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Abstract. The purpose of this paper is to study the curvature of equilateral random

walks and polygons that are confined in a sphere. Curvature is one of several basic

geometric properties that can be used to describe random walks and polygons. We

show that confinement affects curvature quite strongly, and in the limit case where the

confinement diameter equals the edge length the unconfined expected curvature value

doubles from π/2 to π. To study curvature a simple model of an equilateral random

walk in spherical confinement in dimensions two and three is introduced. For this

simple model we derive explicit integral expressions for the expected value of the total

curvature in both dimensions. These expressions are functions that depend only on the

radius R of the confinement sphere. We then show that the values obtained by numeric

integration of these expressions agrees with numerical average curvature estimates

obtained from simulations of random walks. Finally, we compare the confinement

effect on curvature of random walks with random polygons.
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1. Introduction

There have been numerous studies, both theoretical and numerical, on equilateral

random polygons (also known as ideal random polygons), which are often used to model

ring polymers under the θ-conditions where polymer segments that are not in a direct

contact neither attract nor repel each other. In addition there have been studies on

geometric properties of random polygons. For example, the overall dimensions such

as the average end-to-end distance or the average radius of gyration is known to scale

with the number of segments n as
√
n [7, 8, 9, 18], the average crossing number grows

as O(n ln n) [2] and the average squared writhe is believed (with numerical and

partial analytical evidence) to grow as O(n) [14]. Moreover, there are several generating

methods that are well tested and efficient in generating random equilateral polygons

such as the hedgehog method [6], the crankshaft method [12, 13], or the generalized

hedgehog method [17]. These methods are all well tested and believed to generate

non-correlated samples of equilateral random polygons. In the case of the generalized

hedgehog method (developed by one of the PIs), a length n equilateral random polygon

of length n can be generated in O(n) time [17].

The theory of confined random polygons is much less well developed, in particular

there are only very few analytic results and mostly numerical studies. One example is

a numeric study of the average crossing number [1]. In [3, 4, 5] the authors introduced

models of equilateral random polygons in spherical confinement that are based on

explicit probability density functions for each step of the generation process. These

methods could allow for some analytic analysis and in this paper such an analysis is

attempted for curvature. The motivation of such an equilateral random polygon model

is the well known fact of the highly compact packing of genomic material (long DNA

chains) inside living organisms observed in macromolecular self-assembly processes in

the complex network of interactions that take place in every organism. Even in the case

of a simple organism such as viruses, the DNA packing is of high density. For example, in

the prototypic case of the P4 bacteriophage virus, the 3µm-long double-stranded DNA is

packed within a viral capsid with a caliper size of about 50nm, corresponding to a 70-fold

linear compaction [11]. Unlike equilateral random polygons without confinement, the

confined equilateral random polygons have not been thoroughly studied and there are

many unanswered questions, see for example [15] for the data on curvature of unconfined

polygons. In this article we study the effects of confinement on the curvature of walks

and polygons.

It is easy to understand that a random walk/polygon in confinement has a larger

expected curvature value than its unconfined counterpart: the physical confinement

condition forces the random walk/polygon to make more turns in order to avoid hitting

the confining sphere. In the extreme case where the diameter of the confinement sphere

is close to the edge length of the random walk/polygon, the walk/polygon has to make

near 180 degree turns at each step hence the average curvature would be close to

(n − 1)π where n is the number of setments in the walk/polygon. On the other hand,
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if the confinement radius is large (for example comparable to the total length of the

walk/polygon) and the starting point of the walk/polygon is far away from the confining

boundary, then the walk/polygon behaves as if it is unconfined. In the unconfined case,

the average curvature per vertex is precisely π/2 for a random walk, except for the first

and last vertices. Thus if the total length of the random walk is n, then its average

curvature would be exactly (n − 1)π/2. On the other hand, for an unconfined random

polygon, its average curvature per vertex also approaches π/2 as n approaches infinity,

although its total average curvature is larger. In fact it has been shown in [10] that for

large n the average curvature of an unconfined random polygon is close to nπ/2 + 3π/8.

The generation methods of equilateral confined random polygons introduced in

[3, 4, 5] all rely on the use of explicit probability density functions that guide the

generation of the polygons step-by-step. However these probability density functions

are quite complicated. Thus an explicit expression of the expected curvature for random

polygons will be hard to derive, if it is at all possible. In this paper we try to investigate

the mean curvature for random polygons using an indirect approach. Since the mean

curvature of random polygons behaves like the mean curvature of random walks when

the random polygons and the random walks approach the same vertex density in the

confinement sphere, it is sufficient to study random walks in confinement instead. Since

the probability density functions involved in the case of random walks are simpler, both

the theoretical and numerical studies on the mean curvature of confined random walks

are easier. By the results in [5], these results can then be used to make inference about

the mean curvature of confined random polygons.

