,n)e_)‘ pa’”—( Pan) >

= 7!
)\ /\pan r
= ((7“ + 1+ Apan)e p“’"%l[(unpa,nsd
acA ’
Ly )\p r+1
+ Z ((r + 1+ Apan)e )\pa’n%l[()\—A’)Pa‘,n>e]
acA )
i ! I A a,n T+1
— Z ((,r + 1 _|_ )\pa’n)e—)\ Pa,n (e(A —)\)pa,ne_()\ —A)pa’n)%1[(>\_>\,)pa,n§€]>
acA ’
—\ ()\pa,n il
+ Z ((7” + 1+ Apan)e Ap“’”r—,)l[(A—A/)pa,nx]
acA ’
_ -\ /\pan r
- Z ((7“ + 14 Apan)e Apan g(A=A)Pan —( r') Lia=A)pan<d
acA ’
Ly )\p r+1
+ Z ((T + 1+ )\pa,n)e A pa’n%l[()\—xma,n>e]

acA

_)\pa n ,€ (Apa7n)r+1
<D T Apaa)e P e S vy

|
acA -
)r—l—l

/ )\ a,n
+ Z ((r + 1+ )\pavn)e”‘ p“’”(p’—

‘ Liia=aypa n>e]> (Note: by the indicator function’s cor
7! ’
acA

by an r+1 , A n r+1 ’
ety ((r +1+ )\pa,n)e_“’v&) +) <(7" + 14 Apan)e ™ p"’"%l[(xw)pa,pd

r! r!
acA acA
r+1

/ A
=es3, + Z ((r + 1+ Apan)e NPen Apan)™

r [(A )\,) a,n> } >
' Pa,n>€
aE.A ’

S)\n + Z ( r+1-+ )\pan)e W ()\pan> i 1[()\ AN)pa, n>e]> (NOte pan >\_€>\/>
acA

M e
WD ( rt L+ A)e 3 (Apa)™ 1[<A7X>pu,n>€])
acA

_Ne .
=3+ (r L NN () 0o pnsa)
acA

<6 8 r+1-+ A /\T—Heiﬁ Pan r
)\n ,
acA

<est, 4 (r 1NN S g,
acA

=53, +(r+1+ )\))\’““e_ﬁ
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This gives (5.39)).
By (5.39), we have

)\/ 7i
()\_n)r+25§\n,n < Sig,n < GESE\n,n + (T +1+ )\n))‘:1+le An A (54())

Since liminf,, sy, , > 0, by dividing simn from each side of ((5.40|) and we get

€

)\, 9 Si/ n 1 1 T2y
Ty R S b (L AN e T Ve 0. (541)
n S

(

An,n S)\n,n

By assuming that A\, ~ X/, the first half of (5.41)) gets

3%\/
> (5.42)
S)\n,n

lim inf

Now we turn to the second half of ((5.41]).

Fix ¢ > 0, we can choose an € > 0 such that

e <1+ % (5.43)
By assuming that lim supn(i—," — 1)\ < oo for some § > 0, there exists an L > 0

such that for large enough n,

6)\2 s
An _1))\0 ey
( )AR < e 3,

So we have

€
Py

(r+14+ XA e W

2
S/\n,n

ekg

(r+1+ XA e 22,

S
An,n
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Since we assume that liminf,, sy, , > 0,

lim sup —— < oo.
n S)\n,n
Then for such € and 6,
1 e
lim ——(r + 14 A,) A e” 5= 0. (5.44)

n

Since ([5.44) holds, there exists an N, > 0 such that if n > N,

~

e>\6

(r+ 1+ M)A e 28 < S (5.45)
An,n 2
By combining (5.43]) and ( - we get
. ]- 1 _A—”E—l
lim e+ (r+14+ M)A e M
n—oo %\ n n
. . ]- 1 7)‘—:—1
:hmee—i—hm< (r+1+A)A e M >
n—oo n—oo S)\n’
/ E/
<1+5)+<
<(1+ 2) +3
<1+¢€.
Since € is arbitrary, we get
. Si/ n /
lim 5= <1 Ve >0. (5.46)

n;

Combining (5.42)) and ([5.46]) gets
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then

S\ n ™ Sx,n)

which completes the proof. O

Lemma 16. Let the waiting time \ be the same as the number of observations, i.e.,

