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ABSTRACT
ELIJAH EVERETTE RAY. A random hierarchical laplacian. (Under the direction
of DR. STANISLAV A. MOLCHANOV)

The self-similar Hierarchical Laplacian, essentially proposed by Dyson [4] in his
theory of 1-D ferromagnetic phase transitions, has a discrete spectrum with each
eigenvalue having infinite multiplicity [9]. As a result, the integrated density of states
is piecewise constant and the density of states is a sum of point-masses located on its
spectrum. To correct these “defects”, we present a modification of the Hierarchical
Laplacian obtained by allowing its deterministic coefficients to instead vary randomly.
In this way, the spectrum remains deterministic but the eigenvalues become random
with finite multiplicity and we will obtain a continuous density of states. In the
last section, we will examine the eigenvalue statistics near an individual point of
the spectrum and show that, locally, the spectrum is approximately a Poisson point

process.
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CHAPTER 1: INTRODUCTION

The self-similar Hierarchical Laplacian, essentially proposed by Dyson [4] in his
theory of 1-D ferromagnetic phase transitions, has a discrete spectrum with each
eigenvalue having infinite multiplicity [9]. As a result, the integrated density of states
N ()) is piecewise constant and the density of states does not exist—or more precisely,
it is a sum of point-masses located on the spectrum of —A. When the probabilistic
weights for the Hierarchical Laplacian are given by a geometric progression, the Hi-
erarchical Laplacian can have an arbitrary spectral dimension s, and as a result it is
similar to the classical fractals, e.g., the Sierpinskii Lattice.

Usually in Mathematical Physics, after considering the Laplacian, we move on to
consider the Schrédinger operator—in two different directions.

First in the classical spectral theory, the negative Laplacian typically has discrete
non-negative spectrum which accumulates to the point zero. When we add a negative
decreasing potential (potential well), the spectrum below zero will be discrete. The
central questions are: under what conditions are there only finitely many negative
eigenvalues and how can we estimate the number of negative eigenvalues [10], [11].
Let’s formulate several classical results. Consider in R?, d > 3, the Schrédinger

operator

H=-A-V(zx),
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where V(z) > 0 and V(z) — 0 as |z| — oo in some sense. In this situation, the

spectrum of H covers the half axis [0,00) but for negative energies the spectrum is

discrete. Letting No(V') = # {\i < 0}, we have the Lieb-Thirring (LT) Estimate:
SN < Cay [ V() do (L)
i:A; <0 R?

and taking v = 0 in (1.1), we have the Cwikel-Lieb-Rozenblum (CLR) Estimate:

No(V) < Cd/ VY2 (z) da. (1.2)
R4
In particular, the CLR estimate implies that the operator H = —A + oV (z) has

non-negative spectrum whenever the coupling constant ¢ is small and V' € L¥?(R9).
For small dimension, we have Ny(cV') > 0 for any non-vanishing V' and any ¢ > 0.
Another direction is the spectral theory of the random Schrédinger operator, i.e.,
H = —A + oV,(x), 0 is a coupling constant, V(x) i.i.d. One might conjecture
that, in this case, classical Anderson phase-type transitions would be observed for
small o and s; > 2, and that together with pure point spectrum, there exists some
kind of continuous spectrum, i.e., Anderson delocalization [1]. Unfortunately, in [9],
this natural conjecture appeared to be wrong. In [5], it is shown that for more or
less general distributions, for arbitrary spectral dimension s, and arbitrary o, the
spectrum of the random Schrodinger operator is pure point. One can propose the
following physical explanation of this fact. It is well-known from the literature that the
spectrum of the random Schrédinger operator on the lattice Z¢ is pure point outside
the spectrum of the Laplacian for arbitrarily small ¢ in any dimension [8]. Since

the spectrum of the self-similar Hierarchical Laplacian consists of isolated points, all



3

energies are outside the spectrum. Taking into account all these facts, it is important
to modify the self-similar Hierarchical model in such a way that — instead of the
isolated eigenvalues of infinite multiplicity — we will get spectrum which is dense on
some interval and obtain a continuous density of states.

The goal of the thesis is the analysis of a random Hierarchical Laplacian obtained
by allowing the deterministic eigenvalues of the Hierarchical Laplacian to instead
vary randomly. The way in which we allow the eigenvalues to be random does not
change which functions are eigenfunctions but it does have the effect of breaking
each isolated (deterministic) eigenvalue of infinite multiplicity into a countable dense
set of eigenvalues each having (the same) finite multiplicity. The spectrum remains
deterministic but the isolated points of spectrum become widened into spectral bands
supporting a continuous density of states. These spectral bands may or may not
overlap depending on the value of a parameter 0 < o < 1 — for values of o closer
to one, the spectrum will be an interval while for ¢ = 0 we obtain the original
(deterministic) Hierarchical Laplacian. In the last section, we examine the eigenvalue
statistics near an individual point of the spectrum and show that, locally, the spectrum

is approximately a Poisson point process.



CHAPTER 2: HIERARCHICAL LATTICE

2.1  Definitions

A hierarchical lattice is an ultrametric space (X, d;) where X is an infinite set and
the hierarchical distance dj, is an integer-valued ultrametric with the property that
for each integer r > 1, there exists an integer v, > 2 such that every closed metric

ball of radius r (which we refer to as a cube of rank r)
QU (x) = B(x,r) = {y € X : dy(x,y) <7} (2.1)

contains exactly v, balls of radius » — 1. We call a hierarchical lattice self-similar if
each v, = v for some integer v > 2. To say dj is an ultrametric means, instead of

just the triangle inequality, dj, satisfies the stronger condition that for all z,y, 2z € X,

dp(z,y) < max {dy(z,2), dn(y,2)}. (2.2)

Because dj, is an ultrametric, each element of a cube can serve as its center. As a
result, two cubes are either disjoint or one is a subset of the other. In particular,
because two different cubes of the same rank /radius must be disjoint, the hierarchical

distance can be expressed as

dp(z,y) = min {r: QW (z) = Q" (y)} = max {r: QU V(x)n Q" V(y) = @}. (2.3)



Note that the sequence {Q") (x)}rzo increases to X, i.e.,
T € Q(O)(x) C Q(l)(x) cQ® (x) C--- C G QM (x) = X. (2.4)
r=0
It follows that for each r € N ={0,1,2,3,...}, the collection of all cubes of rank r
I, ={Q"(zx) 2 € X} (2.5)

forms a partition of X into finite subsets where every cube belonging II, is a disjoint
union of v, cubes belonging to II,_;. Then the cardinality or volume of a cube is
given by

‘Q(T)(w)‘ =y,

and since each v, > 2, it follows that each inclusion in (2.4) is strict and |Q)(z)| is
of at least exponential order as r — oc.

The requirement that d; be integer-valued implies X is discrete as a topological
space. In fact, the definition implies the set X—being a countable union (2.4) of
finite sets, must itself be countable. More generally, we could have simply required
dj, to take as its values the terms of some strictly increasing sequence, 0 =ty < t; <
ty < ---. For any such sequence we can define a renormalized hierarchical distance
by taking pn(,y) = t4,(z,)- In this case, the cubes remain the same but the dj-balls
of radius r become pj-balls of radius ¢,. In a self-similar hierarchical lattice, taking
t, = (" for some $ > 1 and all » > 1, the volume of a renormalized metric ball

becomes, essentially as in R%, a power function of its radius, i.e., if R = /3", we have

\{y e X: ph<:lj'7y) < R}‘ — ’Q(T)(iE)‘ — = Rlogﬁy.