The paper is organized as follows: In Section 2, a simple model of a two-dimensional

random walk in confinement is introduced and an explicit expression of the expected

curvature is derived that only depends on the radius of confinement R. In Section 3

we do the same for a three-dimensional random walk model. Numerical results are

presented in Section 4. We conclude the paper with some discussions on the mean

curvature of confined random polygons and some open questions for potential future

research in Section 5.

2. The expected curvature of two-dimensional confined random walks

2.1. The vertex distribution.

Let S ∈ R2 be a confining circle with radius R > 1/2 and consider an equilateral random

walk Wk of length k confined in S. Let X0, X1, ..., Xk be the (consecutive) vertices of

the random walk defined as a Markov chain where each Xj+1 depends only on Xj in the

following way: once Xj is chosen, Xj+1 is chosen uniformly over the portion of the unit

circle centered at Xj that is contained within S. We have the following theorem.
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Theorem 1 Let f(r) be a probability density function defined by

f(r) =


ar, 0 ≤ r ≤ R− 1;
ar
π

cos−1
(

1+r2−R2

2r

)
, |R− 1| < r ≤ R;

0, otherwise

for 1/2 < R where the constant a is chosen so that
∫ R
0
f(r)dr = 1. If the initial vertex

X0 of a 2-dimensional random walk Wk is chosen with the distribution f(|X0|)/(2π|X0|),

then each vertex Xj of Wk follows the same distribution f(|Xj|)/(2π|Xj|).

Notice that the constant a is defined by

1/a =

∫ R−1

0

rdr +

∫ R

R−1

r

π
cos−1(

1 + r2 −R2

2r
)dr

for R ≥ 1 and

1/a =

∫ R

|R−1|

r

π
cos−1(

1 + r2 −R2

2r
)dr

for 1/2 < R < 1. However in both cases it can be shown (through elementary integration

and algebraic manipulations) that

a =
4π

4R2 sec−1(2R)−
√

4R2 − 1
.

Proof. Given the way Wk is defined, it suffices to prove the following: Let X and

Y be two random points in S that are a unit distance apart where X is chosen using

the probability distribution f(|X|)/(2π|X|) and where Y is chosen using a uniform

distribution over the portion of the unit circle centered at X that is contained in S. It

now suffices to show that Y follows the same probability distribution as X.

Let g(u) be the probability density function of u = |Y |, f(r) be the probability

density function of r = |X| and let g(u|r) be the conditional probability density function

of |Y | = u under the condition that |X| = r. We have:

g(u) =

∫ R

0

g(u|r)f(r)dr.

Note that g(u|r) for a fixed u is zero for values of r /∈ [|u− 1|,min{u+ 1, R}] and

thus

g(u) =

∫ min{u+1,R}

|u−1|
g(u|r)f(r)dr. (1)

Let θ be the angle between
−−→
XO and

−−→
XY , where O is the center of S, then

|Y |2 = 1 + r2 − 2r cos θ. If r ≤ R − 1 the confining condition does not apply to Y

and θ is uniformly distributed, that is θ ∼ U [0, π]. If R − 1 < r ≤ R the confining
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condition applies to Y by forcing |Y | ≤ R and thus θ ∼ U [0, cos−1(1+r
2−R2

2r
)]. It follows

that if r ≤ R− 1, then

P (|Y | ≤ u|r) = P (1 + r2 − 2r cos θ ≤ u2)

= P (cos θ ≥ 1 + r2 − u2

2r
)

=
1

π
cos−1

(
1 + r2 − u2

2r

)
.

Differentiating with respect to u yields

g(u|r) = g1(u|r) =
2u

π
√

4r2 − (1 + r2 − u2)2
, (2)

where |r − 1| ≤ u ≤ r + 1.

On the other hand, if R− 1 < r ≤ R, then

P (|Y | ≤ u|r) = P (1 + r2 − 2r cos θ ≤ u2)

= P (cos θ ≥ 1 + r2 − u2

2r
)

=
cos−1

(
1+r2−u2

2r

)
cos−1

(
1+r2−R2

2r

) .
It follows that if R− 1 < r ≤ R, then

g(u|r) = g2(u|r) =
2u

cos−1
(
1+r2−R2

2r

)√
4r2 − (1 + r2 − u2)2

, (3)

where |r − 1| ≤ u ≤ R.

The integral (1) can now be written as the sum of two integrals of equations (2)

and (3).

g(u) =

∫ min{u+1,b1}

|u−1|
g1(u|r)f(r)dr +

∫ min{u+1,R}

min{u+1,b1}
g2(u|r)f(r)dr,

where b1 = max{R− 1, |u− 1|}.

