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biologically observed topological characteristics and our benchmark data might reveal the bias of DNA packed
in the viral capsids and possibly lead to a better understanding of the DNA packing mechanism, at least
for the bacteriophage DNA. The purpose of this paper is to provide information about the knot spectrum of
equilateral random polygons under such a spherical confinement with length and confinement ratio in a range
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1. Introduction

It is well known that genomic materials (long DNA chains) of living organisms are often packed compactly under
extreme confining conditions using macromolecular self-assembly processes. For example, in the prototypic case of
the P4 bacteriophage virus, the 3um-long double-stranded DNA is packed within a viral capsid with a caliper size
of about 50nm, corresponding to a 70-fold linear compaction [1]. In the case of bacteriophages, the organization
of the condensed DNA facilitates the process of DNA packing, provides stability to the capsid while packaged
and also facilitates the release of DNA upon infection. The general DNA packing mechanism is a very important
question in molecular biology that remains largely open. It is plausible and has been suggested in [2] that the
topology of the packed DNA may be used to study the DNA packing mechanism. In the case of bacteriophage P4,
DNA molecules packed inside the bacteriophage head are considered to be circular since the two sticky ends of the
DNA are close to each other. Researchers are able to extracted the DNAs from the capsid without separating the
two ends, essentially preserving the topology of the (circular) DNA. Since further relaxation of the DNA (needed
in order to analyze the topology of the DNA) does not allow strand passage, the topology of the DNA remains
intact. It is reported in [2] that the circular DNA extracted from bacteriophage P4 are non-trivially knotted with
very high probability. In particular, a quantitative analysis of these DNA knots revealed that they are likely to
be chirally organized based on a coarse knot spectrum of the extracted DNA knots [2]. In order to study this
problem using a systematic approach based on mathematical modeling, one needs to introduce a DNA packing
model under extreme volume confinement condition and test whether such a model can produce the kind of knot

spectrum observed in the experiments.

The topology of the DNA packed inside a bacteriophage head is what motivated this study. Random equilateral
polygons confined inside a sphere are a coarse model of circular DN As packed inside bacteriophage heads where the
confinement sphere models the virus head [3-5]. This model is chosen because of its clean and simple mathematical
formulation and that it contains no bias (packing pattern); it is not meant to generate polygons that model DNA
packed in a virus head directly. Instead, the average topological characteristics of this model may serve as
benchmark data for totally randomly packed circular DNAs. The difference between the biologically observed
topological characteristics and our benchmark data might reveal the bias of DNA packed in the viral capsids and
possibly lead us to a better understanding of the DNA packing mechanism, at least for the bacteriophage DNA.
The purpose of this paper is to provide information about the knot spectrum of equilateral random polygons in
spherical confinement with length and confinement ratio in a range comparable to circular DNAs packed inside
bacteriophage heads. The knot spectrum based on knots with a most seven crossings based on a simulation of
viral packing of DNA in a virus has been reported in [6]. However the model used in [6] is complicated, and
contains a number of choices to model actual DNA. Furthermore it models open DNA chains that use a closure
at infinity schema to circularize. The choices made in such a model introduce a strong bias (with a strong effect

on a knot distribution) and do not allow for a clean and simple mathematical formulation.
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Unconfined equilateral random polygons (also known as ideal random polygons) have long been used to model
ring polymers under the 6-conditions where polymer segments that are not in direct contact neither attract nor
repel each other. It is a model that has been fairly thoroughly studied, both theoretically and numerically.
Consequently, many theoretical aspects of the equilateral random polygons are well understood. For example, the
mean squared distance between two vertices on an equilateral random polygon of length n that is k vertices apart
is k(n — k)/(n — 1), the mean squared radius of gyration of such a random polygon is (n + 1)/12 [7] and its mean

1

isnInn + o(n) [8, 9]. There are also several well tested algorithms

ACN (average crossing number) behaves as
for generating these unconfined equilateral random polygons. For example the crankshaft algorithm [10, 11],
the hedgehog method [10, 12], the generalized hedge hog method [13] and the recently developed method by
J. Cantarella et al. [14]. Topologically, it has been shown that the FWD conjecture holds true for the equilateral
random polygons, i.e., the probability that an equilateral random polygon of length n is a nontrivial knot goes
to one as n goes to infinity [15]. However, detailed information on the knot spectrum of unconfined equilateral

random polygons is still rather scarce. Numerical results reported in [16] show that knotting probability is about

0.1 for n = 50, about 0.3 for n = 100 and gradually increases to about .85 for n = 500.

