Random walks and polygons in tight confinement
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Abstract. We discuss the effect of confinement on the topology and geometry of tightly
confined random walks and polygons. Here the walks and polygons are confined in a sphere
of radius R > 1/2 and the polygons are equilateral with n edges of unit length. We illustrate
numerically that for a fixed length of random polygons the knotting probability increases to
one as the radius decreases to 1/2. We also demonstrate that for random polygons (walks) the
curvature increases to mn (w(n —1)) as the radius approaches 1/2 and that the torsion decreases
to =~ /3 (= w(n — 1)/3). In addition we show the effect of length and confinement on the
average crossing number of a random polygon.

1. Introduction

Many systems and processes in nature do not exist under ideal conditions, but are subject
to constraints imposed by the environment in which they occur or the manner in which they
are created. This article investigates polygonal random walks and random polygons that are
constrained in a small volume. The study of such objects is motivated by physical entities
that exist or are created within a small volume and that contain self-entanglements (knots or
links). Such topologically and space constrained systems can be found in areas of biology,
chemistry and physics. The two examples described below demonstrate the importance of
studying such systems. Some macromolecular self-assembly processes pack DNA molecules in a
highly condensed manner. For example, in the case of a human cell, the genome contains about
2 meters of DNA, all folded into the nucleus, which is a million times smaller in diameter. The
ratio between the volume occupied by a given genome and the volume occupied by a random
walk of the same length as the genome (if the genome were to be modeled by a random walk),
generally ranges from 10% to 10* (Holmes & Cozzarelli, 2000). This process of compacting
DNA molecules is often called DNA condensation and affects virtually every biological process
involving DNA molecules (Horn & Peterson, 2000). Despite the important role that DNA
packing mechanisms play in all living organisms and the efforts spent studying them, only some
details are known about the workings of DNA packaging motors (Zhang et al., 2012). The
general packing mechanisms of double-stranded DNA (dsDNA) remain largely unknown even
in the simplest organisms such as viruses like bacteriophages where DNA molecules are packed
in a viral capsid (a bacteriophage is a virus that infects and replicates within bacteria). In
the case of bacteriophages, the organization of the condensed DNA facilitates the process of
DNA packing and provides stability to the capsid while packaged and also facilitates the release



of DNA upon infection. Important topological aspects of DNA packing are detected in DNA
extracted from bacteriophage P4. These extracted circular DNA molecules are non-trivially
knotted with very high probability (Liu et al., 1981a,b). In particular, quantitative analysis
of the knots extracted from bacteriophage P4 revealed that the DNA inside P4 is likely to be
chirally organized (Arsuaga et al., 2005). In (Marenduzzo et al., 2009) a model is introduced that
replicates successfully some aspects of the observed knot spectrum observed in these experiments.

Another motivation to study random walks and polygons arises in physics. In theoretical
physics, quantum chromodynamics (QCD) is the theory of the actions of the strong force (color
force), a fundamental force describing the interactions between quarks and gluons which make
up hadrons (such as the proton, neutron or pion). The theory is an important part of the
standard model of particle physics. A huge body of experimental evidence for QCD has been
gathered over the years. In high-energy particle collision, the center of the collision forms a
small superheated volume of hot plasma which contains quarks, antiquark and gluons. In a
model proposed by physicists (Buniy & Kephart, 2003; Buniy et al., 2013) knots and links play
a central role. As the plasma cools the particles rehadronize to form mesons and baryons, and
in this process chromoelectric flux tubes can form that may close into knots and links. The
spectrum of tight knotted and linked flux tubes in QCD are the observed f; states seen in high-
energy experiments (Buniy et al., 2013). Confinement arises because the knotted flux tubes are
confined in the volume of the superheated plasma.