A=mn. If sy, — oo, liminf sy, > 0 and

then

‘Sn,n _C)\,n‘ ﬁ) 0
San

Proof. Let A = n and then (), = (,,. Fix €,0 > 0. We must show that there exists

a K > 0 such that, if n > K then

P (|&nn — Cunl > san€) <6

Fix A, = ,/87". Let t,, be the nth arrival time of the Poisson process N. Thus

N, = n. Note that y, . (n) = yan(t,). It follows that

Enn = G = 2 (4 DUy o] = 7Py ) = (O DUy ] — tPandly, oo
acA

= =) Y Pl )

acA
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Further, on the event [|t, —n| < %]

|£n,n - Cn,n| S |£n,n - Ctn,n| + |Ctn,n
— |tn - TL| Zpa,nl[%,n(n)zr] + |Ctn,n - Cn,n|

acA
< (O5)An Zpa,nl[y{l’n(n):r] + Sup |<t,n - Cn,n|
acA n——<t<n+

We have

JAS
P (‘fn,n - Cn,n| > S)\,ne) =P <|£n,n - Cn,n’ > San€, ’tn - Tll > )

A,
P <|§n,n - Cn,n| > SAn€, ’tn - n’ S )

A,

P (((05)An Zpa,nl[y(/l’n(n):r] + sup |Ct,n - gn,n') > 3)\,716>

acA n— ﬂ <t<n+

Since t,, has a gamma distribution with both mean and variance n, it follows that,

by Chebyshev’s inequality,
n )
By Markov’s inequality,

<< 0 5 A Zpan ()= 7‘ + sup ’Ct,n - Cn,n’) > SA,nE)

a€A an—<t<n+A"

< e_ls;LE

sup |Ctn Cnn|+ 05 A Zpan L (n)= r]]

n——<t<n+ A” acA

(05)An Z pa,n1 [yfzn(”)T]] .

—E [ S [ = Gl
acA

A A
n—Srstsntd 5

1 -1
+e s ,E

Here we have a population with fixed n. Since for large enough n we have A € (0,n)
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from Lemma [14] it follows that

S;;LE sup |Ctn,n - Cn,n‘

n— g Stnnt S
An

77An>

A
_ -1 n 2

1
~ 20/8/6——
C 8/5\/ﬁsn—>0,

< S/(LQH()\ -

where s,_a, /2, ~ s, by Lemma . We just need to verify that the assumptions of
that lemma hold.

Let A, = A — &=, then

A,
H(\— 7’An) = H(A;,An)
and
/\_/”: )‘_% :1_%
A A A

Since A,, = ,/%” and A = n,

Ap
lim 2 = lim % =0
n—oo A\ n—so0 n
Then
bV So
R S
. (47

(ie. N ~n=\).
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Since

A s NA,
(A_;L DN =gz A,
B nd' A,
T2A— A,

~ nkyn

Y (Note: let k = /2/9)
k

2nl/2=8" — fp—0"’
if we fix ¢’ € (0,1/2),

lim (i — 1)\ =0.

n—o0 )\;l

Thus, there exists an ¢ > 0 such that limsup,, (3 — 1)A% < oo.
Now 0 < X, < A < o0, (5.47) and lim sup(/\i, — 1A < oo for & € (0,1/2) satisfy
the conditions of Lemma [15l

Since

. S\ n . San SX. n . S\ n . S\
lim 2= = lim <—n n = lim =% lim =&

n—oo \/ﬁ n—oo

by Lemmafor the changing distribution (sx, », ~ sx,) and the assumption S\*/;LZ —0

we have

SN, n

— 0.
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Now, note that

—1
Sy F (0.5)An;paﬂ[%m(n):r]]
=(0.5)s5 LA, Z( )pﬁl — Dan)"
acA
~(0.5)s5,,A, —Zpr“ (1= pan)" "
" acA
(O 5 8)_\1 A v ZPT—H —(n—7)pa,n
! acA
(npan) _nan TPa,n
=(0. 5)8)\n gnpan o Pa,n TP
acA !
ATL a,n T+1
<(0.5)e" —"sy Z(r +1+ 71]9%)6’"1”“'"M (Note: A =n)
n 7 acA r!
LA
=(0.5)e" =53 .53
( ) n S)\ ns)\n
A,
=(0.5)e"—sr,, — 0
n
where the third line follows by
" ! —1)...(n— 1
()l _nn-Defn-r+y

o (n—r)nr n’

(i.e., (7) ~ Z), the fourth line follows by the fact that (1 — 2) < e, and the last

line follows by A,, ~ Miy/n and

An Ml\/ﬁAn A Ml
—San = 37 = SAm
» Ml\/ﬁ n » Ml\/_\/_

S)\n—>0



Proof of Theorem[J. Note that

gn,n gn,n - Cn,n + Cn,n

;
Sn,n Sn,n Sn,n

where

Cnn = MTrpn(n) — mpn(n))
Nyi1.n(n)

Trn(n) = - (r+1)

Nyn(n) = Z Liya,n(m)=r]
acA

Trn(n) = Zpa,nl[ya,n(n)ﬂ“]‘
acA

By Theorem [2} (2.9) holds if and only if

Crn MTyn(n) — Trn (n)) 4

= ’ > N(0,1).