Unlike equilateral random polygons without confinement, the confined equilateral random polygons have not
been thoroughly studied and there are many unanswered questions. The first issue is how to define the models to
reflect the various packing properties that DNA or polymer chains may have. Once a confined random polygon
model is defined, the next issue is determining the probability distributions of the random polygons based on the
model, and the third issue is the actual generation of the random polygons in accordance with these (theoretical)
probability distributions. In a series of papers, four authors of this paper have developed algorithms for several
models to generate equilateral random polygons that are confined inside a sphere of fixed radius [3-5]. The model
presented in [4] is the one chosen for the study presented in this paper. The model can be described as follows:
Consider equilateral random polygons that are “rooted” at the origin and assume that there is an algorithm
that samples such objects with uniform probability. Now consider a confinement sphere Sg of radius R > 1
with its center at the origin. Only those randomly generated equilateral polygons are kept that are contained
in the confinement sphere Si. (Note that the algorithm used actually generates polygons in confinement using
conditional probability density functions. The reader should note that using our algorithm each polygon generated
is totally independent of the previous polygon and no de-correlation is necessary.) There is no biological or other
reason for the polygons to be rooted at the center. It is rather a choice for simplicity: as it turns out, equilateral
random polygons defined this way are much easier to generate due to the symmetry of the confining sphere

(relative to the root) imposed on the equilateral random polygons.

In this paper we only discuss the effects of confinement and length of the random polygons on the topology
(i-e. information based on knot types). In a future paper we shall discuss the effects of confinement, length
and knotting complexity of the random polygons on the geometry (i.e. geometric quantities such as the average

crossing number, curvature and torsion, and the writhe).
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2. Polygon sampling and knot identification

In our sampling of the random polygons we considered different polygon lengths and different radii of confine-
ment. For each fixed confinement radius and each fixed polygon length we constructed a sample of 10, 000 different
polygons. We choose the different radii and lengths using three simple criteria: (i) the probability of knotting is
relatively high; (ii) the knots should not be so complex that the identification of knot types becomes computa-
tionally impossible for almost all polygons and (iii) the length/confinement radius ratio should be a range that
contains the linear compaction rate of a typical bacteriophage virus DNA (up to 70 for the P4 bacteriophage

virus). Using these criteria we constructed our sample space as follows:

The lengths of the random polygons range from 10 to 90 in increments of 10. The confinement radii range from
R =1 to R =4.5. Increments of 1/10 are used between radii R = 1 to R = 3 and additionally radii R = 3.5, 4
and 4.5 are used. The reason for a denser sampling of R-values between one and three is that the knot-spectra
change rapidly at smaller radii, but this change levels off for larger radii. For the longer polygons of lengths 60
to 90 we did not sample polygons over all confinement radii due to the fact that at small confinement radii the
extreme knot complexity made it impossible for us to “identify” these knots. For example, polygons of lengths
70, 80 and 90 are only sampled at radii from R = 1.5 to R = 4.5 with increments of 1/2. In total our sample

space consists of 164 sets each containing 10,000 polygons, yielding a total of 1,640,000 random polygons.

One tool we used for knot identification is the HOMFLYPT polynomial; interested readers can refer to a knot
theory textbook such as [17]. However there are many knot types that share a common HOMFLYPT polynomial.
Thus the HOMFLYPT polynomial calculation provides only a list of chiral knot types (with 16 or fewer crossings)
with that HOMFLYPT polynomial. The second tool we used was knotfind within knotscape [18], which uses
Dowker codes to compute the exact knot type. However, knotfind does not compute the chirality of a knot type

(i.e. it does not differentiate between the two chiral versions of a trefoil).

More specifically, we used the following process to extract the knot identifications from the polygons. For each
polygon unraveller [19] is used to simplify the crossing information. Unraveller creates a projection into the plane
from which a crossing code is extracted. Via a collection of simplification moves (based on Reidemeister moves)
this crossing code is (potentially) simplified. Unraveller produces (at least) two types of output: a DT-code which
is used by knotfind and crossing information which is used to compute the HOMFLYPT polynomial. For each
polygon P we compute the HOMFLYPT polynomial H using a program written by Ewing and Millett [20]. We
have a table of HOMFLYPT polynomials for all chiral knot types, prime and composite, with 16 or fewer crossings
(under the generally accepted assumption that the crossing number of composite knots is additive). For each
P, we obtain a list of chiral knot types {Ki,..., K} from the table all of which have H as their HOMFLYPT
polynomial. Note that if this list is empty then the polygon does not represent any prime or composite knot with
less than 17 crossings. In addition to the HOMFLYPT polynomial calculation, for each polygon we also used

knotfind to compute the (non-chiral) knot type. We use the simplified DT-code D generated by unraveller, which
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might be the DT-code of a minimal diagram or might be the DT-code of a diagram close to the minimal diagram.
Then knotfind takes D and creates a “canonical” DT-code D’. If D’ represents a knot within the DT-code knot
table (which only contains prime knot types) then that uniquely identifies that knot (up to chirality).