For each r > 0, we denote the collection of all cubes of rank > r by

Vr - [j Hk
k=r

Cubes belonging to V; are said to be non-degenerate. For each r > 0, V, forms a

simple connected graph with edges

87’ = {{Q7Q+} : Q S Vr}

where we write QT = QU*Y(z) whenever Q@ = Q) (z). The graph distance d,

between two cubes @ € II,,, and Q" € 11, is given by

n—m if Q CqQ
dQ(QaQ/) = . (26)
2r—m—n ifd,(Q,Q)=r>0

Note that for y ¢ @, the mapping @ > = +— dp(x,y) is constant. Therefore, whenever
Q@ and @' are disjoint we have d;(Q, Q') = dp(x,2’) for all x € @ and 2’ € Q".
Equation (2.3) shows that the hierarchical distance can be recovered from a knowl-
edge of the partitions (2.5). To see this, let’s start from scratch and suppose we are
given an abstract countably infinite set X and a sequence {IL, },, of partitions of X
into finite subsets where every set belonging to II, is contained in some set belonging

to II,,; and contains at exactly v, > 2 subsets belonging to II,_;. Assume further

that for each z € X,
U@ =x 27)
r=0

where Q) (z) is the unique set from II, containing z and Q) (z) = {x}. If dy(z, y)

is defined by (2.3) then (X, dp) is a hierarchical lattice. We assume (2.7) in order to
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Figure 2.1: Cube of rank 4 in a self-similar hierarchical lattice where v = 3.

ensure that dp,(z,y) < oo for all z,y € X.

The simplest example of a self-similar hierarchical lattice is given by X = N with
QET) ={neN:iv" <n<(i+1)v} forall >0 and i €N (2.8)

We denote the hierarchical distance on N by dj,(m, n).
2.2 Enumeration of Self-similar Hierarchical Lattice

Proposition 2.1. In a self-similar hierarchical lattice, we can enumerate the points
X = {xo,21,...} in such a way that dy(xm,,x,) = dy(m,n) for all m,n € N. As a

result, we can enumerate 11,

]:[7" - {Q[()T)J Q:(lT)J gr)J A }7 (2’9>

by defining for each i =0,1,2,3, ...,

T . .
Q" = {z, " <n<(i+1)} (2.10)
®)
2
57 QY Qz:l
- 1 1 g 1) o
625)1> le) Q,(J,) Qx(/l) Q;V)fl Q(Vfl)l/ Qu271
7\ 7\ 7\
xo xl/—l xl/ x2l/—1 ------ xl/2—1 xl/2 --------- x2y271 ------ I‘(]j—l)l/2 --------- xljs—l

First we need a lemma.

Lemma 2.2. In a self-similar hierarchical lattice, every cube can be enumerated

Q={x,:0<n<|Q|}



in such a way that dy (2, ©,) = dp(m,n) for all m,n < |Q|.
Proof. For m < n, we have cih(m, n) = r if and only if there exist 7,j € N with
i <m< it <n< (i+ 1)V (2.11)
But if (2.11) holds we will also have
G+ <m+v <G+ <n+v < (i+2)0"
hence dy,(m + 1", n + ") = dy(m,n). It follows by induction that
dy, (m+ fopdn(mn) g 4 kud}‘(m’”)) = dy(m,n) forall k>1 (2.12)

Now, let @ € II,.; and assume the result holds for all cubes of smaller rank

contained in (). Then there exist Q((Jr), e ,Q(T) e II, with Q = UZ.”:_O1 sz and for

v—1

0 <1 < v, we have
Q) = {20 0<n<v} with d(2®),20) = dj(m,n).
Now, for each N = iv" +n € {0,1,2,...,v" " — 1}, we define zy = 2. Then

Q={zy:0< N <V} and each Q) ={ay:i" <N<(i+1)0}.

Furthermore, for each M = " +m and N = jv" +n with 0 < 7,5 < v and

0<mn<v,
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If i = j then by (2.12), we have d,(M, N) = dy(m,n) = dy(za,zy). If i < j then

0< M <iv' <N < v hence cfh(M,N):r+1:dh(xM,xN). [ ]

Proof of Proposition 2.1. It is clear from the construction in Lemma 2.2 that we may
recursively construct an infinite sequence {x,,},-, with dy(zm, z,) = dy(m,n) for all

m,n > 0 and with the first 2" terms of this sequence enumerating Q™ (z)
QU (xo) ={x,:0<n <"} foreach 7

For the first step of the recursion, we may choose xy € X (the origin) arbitrarily. At
the r'M step, we generate the next " — v"~! terms of the sequence which enumerate

QM (20)\Q" V(). By (2.7), this sequence must enumerate all of X. [ |

2.3  Hierarchical Addition

Enumerating each partition II, as in (2.9-2.10) we have
v'—1 ym—1

k=0 k=0

(r)

and in particular, taking m = 0, we have Q™ (z,,) = Q;” where i = |n/v"].

Now let’s define a mapping n : X — N by putting n(x) = n if x = x, in the
enumeration of X. Let’s further define, for each r > 0, the r**-coordinate mapping
ny: X —{0,1,...,v — 1} by putting n,(z) = n, if, in the enumeration of II,, Q") (x)
is the (n, 4+ 1)™ cube of rank r contained in Q"+ (x). Then n, () is the (r+1)" digit

of the base-v representation of n(x), i.e.,

o0 \x|h—1

n(zx) = an(x)yr = Z n,.(z)v"

r=0 r=0
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where |z|, = dj, (o, z). Notice that |z|, = r if and only if "' < n(z) < v". We also
have ng(z;,-) = 0 for k < r and ng(x;r) = ng_.(z;) for k > r, hence |x;, | = r+|x;|p.

Define an additive group (hierarchical addition) on X by putting for each r > 0
ne(z+vy) = n.(x) +n,(y) mod v.

It means that we add the indices for x and y in base-v except that we forget to carry
the “tens” over to the next digit whenever n,.(z) + n,(y) > v. Proposition 2.1 says that
no matter how (X, d,) has been constructed, we may as well assume (X, d),) = (N, dj,).
Accordingly, we will identify x,, € X with n € N and write = +n instead of x + z,,.
The first cube Qér) of each rank is a subgroup of (X, +) whose cosets are given by

QU (x) =2+ Q[()T). As a result, we have
QU (x) + Q" (y) = Q" (x +y).
Furthermore, since Q((]m) is a subgroup of Qéerr), we have
o+ = g

so that
QU (2) F QU (y) = QU (x - y).
Similarly, because iv” +jv" = (i +j)v" and Q') = Q) (iv"), we have
(r) L ) _ )
and it follows from (2.13) that

QZ(ZL”)JFIC + QEmH) = QETZ;FT) for 0<k<v".
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Now (2.13) becomes

U1 vm—1

Q@)= | QM+ k) = | QO+ k). (2.14)
k=0

k=0



CHAPTER 3: HEIRARCHICAL LAPLACIANS

3.1  Averaging Operators and Associated Subspaces of C*

We define an operator A, : CX — CX, the r'*-rank averaging operator, in the space
C*X of complex-valued functions defined on X by putting
Af@)=— 3 f(2) (31)
flr) = — 2 .
I/'I"
z€Q() (x)

for f: X — C. Equivalently,

Af =" folg (3.2)

Qell,

where 15 : X — {0, 1} is the indicator function of a set @ C X and fo = f-(r) is the

)

average value of f on the cube ) = QET), ie.,

1
fa= @Zf(x)-

zeQ

Then A, : C¥ — M, where M, is the subspace of functions which are constant on
cubes of rank r. Note that f € M, if and only if A, f = f. Since every cube of rank

k < r is contained in a cube of rank r, we see that

k <r implies M, C M. (3.3)
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Since every cube of rank r is a disjoint union of exactly v"~* cubes of rank k < 7,

considering the average of averages, we see that
k <r implies A,A, = A A, =A,. (3.4)
Notice that whenever z € Qér), since QU (z+ 2) = Q) (x), we have
A f(z+2) = A f(2)
for all z € X, i.e., each z € Q(()T) is a “period” for A, f. Similarly, we have
flz4z2)=f(x) forall f €M, and z € Q).