Note that in the above equation if |u − 1| > R − 1, the the integral on the left is

0 since its upper and lower bound are identical. Similarly if u + 1 ≤ R − 1 then the

integral on the right is zero. Thus the intervals for the two integrals are lined up with

the intervals of f(r). This allows us to combine the two integrals into one as follows:

g(u) =

∫ min{u+1,b1}

|u−1|
g1(u|r)f(r)dr +

∫ min{u+1,R}

min{u+1,b1}
g2(u|r)f(r)dr

=

∫ min{u+1,b1}

|u−1|

2u

π
√

4r2 − (1 + r2 − u2)2
ardr +

+

∫ min{u+1,R}

min{u+1,b1}

2uar
π

cos−1
(

1+r2−R2

2r

)
cos−1

(
1+r2−R2

2r

)√
4r2 − (1 + r2 − u2)2

dr
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=

∫ min{u+1,b1}

|u−1|

2uar

π
√

4r2 − (1 + r2 − u2)2
dr +

+

∫ min{u+1,R}

min{u+1,b1}

2uar

π
√

4r2 − (1 + r2 − u2)2
dr

=

∫ min{u+1,R}

|u−1|

2uar

π
√

4r2 − (1 + r2 − u2)2
dr. (4)

To evaluate (4) we now consider two cases:

Case 1. 0 ≤ u ≤ R− 1. In this case, min{u+ 1, R} is always equal to u+ 1. Thus

we have

g(u) =

∫ u+1

|u−1|

2uar

π
√

4r2 − (1 + r2 − u2)2
dr = au = f(u).

Case 2. |R − 1| < u ≤ R. In this case, min{u + 1, R} is always equal to R. Thus

we have

g(u) =

∫ R

|u−1|

2uar

π
√

4r2 − (1 + r2 − u2)2
dr

=
au

π
cos−1(

1 + u2 −R2

2u
) = f(u).

This finishes the proof.

Note that the the vertex distribution of the random walk generated by the

probability density function of Theorem 1 is non-uniform. For R > 1, it is an increasing

function for r < R − 1 and is a decreasing function for R > r > R − 1 as shown in

Figure 1.
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Figure 1. Left: The probability density function f(r) given in Theorem 1 with the

confinement radius R = 3. The probability density function 2r/R2 (corresponding

to the uniform distribution in the confining circle) is plotted with the dashed line for

comparison purposes. Right: The expected curvature between two consecutive edges

as a function of the distance between the common vertex of the two edges to the center

of the confining sphere (with R = 1.5), see Theorem 2.
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2.2. The curvature dependence on the distance of a vertex to the boundary.

Let cj be the curvature between the (j − 1)-th edge and the j-th edge, i.e., the angle

between
−−−−−→
Xj−1Xj and

−−−−−→
XjXj+1. Our next step is to derive an expression for E(cj), the

average curvature at vertex X = Xj. Since the vertices share the same distribution, the

two random vectors
−−−−−→
Xj−1Xj and

−−−−−→
XjXj+1 can be generated by choosing Xj first following

the distribution given in Theorem 1, then choosing Xj−1 and Xj+1 uniformly over the

portion of the unit circle centered at Xj that is within the confining sphere S. For the

sake of simplicity let X = Xj, Y = Xj−1 and Z = Xj+1. The corresponding mean

curvature is actually label independent and only depends on r = |X| so we denote it by

cr. We now consider several different cases.

Case 1. R ≥ 1 and |X| = r ≤ R − 1. In this case there are no restrictions on the

possible angles and E(cr) = π/2.

Case 2. R ≥ 1 and R− 1 < |X| = r ≤ R. In this case the unit circle centered at X

intersects the confining sphere S at two points (which are denoted by Q1 and Q2). The

portion of the unit circle that is contained in S has length 2 cos−1
(

1+r2−R2

2r

)
hence is

spanned by an angle of the same measure. Since Y and Z are uniformly distributed on

this part of the unit circle, they are uniquely determined by the angle measured from
−−→
XQ1 to

−−→
XY or

−−→
XZ respectively, following the direction of the arc that is within S. If

we call these two angles α and β respectively, then α, β are uniformly distributed over

[0, 2θmax] where θmax = cos−1
(

1+r2−R2

2r

)
. Furthermore, cr = |π−|β−α||. There are two

subcases that require different treatment.

Subcase 2A. 2θmax ≤ π. In this case,|β − α| ≤ π hence cr = π − |β − α|. Thus

E(cr) = E(π − |β − α|) = π − E(|β − α|)

= π − 1

2θmax

∫ 2θmax

0

(
1

2θmax

∫ 2θmax

0

|α− β|dβ
)
dα

= π − 2θmax

3
= π − 2

3
cos−1

(
1 + r2 −R2

2r

)
.