If the non-chiral knot type from knotfind matches a chiral knot type in our list {Ki,..., K} based on the
HOMFLYPT polynomial then this (chiral) knot type is identified as the correct one. This procedure should be
totally reliable in identifying knots with less than or equal to 16 crossings. We had only one disagreement where
the HOMFLYPT and the knotfind processes ’identified’ incompatible knot types with 16 or fewer crossings. This
disagreement was resolved using a second simplification process based on the planar-diagram code (PD-code) of
the polygon, modifying the PD-code into a DT-code and looking it up with knotspace. However there are still

several additional issues which we address in the following paragraphs.

(i) The polygon P might represent a knot that is not prime and therefore it is not in the DT-code knot table.
At every stage of the simplification process using DT-codes, knotfind attempts to identify factors of composite
knots. If there is an “obvious” connected sum then a part of the DT-code maps onto itself. If such a situation is
detected the simplification process is applied separately to each DT-code of the two factors. In the end we obtain
a collection of simplified DT-codes from which it is possible to reconstruct the original composite knot type. If
the HOMFLYPT polynomial of this reconstruction agrees with the originally computed HOMFLYPT polynomial

of the polygon then we identify P as the appropriate composite knot.

(ii) The polygon P might produce a simplified DT-code but the simplified DT-code does not match any knots
with 16 or fewer crossing, and additionally the HOMFLYPT polynomial H of P leads to a list of one or more
knot types with 16 or fewer crossings. In such a case, either unraveller and knotfind were not able to simplify the
crossings to the point that the knot could be identified, or the knot has more than 16 crosssings but shares its
HOMFLYPT polynomial with one or more knot types with 16 or fewer crossings. Cases for which the DT-code
indicates that the knot has 16 or fewer crossings, are resolved based on running the simplification process based
on the planar diagram-code (PD-code) of the polygon. In all cases, the PD-simplification confirmed the crossing
number provided through the DT-code and P is identified as a knot with 16 or fewer crossings (which means that
the translation from simplified DT-code to canonical DT-code failed). In cases for which the DT-code indicates

that the knot has more than 16 crossings we identify the knot similar to (iii).

(iii) If the initial calculation of H indicates that P does not represent a knot in the table, then the simplified
DT-code (or the set of simplified DT-codes in the case an obvious connected sum was identified) provides an upper
bound on the crossing number. In these cases we double-checked by computing the HOMFLYPT polynomial from
the simplified DT-code(s) to ensure that it matches H. We identify P as having the crossing number provided
by the simplified DT-code.

We observed that the approach to knot simplification based on DT-codes is extremely reliable for the knots that

are within the knot table. There is no reason to believe that the simplification of DT-codes becomes suddenly
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unreliable once the actual crossing number exceeds sixteen. The simplification method using PD-codes (which
also results only in an upper bound) was executed on a sample of polygons with contradictory information (see
ii). It did find PD-codes with fewer crossings (up to 8 fewer crossings) than the simplified DT-codes from knotfind
but only for polygons for which the knotfind had an upper bound between 33 and 53. The PD-code simplification
could not produce a better result (fewer crossings in the code) than the DT-code simplification for crossing
numbers between 17 and 33. Thus we believe that a simplified DT-code, while technically only providing an
upper bound on the actual crossing number, gives a value that in most cases is actually the topological minimal
crossing number. In particular this is true for crossing numbers that are not far above 16 (the largest number
in the knot table.) Therefore we report these approximated crossing numbers as if they are the actual crossing

numbers. We also report a knot as prime if no composition was detected during the simplification process.

As a final comment, we remark that in some instances the above procedures fail. This could happen if the
calculation of either the HOMFLYPT polynomial or the various simplification processes crash or simply “time-
out” (i.e. we allow only a finite predetermined computation time and if this is exceeded then we call this a
time-out). We note that only 79 (or 0.005%) random polygons for which the HOMFLYPT calculation timed-out.
There were many more cases where the simplification process crashed or timed-out. In total such cases are rare
(28, 349 polygons representing 1.7286 percent of the total) and have only a small effect on the overall statistics.
Most of these cases (28,115 to be exact) occurred in a few sets, see Table 1. The missing 166 are scattered overt
many sets with no number exceeding 20 and are not reported in the table. Thus it seems safe to assume that
most of these 28, 349 polygons represent very complicated knots. However we cannot rule out that some of these

actually are of a very simple knot type.

In summary, the reader should keep in mind that all numbers involving topological information are subject to
small errors (as explained). Additionally, the crossing number estimate and the claim of a prime knot become
less and less reliable as the crossing number increases beyond 16. In this paper we simply state these numbers

without any indication of a potential error.

Table 1. The number of random polygons whose knot type/crossing number we failed to identify/estimate. 10,000 polygons were
generated for each set.