It means we may think of M, as the space of Q(()r)—periodic functions defined on the

group (X, +).

Proposition 3.1. For 1 <k <, if f € M, then for every g € CX, we have

Aufg = FArg. (3.5)
In other words, Ay treats functions f € M, like constants.
Proof. For 1 <k <r, if f € M, then by (3.3), f is constant on cubes of rank k hence
for every g € CX, we have

(Afo)a) = 2 3 Fllo) = o 3 F@)aly) = F@)(Awg)(x)

yeQ™ () yeQ™ ()

which proves (3.5). |

Now we mention two subspaces related to M, and corresponding operators related

to A, which are needed in the sequel. First, the subspace £, consists of all f € CX
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which are constant on cubes of rank < r with > f = 0 on cubes of rank > r, i.e.,
Apf=f for 1<k<r and Apf =0 forall k>r. (3.6)
We have f € £, if and only if E, f = f where E, : C¥ — £, is defined by
E,.=A,_1—A,. (3.7)
It follows from (3.4) that
k <r implies E.FE, = E,.E,=0. (3.8)

Next, for each @) € II, (each cube of rank r), the subspace L consists of all f € £,
which vanish outside of Q. Then f € L if and only if Egf = f where Eg : C¥ — Lg
is given by

Eo = 10E,. (3.9)

Since 1x = ZQen 1q, it follows that

E, =) Eq. (3.10)
QEll,
IfQ = U:Zl QE“D, then Lg consists of all functions which vanish outside of @

and are constant on each subcube Q,(:_l) of preceeding rank with the sum of those

constants being zero, i.e., functions of the form

f=Eqf = ZcﬂQy,l) with ) "¢; = 0. (3.11)
=1 i=1

Corollary 3.2. For 1 <k <r,if f € M, and g € Ly then fg is constant on cubes

of rank k —1 and > fg = 0 on cubes of rank k hence fg € Ly. In other words, Ly,
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absorbs multiplication from functions in M,.

From (2.14) we obtain

1 1 )
m-i-rf = _,, Z Amf 5U+kl/ ) Z Arf(x+ky’").
k=0 v k=0
In particular,
v—1
A f ZAT f(x ko
and therefore
v—1
—E.f(x) = A f(z) — Ara f( ZAT flo+ kv 1)

Next we consider the subspace of functions f € CX which have a limit as x ap-
proaches the point at infinity in the one-point compactification of X — Proposition 3.3
below shows that A, is invariant on this subspace. Whenever we write lim f(x) = ¢

T—r00

or f(z) = cas x — 00, it is equivalent to saying that for every e > 0, there exists n

such that |z, > n implies | f(z) — ¢| < e.

Proposition 3.3. If lim f(z) = ¢ then lim A, f(x) =
T—00

T—00

Proof. Because A,.(f —c) = A,f — ¢ we may assume ¢ = 0. Let ¢ > 0. Then there
exists n > r such that |z|, > n implies |f(z)| < e. If |z|, > n then |y|, > n for every
y € QU (z) hence

|Arf(z sir

lfy)] < e.
yeQ( (z)

Therefore, lim A, f(z) = 0. |
T—00

Lemma 3.4. If lim f(x) = ¢ then lim A, f(x) = ¢ for every x € X.
r—00

T—00
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Proof. Again we may assume ¢ = 0. First observe that for r > m we have

pyrTm—1

A f(z) = ! > Anfla k™).

pyr—m
k=0

If m > |z|, and k > 0 then we have x + kv™ > v™! so that |z + kv™|, > m hence

(A f(z +Ev™)] < max | f(y)].

ly|n=>m

Now let ¢ > 0 and choose m > |z, so large that |maX |f(y)| < 5. Then we have

Yln=>m

[ A f ()| M [Anf(z+kv™)| _ flle | €
A < — 4 E < + =
’ Tf(x)| — pr—m — pr—m - pyr-m 2
so that A, f(z)| < e for all r > m +1log, (14 2 || f]l..)- |

Proposition 3.5. If lim f(z) = ¢ then we have

T—r00

f@)=c+ > E.f(z)=c+ Y Eof(x)

QeV

for every x € X.

3.2 Symmetric Random Walk on Cubes of Rank r

To motivate our definition of A, consider a random walk {z,}, -, beginning at the
point x € X which at each step, jumps with equal probabilities to another point

y e QM (z) =2+Q". In other words,
Tp=T4+z+ - +2,

where {zn}n21 is an i.i.d. sequence of uniformly distributed random elements of Qgr).

It means that, beginning at z € X, the probability, at the n'" step, of arriving at
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y € X is given by

where
1L(,y) = Lom @) (y) = Lom g (r) = L.(y, ).

Then P*-a.s., {z,} never leaves the cube Q) (x) hence for all f € CX and n > 1,

E'f(2) = Y )P (zn =y) = Af(2).

yeQ( (z)

We say that A, generates a symmetric random walk on cubes of rank r.
3.3 Averaging Operators and Associated Subspaces of £*(X)

Let (*(X) be the Hilbert space of square-summable functions on X with inner

product and norm

(W)=Y v(x)p(r) and [P =) ()]

zeX rzeX

The matrix element for A, is given by
(Arby,0y) = v "1 (2, y) = (04, Ar0y). (3.12)

hence A, is self-adjoint. Because A? = A,, it follows that A, is the orthogonal
projection onto the subspace M, of ¢*(X). Similarly, E, is the orthogonal projection

onto £, and it follows from (3.3) that

Lr == MT,1 N Mﬂ:
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For r < s, since M,_; C M,., we have
L,NL, CM, NM- = {0}

hence

L, 1L L, for r+#s. (3.13)

For each cube @ € II,, Ey is the orthogonal projection onto L. Furthermore, (3.13)
implies that £ is orthogonal to Lo for @, Q" € Vi with @ # @Q'. It follows from

(3.10) that

L, = @LQ. (3.14)

QEIL,

It follows from (3.11) that L is finite dimensional with
dimLg =dim{(¢;...,¢,)€eC:c;+---+¢, =0} =v— 1

Together with the second equation in (3.14), this further implies that dim £, = oo.
From (3.11), it is immediate that the orthogonal complement of £ consists of all
Y € £*(X) which are constant on Q. If ¢ € (@Qevl LQ)L then 1 is constant on
every cube @ € V; so by (2.4), ¢ is constant on X which means v = 0 on X. It

follows that

o0

CX) =P Lo=EP<. (3.15)

QEV, r=1
hence
I=Y Eq=)> E,. (3.16)
QeV1 r=1

Alternately, for functions in £*(X), (3.16) follows from Proposition 3.5.
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3.4  Heirarchical Random Walk and Laplacian

The hierarchical laplacian is defined for each 1 € £2(X) by

Ap(z) = pla,y) (V(y) — v(x)) (3.17)

yeX

where p(x,y) are the transition probabilities for the discrete time hierarchical random
walk {z,}, -, whose probability matrix is given by I + A = [p(z,y)]xxx where [ is

the identity operator on ¢?(X), i.e., for each ¢ € £*(X),

(T4 A)p(x) =D pla,y)(y). (3.18)

yeX

It means that A generates the semigroup e*® = [p(t, x,y)]x xx for the continuous time
random walk, r; = ), where N (%) is a Poisson process independent of {z,}, -, with
intensity equal to one. Our definition of the hierarchical Laplacian follows [10, 11]
but sometimes |9, 6], I + A is referred to as the hierarchical Laplacian.

