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Abstract. Topological polymer networks are networks made of circular
polymers that are topologically linked. Topological networks made of small
circular DNA or protein molecules are of great interest in biology and
nanotechnology because they are found in living organisms and can be constructed
in-vitro. The physical factors that determine the topology of a network as well as
the pathways that are followed for its formation remain poorly understood. In our
previous work we proposed a novel biophysical/computational approach to model
the formation of planar DNA minicircle networks in trypanosomatid parasites.
This model suggests that minicircle networks in trypanosomatid parasites emerged
from topologically free minicircles upon space confinement through a percolation
pathway. This model however is somewhat idealized because it assumes that the
centers of the minicircles in the network are regularly positioned across a planar
lattice. Here we propose an extension of the model by allowing the centers of
the minicircles to be randomly placed in a planar surface. We numerically show
that upon increasing minicircle density, networks form, following a percolation
pathway. Our model suggests that the critical percolation density increases as
Dperc = 0.8357 − 1.4297 exp(0.6439x) with x is the maximum displacement.
Our results therefore show that minicircle positioning does not dramatically
affect the process of network formation through percolation supporting therefore
that networks made of circular polymers may follow this pathway during their
formation.

1. Introduction

Topological polymer networks are networks that are held together through topological
interactions of their subunits. Traditionally, topological polymer networks have been
studied in the context of olympic gels where short linear polymers are cyclized in
the presence of minicircles [14, 15, 17]. However topological networks are also found
in diverse biological systems such as the protein network that makes up the capsid
of bacteriophage HK97 [11, 20] or the DNA network found in the mitochondrion of
trypanosomatid parasites (reviewed in [18]). In vitro assays also can produce complex
topological networks as in the case of type II topoisomerases assays [13] and of DNA
nanotechnology assays (e.g. [14]).
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Theoretical studies of topological networks were pioneered by de Gennes [15].
More recently, and motivated by DNA networks found in the kinetoplast of
trypanosomatids [9], parasitic organisms that cause fatal diseases in human and
livestock, we have proposed a new theoretical approach to study the formation of
topological networks. Our model relies in several features that are only found in the
networks of Trypanosomatid parasites. First, they are made of small DNA molecules
(≤ 2.5kb) and their centers are placed on a plane (hence the name planar network)
[12]. Second, any two minicircles are topologically linked by a single interlock [16].
Third the number of minicircles linked to any given minicircle is cell cycle dependent
and the value is either three or six [3, 4].

In [9] we proposed that space confinement (or high density) of DNA minicircles
is a key factor in the formation of minicircle networks in these organisms. To
test this hypothesis we introduced a model in which randomly oriented, geometric
minicircles are placed on the vertices of a square lattice. Our results showed that
increasing density of minicircles triggers the formation of percolating clusters, defined
as clusters of topologically linked minicircles that span the length of the lattice. This
model however may be an oversimplification of the network found in trypanosomatid
parasites since for instance, the density at which percolation occurs depends on the
specific lattice employed [7]. We here consider a model in which the placement of the
minicircles have some degree of randomness deviating it from the lattice model. We
find that a percolation pathway is a rather robust phenomena that is observed upon
minicircle confinement.

2. Methods

2.1. Lattice generation and minicircle placement

Two dimensional square lattice models were generated as described in [9]. In brief, the
center of each minicircle was placed at a unique lattice point and no two minicircles
shared the same center; the orientation of each minicircle was determined by its normal
vector which was sampled uniformly over the unit sphere. Disordered (irregular)
lattices were generated by displacing each lattice point uniformly over a disc centered
at the lattice vertex with radius given by a predetermined maximum displacement
(Mdisp), measured in terms of the distance between two adjacent lattice points.
Similarly to the model of [9], the density of minicircles in this model is defined by
the number of minicircles per unit area where the radius of the minicircles is used as
the unit length. Consequently, if the distance between two adjacent lattice points in
the square lattice is r, then the density of minicircles of the model is given by 1/r2.

2.2. Topological linking between minicircles

Let C1 and C2 be two disjoint minicircles in R3 (namely two circles that do not
intersect each other). We say that C1 and C2 form an unsplittable link/non-trivial
topological link (of two components) if no topological 2-sphere separates them. The
same definition can be extended to the general case where there are n disjoint simple
closed curves in R3. To determine whether two minicircles were linked we used a
geometrical criterion that we introduced in [9]. Given two minicircles C1 and C2 of
fixed radius r centered at P and Q respectively, consider the planes that contain the
minicircles, together with the plane that bisects P and Q (so that it goes through
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the midpoint O of P and Q and is perpendicular to the line segment PQ). With
probability one, these three planes intersect at a single point x. As illustrated by
Figure 1, C1 and C2 form an unsplittable link if and only if R > |Px| = |Qx|. This
method is faster than other methods that help determine whether two curves form a
non-trivial link or not but it is only applicable to geometric minicircles.