# observed |length |radius || # observed |length |radius|| #observed |length |radius
7,711 90 1.50 1,159 70 1.50 120 40 1.00
5,504 60 1.10 1,011 50 1.10 100 80 2.00
4,349 80 1.50 502 90 2.00 68 50 1.30
2,836 60 1.20 428 60 1.40 42 60 1.60
2,787 50 1.00 287 50 1.20
1,186 60 1.30 135 60 1.50
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[
3. Overview of the knot spectrum

Overall Summary Out of the 1,640,000 random polygons sampled:
® 938,417 (57.22%) are unknots;
e 177,602 (10.83%) are trefoils;

e 611,383 (37.28%) are prime knots and 61,851 (3.77%) are composite knots (the crossing numbers range from

3 to 53);

e 127,698 (7.79%) are knots which have more than 16 crossings (out of the 673,234 knotted polygons).

More detailed information is shown in Table 2 for polygons with crossing numbers up to 23 (even though we have

data up to 53). A graphic display of all crossing numbers is shown in Figure 1.

Table 2. The number of observed knots

crossing| # observed | # observed 7 observed percentage
number knots prime knots|composite knots|composite knots

0 938,417 938,417 0

3 177,602 177,602 0

4 49,549 49,549 0

5 57,449 57,449 0

6 50,805 35,233 15,572 30.65
7 31,731 24,477 7,254 22.86
8 36,023 28,086 7,937 22.03
9 25,282 19,401 5,881 23.26
10 23,976 19,988 3,988 16.63
11 20,544 16,717 3,827 18.63
12 17,665 15,022 2,643 14.96
13 16,386 14,017 2,369 14.46
14 13,903 12,057 1,846 13.28
15 13,046 11,487 1,559 11.95
16 11,575 10,223 1,352 11.68
17 10,313 9,377 936 9.08
18 9,544 8,674 870 9.12
19 8,537 7,857 680 7.97
20 7,917 7,323 594 7.50
21 7,328 6,770 558 7.61
22 6,827 6,324 503 7.37
23 6,317 5,912 405 6.41

The knot spectrum in pictures In the following we show the knot spectrum in a sequence of graphs for
selected crossing numbers that are multiples of three. The z-axis is the confinement radius and the y-axis is the
number of knots encountered with the given property. For each of the nine different lengths in our sample we
have connected the points of the same length with lines.

Note that in Figure 2 many curves have a distinct maximum. For example, for length 90 the number of knots with

15 crossings peaks at radius R = 2.5. For smaller radii the number of 15 crossing knots drops because at length
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Figure 1. The number of knots with a fixed crossing number together with the number of prime and composite knots.

90 knotting complexity exceeds 15 crossings and knots of low complexity (such as knots of 15 crossings) become
less likely. In Figure 3 we see the knot spectrum of composite knots and of unknown knots, that is polygons for

which we neither were able to identify the knot nor to determine an upper bound on its crossing number.

4. Topological crossing number of confined random polygons

In this section we investigate the average topological crossing number TCN, i.e. the average minimal crossing
number of our polygons. We want to remind the reader that for knotted polygons with more than 16 crossings we
only have upper bound estimates for their crossing numbers. Moreover there are knotted polygons for which we
do not even have an estimate for their crossing numbers, see Table 1 and the averages given here do not take into
account these later polygons. The data is shown in Figure 4. In both graphs we see nine curves representing the
polygons of length 10 to 90. The graph on the left contains only the information coming from knotted polygons
and as the confinement radius increases all curves level off at crossing number three, that is to say the only knots
that are left are trefoils. In the graph on the right we conclude in the TCN-average the unknotted polygons. Here
we see that the TCN approaches zero as the radius R increases. For small radii R there is not much difference
between the two graphs. On the left in Figure 5 there we show the 2D data from the left of graph in Figure 4 in

a 3D view where the surface (the expected TCN discounting the unknots) is given by the equation

E(TCN) ~ (70.000796389 + %) 12 + (1.24109 - 1'02{742) In(L), (1)

with R being the radius of confinement and L being the length of the polygon.
This equation fits the data with a R? ~ 0.9890 and a max and a mean difference between the surface and the data

of about 2.956 and —0.072 respectively. This fitting equation is closely related to the fitting equation given in [9]
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Figure 2. The knot spectrum for 3, 6, 9, 12 and 15 crossings. The last graph shows the number of unknots. In all cases except
the case of the unknot, the curves are aligned at R = 4.5 in the decreasing order starting at length 90 on the top. In
the case of the unknot, the curves are aligned at R = 4.5 in the increasing order starting at length 10 on the top.

for the mean average crossing number (mean ACN) of random polygons under confinement. It was established
that the mean ACN of a random polygon in confinement grows quadratically with respect to the length of the
polygon [9], and that the mean ACN scales as +=L1In(L) + O(L) in the unconfined case (where L is the length of
the polygon). A fitting formula of the form a(R)L*4b(R)LIn(L) is thus proposed in [9] where a(R) is a decreasing
function of R that starts as a positive number when R is small and decreases to near 0 as R increases to pass
the average radius of gyration of the polygons (that is when the confining effect disappears); similarly, b(R) is an
increasing function that starts from near 0 when R is small and increases to the constant 3/16 as R passes the
average radius of gyration. It is plausible that in tight confinement the mean TCN behaves similarly to the mean