In both examples, one or more (the latter in the case of the quantum flux) tube- or
chainlike, self-closing (circular) structures are created or packed inside a confining volume. This
creates structures that contain non-trivial self-entanglements (expressed as knots and links).
The packing process cannot be observed directly, and experiments (and simulations) provide
only scattered snapshots and evidence of the activity. A potential packing mechanism under
investigation may only be valid if its simulation produces results that are (statistically) consistent
with those observed in experiments. The data reported in this article presents observable packing
results for a random packing mechanism. This article is structured as follows: In Section 2 we
provide the necessary background terminology in topology and geometry. In Section 3 we give
a brief introduction to the generation of random walks and polygons. In Sections 4.1, 4.2 and
4.3 we discuss the numeric data on curvature, torsion, average crossing number and knotting
probabilities. Finally, in section 5 we describe future work and state some open questions.

2. Background

The random rope-like physical structures such as the ones encountered in the above examples are
modeled in this study as equilateral random polygons confined inside a sphere of a fixed radius
R. This section provides important background information about topics related to topology
and geometry. Many of these terms can be found in any standard book in knot theory such
as (Adams, 2004; Burde & Zieschang, 2002; Cromwell, 2004). The topology of a polygon is
expressed by the different knots that can be formed in the polygon. Mathematically, a knot is
a just simple closed curve in R3. Intuitively, two knots are considered topologically equivalent
if one can continuously deform one to the other without breaking the curve or causing self-
intersections. A knot type is defined as the set of all topologically equivalent knots. We use the
symbol K when referring to a particular member of the knot type K. A knot diagram D is the
projection of a knot K onto a plane. D is regular if no more than two segments of K cross
at the same point in the projection. At each intersection one of the strands of the knot K is
below or above the other strand. An intersection in a regular projection is called a crossing.
The minimum number of crossings taken over all regular projections of all members from a knot
type K is called the crossing number of the knot type K and is denoted by Cr(K). A diagram of
IC that realizes the crossing number of K is called a minimal diagram. Figure 1 shows two knot



diagrams that look very much alike but are not. A knot invariant of a knot type K is a quantity
Q@ (such as a number or a polynomial or a group) that can be computed (usually using a knot
diagram) with the following property: If K and L are two knots of the same knot type K then

Q(K) = Q(L). Thus if for two knots K and L the knot invariant is different (Q(K) # Q(L))
then K and L represent different knot types. However the converse of this statement is not true.

Figure 1. On the left: Two non-minimal knot diagrams: The left one simplifies to the eight-
crossing knot 89 in the knot table (Cromwell, 2004) while the right one simplifies to the unknot.
On the right: (a) and (b): The angles used to define the total curvature and total torsion of a

polygon

Different packing mechanisms affect the overall geometric properties of the random walks and
polygons (to be defined in Section 3.1). Note that these geometric quantities are not topological
invariants, their value depends on the particular chosen polygonal representative. However
these geometric quantities are well suited to describe a collection of random walks and polygons
by taking the average value over all members of the collection. Below we define some simple
geometric quantities that we discuss in this article. Any two consecutive edges of a given polygon
define an angle 6 as shown in Figure 1(a). Notice that 0 < 6 < w. The total curvature of the
polygon is defined as the sum of all these angles. Any two consecutive edges of a given polygon
define a plane when the two edges are not co-linear. The two planes defined by three consecutive
edges define a torsion angle 5 such that 0 < § < 7 as shown in Figure 1(b). The total torsion of
the polygon is defined as the sum of all these torsion angles. The average crossing number (or
ACN) of a polygon is the average number of crossings over all possible diagrams (or projection)
of the polygon. (The ACN should not be confused with the crossing number of a knot type.)

3. Equilateral Random Walks/Polygons
Equilateral random walks/polygons are the simplest and most fundamental type of random
walks/polygons which are composed of freely jointed segments of equal length.