Q

x

P

O

Figure 1. The relative positions of two minicircles and the bisecting plane of their
centers. In the shown case the radius of the minicircles is less than |Px| = |Qx|
and they are clearly unlinked.

2.3. An approach to the estimation of the percolation density in disordered
topological networks

In order to determine the growth properties of minicircle networks we represent each
minicircle as a point and the linking between two minicircles as a bond between two
points. In our previous studies we have determined percolation based on the existence
of clusters that could span the length the lattice. Disordered lattices do not have well
defined lattice edges therefore these methods are not suitable. To calculate the critical
percolation probabilities on two-dimensional random point distributions we extended
the methods developed by Becker and Ziff [2]. In their work, randomized lattices
with periodic boundary conditions were first generated using partitions of the plane.
Clusters were grown from randomly selected points (called seed points) by connecting
nearby points to the cluster according to a preselected probability p. This process was
iterated until no more bonds could be formed or a pre-determined cluster size cut-off
limit was reached. Percolation was determined by the distribution of cluster sizes as
discussed next.

Let Ps be the probability that a cluster grew to be at least size s and pc
be the critical percolation probability. Then we may assume that Ps grows as
As2−τf [B(p−pc)sσ] where τ = 187/91 is the Fisher exponent for the two-dimensional
percolation cluster universality class, σ = 63/91 and f is a the universal scaling
function which measures the probability of occurrence of large clusters. By computing
the Taylor expansion of f near the pc we obtain Ps ∼ s2−τ [A+D(p−pc)sσ+ ...] and if
we define Cs = Pss

τ−2 then Cs ∼ [A+D(p− pc)sσ] which means that for large values
of s Cs grows linearly with sσ and its slope vanishes when p is equal to the critical
percolation probability.

By substituting Dc, the critical minicircle density, for pc we are then able to adapt
Becker and Ziff’s method to estimate the critical percolation density for disordered
minicircle networks.
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3. Results

3.1. Estimation of Fisher exponent τmini in minicircle networks

The Becker-Ziff method was developed to estimate the critical percolation probability
for site and bond percolation on random lattices. To test that our model is consistent
with these models and therefore the methods proposed by Becker-Ziff can be used in
our minicircle model we first aimed at determining whether minicircle clusters grow
in accordance with the critical exponents assumed in the Becker-Ziff method. For
this reason we estimated the value of the Fisher exponent τ by studying the size
distribution of minicircle clusters grown on the regular square lattice.We denote the
estimated value τmini.

In independent bond and site percolation problems, ns, the number of clusters
of size s per lattice site, obeys the general scaling relation ns(p) = s−τf [(p − pc)sσ],
where the behavior of the scaling function f can be approximated numerically [19].
As p → pc, f approaches a constant value. Thus, for p ∼ pc, ns(p) ∼ k · s−τ for
some positive constant k. Using this relation, τmini can then be approximated by
the slope of the linear fit of a log-log plot of the observed cluster size distribution Ns
(Ns = ns×K2 where the lattice is of dimension K ×K) using the critical percolation
density Dc = 0.637 [9]. Figure 2 shows our numerical results based on minicircle
clusters generated on 1000 × 1000 regular square lattices with a sample of 1.2 × 107

minicircle clusters. The graph shows the linear regression fit to the log of the cluster
size s and the number of clusters of that size Ns. Our estimated value for τmini is
2.02±0.06, which is in agreement with the value of τ for the 2-dimensional percolation
cluster universality class. From this result we conclude that the methods developed
in [2] are amenable for our study.

3.2. Estimation of the critical percolation density in the square lattice

To validate our approach, we first estimated the square lattice critical percolation
density and compared with the value of Dc ∼ 0.637 obtained in [9]. As described in
Subsection 2.3 we expect that for large clusters the slope of Cs is a constant and that
at D = Dc the slope of Cs = 0. We then first estimated Cs as a function of sσ.

Figure 3 shows our numerical results. Notice that each curve in the figure shows
the value of Cs for a different density values near 0.637. As expected the slope of each
curve is constant for large clusters and by mere inspection one can appreciate that the
value closest to the known percolation density seems to have zero slope.

To confirm this observation we proceeded as in [2]. We computed the slope of
the best linear fit to each curve Cs for sσ ≥ 10. Since the value at which percolation
occurs (i.e. slope of Cs = 0) may be in between any two of the tested density values,
the best linear fit relating the growth of the slope of Cs with respect to the density
and the x-intercept of the best fit was computed. Figure 4 (bottom) displays the best
linear fit and the x-intercept highlighted. Our estimated value for Dperc = 0.6370
which is in exact agreement with the critical percolation density obtained in [9].