To define the discrete time hierarchical random walk, we fix an i.i.d. sequence
{pn}n21 of random variables supported on the positive integers and we assume there

exist constants p € (0,1) and « > 0 such that for every r € Z7,
(I/p=Dp"* <P(p=r)<(1/p—1)p"" (3.19)

In (3.19), we always keep in mind the case where p is geometrically distributed, i.e.,
where a = 0. Now, at each time n, the random-walking particle jumps to the site x,

which is uniformly distributed within the cube of rank p, containing x,_1, i.e.,

1
P<xn =Y | Tp—1=o & pn = T’) = T<x7y) = <AT’5$7531> (320)

I/T‘
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Since p,, is independent of x,,_; the transition probabilities are easily computed:

p(x,y) =P (20 = y|was = ) = ZP L(.y), (3.21)

r=1
In particular, p(x,y) depends only on dj(z,vy), i.e., p(z,x) = a; and p(z,y) = a, for

dp(z,y) =r >1wherea, = > - Ple=k) " This allows us to diagonalize A. We do this

Tk

by summing first, for each individual rank 7, the terms in (3.18) with dp(x,y) = r,
i.e., we first sum over each sphere Q) (2)\ Q=Y (x) of radius r centered around .
We have

Z YY) = (¥, Lgmapgr-@) = (¥, 1loow) — (¥, 1ge-1())-

y:dp (z,y)=r

P(p=r)

l/?"

Therefore, since a, — a,4+1 = , summation by parts gives us

> ple i Z = —ary(z +Z _rw’lQ(” ) (3.22)
= ydi(ow

yyF£x

so that

(I +A)(z) = i Ple=r){¥ lov) (3.23)
Equation (3.23) now becomes
[+A=§:P(p:r)Ar or A:iP(p:r)(Ar—[) (3.24)

which implies A is self-adjoint. If we put A\, = P(p > r), since F, = A,_1 — A,,

another summation by parts gives us

— A= Z)\—)\TH )(I — A,) Z/\E (3.25)

r=1

From (3.15), we see that (3.25) diagonalizes A. The functional calculus for A is given
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F(A) =" f(=\)E.. (3.26)

For any function f which is bounded on Sp(A) = {—A\, : # > 1} U {0}, the operator

f(A) is bounded with

[F(A)] = max {[f(M)]: A € Sp(A)} .

Since (A, 0,,0,) = v~ "1,(z,y), the matrix element for f(A) is given by

PO = (B8 = S f-w HEE - BED) )

vk
k=1

The sum in (3.27) can be simplified in two ways depending on whether or not

dp(z,y) = 0. We have

F@)wa) = (1-2) S I (3.25)

and for dj,(z,y) =r > 0 we have

V’f’

FAY (@ y) = —LEM) (1 - %) 3 w (3.29)

In particular, for A > 0, taking f(z) = 1 (—2) in (3.28), we obtain an expression

for the integrated density of states for —A (see [11]). We have

N(\) = (1 - %) kz %ﬁ’““) (3.30)

It follows that the “density” of states for —A is simply a sum

k=0
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of point masses along Sp(—A). Our assumption (3.19) allows us to find the asymp-

totics of N(A) as A — 0+. Observe that for every r € Z*, by (3.19), we have
P g <pe (3.31)

Since 1 ) is non-increasing on [0, 00), it follows that for every k > 0,

k—a) k-i—a)

10 (p < 10,0 (A1) < 10, (p

vk vk vk

(3.32)

The left-hand side of (3.32) is non-zero if and only if ¥ > a +log, A and the right-
hand side is non-zero if and only if £ > —a + log, A. Summing the geometric series

(1 — %) > Vik over all k > £a + log, A (separately), we obtain

)\Sh/z
a\Sp/2
o) <N(A) < oA (3.33)
where s, = —2log, v > 0—we call s;, the spectral dimension of A. The first inequality

in (3.33) is valid for 0 < A < p~® and the second for 0 < A < p®. It immediately
implies that

lim A~/2N(\) = 1. (3.34)

A—0+

For the resolvent operator, Ry = (A — A)™!, (3.27) gives us

1\ — 1
R,\ r,Tr) = (1 — —) [
o) v ; PR+ M)
and applying (3.27) to the semigroup
etA - Z eiATtET = [p(tu Z, y)]XXXJ (335)
r=1

we obtain the transition probabilities for the continuous-time hierarchical random
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walk. We want to find the asymptotics of

€—>\k,+1t

p(t, 2, 7) = (1 - %) 3 -~ (3.36)

k=0

as t — oo and and of Ry(z,z) as A — 0. For that, we will first find the asymptotics

of the function

6 o lys e 3.37
)=(1-- .
0=(1-7) 3% (3.37)
and its Laplace transform

O(\) = /Ooe—kte(t) dt = (1 — 1) f: ;, (3.38)
ie., p(t,z,z) and Ry(x,) in the case where P(p = r) = (1/p — 1)p". Consider-
ing the continuous analogue of 6(t), i.e., O(t) = logv [[7v~"e P dx, we see that
t5:/20(t) is essentially the discrete analogue of an incomplete Gamma function—when

we substitute y = p*t, we obtain
~ t
tsh/ze(t) = %"/ Y2 e dy — F(l + %) as t — oo.
0

Replacing I'(1 + %) with a logarithmically periodic function of ¢, the same holds for

o(t).

Proposition 3.6. For arbitrary spectral dimension sy, there exists a periodic function

hz)=(1-2)3> % such that t1/20(t) ~ h (log,t) as t — oo.

Proof. First, observe that

1 o0 e_pk+z 1 o0 e_pk+{z}
h(log, t) = h(z) = (1—;) 2. Ew (1 - ;) 2. e

k=—o00 k=—o00

where z = 2(t) = log,t and the last equality is from replacing the index k with
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k — |z]. Since {z + 1} = {z}, this also shows that h(z) = h({z}) is periodic with

. . . . _ _pk _pk+
period one. Next, since ¢t = p? implies t*»/2 = v=%* and e Pt = ¢ P, we have

/ 1 [ee] eipk-ﬂ—z 1 [e%e] eipk-‘—{z}
Sh/2 _ _ — _ —
" 9(2&) = (1 V) kz vtz (1 V) Z antiin

k=|z|

Therefore, since |z(t)] — —o0 as t — oo,

. 7pk+{z}
tsh/2(9(t) Zk: lz] pk+{z}
= —r L as t— o0
hi(log, ?) o0 e P
Zszoo Vk+{2}
which completes the proof. [ |

Proposition 3.7. For arbitrary spectral dimension sy, p(t,z,x) < t=*"/? as t — co.

_k+z
More precisely, there exists a periodic function h(z) = (1 — %) > ey:—Jr such that

1 s 2p(t, x, )
vott = h(log,t)

<v**t s t— oo, (3.39)
Proof. As in (3.32), since the function A — e~*! is decreasing, by (3.31) we have
O(p~'1t) < O(p~°t) < plt,z,2) < O(p°t) < O(p'*1t) (3.40)

where [o] =min{n € Z : n > a}. Dividing through by t~**/?h(log, t) and observing

that h(log,(p*/*1t)) = h(log,t), we have

tsn20(p=lele)y e 2p(t,w,x) /20 (pleTt)
h(log,(p~T1t)) = h(log, 1)~ h(log,(plTt))

(3.41)

As t — oo, the left-hand side converges to v~ *l > y=2=1 while the right-hand side

converges to vl < potl, [

The next statement provides the asymptotics of ©(\) as A — +0 in the case where
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a=0and s, < 2.

Proposition 3.8.

_ u(log, A)

O\ = BNEYN +co+0O(N), as A — 0+, (3.42)

where ¢y = pIE;j), andu(z) = (vp)? (1 — I%) PO 15;% is a positive periodic function

with period one.