Subcase 2B. 2θmax > π. This case is more complicated since it is possible that

|β − α| > π and in which case cr = |β − α| − π instead. Here we derive the probability

distribution function of cr directly. For 0 ≤ t ≤ 2θmax − π (notice that 2θmax − π ≤ π

since θmax ≤ π) we have

P (cr ≤ t) = P (|π − |β − α|| ≤ t) = P (π − t ≤ |β − α| ≤ π + t)

= P (|β − α| ≤ π + t)− P (|β − α| ≤ π − t).

On the other hand, for any 0 ≤ s ≤ 2θmax, we have

P (|α− β| ≤ s) = P (β − s ≤ α ≤ β + s)

= 1− P (α ≥ β + s)− P (α ≤ β − s)
= 1− P (β ≥ α + s)− P (α ≤ β − s)
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= 1− 2P (α ≤ β − s)

= 1− (2θmax − s)2

4θ2max

=
s

θmax

− s2

4θ2max

.

Thus

P (cr ≤ t) = P (|β − α| ≤ π + t)− P (|β − α| ≤ π − t)

=
(π + t)

θmax

− (π + t)2

4θ2max

− (π − t)
θmax

+
(π − t)2

4θ2max

=
2t

θmax

− πt

θ2max

. (5)

For 2θmax− π ≤ t ≤ π, using the fact that P (|β −α| ≤ 2θmax + t) = 1 and an argument

similar to the above, we get

P (cr ≤ t) = 1− π − t
θmax

+
(π − t)2

4θ2max

. (6)

Combining equations (5) and (6) we obtain the probability density function h(t) for the

curvature c:

h(t) =

{
2

θmax
− π

θ2max
, 0 ≤ t ≤ 2θmax − π

1
θmax
− (π−t)

2θ2max
, 2θmax − π ≤ t ≤ π.

It now follows that

E(cr) =

∫ π

0

t · h(t)dt =
1

3
(2θmax +

3π2

θmax

− π3

2θ2max

− 3π).

Case 3. 1
2
< R ≤ 1 . If R ≤ 1, for all vertices Xj of the random walk the following

holds: 1 − R ≤ |Xj| ≤ R and as before the maximal angle which can be achieved

between the y-axis and any possible edge connected to X is θmax = cos−1
(

1+r2−R2

2r

)
and

θmax ≤ π
2
. Thus the derivation from case 2A applies.

We have now obtained the following theorem:

Theorem 2 In a 2-dimensional random walk in a confining sphere of radius R, the

expected curvature E(cr) of a vertex X with |X| = r is given by:

if R ≥ 1

E(cr) =


π
2
, 0 ≤ r ≤ R− 1

1
3
(2θmax + 3π2

θmax
− π3

2θ2max
− 3π), R− 1 < r ≤

√
R2 − 1

π − 2θmax

3
,

√
R2 − 1 ≤ r ≤ R,

and if 1/2 < R < 1

E(cr) =

{
0 0 ≤ r ≤ 1−R
π − 2θmax

3
, 1−R ≤ r ≤ R,

where θmax = cos−1
(

1+r2−R2

2r

)
.
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The explicit expression of E(cr) given in Theorem 2 shows how the mean curvature

at a given vertex is affected by the distance of the vertex to the boundary of the confining

circle and it enables us to compute the mean total curvature C2,n(R) of a random walk

of n edges confined in a circle of radius R:

C2,n(R) = (n− 1)

∫ R

|min{0,R−1}|
E(cr)f(r)dr, (7)

where n is the number of edges of the random walk. This expression is also valid for

values 1/2 < R ≤ 1. In this case the boundary of the integral simplifies and we obtain

C2,n(R) = (n− 1)

∫ R

1−R
E(cr)f(r)dr. (8)

For the three dimensional case, unfortunately, an explicit expression like E(cr) is no

longer feasible and a different approach needs to be taken. In the following we present

a different way to compute C2,n(R). It is not as intuitive as the above approach, but

can be easily extended to the three dimensional case.

Theorem 3 Let f(r) be as defined in Theorem 1, then the mean total curvature of a

2-dimensional walk with n edges in a confining sphere of radius R is

C2,n(R) = (n− 1)

∫ R

c

∫ b

a

∫ π

−π
cos−1(cos (α− β))h(β|r)g(r|s)f(s)dβdrds,

where α = cos−1 ( s
2−1−r2

2r
), c = |min{0, R− 1}|, a = |s− 1|, b = min{s+ 1, R}, and

h(β|r) =

{
1
2π
, −π ≤ β ≤ π and 1+r2−R2

2r
≤ −1

1
2θmax

, −θmax ≤ β ≤ θmax and − 1 < 1+r2−R2

2r
< 1

where θmax = cos−1
(

1+r2−R2

2r

)
as defined before.