ACN (and our data clearly indicates that both the ACN and the TCN grow quadratically with length under a

confinement condition). However it is rather intuitive and obvious to see that in the unconfined case, the mean




The Knot Spectrum of Confined Random Equilateral Polygons

1800 T 8000 T

» 1 10édges —
1600 [ 1 L 20 edges —>— |
7000 30 edges —=—
1400 + 1 6000 |- 40 edges —+— |
1 50 edges ——
1200 1 5000 | | 60 edges ——— |
€ 1000 | |l = : 70 edges —+—
= S 4000 + A 80 edges —— |
S 800t l 9 ‘: 90 edges -
o o ‘
600 | | 3000
400 | 2000 4
200 o 1000 ]
O O o o - e o
1 1.5 2 25 3 3.5 4 4.5 25 3 3.5 4 4.5
Confinement Confinement

Figur‘e 3. The knot spectrum for composite knots on the left and the number of unknown polygons (i.e. not even an upper bound
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Figur() 4. The average TCN dependence on the length and the confinement radius. The right side includes unknots, the left does
not.

TCN would be much smaller than the mean ACN. Indeed, a fitting formula of the form a(R)L? + b(R)L In(L)
yielded a worse R? value. This actually raises an interesting question: Is it true that the mean TCN of a random

equilateral polygon of length L scales as O(In(L))?

On the right in Figure 5 we analyze knot complexity in a different way. If we look at an individual curve in Figure
2 we notice that these curves often have a single maximum. For example in Figure 2 (top left) for polygons of
length 30 and crossing number 3 this maximum occurs around R = 1.5. If we go to the top right then we find
that for 6 crossings the maximum occurs at about R = 1.1. We have extracted this information for polygons of
lengths 30 to 60 in Figure 5.

For some values we approximated the maximum by using an interpolation function through given data points to
get a single value for the radius R. We did not use lengths 70 to 90 because we do not have enough data points

and we did not use lengths 10 and 20 because for these short lengths we get essentially a constant radius R = 1.
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Figure 5. Left: The average TCN dependence on the length and the confinement radius in a 3D view. Right: The dependence of
the maximum on length and confinement radius for lengths 30 (bottom) to 60 (top).

How do we interpret this data? For example our result indicates that for length 50 and crossing number 10 the
maximum occurs at R ~ 1.5. This means that in order to generate 10 crossing knots of length 50, we have the
highest yield if we generate them with a confinement radius R ~ 1.5. It also means that many knots are generated
whose complexity is much higher than 10 crossings. In general, for a fixed polygon length, the more complex the
knot, the smaller the confinement radius at which the maximum probability of generating such knots. Also, for a
fixed crossing number, the longer the polygon the larger the confinement radius for this maximum. So for a fixed
length, a very complicated knot either can never be generated or has a highest probability to be generated at the
smallest allowable radius R = 1. The data points in Figure 5 do not tell us the magnitude of the probabilities. For
example, if we consider length 30 then both 9-crossing knots and 15-crossing knots are generated with maximal
probability when R = 1. However from Figure 2 is can be seen that the actualy number of knots generated is
larger for 9-crossing kntos than for 15-crossing knots and is even smaller for knots with a larger crossing number.
Using R = 1 does not help to generate knots with a very large crossing number because this maximal probability

may be essentially zero.

5. Small polygonal knots: trefoils and figure eight knots

In our sample there are 177,602 trefoils, that is, 10.83% of all polygons sampled are trefoils (or 26.38% of all
knotted polygons sampled with identified crossing numbers are trefoils). The distribution of trefoils for each given
length is shown in the top left of Figure 2. We found that there are 88,221 positive trefoils (49.77%) and 89, 381
negative trefoils (50.33%). This data can be used to detect a possible bias in our polygon generating process,
since a positive trefoil has the same probability to be generated than a negative trefoil if the generating process
is unbiased. Given that a polygon generated is a trefoil, let p be the true conditional probability of a positive
trefoil (p = .5 if the generating process is unbiased). The 95% confidence interval for p based on our sample

data is (.495372,.500028). Thus no obvious bias is detected. Here is another way to check on this. The average
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writhe of all these trefoil-polygons is —0.018 with a sample variance of 16.613. From this one can construct a 95%
confidence interval of the true mean writhe of all trefoil polygons, which is (—.03696,.00096). This also seems
reasonable as the mean writhe of all trefoil-polygons is zero for a unbiased generating process. Our sample of
random polygons contained 761 triple trefoils (31#31#31), see Figure 6 There were even 26 quadruple trefoils in
our sample space (31#31#31#31). However strong confinement (i.e. small values of R) makes composite knots

less likely as we shall see in Subsection 6.5 on composite knots.