Proof. Observe that co = — (1 — 1) 32, (vp)* and because vp < 1, the series
u(log, A) _(1— l f: (vp)*
)\1—Sh/2 v = 1 +pk)\

converges for all complex A ¢ {0} U {—p" : N € Z}. From the series representation

(3.38),
o= (1 - %) k;@ 1(122;
Then
oS s ()R] () B
so that

k=1

If A = 0 in the complex plane with |arg \| < 7 — ¢ for some 0 > 0, we obtain

u(log, \)

. RCR]E)
)\lfsh/2

(1 —vp?)y/1 —2p|\| cosd

so that (3.42) remains valid. |

<

‘@(A) -
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3.5  Heirarchical Laplacian with Variable Coefficients

The diagonalization of the hierarchical laplacian

— Ap(x) =Y NE)(x) (3.43)

displays the fact that each eigenvalue A, = P(p > r) is an isolated point in Sp(—A)
and has multiplicity dim £, = co. To correct these “defects”, we first observe that by
(3.14), we have the further diagonalization

— Ap(z) = ZAT( > EQw<x>> =) AEqu(z) (3.44)

QEH'I Q€v1

where A\g = A, for each () € II,. In essence, it seems that because the mapping
Q — Ao from V; to Sp(—A) is constant on each II, C Vy, the finite dimensional
subspaces, L£g for () € II,, which should have been the eigenspaces, have instead
been collapsed into the infinite dimensional eigenspace £,..

A hierarchical Laplacian A with variable coeficients is a modification of A where,
in (3.44), we instead allow A\ to vary for different () € II,. This amounts to replacing
each constant A, in (3.43) with a function A" : X — R which is single-valued on
every cube of rank r, i.e., A is an operator of the form

— Ay(x) =D A(@)Ep(w) = Y AgEgih(x) (3.45)

QeVy

where \g = A

;" is now the single value of the function A\(")(x) on the cube Q = QZ(-T).

Note that because A\") € M,., it means that we have

E. A9y = XDE ) sothat  (ADE.p, ) = (o, \DE,p). (3.46)
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Therefore, since A(")(z) is real valued, the operator (3.45) is self-adjoint. This mod-
ification has the effect of breaking each eigenvalue \, € Sp(—A) with eigenspace £,

into a collection of eigenvalues
range(A") = {Ao : Q € I} C Sp(—A) (3.47)

with eigenspaces properly contained in £,. In particular, if we allow Ay to vary in
such a way that the mapping () — Ag is one-to-one, each Lq for ) € V; will itself
be an eigenspace of A and the multiplicity of each eigenvalue \g will be exactly
dim£Lg =v — 1. In order to rid the spectrum of isolated points, we would like to
define A in such a way that for each r > 1, the eigenvalues {Ag:Q €1l} form a
dense subset of the inteveral of length 20\, centered around A, where o € (0,1) is a
coupling constant (measure of disorder). This way, Sp(—A) is contained in Sp(—A)

but each isolated eigenvalue A\, € Sp(—A) is replaced by an interval

A1 = 0), A (14 0)] € Sp(—A) (3.48)

The condition o < 1 ensures that we do not gain any negative spectrum. Furthermore,

as 0 — 0, Sp(—A) shrinks to Sp(—A) and we obtain A as a special case of A.

Proposition 3.9. Suppose A is defined by (3.45) where the functions A7) € M, are
such that the mapping Q) — Mg from Vi to Sp(—ﬁ) 1s one-to-one and for each rank
r, the range of A\) is a dense subset of the interval (3.48) where 0 < o < 1 and

A-=P(p>r). Then

o A <0 is self-adjoint with | A| = 1+ o,
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. Sp(—g) consists of zero together with the union of intervals in (3.48) forr > 1,

e the eigenspaces for —A consist of Lg for Q € Vi with each eigenvalue Ao having

multiplicity v — 1.

Proof. Since {Ag : @ € II,} is dense in [A\,.(1 — o), \.(1 + )], we have

DUT ) H(1=0),\(1+0)].
If A ¢ U2, supp A, then there exists an ¢ > 0 such that |\ — Ag| > ¢ for every
@ € V. Using the diagonalization

—A =" AEq,
QeVy

we see that

- 1
Ry=\+A)"=>" Eg.
Then for every ¢ € (*(X), we have

E
o7+ Byt = 3 M < L5 yquie = Solp

QeVy QeEVy

hence ||Ry|| < &' < oo and it follows that Sp(—A) = [, supp A1), |



CHAPTER 4: RANDOM HEIRARCHICAL LAPLACIAN

4.1  Definition

To define a random hierarchical Laplacian, let {wg : @ € V1} be an independent
family of symmetric random variables with continuously differentiable densities sup-
ported on the interval [—1, 1] where for each r > 1, the random variables {wg : @ € 11, }
corresponding to cubes of rank r, are identically distributed. Then for any two dif-
ferent cubes @) and )’, we have wq faw wg when @ and @ have the same rank but
except for in Section 4.4, we allow for the possibility that wg and w¢ are distributed
differently whenever () and @’ have different ranks.

For each r > 1 we define w™ : X — [~1,1] by w(x) = Wo (z) and we define a

random coefficient function €™ : X — [—p,, p,], where p, = P(p = 1), by
() = pr (1 + 0w (2)) (4.1)

Then ¢™(z) and £7)(y) are independent for d(x,y) > r but £ (z) = €7 (y) when-

ever dy,(z,y) < r. For each v € (*(X) we define

A = SO - A = S A @E ). (42)
k=1 r=1

where

A (z) = Z W () =N\ +0 Zpkw(k) (x). (4.3)
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Observe that (3.19) implies

p qu (1+ ow® )(x)) ) <p~ qu (1+ ow® )(3:)) (4.4)

where ¢ = 1 —p. Let \g = )\ET) denote the single random value assumed by the
function A : X — R on the cube Q = QET) of rank r. Because {\g:Q € Vi} is a
continuous family of random variables, it means that P-a.s., the mapping Q) — g is
one-to-one. Therefore, each £ is an eigenspace for —A,, with eigenvalue A\ having
finite multiplicity dim £y = v — 1. We'll prove that —A,, satisfies the conditions of
Proposition 3.9 (see Proposition 4.1).

Consider the rescaling of A" (x) given by
Ap £
By (3.19) and (3.31) the &*® term of this series is of order p* and P-a.s., we have
1 oo
M) < — =1 4.6
@l =5 m (46)
We denote the n'* partial sum by
1 n—1
Y > praaw (). (4.7)
" k=0
Observe that Q(f)(x) and ¢+ (z) are independent and we have

(") = ¢ (@) + 25 (), (4.8)

Proposition 4.1. Forr > 1, P-a.s., {A\g: Q € II,} = [A\ (1 —0), A\ (1 + 0)],
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Proof. For (a,b) C [A(1—0),A\(1+0)], let

,b _)\'r RAYS —_Ar
(z—¢e,z24¢)= (aU)AT - (ag;r ,bUAAT )

Then z € (—1,1) and we have
A (z) € (a,b) if and only if [(")(z) — 2| <e.

Choose an integer n > 2a+ 1. Then by (4.8) and (3.31) we have

s >\'n T
() — 2| < 2

() = 2| + G0 (@) = (1= 35z
n—1

< pn—Zoc8 + Z Z);\_tk|w(r+k)(m) _ Z|
k=0
n—1
<pe+ ) qpt W (z) — 2|
k=0

where ¢ = 1 — p. For each cube anw) eIl let
n+r
772( ) - H 1(Z—qp2o‘a,z+qp2°‘£) (WQ)
Q€S£7L+7')
Then {m(nw)}zo is an i.i.d. sequence of Bernoulli random variables with

(n+r)

k3

P(n§”+r) = 1) = P(|wQ —z| < qp2a6) € (0,1]

Then P-a.s., there exists a cube QE"M) € Iy, with ni(nw) = 1. Then for every
z e,

W R (z) — 2| < gp®@e for 0<k<r+n

hence

n—1

(@) = (1= 22) 2] <> gph 2w (2) — 2| < ge
k=0
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so that [ (x) — z| < e. Then P-a.s., we have A")(z) € (a,b) so that
(a, ) N{Ng: Q €1l,} # @.