Proof. Consider three points along the random walk Xk−1, Xk, and Xk+1. Set

|Xk−1| = s, |Xk| = r, the angle between
−−−−−→
Xk−1Xk and

−−→
XkO as α ∈ [0, π], the angle

between
−−−−−→
XkXk+1 and

−−→
XkO as β ∈ [−π, π], and finally the angle between

−−−−−→
Xk−1Xk

and
−−−−−→
XkXk+1 as γ ∈ [0, π] (γ equals to the curvature at Xk), see Figure 2. We have

cos(α) = (s2 − 1− r2)/(2r) and cos(γ) = cos(α− β).

So the expected curvature for a confinement radius R over the sample space V is

then ∫
V

cos−1(cos(α− β))h(β|r)g(r|s)f(s)dβdrds

where f(s) is given by Theorem 1 and g(r|s) is given in equations (2) and (3). h(β|r),
the density function of β given the fixed r, is the uniform distribution over the interval

of possible choices for β. That is, if r ≤ R − 1 then the confinement condition does

not apply and β ∼ U [−π, π]. If r > R − 1 the confinement condition applies and

β ∼ U [−θmax, θmax].
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Figure 2. Shown are the three vertices Xk−1, Xk, and Xk+1 together with the angles

α and β. By rotational symmetry we can assume Xk is on the y-axis, and by reflectional

symmetry we can assume that Xk−1 is on the left side of the y-axis. For Xk+1 two

possibilities are shown one with a positive angle β and the second with a negative β

indicated by the ± symbol.

3. The expected curvature of three-dimensional confined random walks

We now study the problem in three dimensions. Let S ∈ R3 be a confining sphere with

radius R > 1/2 and consider an equilateral random walk Wk of length k confined in

S. Let X0, X1, ..., Xk be the vertices of the random walk. Here, the random walk is

defined as a Markov chain: each Xj+1 depends only on Xj in the following way: once

Xj is chosen, Xj+1 is chosen uniformly over the portion of the unit sphere centered at

Xj that is contained within S. In [5] the following Theorem is established:

Theorem 4 Let f(r) be a probability density function defined by

f(r) =

{
ar2, 0 < r ≤ R− 1;
ar
4

(R2 − (r − 1)2), R− 1 < r ≤ R;

where a = 48/(16R3 − 12R2 + 1) = 48/((2R− 1)2(4R + 1)). If the initial vertex X0 of

Wk is chosen with the distribution f(|X0|)/(4π|X0|2), then each vertex Xj of Wk follows

the same distribution f(|Xj|)/(4π|Xj|2).

Note the vertex distribution of the random walk generated by the probability

density function of Theorem 4 is non-uniform. The density declines when r is close

to R, see Figure 3.

Let the center of confining sphere S be the origin O. Consider three consecutive

vertices Xk−1, Xk, Xk+1 along the random walk. For the purpose of computing the
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Figure 3. The probability density function f(r) (of r = |X|) for R = 3 as defined in

Theorem 4. The probability density function 3r2/R3 of r = |X| corresponding to the

uniform distribution of X is shown with the dashed line for comparison.

mean curvature at Xk, without loss of generality we can assume that Xk is on the

non-negative z axis and that the point Xk−1 is in the xz plane (since this can be done

through rotations and rotations do not change the curvature). Denote |Xk−1| = s,

|Xk| = r, the angle between
−−−−−→
Xk−1Xk and

−−→
XkO as α ∈ [0, π], the angle between

−−−−−→
XkXk+1

and
−−→
OXk as β ∈ [0, π], and finally the angle between

−−−−−→
XkXk−1 and

−−−−−→
XkXk+1 as γ′ ∈ [0, π]

(the curvature at Xk is then defined by γ = π − γ′), see Figure 4. Let τ be the angle

between the plane OXk−1Xk and OXkXk+1, measured in a clockwise direction starting

with the OXk−1Xk plane so τ ∈ [0, 2π). In fact, by a symmetry argument, it is easy to

see that τ ∼ U [0, 2π). (Note that if the four points O, Xk−1, Xk and Xk+1 are collinear

or coplanar then τ = 0.) So if Xk−1, Xk have been chosen (with Xk on the z axis

and Xk−1 on the xz plane with positive x coordinate), then Xk+1 can be determined

(generated) by selecting τ (uniformly from [0, 2π)) and β (according to its distribution

subject to the chosen r value). Let N be the north pole of the unit sphere S1(Xk)

centered at Xk and consider the spherical triangle ∆Xk−1Xk+1N on S1(Xk): NXk−1

has arc length α, NXk+1 has arc length β, Xk−1Xk+1 has arc length γ′ and the angle

opposite to Xk−1Xk+1 is τ (see Figure 4 for an illustration). Applying the law of cosines

for the sides of a spherical triangle, we have

cos γ′ = cosα cos β + sinα sin β cos τ. (9)

The values cosα and sinα are determined by the values of s and r as

cosα =
s2 − 1− r2

2r
and sinα =

√
1−

(
s2 − 1− r2

2r

)2

.