3.1. Unconfined Random Walks/Polygons

Let 7, k = 1,2,...,n be n independent random unit vectors uniformly distributed on the unit
sphere centered at the origin O. An equilateral random walk W, of length n is then defined as the
piece-wise linear path whose vertices are given by Xo = O, Xy, = P +75+---+7 (1 <k <n). An
equilateral random polygon of length n is then defined as an equilateral random walk of length
n subjected to the condition X,, = O. Equilateral random walks/polygons consist of individual
segments which have no thickness. Such a random walk/polygon is also known as an ideal
random walk /polygon and it was already used to model the behavior of chain polymers/closed
chain polymers under the so-called theta conditions (where polymer segments that are not in
direct contact neither attract nor repel each other) in the middle of last century by Flory and
de Gennes (Flory, 1953; Gennes, 1979). This is a subject that had been extensively studied.
Much is known about the overall behavior of equilateral random walks/polygons. For example,
the overall dimensions such as the average end-to-end distance or the average radius of gyration
is known to scale with the number of segments n as y/n (Doi & Edwards, 1986; Flory, 1953;



Gennes, 1979; Zirbel & Millett, 2012), the average crossing number grows as O(nln(n)) (Diao
et al., 2003) and the average squared writhe is believed (with numerical and partial analytical
evidence) to grow as O(n) (Portillo et al., 2011). Moreover, there are several generating methods
that are well tested and efficient in generating random equilateral polygons such as the hedgehog
method (Dobay et al., 2003), the crankshaft method (Klenin et al., 1988; Millett, 2000), or
the generalized hedgehog method (Varela et al., 2009). These methods are all well tested and
believed to generate non-correlated samples of equilateral random polygons. In the case of the
generalized hedgehog method (developed by one of the authors), an equilateral random polygon
of length n can be generated in O(n) time (Varela et al., 2009).

3.2. Confined Equilateral Random Walks/Polygons

Unlike the unconfined case, generating confined equilateral random polygons is more difficult.
In this project and all the related references cited here, the confining space (volume) is modeled
by a sphere Sg of radius R > 0.5. (A sphere S of radius R < 0.5 cannot contain any segments
of unit length.) If one uses an accept/reject approach with any one of the methods mentioned
in section 3.1, namely accepting only those unconfined random walks/polygons generated that
are contained in S, then the computation time grows exponentially with the length of the
walks/polygons. Recently the authors have developed several methods to efficiently generate
confined equilateral random polygons using probability density functions at each step of the
generation process (Diao et al., 2011, 2012a,b). These methods have several advantages: first,
they can generate random polygons efficiently even in tight confinement, and secondly they allow
a theoretical analysis on geometric properties of the polygons generated.

At a first glance, a confined equilateral random walk/polygon just means an equilateral
random walk /polygon subjected to the condition that it is within the confining sphere S and the
matter seems to be just how to apply this condition in the generating process (from a numerical
analysis point of view). However, closer examinations reveal that the matter is more complicated.
First, there is no reason why the walk or the polygon has to be rooted at the center of S or at
any particular point in S. This is different from the case of the unconfined equilateral random
walks/polygons where all walks/polygons are rooted at the origin O (since one can always move
the starting point of the walk/polygon to the origin through translation without changing the
relative relations of the edges along the walk/polygon). In general, one has to choose the starting
point of the random walk/polygon according to a certain probability distribution of the vertices.
Second, once the starting point of the random walk/polygon is chosen, the random walk/polygon
is an equilateral random walk/polygon subject to the condition that the entire walk/polygon
has to stay within S. It turns out that there are different ways to impose this condition leading
to random walks/polygons with different probability distributions for the distances of vertices
to the center of the sphere.

Despite its apparent importance with many potential applications, the confined equilateral
random walks/polygons have received little attention in the past. Consequently, there have been
no systematic study on this subject until the recent results by the authors (Diao et al., 2011,
2012a,b). The following are two different ways to impose (define) the confining condition on a
random walk /polygon that have been discussed in their work.

Let n be the length of the equilateral walk/polygon, and let X be the starting point of the
walk /polygon with X1, Xo, ..., X,,—1, X, being the other vertices on the walk/polygon, labeled
according to their order along the walk/polygon. In the case of the polygon, X, = Xj. Assume
that the distribution of Xy is given and that X has been chosen according to this distribution.
The random walk/polygon is defined in an iterative manner in both definitions.

Condition R. Assuming that X has been selected, then the next vertex Xy is selected
subject to the conditions that Xy, Xg4+1, Xgt2, ..., X, form an equilateral random walk with
fixed end point Xy and Xj11 is within the confining sphere S (In the case of a polygon we must



also have X,, = Xj) .