Sn,n Snon n—00

Since s,,,, — 00 as n — 0o and

Lemma [I6] implies that

gn,n - Cn,n ﬁ) O

Sn,n

Therefore, by Slutsky’s theorem, (2.9) if and only if

Sun 4, (o, 1),

Sn,n

116

(5.48)



Lemma 17. For c,d > 0, let

Sn = CE[NT‘-i-l,n] + dE[NT+27n]

and

T, = cE[N.,, ] + dE[N!

1. For any e € (0,3) andn > r+2

An(S — Bn) S Tn S Sn€€(r+1) + nr+2(c_|_ d)e—e(n—r—2),

for some 0 < A, > 1 and 0 < B,, = 0 as n — oo, which may depend on e.

7’+2,n] .

117

(5.49)

(5.50)

2. We have T,, — oo if and only if S, — oo. And we have and liminf S,, = 0 if and

only if liminf T,, = 0.

3. If S, — oo, then T,/S, — 1.

Proof. Parts 2 and 3 follow immediately from Part 1. We now prove Part 1. Recall

that for the Poissonized case

E[N,.]=E [Z 1[ya,n(n)=7”]]

acA
- Z E [1[ya,n(n):7"]]
acA
=3 P (pal) =1
acA

_ Z o~ WPa.n (npa,n)T
B rl

acA
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and for the deterministic case

=E [Z 1[y;,n<n>:r1]

acA

=) E [1[yg,n(n>:r1]
acA

=> P(y,,(n)=r)
acA

- Z ( )pan pa,n>n_7"
acA

Forn>r+2
_ pa n) _ pa (npan)*?
S _Cze npan _'_dz npan
acA acA 7’ + 2>
r+1
_ Z (npa,n) e ~MPan (C + dnpan)
= (r+1)! +2

and using the fact that (")) = (},) =5+

n T n—r— n T n—r—
S AR IR R
acA

_ n r+1 1 — n—r—2 1— dn——r—l
aezA(rJrl)pan( Pan) <C( Pan) + g Pan

+1
< (npaﬂz)r e*npa,n <C+dnpa,n> epa,n(T+2)

Byt (r+1)! r+2

(npa n)r+1 — npan
< » NPa,n q—2en e(r+2)
- Z (7°+1)!6 ct r+2)°

aGAupa,nSE

_'_nr+2 Z panc+d —e(n—r—2)

aEA,pa n>€

<S8t 4 2 (e d)em TR,

where we use the facts that () < 2 and (1 —z) < e™. Next, fix § € (3,1). Using
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the facts that (1 — z) > e */(1722%) for 2 € (0,1/2), see Lemma 2.6 in [24], we get

n n
Tn — r+1 1— wn n—r—1 d r+42 1 — wn n—r—2
;4 (C(T —+ 1)pa,n ( Pa, ) + (T + 2)pa,n ( Da, )
_ n r41 1— n—r—2 1— dn —r—1
(T N 1) anApa,n (1= Pan) (C( Pan) + d————Pan

n B n-r—1
> T‘+1€ npa,ne 1—pa,n (p ? C + d— a,n 1 — FPan
_<r+1) Z Payn rt2 o (1= Par)

aG.A,pa,n Se/n5

———(en'7%—r— _ —r—1
>(1—¢/n°) (T Z 1)6 By Z PZ,+nl€ han (C+ dea,n)

a€A,pa,n<e/n’

r+1

—(1 _ 9 n *ﬁ(fnl_(;*T*?) (7“ + 1)' (npa,n) —NPa,n
=(1=¢/n )(r+1>6 |\ © Z (r+1)! ‘

a€A,pa,n<e/nd

(n—r—1) (Npan)™t? _
d— o - s NPa,n
e 2. it

aEA,pa,n Se/n‘s

=A,(S — B,),

and

)7‘+1

r+1 (NPan)™ 2 _ (NPan
Bn =d > NPa,n >
n Z (7’—|—2)!e T Z (r—l—l)!e

—NPa,n

aEAvpa,nSE/né aEA,pa,n>6/n5

(npa’n)r+2 —NPa,n
td ) o)

G,G.A,pa,n >€/n‘5

=B + B + BY).