Substituting this into equation (9) yields

γ = cos−1

−s2 − 1− r2

2r
cos β −

√
1−

(
s2 − 1− r2

2r

)2

sin β cos τ

 .(10)

Assume that Xk−1, Xk, Xk+1 are generated in the following order and manner. First

Xk−1 is generated by choosing s = |Xk−1| according to the distribution f(s). Then Xk
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O

N

Xk-1

Xk

Xk+1

αβ

N Xk-1

Xk+1

γ’

α

β
τ

Figure 4. Left: An illustration of the angles α and β; Right: The top view of the

spherical triangle ∆Xk−1Xk+1N where Xk is directly underneath N .

is chosen by selecting r = |Xk| according to its distribution p(r|s) (conditioned to the

chosen s = |Xk−1|). By the reflection and rotation symmetry as we mentioned before we

can assume that Xk is on the positive z axis and Xk−1 is in the half xz plane with positive

x axis direction. We then select the angle τ uniformly from [0, 2π), and finally choose

the angle β. β is independent of τ but depends on r, so its probability distribution

k(β|r) is conditioned by the given r = |Xk|. In order to obtain the integral form of the

mean total curvature C3,n(R) of a random equilateral walk of n edges that is confined

in a sphere of radius R, it is necessary for us to obtain the density functions p(r|s) and

k(β|r) first.

For the unconfined case, it is well known that k(β|r) = sin(β)/2 and cos(β) ∼
U [−1, 1] [16]. For the confined case, denote the quantity R2−1−r2

2r
by zr and we have the

following result.

k(β|r) =

{
sinβ
2
, β ∈ [0, π] and zr ≥ 1;

sinβ
1+zr

, β ∈ [cos−1(zr), π] and − 1 < zr < 1,
(11)

To see this, assume that −1 < zr < 1 (so it is necessary that R < r + 1), then

β ≥ βr = cos−1(zr) since otherwise Xk+1 would be outside of the confining sphere. The

portion of the unit sphere centered at Xk that is within the confining sphere thus has

area 2π(cos βr − cos π) = 2π(zr + 1). Similarly, the portion of the unit sphere centered

at Xk that is within the confining sphere that corresponds to β0 ≥ β ≥ βr for any

β0 > βr has area 2π(cos βr− cos(β0)) = 2π(zr− cos(β0)). Thus the probability for Xk+1

(which is equivalent to β ≤ β0 under the condition that β ≥ βr) to fall into this area is

(zr− cos(β0))/(1 + zr) and the result follows by taking derivative of this with respect to

β0 and reset the notation β0 to β.

Finally, the probability density function p(r|s) is given by the following Lemma.

The unconfined version of this Lemma has been shown in [3].
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Lemma 1 Let Xk be uniformly distributed on the portion of the unit sphere centered

at Xk−1 6= O (with |Xk−1| = s) that is within the confining sphere S, and let r = |Xk|.
Then the probability density function p(r|s) of r is given by

p(r|s) =

{
r/(2s), r ∈ [|s− 1|, s+ 1] if s ≤ R− 1;

(2r)/(R2 − (s− 1)2), r ∈ [|s− 1|, R] if s > R− 1.

Proof. As before, we assume that Xk−1 is on the z-axis so Xk−1 = (0, 0, s). Let η be

the angle between
−−−−−→
Xk−1Xk and the positive z-axis

−−−−→
OXk−1, where O is the origin (also the

center of the confining sphere S). As we mentioned before, cos η is uniformly distributed

on [−1, 1] when the confinement condition does not apply. Let us first consider the case

0 ≤ s ≤ R− 1. Simple trigonometric calculations lead to

P (|Xk| ≤ r) = P (cos η ≤ r2 − 1− s2

2s
)

=


1, r > s+ 1;
1
2
(1 + r2−1−s2

2s
), |s− 1| ≤ r ≤ s+ 1;

0, r < |s− 1|.

It follows that
dP (|Xk| ≤ r)

dr
=

{
r
2s
, |s− 1| ≤ r ≤ s+ 1;

0, otherwise.

In the case that s > R− 1, the only difference is now that cos η is uniformly distributed

on [−1, R
2−1−s2
2s

] instead. So

P (|Xk| ≤ r) = P (cos η ≤ r2 − 1− s2

2s
)

=


1, r > R;

2s
R2−(1−s)2 (1 + r2−1−s2

2s
), |s− 1| ≤ r ≤ R;

0, r < |s− 1|.

The result now follows.

