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ABSTRACT

GEORGE M. STUKES. On the infinite divisibility and non infinite divisibility of
certain classes of random variables. (Under the direction of DR. STANISLAV

MOLCHANOV)

In this dissertation we present new results on the classification of limit distributions of

random geometric processes. In particular, that develop on the work of Penrose and

Wade [1], who were the first to document the phenomenon of infinite divisibility in the

case of a particular (uniform) distribution. In this dissertation we put forth not only

new results, but a new method of obtaining results through analyzing the sequence

of moments produced by random variables. Additionally we have new results in cycle

decomposition of the related Dickman-Goncharov distribution. We present a novel

proof of the distribution of the three highest order cycles in a random partition.
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CHAPTER 1: INTRODUCTION

The subject of this dissertation involves several different, but related distributions.

The details of these distributions will be laid out in subsequent sections. Our early

results are focused on the distributions the lengths of cycles that result from decompo-

sitions from random permutations of Sn. These cycle lengths were studied extensively

by Goncharov [2] and later Vershik [3]. More recently, Molchanov and Panov [4] have

produced results that this dissertation expands on.

The bulk of the dissertation is focused on random geometric progressions in the

spirit of Penrose and Wade [1] and Vervaat [5]. The authors discovered that under

particular conditions, the random variable S,

S = Y1 + Y1Y2 + Y1Y2Y3 + Y1Y2Y3Y4 + · · · , (1.1)

is infinitely divisible, where the Yi are independent, identically distributed random

variables. Later work by Grabchak and Molchanov [6] provided more results. This

dissertation presents a new method to determine infinite divisibility of such random

geometric progressions as well as classifies many examples.

1.1 Motivation for Joint Distribution of Maximal Cycles

Here we will discuss some of the motivation and background behind our first prob-

lem, which involves joint distributions of cycle lengths in the decomposition of a

random permutation on Sn.
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We begin by considering

π =

 1 2 3 4 · · · n

i1 i2 i3 i4 · · · in

 , (1.2)

which is a random permutation on the first n natural numbers. We define ‘random’

here as every particular element of the group Sn can be selected with uniform prob-

ability. Naturally, then, we can say for any permutation π ∈ Sn,

IP(π) =
1

n!
.

The notation in (1.2) indicates that the permutation π maps the element 1 to

another element i1 and 2 to another element i2 and so on. This permutation can be

decomposed into a number of cycles in the following way: 1 → i1 → ij → · · · →

ir → 1, which completes one cycle. The next cycle begins with the smallest element

remaining that was not included in the first cycle.

Example 1.1. Consider the permutation of the first 5 natural numbers

π =

 1 2 3 4 5

3 1 2 5 4


Here the permutation produces the cycles 1 → 3 → 2 → 1 and 4 → 5 → 4. We

can write the decomposed permutation as (1, 3, 2)(4, 5). Note here that the first cycle

has length 3 and the second cycle has length 2.

In our problem, we consider the distribution of the lengths of the maximal cycles

in random permutations. We denote the length of the ith cycle as |ci|. Where the ith

cycle begins with the smallest element not included in the first i− 1 cycles.
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In a straightforward manner, we can determine

IP {|c1| = 1} =
1

n
(the only such cycle is 1→ 1)

IP {|c1| = 2} =
(n− 1)

n

1

n− 1
=

1

n
(the cycles here are 1→ i1 → 1, i1 6= 1) .

IP {|c1| = 3} =
(n− 1)

n

(n− 2)

(n− 1)

1

(n− 1)
=

1

n

Iterating this process, we arrive at

IP {|c1| = k} =
1

n
.

If the length of the first cycle is less than n (which it is with probability n−1
n

), then

it is natural to consider the length of the second cycle, conditioned on the length of

the first cycle. Understanding that if the first cycle is length k1 the second cycle has

length n− k1, we arrive at the equation

IP
{
|c2| = k2

∣∣∣ |c1| = k1

}
=

1

n− k1
.

In the same way, we can compute the conditional probability for all higher cycles

IP
{
|ci| = ki

∣∣∣ |ci−1| = ki−1
⋂
|ci−1| = ki−2

⋂
· · ·
⋂
|c1| = k1

}
=

1

si
,

where 1 ≤ ci ≤ sk and sk = n− k1 − k2 − · · · − ki−1.

In this dissertation, we are interested in the limiting distribution (n → ∞) of

normalized lengths |ci|
n
.
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We create random variables Y1, Y2, ..., Yk and set

|c1|
n

law→ Y1,
|c2|
n

law→ Y2, ... ,
|ck|
n

law→ Yk n→∞ .

One can see that the distribution of the variables will follow

Y1 = X1 ∼ Unif [0, 1]

Y2 = X2(1−X1) , X2 ∼ Unif [0, 1], where X2, X1 are independent.

Y3 = X3(1−X1)(1−X2) , X3 ∼ Unif [0, 1], where X3, X2, X1 are independent.

...

We are primarily interested in the order statistics of the distribution of {Y1, Y2, Y3, ...}.

In particular we develop a novel method to derive a formula for the joint distribu-

tion of (Y(1), Y(2), Y(3)), where Yi indicates the ith largest value. The distribution of

the longest cycle appears in Feller [7] and further cycles were extensively studied by

Vershik in [3] and [8]. It is in this context that the Dickman-Goncharov distribution

arises. More details and a derivation will be offered in section 2.2.

1.2 Motivation for Random Geometric Progressions

In this part of the dissertation we are going to discuss two concepts that come

together in our work, infinite divisibility and random geometric progressions.

1.2.1 Infinite Divisibility

The notion of infinite divisibility began in the early twentieth century through

pioneering work by Di Finetti [9], Lévy [10], Kolmogorov [11], and Khintchine [12].

The notion of divisibility of a random variable, X, concerns whether you can represent
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X in the following way

X
law
= Y1 + Y2 + Y3 + · · ·+ Yn

Y1, Y2, ..., Yn independent and identically distributed.