Now by considering (a,b) C [A.(1 — o), A\.(1 + 0)] with rational endpoints it follows

that P-a.s., {\g: Q € II,} is dense in [A\.(1 — ), A\ (14 0)]. |

The eigenvalues are of course dependent but in a sense which we will make precise,
A () and A™(y) become nearly uncorrelated whenever the graph distance (2.6)

between Q™ (z) and Q™ (y) is large.

Lemma 4.2. There exists a constant ¢ > 0 such that

B 1 1) — BF(CD)] < dli / £l (4.9)
and
BF (O + ) — BA(C)| < el + ) 151, (4.10)

uniformly for f € Ll([—l, 1],d:v), r>1, and 1 <n < oo where QEZ;) = (),

Proof. Let gi(z) be the density for p’/‘\—t’cw(”k) and let fff)(z) the density for ¢{”. Then

5 (r)
f0(t) = Ee' = H gx(t

it DI ()
T

where §x(t) = Ee . For each k > 0, because the density for w** is contin-

uously differentiable on [—1, 1], it follows that gx(z) is continuously differentiable on

|:_ Pr+k Pr+k

sVt |. This implies gj, is bounded and that gy (¢) is o(t™*) as t — oo — in par-

ticular, tgx(t) is bounded on R. Then there exists a constant ¢ > max {||g}||oo, || 9400 }
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such that

1G0(£)g1(1)g2(t)| < c[t|™*  for all ¢ € R.

Since fl(r) = ¢go, by the Mean Value Theorem, for all A\, u, we have

A7) = A7 ()] < efx = pl-

Similarly, since £\ = go * g1, we have

00 — £ < / go(2)gn (A — 2) — g1 (4 — )| d= < A — .

For 3 < n < oo we have

£ = £ ()] = —

[ e al < B8]

But since n > 3,

[t£ ()] =

tgo(t)g1(t)ga(t Hgk ’<c-min{1,\t!‘2}.

Therefore, we have

1 0o R 1 o) 9
—/\ﬂ%Mﬁgf/ﬁ+f/t4ﬁ_f§c
T Jo T Jo T i 7r

hence

‘f,(f)()\) - f,(f)(u)’ <cA—p| forall 1<n<oo. (4.11)

Next, for any f € L*([—1,1],dz), since

Ef(C0) +h) = / )0z — b dz,
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we have
1
[Ef(C +h) —EBF(G)] < / [F|[ 7 (2 = h) = £7(2)] dz < c|h| / |f(2)] dz.
-1
so that (4.9) is proven. Finally, since C,Ef) and ("™ are independent, by (4.8),
E(f (<) ] C“‘*”)) = (™) where o(z) = Ef (¢ + 2nz).
Then, by (4.9), (3.31) and (4.6), we have

[Ef(G) = (™) < e

Argn ~(r+n n—2a
2t (O £l < ep" 2 | £y

P-a.s., so that

[EF(C0 +0) = ()| < [BAC + 1) = BACD) |+ 2 Sl (412)

Taking expectations in (4.12) and again applying (4.9), we obtain

BG4+ 1)~ BFC)] < elhl 171, + =2 11, = (bl + 9= 7],
so that (4.10) is proven. [

If f(A) is an integrable function supported on Sp(—A,), for each r > 0, we put

fr(2) = f()\r(l + az)) 1191(2).

Then the average value of |f())| on supp A" is given by

1 1
o | A= HIg L

supp A(™)

Proposition 4.3. There exists a constant ¢ > 0 such that for any two integrable
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functions f(X) and g(\) supported on Sp(—A,), we have

Cov (F(N™).9())| < e 1 £all, Elg X)) (4.13)

whenever ng) G Q,(:) and

‘Cov(f(Agm)),g(Agm))‘ Scpr(lwfm||lEJ5(A(n>>\ 4 llgnll B +pw\fmulugn||1) (4.14)

p P pm+n

fori<m<n<r= dh(ng),Qg-n)).

Proof. Let x € ng) and write A\(™) = /\Em) =AM (z) and A" = /\,(:) = A"(z). Then

_ (m)

because Cﬁ@n and ¢ are independent and we have (™ = ™) + )’\\—;C (") it means

that

E(f(Mm))g(A(T)) ) C(”) _ E<fm(C(m)) ’ C(r)>g(/\(r)) = 5(¢)g(A)
where p(z) = Ef,, (C,ET) + ?—;z) By (4.10), (3.31) and (4.6), we have

|0(2) = Efu (™) < c(Rzlel + 0" ) 1 fully < Zp™™ " [ fully (4.15)

1 =09

so that

E(FO™)g(A0) [ €)= g(X) BLu(C)| < o0 Wlly [9A)] (4.26)

- P

Taking expectations in (4.16), we obtain (4.13).

Now to prove (4.14), let = € ng), y € an), and write

Am) — \(m) (z), A — )\(n)(w, and M\ = )\(T)(x) — )\(T)<y)'
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Because QT(T,)n(a:), Cﬁ)n(y), and ¢ are independent, we have

(000 | ) = B(Juc e () | ) = ()
where
o(2) =Efu(C™) + 2:2) and 4(z) = Eg, (¢, + 22).
Let

Then just like in (4.15) we have

|<P(Z) - S| > p2apT " ||fm||1 and 7( )_ t| > anPT " Hgn||1

so that

(¢ () = st < I (¢™) = sllt] + 17 (™) = tlls] + | (¢™) = sllv(¢™) =1

< Copr<||fm||1E|g(A<")>| o lgall EFQD] p*nfmnlngnul)

P P prtT
(4.17)
where ¢y = max {2cp~2*, (2cp~2%)?}. Since
Cov (F(AN™),9(\")) = E(p(¢)7(c") = st).
taking expectations in (4.17), we obtain (4.14). |

Proposition 4.4. For 1 < m < r and for any two measurable sets A and B, we have
Cov(14(A™), 15(\7) )| < min {4, ZLLAIP(N € B} (4.18)

where |A| denotes the Lebesque measure of A.



37

Proposition 4.5. For 1 < m <n <r = dp(z,y), the following estimates are valid

for any two measurable sets A and B.
‘Cov(lA ()\(m)(x)), 1p (/\(”)(y))> ‘ < 8cp™" (4.19)

and

m n (s (n) (m)
[Cov (14 (A" (@), 1p(A?(y)) ) | < 12 (AEGTEE o IBIPGIIED o L),

(4.20)
Corollary 4.6. For any two measurable sets A and B we have
Cov(14(A™), 15() )| < dep (4.21)
whenever ng) G Q,(:) and
Cov(1a(A™), 15(A™) )| < 8ep (4.22)

forl<m<n<r=d(Q",Q").