Condition A. Assuming that Xj has been selected, then the next vertex Xy is selected
subject to the conditions that Xy, Xg+1, Xgt2, ..., X, form an equilateral random walk with
fixed end point X} such that this random walk is entirely contained in S. (In the case of a
polygon we must also have X,, = Xj) .

Both conditions can be used to generate confined equilateral random walks/polygons and
generate the un-confined equilateral random walks/polygons once the confining condition is
removed (by setting R = 00). Condition A is equivalent to the following (Diao et al., 2012a):
Suppose we generate random polygons ignoring the confinement condition and starting at the
origin. Out of all the polygons generated we now only keep those that lie in confinement. This is
often called an absorbent boundary, any polygon that penetrates the boundary is absorbed (i.e.
it vanishes). The letter R is referring to the fact that the confining sphere acts in a way similar to
a reflective surface: a polygons hitting the boundary is reflected back into the confining sphere.
The two conditions lead to different distributions of random walks/polygons. This is illustrated
by Figure 2 which shows an example of two different vertex density distributions generated by
the two conditions in the special case of R = 1.5, n = 20 and Xy = O. More specifically Figure
2 shows the distances of each vertex X; to the origin O for 3 < ¢ < n — 3 and the histogram
has been normalized to represent a probability density function. The lighter (yellow) shading
corresponds to Definition R and darker (blue) shading corresponds to Definition A.
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Figure 2. Probability density functions for the distances to the center of the sphere for the
vertices of 20-step polygons rooted at the center of the confining sphere with R = 1.5. The
lighter shading is for Definition R and the darker for Definition A.

4. The Effect of confinement

4.1. Mean Total Curvature and Torsion

It is quite intuitive that confined random walks (polygons) have expected total curvature values
larger than their unconfined counterparts since the confinement condition forces the random
walks (polygons) to make sharper and more frequent turns on average. In the extreme case the
confinement sphere has a diameter close to the unit edge length, and the random walk (polygon)
has to make a near 180 degree turn at each step. Hence its average total curvature would be
close to (n — 1) (or n7 for a polygon) where n is the number of vertices. On the other hand,
if the confinement radius is very large relative to the edge length, then the walk (or polygon)
behaves like it is unconfined. In this case the average curvature per edge approaches 7/2 as
n — oo for both the random walks and the random polygons. However the random polygons
have slightly larger mean total curvatures than the random walks. For large n, the mean total
curvature of the unconfined random polygons of n edges is approximately nw/2 4 37/8, while
the mean total curvature of the unconfined random walks of n edges is precisely (n — 1)7/2
(Grosberg, 2008). These two simple cases demonstrate that the extreme confinement condition



can almost double the expected curvature. The left side of Figure 3 is a numerical comparison
the mean curvatures per edge between a random walk and a random polygon with n = 60.
Clearly we can see that the polygons have a slightly larger curvature due to the correction term
of 37 /8. In fact, expressed per edge this term is 7/160 ~ .02. Lowering the squares representing
the polygons by this amount would show the two data sets matching almost perfectly. (For the
radii where we have both data points the mean difference between the two sets is ~ .014.)

It is much less intuitive why a confined random walk (or polygon) would have an expected
torsion smaller than that of its unconfined counterpart. Again let us look at the two extreme
cases. If the confinement radius is very large relative to the edge length, then the walk (or
polygon) behaves as an unconfined one. In this case the average torsion per edge approaches
/2 as n — oo (for both the random walks and the random polygons), though a random polygon
has a slightly smaller average torsion than a random walk does. As n — oo, the average total
torsion of an unconfined random polygon approaches nm/2 — 37 /8 (Grosberg, 2008). In the case
of tight confinement, our numerical results show that the average torsion per edge is smaller
than 7/2 per edge. In fact, our numerical results strongly support the following conjecture:

Conjecture: As n — oo and R — 1/2, the average torsion (per edge) of a random walk
(polygon) of n edges approaches 7/3.