If such a representation is possible, X is said to be n-divisible. It is interesting to

note that (n+ 1) divisibility does not imply n divisibility. This will make our notion

of infinite divisibility slightly more complex than simply a limit of the sum of i.i.d.

random variables.

Theorem 1.1. We call a random variable X infinitely divisible if for every n ∈ N,

you can represent it in the following way

X
law
= Xn,1 +Xn,2 + · · ·+Xn,n ,

where Xn,1, Xn,2, Xn,n are i.i.d. and there exists some Xn such that Xn,j
law
= Xn for

all j.

Since the infinite divisibility of a random variable is based on it’s distribution, we

commonly use the term infinitely divisible to describe a random variable, distribution

function, or density function (for absolutely continuous distributions).

We can also generalize the definition of infinite divisibility in (1.1) through the

following theorem. To do so, we will utilize the following definition.

Here we define a triangular array. A triangular array is a double sequence of

random variables Xi,j i = 1, 2, ..., j; j = 1, 2, 3, ... and the variables in the nth row

(X1,n, ..., Xn,n are mutually independent.

In our triangular arrays, we are interested in rows where individual components

Xi,j do not exert significant influence over the sum of the elements in the row. To
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this end, we impose the additional constraint that for each ε > 0,

IP {|Xi,j| > ε} < ε (i = 1, 2, ..., j) (1.3)

for sufficiently large n. These arrays are sometimes called null arrays.

Theorem 1.2. Let

Sn =
n∑
i=i

Xi,n (1.4)

be the sum of rows of a triangular array, Xi,j with property (1.3). If there exists an

S such that Sn
law→ S, then S is infinitely divisible.

This remarkable fact generalizes (1.1) and drops the requirement that the compo-

nents Xi,j have some common distribution. For more details, the reader is directed

to [13].

It is straightforward to show that a infinitely divisible distribution F can be written

for every n ∈ N as the n-fold convolution of some other distribution Fn with itself.

Similarly, a characteristic function φ will be infinitely divisible iff for every n ∈ N it

is the nth power of some characteristic function φn:

F = F ?n
n ∀n ∈ N φ(z) =

(
φn(z)

)n
∀n ∈ N .

Next we show the some of the most common types of infinitely divisible distribu-

tions.

Example 1.2. Let X have a Normal (µ, σ2) distribution. Then X is infinitely divis-

ible and for every n ∈ N Xn ∼ N(µ
n
, σ

2

n
).

Example 1.3. Let X have a Poisson (λ) distribution. Then X is infinitely divisible
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with Xn ∼ Poisson(λ
n
) for every n ∈ N.

Example 1.4. Let X have a exponential distribution with parameter k. Then X is

infinitely divisible with Xn ∼ Exp( k
n
) for every n ∈ N.

Example 1.5 (Penrose Wade). Let {Yi}i be a sequence of random variables with

distribution Yi ∼ Unif [0, 1]. Then the sum, S

S = Y1 + Y1Y2 + Y1Y2Y3 + · · ·

is infinitely divisible.

Alternative characterizations are discussed extensively in [14]. These characteriza-

tions will be utilized in chapter 3.

1.2.2 Random Geometric Progressions

In a paper about Minimal Directed Spanning Trees, Penrose and Wade [1] discov-

ered that it is possible to generate an infinitely divisible distribution as the limit of a

random geometric progression

S = Y1 + Y1Y2 + Y1Y2Y3 + Y1Y2Y3Y4 · · · .

In the paper the authors demonstrated that if each of the Yi are U
1
Θ (Θ > 0), and

U ∼ Unif [0, 1] that the resulting geometric progression is infinitely divisible. We

will recreate this result later in the paper. What is interesting to note is the specific

parameters around the distribution of the Yi variables. The main thrust of this

dissertation is to make more clear what distribution of Yi might result in an infinitely

divisible distribution.

It is straightforward to show the condition U
1
Θ (Θ > 0), and U ∼ Unif [0, 1] cor-

responds to a random variable with a distribution of Beta[Θ, 1]. In our search for
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other potentially infinitely divisible progressions, we will naturally look at distribu-

tions that are very similar to the uniform and beta distributions. Details and proofs

are presented in chapter 3.

1.3 Important Distributions

There are three main distributions that will be discussed in this dissertation. The

first of these was discovered in the 1930’s by Karl Dickman when researching natural

numbers free of large prime factors [15]. The density of the Dickman distribution

satisfies

IP
{
p1(ξ) ≤ n1/a

} n→∞−→ D(a) =

∫ ∞
a

d(u) du , (1.5)

where ξ is a random integer with uniform distribution on {1, ..., n} and p1(ξ) is it’s

smallest prime factor. It is well established that this Dickman distribution is infinitely

divisible. The Dickman function D(a) satisfies the delay differential equation

aD′(a) +D(a− 1) = 0 D(a) = 1 ∀a ∈ [0, 1] (1.6)

A similar distribution that will be studied is the Penrose-Wade distribution. Con-

sider a random variable D defined as

D = U1 + U1U2 + U1U2U3 + · · ·

D
law
= U(1 + D)

D has a density that satisfies the Dickman equation (1.6) with the initial condition

p(x) = e−γ ∀ x ∈ [0, 1]. It can also be written

p(x) = e−γD(x)
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where D again is the Dickman function from (1.6).

Our third and final distribution was discovered by Vasily Leonidovich Goncharov

in the 1940s while investigating asymptotics of the type discussed in section 1.1. Let

π be a random permutation of n elements and consider the cycle decomposition of π

π = c1(π)c2(π) · · · cj(π) (1.7)

If we take c(1)(π) to be the longest cycle in the decomposition, we have for any

a ∈ [0, 1]

IP
{
|c(1)(π)|

n
≤ a

}
n→∞−→ G(a) =

∫ a

0

g(u) du (1.8)

Where G(a) is the distribution function for the Goncharov law. Notably if a random

variable X has the Goncharov distribution, then Y = 1/X then Y has the distribu-

tion function F (y) = 1 − D(y) where D is the Dickman function from (1.6). This

remarkable connection between the two distributions was not discovered until the

1980s by Vershik in [8].