In order to test the dependence of our results on the sσ value used on our linear fit
we repeated the study with the linear fits for Cs for large sσ for the cases sσ ≥ 9.5,
sσ ≥ 10, sσ ≥ 10.5 and sσ ≥ 11. Our results are shown in the following table. The
data in the table shows that when we restrict the fitting range to larger sσ values, the
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Figure 2. Log-log plot of Ns vs. s. The linear regression fit to log(Ns) vs. log(s)
yields a τmini value which approximates the accepted traditional site and bond
percolation τ = 187/91 ≈ 2.055 within one standard deviation.

0 2 4 6 8 10 12 14 16
0.85

0.855

0.86

0.865

0.87

0.875

0.88

0.885

0.89

0.895

0.9

0.905

sσ

C
s

Figure 3. Cs curves for minicircle clusters grown for D = 0.6363, 0.6366, 0.6370,
0.6373, 0.6376 from bottom to top. The sample size is 107 for each density value.

changes in the slopes of Cs vs. sσ regression lines are quite small: they are all in the
fifth order for each density tested.
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Figure 4. Top: Linear relationship between Cs and sσ for large s in the regular
square lattice. Curves were generated using 107 independent clusters grown at
minicircle densities of D = 0.6363, 0.6366, 0.6370, 0.6373, 0.6376. Best fit lines for
sσ ≥ 10 are shown to highlight the near linear behavior of Cs for large values of
sσ . Bottom: The linear regression line of the corresponding slopes of Cs best-fit
lines from the top figure (y = 0.89598x− 0.57077, R2 = 0.9992). The best fit line
intersects the horizontal line at a minicircle density of 0.63703.

3.3. Estimation of the percolation density in disordered lattices

Our previous results validate our approach and next we aim to employ these methods
to determine the critical percolation densities in disordered lattices. We generated
disordered lattices as described in the methods section with maximum displacement
magnitudes of 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0. Figure 5 shows examples of two disordered
lattices with different maximum displacements and same minicircle density. The figure
highlights the different clusters.
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minicircle density min. sσ slope of lin. fit ·10−4

9.5 −6.4851
0.6363 10.0 −6.5843

10.5 −6.6722
11.0 −6.7593
9.5 −3.4024

0.6366 10.0 −3.5171
10.5 −3.6150
11.0 −3.7172
9.5 −0.5547

0.6370 10.0 −0.6666
10.5 −0.7397
11.0 −0.7824
9.5 2.4597

0.6373 10.0 2.3775
10.5 2.3046
11.0 2.2004
9.5 5.3423

0.6376 10.0 5.2980
10.5 5.2518
11.0 5.1642

Table 1. Cs linear slope dependence on sσ range.

Figure 5. Minicircle clusters in disordered lattices with maximum displacement
of 0.5 (left) and 1.0 (right) and density of 0.64.

As in the previous section the growth of Cs was calculated and linearly
approximated for sσ ≥ 10 (similar results would be obtained if a different range of
sσ were used, so long as it is large enough, as indicated by Table 1). The results are
shown in Figures 6 to 11 for the cases of maximum displacements 0.5, 1.0, 1.5, 2.0,
2.5 and 3.0. These results are consistent with those obtained in the previous section
and across disordered lattices. A visual inspection of these results already reveals that
Cs tends to be noisier for larger displacements and that the percolation density grows
with the displacement. The growth of the percolation density is clearly appreciated
in the overall range of the slopes of the linear approximations of Cs.
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Figure 6. Top: Cs curves for lattices of maximum displacement 0.5 evaluated
at minicircle densities 0.7274, 0.7278, 0.7281, 0.7285 and 0.7288 (from bottom to
top). 5×106 clusters were sampled for each curve. Bottom: The linear regression
line of the corresponding slopes of Cs best-fit lines (y = 0.71742x − 0.52240,
R2 = 0.9995). The best fit line intersects the horizontal line at a minicircle
density of 0.72816.
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Figure 7. Top: Cs curves for lattices of maximum displacement 1.0 evaluated
at minicircle densities 0.7953, 0.7957, 0.7960, 0.7964 and 0.7967 (from bottom to
top). 5×106 clusters were sampled for each curve. Bottom: The linear regression
line of the corresponding slopes of Cs best-fit lines (y = 0.58672x − 0.46697,
R2 = 0.9948). The best fit line intersects the horizontal line at a minicircle
density of 0.79590.
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Figure 8. Top: Cs curves for lattices of maximum displacement 1.5 evaluated
at minicircle densities 0.8145, 0.8149, 0.8152, 0.8156 and 0.8160 (from bottom to
top). 5×106 clusters were sampled for each curve. Bottom: The linear regression
line of the corresponding slopes of Cs best-fit lines (y = 0.50491x − 0.41170,
R2 = 0.9990). The best fit line intersects the horizontal line at a minicircle
density of 0.81537.
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Figure 9. Top: Cs curves for lattices of maximum displacement 2.0 evaluated
at minicircle densities 0.8230, 0.8234, 0.8237, 0.8241 and 0.8245 (from bottom to
top). 5×106 clusters were sampled for each curve. Bottom: The linear regression
line of the corresponding slopes of Cs best-fit lines (y = 0.41766x − 0.34412,
R2 = 0.9839). The best fit line intersects the horizontal line at a minicircle
density of 0.82393.
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Figure 10. Top: Cs curves for lattices of maximum displacement 2.5 evaluated
at minicircle densities 0.8274, 0.8277, 0.8281, 0.8285 and 0.8288 (from bottom to
top). 5×106 clusters were sampled for each curve. Bottom: The linear regression
line of the corresponding slopes of Cs best-fit lines (y = 0.47026x − 0.38947,
R2 = 0.9983). The best fit line intersects the horizontal line at a minicircle
density of 0.82821.
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Figure 11. Top: Cs curves for lattices of maximum displacement 3.0 evaluated
at minicircle densities 0.8299, 0.8303, 0.8306, 0.8310 and 0.8314 (from bottom to
top). 5×106 clusters were sampled for each curve. Bottom: The linear regression
line of the corresponding slopes of Cs best-fit lines (y = 0.45449x − 0.37764,
R2 = 0.9958). The best fit line intersects the horizontal line at a minicircle
density of 0.83092.