We will show that B, — 0. First, let M > 0 be a constant with 2"*e™* < M for
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x > 0, then by dominated convergence
BWY <d(r+1)M Z Pan — 0.
a€A,pa,n<e/nd
Next
B? < cemn' T prtl Zpa,n -0
acA

)

and similarly BY —o. [

Lemma 18. 1. For any 1 < k < n/2, we have
Var(Ny,,,) < ApnE[N,]

where Ay, = (4]{:’!€+1 (";k) (n —2k)~F + 1) — % + 1.

2. If E[Ny ] = oo, then

Var(Nj,) Nin v
—— = 30 and —=— = 1.
(E[NEA))? BN,

To show this, we use ideas from the proof of Theorem 3.3 in [24]. Part 2 can also

be found without proof in Section 4 of [32].

Proof. First note that, for any 1 <k <n/2,

(NLD2 =0 > Ty =il = + Nis

acA beA,a#b

and

E N/ 2: n k k 1 — o — nn72k EN/ )
(%)) (,ﬁ,m_%)gbgﬁpwmm( Pon = pun)" % + [V,



121

Next, let and By, = (H“’L%)/(Z)2 = (”;k)/(’;) < 1 and note that By, — 1. We

have

Var(Ni,) = E[(Ni)’] = B[N ] = Bea(B[Nga))* + (B — D(EING ])* + B[N ]

< E[(N;n)*] = B[Nl = Ben(EIN]) + B[NV

We can upper bound E[(N,;n)Q] —E[N;,.] — B/M(E[]\f,’c’n])2 by

(k k n — 2k) Z Zpa npbn — Pa;n — pb,n>n72k - (1 - pam)"*k(l — pb’n)nfk)

a€A beA

n—2k n—2%k
Sk(k k’ n—2k>zzpanpbn pa,n> (1—pb ) (pan+pbn)

acA beA

< E+loq n—k(q n—3k
2k (kj kj n — Qk) Z Z pa npbn (1 pa,n) (1 pbm)

acAbcA ;Pa, n<pb n

2 k+1 1 — n—3k(1 _ n—k
+ k(k k n — Qk) Z Z pan pb n( pa,n) ( pb,n)

acAbeA »Pa, n>pb n

n
< 4 k n k k+1 1_ n 3k
< k(k . n_%) Zpa,n — Pan)" "> PET

beA

- —k , _
—4k( ) INLD oi i (= pom 3k<4kk+1< L )E[Nkvn](n—%) k,

be A

Here the second line uses the facts that 1 — pon — Don < 1 — Pan — Dbn + PanPon =
(1 = Pan)(1 = pon), that 1 — (1 — pan)(1 — pon)® <1 — (1 = pan — o), and that
1—(1—2)* < kz for z € [0,1], which is easily checked by induction on k. The last
inequality follows by the fact that #%(1 — 2)"=3% < k*(n — 2k)~* for z € [0, 1], which

can be shown using standard calculus arguments.

Var(N;)

For the second part, by Chebyshev’s inequality, it suffices to show that ENT2

— 0.
The first part implies that
Var (V) 1

EIv2 = g
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k

This holds since Ay, — % + 1, which follows by the fact that (}) ~ % O

Proof of Corollary[9. Since (r+1)? > 0 and (r+2)(r+1) > 0, if s,, — 0o as n — oo,

applying part 3 of Lemma [I7] completes the proof. n

Proof of Corollary[10. Since we have Theorem [5] and Corollary [0} the proof can be

completed by applying the Slutsky’s theorem. O

Proof of Corollary |11 In the proof of Corollary [3| (5.18)) we showed that E[N,1,] —

0o. Now let c =1 and d = 0 in (5.49) and (5.50)) of Lemma |17} then using part 2 of

Lemma

E[N;-i—l,n] — 00, (551)
and using part 3 of Lemma
E[Nv/url,n] ~ E[Nv"Jrl,n]- (5'52>
we also showed in Lemma [of that
E[N,
[ 7’+1,n] — 00,
Sx
here we set A = n and get
E|N;+15
ElNeia] (5.53)
Sx

Corollary [9] gives (s),,)* ~ 52 ,; thus together with (5.53) and (5.52) we have

n,n’

BN, 1]

/
Sn,n

(5.54)



Since ([5.51]) holds, using part 2 of Lemma

N’
_rtn Py,
E[Nr—‘rl,n]