CHAPTER 2: JOINT DISTRIBUTION OF SEVERAL HIGHER ORDER CYCLES

2.1 Preliminaries

Here we will derive two important identities for the Goncharov distribution. These

identities appear multiple times in literature that predates this paper. The reader is

directed to [4]. Consider a random variable G that has the distribution

G law
= max{1− U, G̃U}

Where U is uniformly distributed on [0, 1], G and G̃ are independent and have the

same distribution. Note that this distribution is analogous to the situation in (1.8).

Because G is concentrated on [0, 1] we can write the following equation with Φ(x)

representing the distribution of G

IP{G ≤ x} = Φ(x) =

∫ 1

0

IP{max{t, (1− t)G} ≤ x}dt

Φ(x) =

∫ x

0

Φ
( x

1− t

)
dt .

Here we will substitute z = x
1−t and we obtain

Φ(x)

x
=

∫ x
1−x

x

Φ(z)

z2
dz

If we let φ(x) = Φ′(x) be the density of G we can take differentiate both sides and we

arrive at the first Goncharov identity:

xφ(x) = Φ

(
x

1− x

)
. (2.1)



11

To arrive at the second Goncharov identity, we differentiate both sides of (2.1).

xφ(x) + φ′(x) = φ
( x

1− x
) 1

(1− x)2

φ′(x) = φ
( x

1− x
) 1

(1− x)2
− xφ(x) . (2.2)

Now we can see that the identity below

φ(x)(1− x) =

∫ x
1−x

x

φ(z)

z
dz (2.3)

is trivially equal at x = 0. We differentiate both sides of (2.3) to arrive at

φ(x)− xφ′(x) =
φ
(

x
1−x

)
x

− φ(x)

x

Substituting (2.2) for φ′(x) we get

φ(x)(1− x) =
φ
(

x
1−x

)
(1− x)2

+
φ
(

x
1−x

)
x

− φ(x)

x

and we now have the verified the identity in (2.3)

φ(x)(1− x) =

∫ x
1−x

x

φ(z)

z
dz

The case k = 2 was established in [4], and is listed here:

r2(a1, a2) =
1

a1(1− a1)
φ

(
a2

1− a1

)
(2.4)

where φ is the Dickman-Goncharov distribution.
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2.2 The case k=3

Here we continue the work of Molchanov and Panov [4] and also Vershik [3]. We

seek to prove a joint distribution for the lengths of the three highest order cycles in

a permutation selected at uniformly at random from Sn. We utilize the relationship

{
Y(1), Y(2), Y(3)

} law
=
{
3 largest of: X1, (1−X1)Ỹ1, (1−X1)Ỹ2, (1−X1)Ỹ3

}

where X1 and Ỹ1 are independent, uniformly distributed random variables on [0, 1].

As the argument is laid out in [4], we designate events:

Ω1 :
{
3 largest elements - (1−X1)Ỹ1, (1−X1)Ỹ2, (1−X1)Ỹ3

}
X1 < (1−X1)Ỹ3

Ω2 :
{
3 largest elements - (1−X1)Ỹ1, (1−X1)Ỹ2, X1

}
(1−X1)Ỹ3 < X1 < (1−X1)Ỹ2

Ω3 :
{
3 largest elements - (1−X1)Ỹ1, X1, (1−X1)Ỹ2

}
(1−X1)Ỹ2 < X1 < (1−X1)Ỹ1

Ω4 :
{
3 largest elements - X1, (1−X1)Ỹ1, (1−X1)Ỹ2

}
(1−X1)Ỹ1 < X1

From [4] we denote the joint distribution for
{
Y(1), Y(2), Y(3)

}
as:

r(a1, a2, a3)da1da2da3 = IP
{
Y(1) ∈ (a1, a1 + da1), Y(2) ∈ (a2, a2 + da2), Y(3) ∈ (a3, a3 + da3)

}
(2.5)

and additionally we designate the right hand side of (2.5) as Ω0.

Theorem 2.1. The density for
{
Y(1), Y(2), Y(3)

}
, a1 > a2 > a3 is

r(a1, a2, a3) =
1

a1a2(1− a1 − a2)
φ

(
a3

1− a1 − a2

)
(2.6)
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Proof. We first show that (2.6) is a valid density function on [0, 1].

∫ 1

0

∫ 1

0

∫ 1

0

r(a1, a2, a3)da1da2da3 =

∫ 1

0

∫ 1

0

∫ 1

0

1

a1a2(1− a1 − a2)
φ

(
a3

1− a1 − a2

)
da1da2da3

=

∫ 1

0

1

a1

∫ a1

0

1

a2

∫ a2

0

1

(1− a1 − a2)
φ

(
a3

1− a1 − a2

)
da1da2da3

let t =
a3

1− a1 − a2

=

∫ 1

0

1

a1
da1

∫ a1

0

1

a2
da2

∫ a2
1−a1−a2

0

φ (t) dt

let γ =
a2

1− a1

=

∫ 1

0

1

a1
da1

∫ a1

0

1

a2
da2

∫ γ
1−γ

0

φ (t) dt

=

∫ 1

0

1

a1
da1

∫ a1

0

1

a2
Φ

(
γ

1− γ

)
da2

and by (2.1)

=

∫ 1

0

1

a1
da1

∫ a1

0

1

1− a1
φ

(
a2

1− a1

)
da2

=

∫ 1

0

φ (a1) da1 = 1

We will construct the formula for r(a1, a2, a3) using the cases outlined above. We

proceed with the individual cases:

1. Ω0 ∩ Ω1

=
{

(1−X1)Ỹ1 ∈ (a1, a1 + da1), (1−X1)Ỹ2 ∈ (a2, a2 + da2), (1−X1)Ỹ3 ∈ (a3, a3 + da3)
}

X1 < (1−X1)Ỹ3
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hence,

r(1)(a1, a2, a3) =

∫ a3

0

dx

(1− x)3
r

(
a1

1− x
,
a2

1− x
,
a3

1− x

)