We now have all the pieces needed to write down an integral expression for the

curvature of a 3 dimensional random walk, which we now give in the following theorem:

Theorem 5 The expected total curvature of an equilateral random walk (as defined in

this section) of n edges that is confined in a sphere of radius R, denoted by C3,n(R), is

given by the following integral:

C3,n(R) =
n− 1

2π

∫ R

0

∫ b

a

∫ 2π

0

∫ π

0

curv(β, τ, r, s)k(β|r)p(r|s)f(s)dβdτdrds,

where a = |s − 1|, b = min{R, s + 1}, curv(β, τ, r, s) = cos−1(−zr,s cos β −√
1− z2r,s sin β cos τ) and zr,s = (s2 − 1− r2)/(2r).
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4. Numerical results

In this section we want to obtain curvature values that are independent of the length

of the random walks. Thus we divide all total curvature values by n− 1 and only talk

about the mean curvature per turn. Unfortunately the integral forms of C2,n(R) and

C3,n(R) as given in equations (7), (8) and in Theorems 3 and 5 do not have explicit

expressions for most values of R. An exception is the case of R = 1 where Mathematica

was able to calculate the integral given in Theorem 3 exactly:

C2,n(1)/(n− 1) =
18− 15

√
3π + 22π2

9(4π − 3
√

3)
≈ 2.31427.

For R = 1, a numerically simulated 2D random walk of 2, 000, 000 steps yielded a

mean curvature of 2.31419 which is an error of less than 10−4. For R = 3, a numeric

integration of the integrals given in equations (7), (8) and in Theorem 3 resulted in

C2,n(3)/(n−1) ≈ 1.6981 and 1.6979 respectively. A numerically simulated random walk

of 1, 000, 000 steps yielded a mean curvature of 1.69945. The results of a simulation

of random walks with 1, 000, 000 steps are shown in Figure 5 for R values in the

interval [.55, 3] with increments of length 1/20. The mean of the absolute value of

the difference of the simulation and the numeric integration is approximately 0.00063

for the integral given in equations (7) and (8), and approximately 0.0015 for the integral

in Theorem 3. The difference in error is most likely due to difficulty in carrying out the

numerical integration. For both integrals we used standard integration methods built

into Mathematica. However, we repeated simulations of the random walks of length

1, 000, 000 for a few selected values of R and found that the difference in curvature is

of the order ranging between 10−4 and 10−3 and we observe that the difference between

the simulations and the integrals falls into a similar range.

1.0 1.5 2.0 2.5 3.0

2.0

2.2

2.4

2.6

2.8

Figure 5. Average curvature per turn for radii 1/2+1/20 ≤ R ≤ 3 with increments of

length 1/20. Each data point is obtained by a simulation of a single random walk with

1, 000, 000 steps. The decrease in curvature seems to occur in two different regimes,

represented by the linear function 3.53 − 1.21R and the function π/2 + 0.65/R1.5.

However the authors do not have a good explanation of this.
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In Figure 6 we compare the curvature of two dimensional random walks with three

dimensional random walks. As before each data point is based on a single random walk

with 1, 000, 000 steps. The curvature in two dimension is consistently higher than the

curvature in three dimensions which is not surprising. Consider a point X which has

distance r = |X| from the origin. In both the two and three dimensional cases the range

of possible curvature angles is the same: the minimal angle of curvature at X is zero for

r ≤
√
R2 − 1 and π−2θmax = π−2 cos−1

(
1+r2−R2

2r

)
for R ≥ r >

√
R2 − 1; the maximal

angle is of course π regardless of the distance r. Moreover, if we assume that X is close

to the boundary of the confining sphere then we obtain a small angle of curvature at X

if the two adjacent vertices along the random walk are also close to the boundary. The

percentage of volume close to the boundary (of the total volume) is much smaller in the

two dimensional case when compared with the three dimensional case. (For example

the volume of points at least .9R away form the origin is 19% in the two dimensional

case and 27.1% in the three dimensional case.) This means that the probability to have

a small curvature angle at X is higher in the three dimensional case when compared

with the two dimensional case.
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0.10
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Figure 6. left: Average curvature per turn for radii +1/20 ≤ R ≤ 3 with increments

of length 1/20 (The 3D data contains additional values for R = 0.501 and R = 0.505).

The curve with the square markers represents the two dimensional data and the curve

with round markers represents the three dimensional data. Right: The difference

between the two data sets.