In our sample there are 49, 549 figure-eight knots, which accounts for 3.02% of all polygons sampled (or 7.36% of
all knotted polygons sampled with identified crossing numbers). These knots have an average writhe of —0.0128,

which is close to the expected value of zero.

30 .
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1 15 2 25 3 35 4 45
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Figure 6. One the left the distribution of triple trefoils, on the right a 20 step triple trefoil in a confinement sphere of radius
R=1.1.

6. The frequencies of different knot types
6.1. Overview

In our sample there are 57,449 five-crossing knots: 20,984 of which are 51 knots (36.53%) and 36,465 of which
are 52 knots (63.47%). There are more 52 knots almost across the entire range of different radii and lengths. In
fact the only exceptions occur when the number of both knots is very small, which happens only for the shortest
length n = 10 with one additional single exception at length n = 90 and R = 2. The distribution of the 50, 805
six crossing knots is 12,191 of the 61 knots (24.00%), 14,488 of the 62 knots (28.52%), 8,554 of the 63 knots
(16.84%) and 15,572 of the 3:1#31 knots (30.65%). Notice that the phenomenon that 52 is more likely than 5;
and 62 is more likely than 61 or 63 has also been observed for unconfined random polygons [21, 22]. However in
these studies the probability of generating more complicated knots is very low due to the lack of confinement,

which weakens the statistical significance of these results. Notice that this is in strong contrast to a simulation
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that models actual DNA in a viral capsid [6]. Here 55 is more likely than 5; and 6; is more likely than 62, while

63 almost does not occur at all.

For seven-crossing knots we have a total of 31,731 of them: of which 1,823 (7.75%) are 71 knots, 3,746 (11.80%)
are 7 knots, 3,455 (10.88%) are 73 knots, 2,016 (6.35%) are 74 knots, 4,900 (15.44%) are 75 knots, 5,809
(18.31%) are Ts knots, 2,728 (8.60%) are 77 knots and 7,254 (22.86%) are 31#41 knots.

The frequencies of all 8 crossing polygonal knots are listed in Table 3. We note that the non-alternating prime
knots 819, 820 and 821 clearly are more likely to appear than any of the alternating prime 8 crossing knots. We
also observe that the least likely knot 815 has a minimal diagram based on the 8" basic Conway polyhedron. If
each of the prime, alternating (non-alternating) 8-crossing knot types were equally likely, we would expect each

to occur 1017.61 (3256.22) times on average.

Table 3. The frequencies of observed 8 crossing polygonal knots. Info in bold is related to knottypes related to Conway polyhe-
drons. Underlined knot types are fully amphicheiral.

81 8 8 81 85 8 87 8s 89 810 811 812
1,107 1,117 474 1,077 594 1,638 1,342 1,833 628 1,279 1,493 912

813 814 815 816 817 818 819 820 821 31#51 31#52 hiF#h
1,410 1,686 731 461 488 47 2,239 4,775 2,755 2,614 4,581 742

The frequencies of all 9 crossing polygonal knots are listed in Table 4. Again the knots with the largest frequencies
942, 943, 944 and 945 are non-alternating. We note that the lowest frequency is the knot 949, whose minimal diagram
is based on the 9* basic Conway polyhedron. Other knots with low frequencies are 934 and the non-alternating
knot 947 both of which are obtained from the 8* basic Conway polyhedron via a tangle substitution. If each of
the prime, alternating (non-alternating) 9-crossing knot types were equally likely, we would expect each to occur

285.20 (963.50) times on average.

Table 4. The frequencies of observed 9 crossing polygonal knots. Info in bold is related to knottypes related to Conway polyhe-
drons. Underlined knot types are fully amphicheiral.

91 92 93 94 95 9 97 9s 99 910 911 912 913 914
126 294 270 235 273 340 488 555 302 169 377 361 362 363
915 916 917 918 919 920 921 922 923 924 925 926 927 928
477 200 258 410 481 374 379 374 205 509 425 370 482 255
929 930 931 932 933 934 935 936 937 938 939 940 941 942
79 379 205 221 232 57 61 353 189 81 80 8 34 1,774
943 944 945 946 947 948 949 31#61 31462 31#63 41#51 41#52 31#31#31

1,336 1,843 1,495 696 127 245 192 1,349 1,514 865 499 893 761

Finally we list the frequencies of 10 crossing polygonal knots in Table 5. Again the knots with the largest
frequencies are non-alternating. The only non-alternating torus knot 10124 has a relatively large frequency. We

note that the knot 10123 is the only knot that does not appear and that its minimal diagram is based on the 10*
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basic Conway polyhedron. The knots 10112 to 10120 are obtained from the 8* basic Conway polyhedron via a
tangle substitution, and the knots 10121, 10122, 10164 and 10165 are obtained from the 9* basic Conway polyhedron
via a tangle substitution. All these knots have a relatively low frequency. If each of the prime, alternating (non-
alternating) 10-crossing knot types were equally likely, we would expect each to occur 63.65 (289.50) times on

average.