=
1

a1a2

∫ a3

0

1

1− a1 − a2 − x
φ

(
a3

1− a1 − a2 − x

)
dx

let t = a3

1−a1−a2−x

=
1

a1a2

∫ a3
1−a1−a2−a3

a3
1−a1−a2

1

t
φ (t) dt

let β = a3

1−a1−a2
, note also that β

1−β = a3

1−a1−a2−a3
,

=
1

a1a2

∫ β
1−β

β

φ (t)

t
dt

by equation (2.3),

=
1

a1a2
(1− β)φ(β)

r(1)(a1, a2, a3) =
1− a1 − a2 − a3
a1a2(1− a1 − a2)

φ

(
a3

1− a1 − a2

)
(2.7)

2. Ω0 ∩ Ω2

=
{

(1−X1)Ỹ1 ∈ (a1, a1 + da1), (1−X1)Ỹ2 ∈ (a2, a2 + da2), X1 ∈ (a3, a3 + da3)
}
, X1 > (1−X1)Ỹ3

So we have:

r(2)(a1, a2, a3) =
1

(1− a3)2

∫ a3
1−a3

0

r

(
a1

1− a3
,

a2
1− a3

, x

)
dx

By equation (2.6),

=
1

(1− a3)2

∫ a3
(1−a3)

0

(1− a3)3

a1a2(1− a1 − a2 − a3)
φ

(
x(1− a3)

1− a1 − a2 − a3

)
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let t = x(1−a3)
1−a1−a2−a3

and we have:

=
1

a1a2

∫ a3
1−a1−a2−a3

0

φ(t)dt

and now let γ = a3

1−a1−a2
,

=
1

a1a2

∫ γ
1−γ

0

φ(t)dt

by equation (2.3),

=
1

a1a2
Φ

(
γ

1− γ

)

and by (2.1) we can say

=
1

a1a2
γφ(γ)

hence

r(2)(a1, a2, a3) =
a3

a1a2(1− a1 − a2)
φ

(
a3

1− a1 − a2

)
(2.8)

3. Ω0 ∩ Ω3

=
{

(1−X1)Ỹ1 ∈ (a1, a1 + da1), X1 ∈ (a2, a2 + da2), (1−X1)Ỹ2 ∈ (a3, a3 + da3)
}

r(3)(a1, a2, a3) =
1

(1− a2)2
r2

(
a2

1− a1
,

a3
1− a1

)
and by (2.4)

r(3)(a1, a2, a3) =
1

a2(1− a1 − a2)
φ

(
a3

1− a1 − a2

)
(2.9)
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4. Ω4 ∩ Ω0

=
{
X1 ∈ (a1, a1 + da1), (1−X1)Ỹ1 ∈ (a2, a2 + da2), (1−X1)Ỹ2 ∈ (a3, a3 + da3)

}

r(4) =
1

(1− a1)2
r2

(
a2

1− a1
,

a3
1− a1

)
and by (2.4)

r(4) =
1

a1(1− a1 − a2)
φ

(
a3

1− a1 − a2

)
(2.10)

Now it remains to combine equations (2.7) - (2.10):

r(a1, a2, a3) = r(1) + r(2) + r(3) + r(4)

=

(
1− a1 − a2 − a3
a1a2(1− a1 − a2)

+
a3

a1a2(1− a1 − a2)
+

1

a2(1− a1 − a2)

+
1

a1(1− a1 − a2)

)
φ

(
a3

1− a1 − a2

)
r(a1, a2, a3) =

1

a1a2(1− a1 − a2)
φ

(
a3

1− a1 − a2

)

which concludes the proof.



CHAPTER 3: RANDOM GEOMETRIC PROGRESSIONS

In this chapter we consider the infinite divisibility of particular classes of random

variables that arise from a random geometric progression of the type

S = Y1 + Y1Y2 + Y1Y2Y3 + Y1Y2Y3Y4 + · · · , (3.1)

where the Yi are independent, identically distributed random variables. As shown by

Penrose and Wade [1], when the Yi are distributed uniformly on the interval [0, 1],

the resulting limit is an infinitely divisible distribution.

We begin by showing some relationships that will be used throughout the chapter.

The random variable S has the following distribution equality

S
law
= Y1(1 + S̃) , (3.2)

where S and S̃ are independent and equal in distribution. and from this we can say

E(S) = E(Y1)E(1 + S). (3.3)



18

Using this relation, we can calculate all moments of S

Mn = E(Sn) = E(Y n
1 )E((1 + S)n)

= E(Y n
1 )

n−1∑
j=0

(
n

j

)
Mj + E(Y n

1 )Mn

Mn =
µn

1− µn

n−1∑
j=0

(
n

j

)
Mj (3.4)

with M0 = 1

where µn denotes the nth moment of Yi. This relationship seems to have deep con-

nections with the tail probabilities of infinitely divisible distributions shown in [14],

[16], and [17].

As will be seen later in the paper, cumulants play an important role in infinitely

divisible distributions. The cumulant generating function of a distribution is defined

as

K(t) = logE(etX) .

We can calculate individual cumulants κi by the Maclaurin series

K(t) =
∞∑
i=1

κi
tn

n!
= κ1

t

1!
+ κ2

t2

2!
+ · · ·

Similarly to moments and the moment generating function we can calculate

κn = K(n)(0) .
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In particular, we should note that κ1 = µ1 = E(X) and that κ2 = σ2 = V ar(X).

Cumulants are so-named because of the property

κn(X1 +X2 + · · ·+Xj) = κn(X1) + κn(X2) + · · ·+ κn(Xj)

We will make extensive use of the relationship between moments and cumulants

from [18],

κn = Mn −
n−1∑
j=1

(
n− 1

j

)
κn−jMj ; (3.5)

Where κn denotes the nth cumulant of the distribution.

Before we get into specific distributions, we will demonstrate an important rela-

tionship between the moments µn of Yi and the moments of the resulting random

geometric progression Mn using (3.4) .

Mn =
µn

1− µn

n−1∑
j=0

(
n

j

)
Mj, M0 = 1

(3.6)

and here we calculate the first moment, M1

M1 =
µ1

1− µ1

M0

M1 =
µ1

1− µ1
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and to simplify notation we will introduce the term

an =
µn

1− µn
.