See the right side of Figure 3. Here we see that the polygons have a slightly smaller torsion
due to the correction term —3m/8. As above, expressed per edge this term is 7/160 ~ .02 and
raising the squares representing the polygons by this amount would show the two data sets
matching almost perfectly. (For the radii where we have both data points the mean difference
between the two sets is &~ .02.) At this point a rigorous proof of this conjecture is elusive, and
certainly seems difficult. The authors believe that a careful analysis of an integral expression
of the average torsion might be possible for the case of a random walk. However for a random
polygon this seems extremely difficult if not impossible. As a final remark we want to point
out that the data shown in Figure 3 suggest that random walks and polygons in confinement
have very similar values with respect to their mean curvature and torsion values. This is a little
misleading. In fact, the length of the polygon also plays a role here. If the random polygons
are relatively short with respect of the confinement condition then it might only barely reach
the boundary and the confinement plays no role. If the random polygon is very long then we
know that the vertex distribution of the random polygon (generated using Condition A) does
not match the vertex distribution of the random walk, see Figure 2 and thus there might be a
difference between the torsion and curvature values of random walks and random polygons that
does not get smaller as the length of the walks and polygons increases. Finally, we should also
point out that when R is close to 1/2, the confined random polygons have to have even length
(unless the polygon is very long): the equilateral triangle is the simplest example of a random
polygon of odd length that cannot be confined in a sphere of radius close to 1/2.

4.2. Mean Average Crossing Number (ACN)

A standard measure of the geometric complexity of random polygons is their mean average
crossing number (mean ACN). Figure 4 shows the mean ACN of polygons ranging in length
from 10 to 90 with radii of confinement ranging from R =1 to R = 4.5, with a clear indication
on how tight confinement leads to a drastic increase in the mean ACN. In (Diao et al., 2011;
Arsuaga et al., 2009; Diao et al., 2012a) the mean ACN is modeled by a best fit-function of the
form y = a(R)n? + b(R)nIn(n), where a(R) and b(R) are constants that depend on the radius
of confinement R. Using this model we fit the data to a function of the type

fa = (at 33 ) 2+ (+ 5 ) winto)
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Figure 3. Curvature (on the left) and torsion (on the right) per edge: The squares represent
random polygons of length 60 and the dots represent a single random walk of length one million.
The confinement radii (on the z-axis) vary from 1/2 to 3. The random polygons are generated
under Condition A using the methods of (Diao et al., 2012a): Each data point for the polygons
is based on a sample of size 10,000 while each data point for the random walks is based on a
single walk with one million edges generated under Condition R.

where the x variable models the confinement radius R and the y variable models the polygon
length. We found that values of a = 0.0005, b =~ 0.12, ¢ ~ 0.052 and d ~ 0.126 give an excellent
fit with an R2-value of 0.999978 and a mean difference between the best-fit function and the
data of less than 0.35.
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Figure 4. The mean ACN in a 3D plot (on the left) and two slices through the surface for radii
R=1.5 (W) and R =2 (A). Each data point is obtained from a sample of 10,000 polygons.

One interesting question here is whether the mean ACNs of knotted and unknotted random
polygons are different. A positive answer to this question implies that one may use the mean
ACN of certain random polygons to make inferences about their topological properties such
as their knotting probabilities (which is addressed in the next section). Figure 5 shows the
numerical estimation of the ratio (for each fixed length and radius) between the mean ACN of
the knotted random polygons and the mean ACN of all random polygons. As expected this ratio
is greater than one for all data points. Furthermore, the shorter the polygons and the larger
the confining radii, the larger the ratios. We interpret this data as follows: In shorter polygons
with a larger confinement radius where knotting is less likely, the ACN of a knotted polygon is
higher than the ACN of an unknotted polygon on the average because the topological complexity
imposes an increased geometric complexity. The ACN ratio for unconfined random polygons
is larger than 1 due to the same reason. With increased length and/or decreased confinement