Table 5. The frequencies of observed 10 crossing polygonal knots. Info in bold is related to knottypes related to Conway polyhe-
drons. Underlined knot types are fully amphicheiral.

104 102 103 104 105 106 107 10g 109 1010 1011 1012 1013 1014
87 83 63 56 84 94 83 66 69 89 65 96 88 83
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
83 86 25 71 76 114 119 111 103 93 100 101 92 108
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
107 89 98 94 40 143 136 131 60 119 115 114 113 110
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
58 105 42 67 66 68 82 79 103 72 94 88 129 95
1057 1058 1059 1060 1061 1062 103 1064 10g5 106 1067 10gs 109  107¢
97 47 106 52 22 73 36 30 70 33 97 42 47 103
1071 1072 1073 1074 1075 107¢ 1077 1078 1079 1039 10g; 10g2 1083 104
139 101 134 44 18 79 166 74 36 64 33 34 72 51
10s5 10s¢ 1087  10ss 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
46 45 66 30 20 35 38 45 35 45 40 20 22 20
1099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112
7 23 25 42 25 18 15 37 30 14 17 25 13 11
10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126
15 10 10 14 15 10 22 6 6 7 0 438 395 303
10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140
323 418 464 320 336 791 586 391 426 372 448 183 184 422
10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154
182 168 339 171 254 227 365 451 372 461 406 117 239 111
10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 31#71 31772 31#73
126 197 37 102 166 241 288 142 64 73 60 175 359 346
31#7a 31#75 31#7T6 31477 41461 41#62 41463 51#51 51#52 S2#52
189 418 559 256 226 263 147 89 284 212

The fact that knots with minimal diagrams close to basic Conway polyhedra all have low probabilities seems to
imply that it is rare for a random polygon to possess this kind of order or symmetry. To examine this further, we
looked at knot 1241019, which also has a special polyhedron called 12L [23]. It turns out that this knot was not
observed in our sample either. Is this significant statistically? Actually we think it is. There are 2,176 different
prime knots with 12 crossings and we have 15,022 prime knots with 12 crossings in our sample. Assuming that
1241019 has an equal chance to be sampled just like any other 12 crossing prime knot, then the probability that
it is sampled each time a 12 crossing prime knot is selected is 1/2176. The probability that 15,022 independent

selections all miss this knot is only .1%! However at this point we do not have a good explanation of this.
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6.2. Alternating and non-alternating knots

Table 6 shows that prime alternating knots are becoming rarer (among all prime knots observed) as the knot
complexity increases. It is known that as the crossing number goes to infinity, the percentage of prime alternating
knots among all prime knots goes to 0 [24]. This trend has been picked up clearly by our data. However there is
more to observe in our data. In the columns we list: the crossing number, the number of alternating knot types
and the number of non-alternating knot types with that crossing number, followed by the the percentage of knot
typess that are alternating. Then in the next two columns we show the number of observed alternating knots
and the percentage of observed alternating knots. Finally, in the last column we compute the quotient of the two
percentages. (That is the percentage of actual sampled alternating knots divided by the percentage of alternating
knots from the knot table.) If all knot types would be equally likely to occur this number would be close to 1 for
all entries. Thus, for example, the entry of 0.76 in the last column at crossing number 8 means that we only see
76% of the number of alternating knots that we would expect to see if all types would be equally likely. Clearly
the table shows that on the average alternating knots are less and less likely to occur than non-alternating knots
as the crossing number increases. Furthermore, this bias towards non-alternating knots seems to become stronger

as the crossing number increases (as indicated by the generally decreasing order of the entries in the last column).

Table 6. The frequencies of alternating and non-alternating prime knots

crossing alternating non-alt. percentage observed obser. perc. quotient.

number knots knots  alt. knots alt. knots alt. knots
3 1 0 100. 177,602 100. 1.
4 1 0 100. 49,549 100. 1.
5 2 0 100. 57,449 100. 1.
6 3 0 100. 35,233 100. 1.
7 7 0 100. 24,477 100. 1.
8 18 3 86. 18,317 65. 0.7
9 41 8 84. 11,693 60. 0.72
10 123 42 75. 7,829 39. 0.53
11 367 185 66. 4,870 29. 0.44
12 1,288 888 59. 3,078 20. 0.35
13 4,878 5,110 49. 1,810 13. 0.26
14 19,536 27,436 42. 1,051 8.7 0.21
15 85,263 168,030 34. 546 4.8 0.14
16 379,799 1,008,906 27. 313 3.1 0.11

6.3. Fully amphichiral knots

If a knot is isotopic to both its reverse and its mirror image, it is fully amphichiral. The simplest knot with this
property is the figure-eight knot. Just as alternating knots we can show that fully amphichiral knots are rare in
our sample. To do this we use a similar method as in the case of alternating knots. However we only consider

data up to 12 crossing since after that the percentage of these knots becomes too low for the collected data to




The Knot Spectrum of Confined Random Equilateral Polygons

be statistically meaningful. The summary is shown in Table 7 where we do not show the odd crossing numbers

since there are no fully amphichiral knots with an odd crossing number less or equal to 12.