So we can rewrite

M1 = a1 .

Continuing with (3.4) recursively, we can solve for M2

M2 =
µ2

1− µ2

1∑
j=0

(
2

j

)
Mj

M2 = a2 +

(
2

1

)
a1a2 .

Again we can use (3.4), we can find M3

M3 = a3

2∑
j=0

(
3

j

)
Mj

M3 = a3

((
3

0

)
M0 +

(
3

1

)
M1 +

(
3

2

)
M2

)

M3 = a3 +

(
3

1

)
a3a1 +

(
3

2

)
a3a2 +

(
3

2

)(
2

1

)
a3a2a1

M3 = a3

2∑
j=1

(
3

j

)
a3aj +

3∑
j=2

j∑
i=1

(
3

j

)(
j

i

)
a3ajai .

From there we can generalize the pattern to finding any Mn without the need for

recursion. We arrive at the formula

Mn = an +
n∑
j=1

(
n

j

)
anaj +

n∑
j=2

j∑
i=1

(
n

j

)(
j

i

)
anaja1

+ · · ·+
n∑

ik=k

ik∑
ik−1

· · ·
i2∑
i1

(
n

ik

)(
ik
ik−1

)
· · ·
(
i2
i1

)
ai1ai2 · · · aikan (3.7)
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which gives moments Mn of the random geometric progression based only on the

moments µn of Yi. We will use equation (3.7) extensively to calculate moments of

various infinite geometric progressions.

Consider, as an example, the infinite progression studied in the paper by Vervaat

[5] and Penrose and Wade [1], where

S = Y1 + Y1Y2 + Y1Y2Y3 + · · ·

and

Yi ∼ Unif [0, 1] .

We know this density to possess infinite divisibility, and we will use our new method

based on equation (3.7) to demonstrate. We begin by calculating

µn =
1

n+ 1
,

which gives

an =
1

n
.

Here we will deviate slightly from the method slightly to show an important property

of S defined as by Penrose Wade. Recall the cumulants to moments equation (3.5):

κn = Mn −
n−1∑
j=1

(
n− 1

j

)
κn−jMj .
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To simplify the notation, consider the situation when n = 3

κ3 = M3 −
2∑
j=1

(
2

j

)
κ3−jMj

= a3 +

(
3

1

)
a3a1 +

(
3

2

)
a3a2 +

(
3

2

)(
2

1

)
a3a2a1 −

(
2

1

)
κ2a1 − κ1

(
a2 + 2a1a2

)
.

Using the recursion for κn, we can insert the values for κ1 and κ2

κ3 = a3 +

(
3

1

)
a3a1 +

(
3

2

)
a3a2 +

(
3

2

)(
2

1

)
a3a2a1

+

(
2

1

)(
a2 + 2a1a2 − a1a1

)
a1 + a1

(
a2 + 2a1a2

)
.

=
1

3
+

(
3

1

)
1

3

1

2
+

(
3

2

)(
2

1

)
1

3

1

2
−
(

2

1

)
1

2
−
(

2

1

)
−
(

2

1

)
− 1

2
+ 1

κ3 =
1

3
.

This demonstrates the unique quality of a geometric progression based on the Yi

having uniform density on [0, 1], which can be extended to any cumulant. Because

the nth moment for Yi is 1
n+1

, produces coefficients an exactly equal to 1
n
for every n.

When combined with the cumulant formula (3.5), the moments of S cancel ex-

actly the binomial coefficients that occur in the recursion formulas for cumulants and

moments. As we will show in the paper, if those moments are changed slightly, the

resulting variable S̃ loses the property of infinite divisibility.

Now we will show the method novel to this paper. Using the equation (3.7) we

will demonstrate that the S defined as above has moments that are not decreasing

sufficiently quickly to produce negative moments. Recall that if a random variable

distributed on R+ has negative cumulants, it is not infinitely divisible. For details

the reader is referred to [14] chap. III, Theorem 7.1.
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To use our method, we start with the coefficient corresponding to µn = 1
n+1

an =
1

n

and combine it with the equation (3.7) to get

Mn =
1

n
+

n∑
j=1

(
n
j

)
jn

+
n∑
j=2

j−1∑
i=1

(
n
j

)(
j
i

)
jni

+ · · ·

Here we split the summands of each of the series:

T1 =
1

n

T2 =

(
n
j

)
jn

T3 =

(
n
j

)(
j
i

)
jni

...

Tk =

(
n
ik

)
· · ·
(
i2
i1

)
ik · · · i2i1n

...

Now we perform a Taylor series expansion of each of the Ti terms about an arbitrary
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point k:

T1 =
1

k
− 1

k2
(n− k) +O

(
(n− k)2

)
T2 =

Γ(k + 1)

j2kΓ(j)Γ(−j + k + 1)

+
Γ(k + 1)

(
k(ψ(0)(k + 1)− ψ(0)(k + 1− j))− 1

)
j2k2Γ(j)Γ(−j + k + 1)

(n− k) +O
(
(n− k)2

)
T3 =

Γ(k + 1)
(
j
i

)
ij2kΓ(j)Γ(−j + k + 1)

+
Γ(k + 1)

(
j
i

)
(−kψ(0)(−j + k + 1) + kψ(0)(k + 1)− 1)

ij2k2Γ(j)Γ(−j + k + 1)
(n− k) +O

(
(n− k)2

)
...

Where φ(0)(z) is the digamma function, defined as

φ(0) =
Γ′(z)

Γ(z)
. (3.8)

We look only at the first order terms in the expansion of Tn to get a sense of how

quickly moments are changing. Recall for terms T2 and higher, we must sum over all

j < k. Examining T2, we can produce the second coefficient in the series expansion

T2 =
Γ(k + 1)

(
k(ψ(0)(k + 1)− ψ(0)(k + 1− j))− 1

)
j2k2Γ(j)Γ(−j + k + 1)

We should note here that T2 increases with k, which we should expect. The im-

portant part of the dynamics here is that for any k, the second term in the Taylor

expansion is positive, and finite. From here we can say that

dM

dn

∣∣∣
n=k

> 0 . (3.9)
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This produces a sequence of moments that are increasing with n at a rate that will

not produce negative cumulants from (3.5).