Unfortunately, the multiple integral for C3,n(R) given in Theorem 5 is even more

convoluted than its counterpart in the 2-dimensional case. However it can be numerically

approximated by Mathematica using built-in “global adaptive” integration methods. We

compared the curvature values obtained by numeric simulation of random walks with

the results of numeric integration as shown in Figure 7 together with a graph of the

difference between the simulation value (where each data point is based on a single

random walk of one million steps) and the integration value. Note that the maximal

difference between the two data sets shown in Figure 7 is reasonable except that there

are larger differences close to radii of 1/2 and of 3/2. The mean of the absolute value

of the difference over the data sets is approximately 0.003. While the larger error close

to the minimal value of R = 1/2 may be due to numerical instability (both in the
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integral and the random walk), the authors currently have no explanation why there is

an instability for these R values close to 3/2.
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Figure 7. Left: The three dimensional data of Figure 6 together with data generated

by numerical integration. Due to numerical instability the additional values of R = 0.51

and R = 0.505 are omitted for the integration. The squares represent the data points

obtained by simulation of the walk and the circles represent the results of numerical

integration. However, the difference can only be seen for R values around 1.5. Also

shown is the function π/2 + .5/x1.6 which fits the data reasonable well. Right: The

difference between the simulation and the numerical integration.

5. Future work and open questions

We will conclude this paper with some rather detailed discussion concerning the mean

curvature of a confined random polygon and some open questions for potential future

studies. Having seen the results concerning the confined random walks, one cannot help

but to ask: what about the confined random polygons? How does the average curvature

per vertex of a confined random polygon compare with the average curvature per vertex

of a confined random walk? In [10] it was shown that an unconfined random polygon of

length n has a mean total curvature of πn/2+3π/8 for large n, thus the mean curvature

per vertex of a long random polygon is about π/2 + 3π/(8n), which is slightly larger

than the mean curvature per vertex of a random walk (which is exactly π/2). Notice

that a key fact that enabled us to derive the integral forms of the mean curvature for

the confined random walks is that the random walks defined here have the property

that every vertex has the same distribution hence the mean total curvature can be

derived locally at any given vertex (except the first and the last). Unfortunately, for the

several algorithms which created confined random polygons that have been introduced

and studied (see [3, 4, 5]), that is not the case. Consequently, it is not possible to derive

an integral form for the mean total curvature of these confined random polygons and

we were only able to carry out some numerical studies. However, the results from the

confined random walks provided excellent bench marks for comparison. Figure 8 shows

the earlier data of Figure 7 compared with the curvature of a polygon. The polygon

data is based on random polygons generated using the methods of [4]. Basically, in this

method, the random polygons can be thought of as being generated with their starting
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points fixed at the origin (that is, X0 = O) and with no confinement, but only those

that are contained in the confining sphere S are kept. Of course, it would be very time

consuming to generate the confined random polygons in this naive way. Much faster

algorithms were developed in [4]. Each of the data points are based on the average of

10, 000 polygons of 60 edges. However, only data for selected radii is available due to the

computational difficulties in generating the random polygons. In addition, the algorithm

of [4] assumes that the polygons start (and end) at the origin and thus the confinement

radius cannot be less than one. For each random polygon let the total curvature be Tp.

We then computed the mean of the values (Tp − 3π/8)/60 to compare with the mean

curvature per vertex for the random walks under the corresponding confinement radii.
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Figure 8. The data of Figure 7 of random walks (small circles) together with the data

of length 60 random polygons (big circles).

As we can see the two data sets are surprisingly similar. It is surprising since we

have good reasons to expect more significant differences. First, all random polygons

start and end at the origin. Thus for larger radii polygons with a small number of

segments might experience little or no confinement - which would not be the case for

random starting points leading to some bias towards non-confinement for the larger radii.

Second, for large length n the vertex distribution for the random polygons generated

with the methods in [4] does not approach the vertex density of the random walks

as shown in Figure 3. Thus it would be really interesting to see the more general

(Tp − 3π/8)/n behavior for much larger n values. Should (Tp − 3π/8)/n behave like its

counterparts in the confined random walks, then it may be telling us something intrinsic

about the nature of confinement that is less dependent on how the polygons/walks are

generated.

We shall now end our paper with several open questions for potential future work

in this direction.

1. Torsion is another geometric quantity that in some sense is similar to curvature.

For an unconfined random walk the average torsion value is also π/2 per vertex just

as for curvature. Preliminary studies have shown that confinement decreases torsion
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somewhat for R values close to 1/2 to π/3. Is it possible to do a similar analysis with

torsion as it is done here for curvature?

2. The functions we obtained here for the expected curvature of random walks

are complicated due to the convoluted integrals. Is this due to the particular ways the

random walks are defined, or is it something that is due to the nature of the confinement?

3. Random polygons can be generated in different ways, see [5]. Depending on the

generation process we obtain random polygons that have different vertex densities and

thus random polygons that may have slightly different behavior in their curvature. Is it

possible to quantify these differences?

4. What is the effect of knotting on the curvature of random polygons. For example,

if we consider the 60-step polygons generated with radius R = 1 (i.e the left most small

data point in Figure 8), then these polygons are highly knotted. In fact almost all of

them will represent knots outside the knot table (i.e. with more than 16 crossings). For

these highly confined polygons is it true that the more complex knotted polygons have

higher curvature?
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