Since

N'r{—s—l,n _ E[N;—I-l,n] N1{+1,n
s, s, E[er’+1,n] ’

n,n n,n

by continuous mapping theorem ([5.54) and ({5.55|) implies that

N’
r+ln P
- — Q.
Sn,n

Since 7+ 1 € (0, 00),

N4+1,n(7“ +1) ,

n,n

Now plugging in

N/
T, (n) = =552 (1),

r,n

nTrf,n(n) er’—&—l,n(r + 1) P
= — OQ.
s’ s

n,n n,n

By the symmetry of Normal distribution (2.11) implies that

n d
S%n (’/T?/“m,(n) - T;,n(n)) m N<07 1)7

123

(5.55)
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and so
> ’ — 1) —— N(0,1).
(T;,m ) i v
Since
nT'rf,n(n) p
(X)7
Snn
it follows from Lemma [ that
(1) p
: —1=0
17 ,.(n)
Therefore,
T (n
T,n( ) . 1 ﬁ) O
7. (n)

Lemma 19. For the deterministic case let

T, = CE[N;—i-l,n] + dE[N;’-i-Q]

T, = CN1£+1,n + dN;-i-Q,n'

T is a consistent estimator of T, i.e., as n — 00, for all e > 0

p( >€)%o.

Proof. Here we use similar arguments from the proof of Lemmal[I3] because Lemmal[I2]

~

T,
o
T,

still holds when the distribution is changing. m

Proof of Corollary[13. Since (r + 1)*> > 0 and (r + 2)(r + 1) > 0, the result is an



application of Lemma, [19]

Lemma 20. For any 0 < k < n/2, we have

n—=k ektl
< —E|Niian
k:—i—lﬂk” —n [Ntz

0<E Nl/c-‘rl,n -
and

Var(m ) < n2¢"E[Niy2,0) + 2ke*n E[Njs1,,]E[Nit2,0)-

Proof. First note that, for any 0 < k < n/2,

(Thn) n Z Z PanPonl (Yl n=F] 1[y{,7n:k} + sz,nl[y&,n:k]

ac€A beA,a#b acA
and
El(+ )2 — k+1k+11_ D)2
T = (o pr o) 2 AR b= )
a€A beA,atb
( )Zp’““ 1= pan)" ™" = Hy + Hy.
a€A
We have

—k
0 < E|:N]/€+1,TL_Z+1 kn:| :< )ZPIH_Q 1_pann ot

S k+1 2 pk+2€ Pa,n(n—k—1)
acA
e fio ek—H
+ —Fa,n J—
< — E (npa,n) e Pont = _E[Nk+27n]7
n n
acA

where we use the facts that (k+1) ]

125

= o= k() that()<n and that 1 — x < e~ * for



126

x > 0. In a similar way we can upper bound H, by

HQ S k‘ Zpk-‘rQ 1 _pan n k < n_ Z(npa7n)k+2€—pa,n(n—k)
acA acA

< n2eh Z(npa,n)k”e’”p“’" = n"2e"E[Niiom)-
acA

Now, let By, = (" )/(”)2 —

k,k,n—2k k

bound Hy — By, (E[m,,])* by

(".*)/(}) and note that By, < 1. We can upper

(k. k n — Qk) Z Zplg—;lplgzl 1 - pa,n - pb,n)n_zk - (1 - pa,n)n_k(l - pb’n)n_k)

acA beA

< ank Z Zp];tllplg—zl I pavn)n_Qk(l — Pon )n Qk(pan +pb n)

acA beA
— 9k 2k Zpk—H 1 — Da, n n 2k ZPIH_Q n 2k
acA be A
S an_g § :(npavn)k—i-le—pa,nn+2kpa,n E (Tlpbvn)k+2€_pb’”n+2kp“’"
acA beA

< 2ke™n " E[ Nyt 1.4 E[Nit2.0),

where the second line follows by arguments similar to those in the proof of Lemma

and the third by symmetry. From here the result follows. O

Proof of Theorem[6 Theorem [3| and Lemma imply that E[N/,,] — ¢ and

E[N/,5,] — 0. From here Lemma[20|implies that B[ 7, ,] — ¢* and that Var(*fn; ) —

0. Now, the first convergence follows by the well-known representation of the mean
square error as the sum of the variance and the square of the bias. From here,
Markov’s inequality combined with Slutsky’s Theorem gives the second convergence.

The last convergence follows from Theorem 3| Lemma|[l6] and Slutsky’s Theorem. [
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