Here we will show that if a random variable Yi has moments that produce coef-

ficients an which are grow infinitesimally larger than 1
n
, then the random variable

based on the infinite progression of Yi is not infinitely divisible.

Theorem 3.1. Let Yi be a sequence of i.i.d. random variables with the moment of

each Yi defined as follows

µn =
1

n1+ε + 1
.

Then the random variable S

S = Y1 + Y1Y2 + Y1Y2Y3 + Y1Y2Y3Y4 + · · ·

is not infinitely divisible.

Proof. Again we construct the moments of the geometric progression based on µn =

1
n1+ε+1

,

an =
µn

1− µn

=
1

n1+ε+1

1− 1
n1+ε+1

=
1

n1+ε
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Now we can find a formula forMn, the nth moment of the progression via the formula

Mn = an +
n∑
j=1

(
n

j

)
anaj +

n∑
j=2

j∑
i=1

(
n

j

)(
j

i

)
anaja1 + · · ·

=
1

n1+ε
+

n−1∑
j=1

(
n

j

)
1

(nj)1+ε
+

n−1∑
j=2

j−1∑
i=1

(
n

j

)(
j

i

)
1

(inj)1+ε
+ · · ·

And here we perform our Taylor series expansion about the point ε = 0 for T1 = 1
n1+ε

T1 =
1

n
− log(n)

n
ε+O

(
ε2
)
.

Similarly we find expansions for T2 and T3

T2 =

(
n
j

)
jn
−
(
n
j

)
log(jn)

jn
ε+O

(
ε2
)

T3 =

(
j
i

)(
n
j

)
nij

−
(
j
i

)(
n
j

)
log(nij)

nij
ε+O

(
ε2
)

...

This provides with the first order coefficient in the Taylor Series expansion for Mn

about ε = 0

dMn

dε

∣∣∣
ε=0

=
∞∑
n=0

(
n−1∑
j=1

− log(n)

n
−

n−1∑
j=2

j−1∑
i=1

(
j
i

)(
n
j

)
log(nij)

nij
− · · ·

)

Further Ti have similarly negative first-order terms, which brings us to our conclusion.

Since the first order terms are negative and increasing without bound around the

point ε = 0, since the Mn are strictly positive, we can conclude that the sequence Mn

converges pointwise to 0 for any ε > 0. Hence there exists an N such that provides

a sufficiently small MN to produce a negative KN . It follows that S defined in this
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way is not infinitely divisible.

3.1 Uniform Type Distributions

We start with the case where each Yi follows the distribution

Yi ∼

 0 q

Unif [0, 1] p .

As we will see soon, this distribution has strong connections to distributions that are

uniform on sub-intervals of [0, 1].

Theorem 3.2. The random variable S,

S = Y1 + Y1Y2 + Y1Y2Y3 + Y1Y2Y3Y4 + · · ·

with

Yi ∼

 0 q

Unif [0, 1] p .

is not infinitely divisible.

Proof. To begin, we first calculate moments, µn of Yi:

µn = E(Yi) = q · 0 + p ·
(

1

1 + n

)
µn =

pn

1 + n
.
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To simplify notation, we will create the coefficient

an =
µn

1− µn

an =
pn

(n+ 1)− pn
. (3.10)

We now calculate the moments of S = Y1 +Y1Y2 +Y1Y2Y3 + · · · as a function of p, the

probability that Yi is non-zero. Using the formula (3.4) gives the following recursion

relation.

Mn(p) =
µn

1− µn

n−1∑
j=0

(
n

j

)
Mj

= an

n−1∑
j=0

(
n

j

)
Mj(p)

=
pn

(n+ 1)− pn
n−1∑
j=0

(
n

j

)
Mj(p)

Solving for the recursion yields

Mn(p) =
pn

(n+ 1)− pn
+

n−1∑
j=1

(
n
j

)
pn+j

((n+ 1)− pn)((j + 1)− pj)

+
n−1∑
j=2

j−1∑
i=1

(
n
j

)(
j
i

)
pn+i+j

((n+ 1)− pn)((j + 1)− pj)((i+ 1)− pi)
+ (3.11)

+
n∑

ak=k

ak∑
ak−1=k−1

· · ·
a2∑
a1=1

(
n
ak

)(
ak
ak−1

)
· · ·
(
a2

a1

)
p
∑
ai+k

((n+ 1)− pn)((ak + 1)− pak−1) · · · ((a1 + 1)− pa1)

We should take note of several important facts about Mn(p): It is analytic on the

interval (0, 1), it is non-negative on [0,1] and it’s only real root on the interval [0, 1]

is Mn(0) = 0 for all n. With these facts in hand, we proceed by performing a Taylor
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expansion about the point p = 1 for each of the terms in (3.11).

T1 =
pn

(n+ 1− pn)

=

(
1

n
+

(
1 +

1

n

)
(p− 1) +O

(
(p− 1)2

))
T2 =

n−1∑
j=1

(
n
j

)
pn+j

((n+ 1)− pn)((j + 1)− pj)

=
n−1∑
j=1

((
n
j

)
j

+

(
n
j

)
(j + n+ 2)

j
(p− 1) +O

(
(p− 1)2

))

T3 =
n−1∑
j=2

j−1∑
i=1

(
n
j

)(
j
i

)
pn+i+j

((n+ 1)− pn)((j + 1)− pj)((i+ 1)− pi)

=
n−1∑
j=2

j−1∑
i=1

(
n
j

)(
j
i

)
ijn

+

(
n
j

)(
j
i

)
(i+ j + n+ 3)

ijn
(p− 1) +O

(
(p− 1)2

)
Recombining the terms yields

Mn(p) =T1 + T2 + T3 + · · ·

=

(
1

n
+

n−1∑
j=1

(
n
j

)
j

+
n−1∑
j=2

j−1∑
i=1

(
n
j

)(
j
i

)
ijn

)