4.2 Density of States Measure

For r < L, let §; be the set of all non-degenerate sub-cubes of Q(()L), ie.,

L

Sp=J8Y where 87 ={QelL:Qcq"}.

r=1

For 1 <r < L, there are v"~" cubes of rank r contained in Q(()L) hence

TR V|
ISp] = |8 |:;y ==

r=1
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Then, counting multiplicities, the spectral problem

A=\, =0 on X \QV (4.23)

has v — 1 eigenvalues {\g : Q € 8.} (recall that each eigenvalue has multiplicity
dimLg =v —1).
Let N(A) be the random number of eigenvalues for (4.23) which belong to the

measurable set A C Sp(—A,,), i.e.,

L
NL(A) = > 1400g) = Y N (4) (4.24)
QeS8 r=1
where
N =3 1400) = Y 14, (4.25)
QES(LT) i<l/L_7'
We see that
EN(A)] = Y P(AgeA) =P € A)
Qest”
and

L

E[NL(A)] =) PO € A).

r=1

Lemma 4.7. For any two measurable sets A, B C Sp(—A,) we have

| Cov(NL(A), N (B))| < v"(L* + (vp)") (4.26)
and for 1 <k <r < L we have

| Cov(NP(A),N(B))| < vE(L + (vp)F) (4.27)

where x <y means v = O(y) as L — oo.
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L—k

Proof. For i,7 < v*=% considering the isometry ¢ : X — X which swaps the cubes

ng) and Qg»k), we see that (Agk),NL(T)(B)) taw ()ék),NL(T)(B)). This means we have

COV(N(k (A) ZCOV 1AM N(T) vh- kCov(lA( N, ./\/(T)
i<pl—k

(4.28)

But
L—r v"—-1

COV(]-A()‘ék))aNI(JT)) = COV(lA(Aék)), lB()\éT))) + Z ZCOV(lA(/\(()k)), 13(}\1@)))‘
n=1 j=pn—1

Since Q((]k) C Q((]r), we have | Cov(lA()\(()k)), 1B(Aér)))| < p 7k For v <i < v we

have d, (Q(()k), QZ(-T)) =+ n so that | Cov(lA()\ék)), 1B(AET)))’ < plr ™= = p" hence

-1
>~ Cov(14(N), LsN)) | < (" =" )" < (vp)" (4.29)
It means that
L—r pT 1 L—r
k T — r— n n
} COV(NL( ),/\/'£ ))| < bk (p by ;(Vp) > = v* ((yp)k + % n:l(l/p) ) (4.30)
Now, because we have
L I
Cov (N (A), N (B)) =D 2Cov(N P (4), N (B)) (4.31)
r=1 k=1

it follows from (4.30) that

|COV(NL(A>,NL(B))‘ < vt

ﬁ
Il
—
B

= |l

IA
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~
=114~
1
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~~ ?
S = = ’U“E
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N
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el
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For vp # 1 we have

~

s r -

3 G 2 = g (Gl v 1) < L () (433)

k=1

n=1

and for vp = 1 we have

Z (IZ:)’f + g (vp)" =rp" + L —r <L+ (vp)r (4.34)
k=1 n=1

so that

| Cov(NL(A), N (B))] < I/LZ (L+(vp)=r) = v* <L2+Z(Vp)r) < v (L (vp)b).

From (4.30) we also find that

L—r
| COV(NL(]C),NL(T))‘ <k (1 + Z(up)") <v*(L+ (vp)*) (4.35)
n=1
which completes the proof. [ |

The empirical measures for {A\g: Q € 8.} and {\g: Q € S(LT)} are given by

. NL<A) o (V — 1)NL(A)

ND(A) N
Nld) =57 = Tt = :

= ‘Sg)‘ - VL—?”

and  N(A)
Observe that

T 1 T
E[N(A)] = W > PAge A) =P\ € A).
L1 Qestm

Therefore, since
L L L
Var[NO(4)] < LEE0P))

~ ’8%?’2

L
§—L+pL—>0 as L — oo,
v
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we see that P-a.s., Ng)(A) — P\ € A) as L — oo. We also have

1—vL T
r=1

L U_ L (r)
BN = 3180 |BVD ()] = 5 S PSR

Let

N(A) = lim E[N;(A)] = i ”I; ! P\ € A). (4.36)

Then because

( <p))<——|—pL—>0 as L — oo,
1.2 =~ L

Var [N, (A)] <
we see that P-a.s., N (A) - N(A) as L — oc.

Proposition 4.8. For each measurable set A C Sp(—A,), Llim Var [N, (A)] = 0.
—00

Therefore, with probability one, Llim NL(A) = N(A).
—00

4.3  Density of states

It is clear from (4.36) that the measure N(d\), which depends on the parameter
0 < o < 1, is supported on Sp(—A,,) and has a continuous distribution function and

density given by

“v—1
— (r <
N(0, A ; —— P\ <)) (4.37)
and
“v—1

A = NN = 300 (4.35)

where
gD (\) = 4 P <)) (4.39)
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is the density for A", Since P-a.s., A" lies between (1 £ )\, if we let § = log,, ;—g,
then we may write

supp A" = (1 + o) [P’ A, A,

and we have

"X, A (4.40)

(G

Sp(—A,) = (1+0)

r=1

Observe that (3.31) implies that for all » > 1,
p1+2a < )\;\_-:1 Spl—Zoz' (441)

The expression (4.40) shows that Sp(—A,) is connected, i.e., Sp(—A,) = [0,1 + o],

Art

5 which by (4.41) is the case whenever

if and only if p? < inf,>;

1—pl+2a
Trpitea <o<l1
On the other hand, whenever
1_p172o¢
0<o< TIp 2o

the union in (4.40) is disjoint and it is “physically impossible” that two eigenvalues of
different rank assume the same value.

We would like to estimate the number |I(\)| where
IN)={r>1:¢9.(\) >0}

is the set of all ranks for which it is physically possible that some eigenvalue )\Zm

assumes the value A\ € Sp(—A,). Then

rel(d) & (11—l <A<(l40)A & 5 <\ < (4.42)
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which implies the sum for n()) is actually finite (see Lemma 5.5 below). If we write

IN)={m+1m+2,... M}

then (4.38) becomes

)= 3 gy (4.43)

and we have

>‘M+1§14%0<)‘M<”'<)\m+2<)\m+1<i§)\m

so that by (3.31),

p‘”lﬁ <pM < p_alj%o and paﬂﬁ < pmth < p_ap%o. (4.44)
hence
—&ﬁM—long%<a+1 and —a<m+5—logp1+%§a+1.
Since |I(A)] = M — m, it follows that
B—R2a+1) <IN <p+ (2a+1). (4.45)

This means for each A € Sp(—A,,), there are approximately  + (2« + 1) values of r

where g.(A) > 0 and for each of these,

—a—ﬂ<r—logpl+%<c«+1. (4.46)
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4.4  Lifshitz Exponent

In the case where w® 2 () even for r # s, (4.4) implies that for L =1,2,3,.. .,
P(AT) < p*)) < P < pha) < P(AT) < p2on) (4.47)

and from (4.46), it follows that I(p“\) = L + I()\). Therefore, since

N(0,p"A] — PO <phN) & POUTTE <phy)
P A Z = = Z iy , (4.48)
r=L+m+1 r=m+1

v—1

we have

v EN(0,p*N < N(0,p=A\] < v EN(0,p72N]. (4.49)
The inequality (4.49) allows us to compute the Lifshitz exponent.

aw

log N (0,)]

Proposition 4.9. Provided w™ : )
g

(s) li = Sh
w'\* for all r, s, /\1{1(1) .