radius, the probability of knotting increases as does the number of crossings in diagrams of
unknotted polygons and hence the knotting complexity no longer results in a much increased
ACN, causing a much smaller difference and a smaller ratio. To illustrate this we give a few
examples: For length ten and radius one we get a ratio of ~ 1.27 which increases to = 2.18 for
radius three. For length forty and radius one we get a ratio of ~ 1.002 which increases to ~ 1.17
for radius three. The noisy results for polygons of length ten at higher confinement radii are
due to the fact that there were very few knotted polygons in these ranges. Much larger sample
sizes may be needed in order to reduce the noise.
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Figure 5. The ratio of the average crossing number of knotted random polygon over the average
crossing number of all random polygons. Left: The radius R is on the x-axis and there are nine
curves representing the lengths of the polygons ranging from 10 (on the top) to 90 (at the
bottom). Right: The lengths of the polygons is on the z-axis and there are eight curves for
various values of R from 1 (bottom) to 4.5 (top) in increments of 1/2.

4.3. Knotting Probabilities

The famous Frisch-Wasserman-Delbriick conjecture states that sufficiently long ring polymers
should be knotted with probability one (Frisch & Wasserman, 1961; Delbruck, 1962).  This
conjecture has been proven for several models of polymer rings including the (unconfined)
equilateral random polygons (Diao, 1995). While it is very intuitive and plausible that this
conjecture is also true for confined (equilateral) random polygons, no one has been able to prove
it to date. The left of Figure 6 shows the numerical estimations of the knotting probabilities
using the same random polygon sample used in Figure 3. The nine fitting curves represent
polygons of lengths ranging from 10 to 90 with increments of 10. All the random polygons
shown are generated under Condition A (Diao et al., 2012a) and are rooted at the origin (thus
the confinement radius cannot be less than one). Knotting was determined by a calculation of
the HOMFLY polynomial. For long polygons and small radii R this polynomial computation
becomes impossible due to the complexity of the calculation. The unknotting probabilities for
R =1and R = 1.5, n = 10, 20, 30, 40 and 50 are shown at the right side of Figure 6. At
length n = 50, most polygons are knotted at R = 1 and R = 1.5. This shows how drastically
the confinement can increase the knotting probability: only about 20% of unconfined equilateral
random polygons at length 50 are knotted and this percentage increases to only 50% at length
500 (Millett & Rawdon, 2005).

5. Conclusions

In this paper, we demonstrated, using numerical simulations, the effect of volume confinement on
several important geometric measures of random polygons including the mean total curvature,
mean total torsion and mean total ACN. We also investigated the effect of volume confinement



probability
105

length/10,
ength/. p

0.8

0.6F

0.4F

0.2r

e L

Figure 6. Left: the knotting probability with the confinement radii (z-axis) vary from 1 to
3 and the length (on the y-axis) varies from 10 to 90; Right: the unknotting probability for
confinement radii R =1 (W) and R = 1.5 (A) and length n = 10, 20, 30, 40 and 50. Each data
point is based on a sample of 10,000 polygons.

to the knotting probabilities of random polygons of various lengths. Our results show that
confinement leads to increased mean total curvature, but to a decreased mean total torsion. Our
study of the overall mean ACN matches well with previously published results, but further reveals
that for a fixed length, the confinement also elevates the ratio between the mean ACN of knotted
polygons and the mean ACN of all polygons. As we pointed out in the introduction section,
generating confined equilateral random polygons itself is a difficult problem. There are different
ways to define and generate such confined random polygons. How these different definitions and
generating methods affect these geometric or topological properties of the polygons is a question
for a future study.

Let us end this paper with some open questions. Although our numerical results seem to
favor a positive answer for each of them, a theoretical proof for any of these will not be easy.

1. For any fixed confinement radius R, the knotting probability of a random polygon of
length n goes to 1 as n — oo;

2. For any suitably large n, the knotting probability of a confined random polygon of length
n goes to 1 as R — 1/2;

3. The total torsion of a confined random walk of n edges goes to (n — 1)7/3 as R — 1/2;

4. If n is even, then the total torsion of a confined random polygon of n edges goes to nw/3
as R — 1/2.
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