Table 7. The number of observed fully amphichiral prime knots.

crossing all prime amphi. percentage observed % of observed quotient of

number knots  knots amphi knots amphi knots amphi knots percentages

4 1 1 100. 49,549 100. 1.

6 3 1 33. 8,554 24. 0.73
8 21 4 19. 2,061 7.3 0.39
10 165 7 4.2 232 1.2 0.27
12 2,176 17 0.78 31 0.21 0.26

6.4. Torus knots

Only the T'(n,2) torus knots are alternating, all other torus knots T'(n, m) where gcd(m,n) =1 and n > m > 2
are highly non-alternating. As shown in Table 8 the non-alternating torus knots occur with surprisingly high
frequencies compared to their alternating counterparts. In Table 8 we show the following in the columns moving
from left to right: the crossing number; the torus knot symbol; the knot notation from the knot table of [18];
the number of observed torus knots; the expected frequency of a non-alternating knot if all non-alternating knots
would be equally likely sampled; and finally the quotient of the observed frequency over the expected frequency.
We can clearly see that the larger the crossing number becomes, the more pronounced the effect of increased
probability for a non-alternating torus knot to appear becomes. Even at the small sample size, the effect is
significant. After the horizontal bar in Table 8 we list the alternating (n, 2)-torus knots. Here we see the opposite
effect, these knots are less frequent as they should be under the assumption that all alternating knots are equally

likely. As with the non-alternating case this effect increases as the crossing number goes up.

Table 8. The number of observed torus knots.

crossing T(n,m) knot frequency expected quotient

number notation observed frequency
8 T(4,3) 819 2,239 3256.33  0.6876
10 T(5,3) 10124 438 289.5 1.513
14 T(7,4) 14n21881 9 0.401 22.4354
15 T(5,4) 15n41185 7 0.065  107.505
16 T(8,3) 16n783154 4 0.01 407.31
3 T(3,2) 31 177,602 177,602. 1.
5 T(5,2) 51 20,984  28,724.5 0.7305
7 T(7,2) 71 1,823 3496.71  0.5213
9 T(9,2) 91 126 285.195  0.4418
11 T(11,2) 11a367 5 8.387  0.5962
13 T(13,2) 13a4878 0 0.371 0.
15 T(15,2) 15a85263 0 0.006 0.
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6.5. Composite knots

Table 2 shows that the percentage of observed composite knots decreases as the crossing number increases.
However it is generally expected (although it has not been theoretically established to the knowledge of the
authors) that the number of composite knots grows faster than the number of prime knots as the crossing number
increases. This tells us that large composite knots are less likely to be sampled under a confinement condition. In
other words, confined equilateral random polygons are more likely to be prime knots. Similar information can be
obtained from Figure 3. For example the top curve in both graphs in Figure 3 represents the polygons of length
90. On the left we see that the number of composite knots is declining as the radius decreases, while on the right

we see that the number of knots so complicated that we cannot identify them increases drastically.

7. Ending remarks

Our numerical study has yielded many interesting results, some of these are expected and can be readily explained,
while some other are surprising and are without a clear explanation. We end this paper with a few remarks on a

few highlights of the paper.

e Confinement drastically increase knotting probability. This lends some explanation to as why a high percentage

of bacteriophage DNAs are knotted.

e The spectrum of confined polygonal knots is wide, covering almost all small crossing knots up to 10 crossings.
From a purely mathematical point of view, this means that confined equilateral polygons would be good tools to

generate complicated knots (especially prime knots).

e The observed knot spectrum shows no obvious bias in knots with positive or negative writhe, but is clearly
biased against alternating knots and some other knots with certain symmetry. One special case of this is the
torus knot family and another special case is for knots with special symmetries -such as those obtained from a

Conway polyhedron.

e The observed knot spectrum is heavily tilted towards prime knots rather than towards composite knots despite
the fact that there are more composite knots in the knot table, indicating that confinement does not favor
composite knots in general. This is in sharp contrast to the case of unconfined random equilateral polygons,
where it has been shown that the probability for the polygon to be a composite knot tends to one as the length
of the polygon goes to infinity [15]. The inevitability of knotting (namely the FWD conjecture) for confined
equilateral random polygons has been a long standing open question. The numerical results here partly explain
the difficulty: if a large proportion of the polygons consists of prime knots, then the technique used in [15] cannot
be applied as it depends on the fact that a long, unconfined equilateral random polygon has a knotted component

with high probability.
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