+

(
1 +

1

n

(
n
j

)
(j + n+ 2)

j
+

n−1∑
j=2

j−1∑
i=1

(
n
j

)(
j
i

)
(i+ j + n+ 3)

ijn

)
(p− 1) +O

(
(p− 1)2

)
Further terms Tn can be calculated in the same way–although it is very tedious. The

other terms produce the same important properties. Our Taylor series expansion

provides a key insight into the behavior of the sequence of moments Mn(p), namely

that the first term of the is consistently positive. This indicates a positive derivative,

increasing with n, for every Mn. Combining this with properties discussed above

yields pointwise convergence in the limit, Mn(p)→ 0 as n→∞. Now for any ε > 0,

there exists an N ∈ N such that MN(p) < ε, ∀p ∈ [0, 1].
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When we consider the cumulants-to-moments formula,

κn = Mn −
n−1∑
j=1

(
n− 1

j

)
κn−jMj ,

we can now guarantee the existence of an N such thatMN is small enough to produce

a corresponding negative κN . It follows that S is not infinitely divisible for any p.

Here we consider the scenario where Yi is distributed uniformly on particular sub-

intervals of [0,1]. We begin by considering

Yi ∼ Unif [0, 1− ε] .

It is important to note here that since it has finite support, the non-infinite divisi-

bility of this random variable is already known. We proceed here to demonstrate the

method novel to this paper.

Theorem 3.3. The random variable S,

S = Y1 + Y1Y2 + Y1Y2Y3 + Y1Y2Y3Y4 + · · ·

with Yi ∼ Unif [0, 1− ε] is not infinitely divisible.

Proof. Recall that the moments of Yi follow the relation

µn =
(1− ε)n

1 + n
.

To simplify notation, we will create the coefficient

an =
µn

1− µn

an =
(1− ε)n

(n+ 1)− (1− ε)n
. (3.12)
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This demonstrates a remarkable similarity between S as defined here and S from the

previous section (in which Yi ∼ Unif [0, 1] with probability p and 0 with probability

q). Setting (1− ε) = p, the two distributions have identical moments Mn for all n. It

immediately follows that our S with Yi ∼ Unif [0, 1− ε] is also not infinitely divisible

for any ε > 0.

3.2 Beta Distributed Random Variables

In this chapter we will consider the infinite divisibility of the random variable S,

S = Y1+Y1Y2+Y1Y2Y3+Y1Y2Y3Y4+· · · where each Yi follows a Beta distribution with

β > 1, Yi ∼ Beta[α, β]. For simplicity of calculation, we will consider Yi ∼ Beta[1, β]

WLOG. Note that Penrose and Wade showed that S is infinitely divisible for when

Yi ∼ Beta[α, 1] in [1].

Theorem 3.4. The random variable S,

S = Y1 + Y1Y2 + Y1Y2Y3 + Y1Y2Y3Y4 + · · · (3.13)

with Yi ∼ Beta[1, β], β > 1 is not infinitely divisible.

Proof. The moments for each of the Yi are defined by the relation

µn(β) =
n−1∏
j=0

1 + j

1 + β + j
.

Which produces the coefficient for the sequence Mn

an =
µn

1− µn

an =
β!n!

(β + n)!
. (3.14)
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As in previous sections, we apply (3.4) to determine the sequence of moments of S

Mn(β) = an

n−1∑
j=0

(
n

j

)
Mj(β)

Now we have all moments in terms of β:

Mn(β) =
β!n!

(β + n)!
+

n∑
j=1

(
n
j

)
(β!)2n!j!

(β + n)!(β + j)!
+

n∑
j=2

j−1∑
i=1

(
n
j

)(
j
i

)
n!j!i!(β!)3

(β + n)!(β + j)!(β + i)!

+
n∑

ak=k

ak−1∑
ak−1=k−1

· · ·
a2−1∑
a1=1

(
n
ak

)(
ak
ak−1

)
· · ·
(
a2

a1

)
n!ak! · · · a1!(β!)n

(β + n)!(β + ak)! · · · (β + a1)!
(3.15)

Following the method established in the previous sections, we examine the first three

terms in the sum,

T1 =
β!n!

(β + n)!

T2 =

(
n
j

)
(β!)2

(β + n)!(β + j)!

T3 =

(
n
j

)(
j
i

)
n!j!i!(β!)3

(β + n)!(β + j)!(β + i)!
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And for each of the terms, we examine the Taylor series around β = 1:

T1 =
1

(n+ 1)
+
n!(γ − 1 + ψ(0)(n+ 2))

n+ 1!
(β − 1) +O

(
(β − 1)2

)
T2 =

(
n
j

)
n!j!

(j + 1)(n+ 1)!

−
(
n
j

)
n!j!(jψ(0)(n+ 2) + 2γj − 2j + ψ(0)(n+ 2) + 2γ − 1)

(j + 1)!(n+ 1)!
(β − 1)

+O
(
(β − 1)2

)
T3 =

(
n
j

)(
j
i

)
(i+ 2)!(j + 2)!(n+ 2)!

−
(
n
j

)(
j
i

)
(ψ(0)(i+ 2) + ψ(0)(j + 2) + ψ(0)(n+ 2) + 3γ − 3)

(i+ 2)!(j + 2)!(n+ 2)!
(β − 1)

+O
(
(β − 1)2

)
Now we will try to classify the behavior of the first order terms in the series ex-

pansion of Mn(β).

dMn(β)

dβ

∣∣∣
β=1

=
∞∑
n=0

n!(γ − 1 + ψ(0)(n+ 2))

n+ 1!

−
∞∑
n=2

n∑
j=1

(
n
j

)
n!j!(jψ(0)(n+ 2) + 2γj − 2j + ψ(0)(n+ 2) + 2γ − 1)

(j + 1)!(n+ 1)!

−
∞∑
n=3

n−1∑
j=2

j−1∑
i=1

(
n
j

)(
j
i

)
(ψ(0)(i+ 2) + ψ(0)(j + 2) + ψ(0)(n+ 2) + 3γ − 3)

(i+ 2)!(j + 2)!(n+ 2)!