Notice that while the minicircle densities sampled for the square lattice without
displacement range from 0.6363 to 0.6376, those corresponding for a maximum
displacement of 0.5 range from 0.7274 to 0.7288 and those corresponding to a maximum
displacement of 3.0 range from 0.8299 to 0.8314. The critical percolation density for
each disordered lattice is estimated using a linear approximation of the growth of
the slopes as a function of minicircle density as shown in the right panels of figures
6 to 11. The estimated critical percolation densities are 0.7282 for Mdisp = 0.5,
0.7959 for Mdisp = 1.0, 0.8154 for Mdisp = 1.5, 0.8239 for Mdisp = 2.0, 0.8282 for
Mdisp = 2.5 and 0.8309 for Mdisp = 3.0. Next we characterized the growth of the
critical percolation density as a function of the maximum displacement. Results are
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shown in Figure 12 where the critical percolation densities are plotted against the
maximum displacements. These results seem to suggest that the critical percolation
density will level off as the maximum displacement increases. The fitted curve in
Figure 12 has the form y = a− b exp(−cx) where a, b and c are real-valued constants.
As x grows large, y approaches a = 0.83579, which is our estimate of the limiting
value for the critical percolation density as a function of maximum displacement.
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Figure 12. Percolation densities for maximum randomization magnitudes
between 0.0 and 3.0. The critical percolation density increases monotonically
as the maximum displacement magnitude is increased. The equation of the fitted
curve is y = 0.83579− 1.42980e−0.64392x (R2 = 0.9944).

4. Conclusions

Topological networks made of small minicircles are important in the engineering of
olympic gels and of new materials [14, 15, 17] and in the formation of biologically
relevant structures [11, 13, 18, 20]. In [9] we introduced a new theoretical model
to study the formation of DNA minicircle networks in trypanosomatid parasites.
Our model allowed us to characterize the effect of confinement [9], of the relative
minicircle position[7], of the relative orientation of minicircles [1] and of DNA volume
exclusion [8] in the formation of networks. All these models confirm the existence
of a percolation pathway which suggest that the same pathway may be present in
the formation of large topological networks in biological systems. The density at
which percolation occurs depends on the parameters of the model. Interestingly
our results showed that the relative orientation of the minicircles that has the most
dramatic effect on percolation. All these studies however assume that minicircles are
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regularly positioned across a planar lattice. This assumption limits the applications
of the model to structures that are crystalline like and even in those cases they
still represent a somewhat idealized situation. In this study we have investigated
the growth of networks on randomized lattices extending the methods developed
by Becker and Ziff [2]. Our results show that disordered topological networks also
show a percolation pathway when the density of minicircles is increased and that
the critical percolation density increases as Dperc = 0.8357 − 1.4297 exp(−0.6439x)
with the maximum displacement of minicircles. These results therefore support our
hypothesis that networks in trypanosomatid parasites grew through a percolation
pathway and serve as a first step in the modeling of networks grown in more diluted
conditions as those grown in-vitro in the presence of type II topoisomerases [13].
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