We can see here again that the linear terms in the expansion around β = 1 are

negative and decreasing without bound and our sequence Mn converges pointwise to

0 for any β > 1 and the distribution defined this way is not infinitely divisible.

3.3 Bernoulli type variables

Here we continue the work of determining whether infinitesimally changed distri-

butions preserve infinite divisibility under the random geometric progression.
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Theorem 3.5. Let X be a random variable with the Bernoulli distribution

Yi =

0 p

1 q
(3.16)

the resulting geometric progression

S = Y1 + Y1Y2 + Y1Y2Y3 + Y1Y2Y3Y4 + · · · (3.17)

is infinitely divisible.

Proof. To show this, we let

φS(λ) = E
(
e−λS

)
= e−λYi(1+S) (3.18)

= p+ qe−λE(e−λS)

φS(λ) =
p

1− qe−λ
(3.19)

Here we can make the substitution t = ln 1
λ
and f(λ) = 1

λ
ln
(

1
1−qe−λ

)
and (3.19) can

be represented as

φS(λ) = e−t+tf(λ) . (3.20)

We should note the representation in (3.20) determines that the distribution is in-

finitely divisible, see [7].

Qualitatively, one can inspect the scenario from (3.17) and (3.21) is a representa-

tion of the exponential distribution. It is known that the exponential distribution is

infinitely divisible.

In the spirit of the paper, we will construct a random variable Yi that has a related

but different distribution and determine whether the resulting geometric progression
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is infinitely divisible.

Theorem 3.6. The random variable S,

S = Y1 + Y1Y2 + Y1Y2Y3 + Y1Y2Y3Y4 + · · ·

with Yi defined as

Yi =


0 p

1
2

ε

1 q − ε

(3.21)

is not infinitely divisible.

Proof. Here we see that, with probability ε each term in the sequence will be reduced

by a factor of 1
2
. We begin with the method by computing the sequence of moments

µn.

µn = ε

(
1

2

)n
+ (q − ε)(1)n

=

((
1

2

)n
− 1

)
ε+ q

As before, we then compute our coefficient an

an =
µn

1− µn

=
(2−n − 1) ε+ q

− (2−n − 1) ε− q + 1

Now we are able to compute the moments Mn of the resulting geometric progression

using (3.7).
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Mn = an +
n∑
j=1

(
n

j

)
anaj +

n∑
j=2

j∑
i=1

(
n

j

)(
j

i

)
anaja1

+ · · ·+
n∑

ik=k

ik∑
ik−1

· · ·
i2∑
i1

(
n

ik

)(
ik
ik−1

)
· · ·
(
i2
i1

)
ai1ai2 · · · aikan

Mn =
(2−n − 1) ε+ q

− (2−n − 1) ε− q + 1

+
n−1∑
j=1

(
n
j

)
((2−j − 1) ε+ q) ((2−n − 1) ε+ q)

(− (2−j − 1) ε− q + 1) (− (2−n − 1) ε− q + 1)

+
n−1∑
j=2

(
j∑
i=1

(
j
i

)(
n
j

)
((2−i − 1) ε+ q) ((2−j − 1) ε+ q) ((2−n − 1) ε+ q)

(− (2−i − 1) ε− q + 1) (− (2−j − 1) ε− q + 1) (− (2−n − 1) ε− q + 1)

)

+ · · ·

Here we split the summands into our terms T1, T2, T3, ...

T1 =
(2−n − 1) ε+ q

− (2−n − 1) ε− q + 1

T2 =

(
n
j

)
((2−j − 1) ε+ q) ((2−n − 1) ε+ q)

(− (2−j − 1) ε− q + 1) (− (2−n − 1) ε− q + 1)

T3 =

(
j
i

)(
n
j

)
((2−i − 1) ε+ q) ((2−j − 1) ε+ q) ((2−n − 1) ε+ q)

(− (2−i − 1) ε− q + 1) (− (2−j − 1) ε− q + 1) (− (2−n − 1) ε− q + 1)



37

and perform a Taylor expansion about the point ε = 1
3

T1 = −
9 (2n (2n − 1))

(
ε− 1

3

)
(3 2nq − 2n+2 + 1)2

− 3 2nq − 2n + 1

3 2nq − 2n+2 + 1
+O

((
ε− 1

3

)2
)

T2 =

T3 =

...

The terms T2 and T3 are too large to conveniently fit onto the page, they are listed

in the appendix in section A.1

When we combine the first order terms, we can determine d
dε
Mn at ε = 0 The

first order terms of the series expansion are all negative (the terms are listed in the

appendix in section A.2) and decreasing without bound for all n > 1, hence Mn

converges pointwise to 0 as n→∞ for all ε > 1
3
.



CHAPTER 4: CONCLUSIONS AND FURTHER WORK

The method described in the paper is novel, and there are many possible appli-

cations and improvements. Notably, the method currently is only able to prove the

negative with regard to infinite divisibility. It is only able to determine cases where

the adjustment of a parameter causes moments to converge pointwise to zero on some

interval of the domain of the function. There are scenarios indicated by (3.5) where

the growth of Mn is slow enough to become smaller in magnitude than sum of the

subtracted product of cumulants and moments. The method presented in this pa-

per is not able to determine infinite divisibility in such cases. The dynamics of the

moments to cumulant equation

κn = Mn −
n−1∑
j=1

(
n− 1

j

)
κn−jMj

suggest that there may be a method similar to the one presented here.

There is also significant work left to be done to improve the method with respect to

its application to discrete random variables. It seems reasonable to think the result in

Theorem 3.6 could be expanded to discrete random variables with arbitrarily many

divisions of [0, 1].



CHAPTER A: APPENDIX

A.1 Bernoulli Type Variables 1

The terms T2 and T3 from section 3.3 are presented on the following page.
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A.2 Bernoulli Type Variables 2

The first order terms from the Taylor series in section 3.3 are listed on the following

page.
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Figure A.1: The linear terms in the expansion of Mn about ε = 0
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