Proof. Write A = p"** where L = [log, A] and 2 = {log, \}. Then we have

—Llogv + log N (0, p®~2] < log N (0, \] < —Llogv + log N (0, p*+2]
(L+ x)logp - log\ (L+ x)logp

where both the right and left-hand sides tend to —igi; = 2 as L — oo. [ |




CHAPTER 5: POISSON STATISTICS

5.1  Preliminaries

In the spirit of |7, 6], we will study the distribution eigenvalues for —A,, in the near
vicinity of a given point A € Sp(—A,,). The set of eigenvalues for the spectral problem
(4.23) is a point process in R (see |2, 3, 6]). After applying a scaling transformation
x> [8.|(x — A) to these eigenvalues, i.e., we are really considering the spectrum of

the operator

Hp = —8L|(A + Au)1ge
we will prove that the set
Sp(Hp) = {ISLl(hg — ) : Q € 81} (5.1)
of rescaled eigenvalues converges, as L — 0o, to a Poissson point process. Let
p1(A) = |ANSp(Hy)| (5.2)

be the number of rescaled eigenvalues which belong to a bounded measurable set
A C R. Alternately, we may write

pr(A) = > 1a(18cl(Me = A) = D L (Ag) = Ni(4}) (5.3)

QesL QeSS

where

Aé:)\+@A:{)\+‘§”—L‘:x€A}.
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In view of Proposition 4.8 but ignoring the fact that there is a double limit involved,

we should expect that as L — oo,

No(AY) ~ [SLIN(A}) = IS /AAn(x) d = /An()\ o2y de ~n(N)A]

We want to prove that p} converges weakly as L — oo to an integer-valued random

measure p* which possesses the property that for any collection Ay, ..., A, of pairwise

disjoint measurable sets, u*(A1),. .., u*(A,) is a collection of independent Poissonian

distributed random variables with
E[1*(4)] = n(V)|A
where |A| is the Lebesgue measure of A. We must prove that

lim E2Ve(2) = e"WMIGD for all 2 € C with |2| = 1.

L—oo

Observe that for a continuous function f(z),

AIFO) Al = 1050

1
r)dr = — A+ ) de = ~
A f@) S| /Af( el S| vk

vEl—1

Because [8.| = > pyL=1 we obtain the following estimate.

v—1

Lemma 5.1. If f(x) is bounded then

< v H Al

f(z)dx
A}

Using the fact that I(\) is finite, the next lemma will allow us to keep the error in

the approximation (5.4) of order O(v—2).
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Lemma 5.2. Define an operator T by

Al(y —
i) = [ fayde - A=W
A} v
Whenever f(x) is continuously differentiable,
1T flloo < w2722 (A + [ |2ldz) (I lloo + [1F'lloo)- (5.5)

Proof. We have

— DA f(\ 1
[ rwar- I <o o g - - v o

Allf

= |u!|sL| gy 7O Sl
Allflle 1), lelda

Sz TR e
< AN o+ 1l bl

1/2L 2
which implies (5.5). |

Lemma 5.3. Let z, 5 and w, j be two triangular arrays of complex numbers. If there

exists a constant ¢ > 0 such that |z, x| < 2, (W] < £, and |zp g — wni| < -5 for all

TL’

n, k with 1 <k <n, then

- C
(1 — < = .
H + 2y ) — €Xp (ank) < (5.6)
k=1 k=1
for every n > 1 where C' = c(1 + ce®)e?Te).
Proof. First observe that for all z,w € C, we have
‘ew_<1+2)‘ < |w_Z‘+i |w|n _Z|+|'LU|2€|w|
< oy

n=2
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so that

¢ c\? ¢+ c2ef
el o (5 e 2 S5

Therefore, using the inequality

(1 ; E)" <e (5.7

and the formula

[Ton—1Iwm= > [(Hw)(ﬂm—yw)] (5.8)

kes kes o£TCS L NkeT keT

for a difference of products with S = {1,2,...,n}, we have

5> (Hm,kr-H\e%""—<l“ﬂ’“‘)

. GATCS \kgT keT
c(1 + cef)
@;éTCS kgéT keT

_< c) ( 1+ce))T|
- - 2
n oiTes n* + nc

o 2 (S5 el ]

@#TCS
Applying the inequality
(14 2 = 1] < nle|(1+ |2, (5.9)
we have
a c(1 + ce®) e(1+ce?)\"
O R G
k= k=1
c C
< C(l +ce )6 . 6c(l-‘rcec)/n < g
n n

which establishes (5.6). |
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Lemma 5.4. Let {ZQ, wg Q€ S(LT)} C C and assume there exists a constant ¢ > 0

such that |zq| < 1+ -5, lwe| < -7, and |zg — (1 +wq)| < 5 for all Q € Sg). Then

C/VT71
v € _
I Go) = ] (1 +vwe)| < g 2L
Qesy” Qesy”
Proof. First, we have
v—1 Ve o v
[(20)" = (1 +wg)"| < |(2q) = (L+wo)| Y lzol” M1 + wol* < 7 (1 n ﬁ)
k=0
and
v v V202 C \V
|(1+wg)” — (14 vuwg)| < v*lwg*(1 + [wel)"™* < —- (1 + ﬁ)
hence

. ve c\v V32 c\* V¥ c+1)? ¢\
|(ZQ) —(1+uwQ)|§ﬂ<1+—L> +ﬁ<1+V_L) §—<1+—) .

Therefore, using the formula (5.8) for a difference of products, we have

< ¥ (k) ( it - 0+ vue))

@#“TQS(;) Q¢T QG‘T

< 2 L0+ TH(5 05) )

g#njgs(;) QQ{.T QeT
c pL—r-1 7/2(0 _|__ 1)2 i
:(14—;) (1-0-7) —1f.

Finally, applying the inequalities (5.7) and (5.9), we obtain

I o = T (@ +vwg)

Qes\” Qes”

I o) = T (@ +vwg)

Qes\ Qes”

vi(c+ 1)2>”Lr_1

- 1
c/vmt L—r
S € v VZL—Q (1 + V2L

C/Ur—l c/yr—l
< € 6V2(0+1)2/VL+TV2—L < € 2—L

- T Vr—l

as required. (]
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Lemma 5.5. Let M be an integer which exceeds max I(\). If L is taken so large that

|z| < pap|SL| for every x € A, then

Ura+z) c{12,..., M} (5.10)
€A
hence
M (r) x
g ()‘ + 5 )
n(A+ ISQCLI):;TU' for all x € A (5.11)
and
M
NL(A}) = ZNL(T)(Aé), P-almost surely. (5.12)
r=1

Proof. Since M exceeds max I()\), we have A > (14 0)Ay. It means for each r > M,
At g2 (L+0)Auw —pu) = L+ 0) Ay = (1 +0)A
hence g (A + %) = 0 which establishes (5.10) and (5.11). This further implies that
P(A" € A}) =0 for eachr > M
which establishes (5.12). |
Let g,(f) be the density for
AP \OEn) — () eOrtl) oy el
Then gY) is the density for £ so we have

gl = gl w gt (5.13)

and

s gt (5.14)
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where ¢(") is the density for A). Now put
fin = ZV" "o =g g gl gl (5.15)
Notice that hy = g1 ) and for n > 1, by (5.13), we obtain the recursive formula

hy = VA1 % 0" + g = (Whpy + 6) 5 g\ (5.16)

By (5.14), we obtain n()) by convolution of =M hy()\) with (v — 1)gM+D())

n() = % (v = 1" ) _ (v = Dhar * g™ ™)) (5.17)

vr vM
where M exceeds max ().

5.2 Proof of Poisson statistics

Let F>, be the c-algebra generated by all eigenvalues of rank at least r, i.e.,
,FZT:O'(AQ : QEVT)

and similarly,

For = a()\Q N ONS Vr+1)-

Proposition 5.6. Let M and L be as in Lemma 5.5. Then for 2 <n < M +1,

M
N(” AN
B(D | 7o) = o O T (14 S0, (A= 2g)) He (5.18)

Qesi™

where

n—1 2V2+'y—k

_ e
”571“00 < V2 LZ k (519)

k=1
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and vy 1s chosen so large that

v > max {| A, [, zldz, |g{ oo, [(9{) loc |1 nloo }
foralln < M + 1.

Proof. The proof is by induction. We will first establish (5.18) and (5.19) for n = 2.

Since N L(r)(AE) is F>o-measurable for r > 2, it follows from (5.12) that

S5 NU(AY)

E(AAD) | ) = 22 B(N D | ). (5.20)

Note also that
N(l)(A ) H H H 5(1)+)\Q
QestM Qest? QcQ
Since E( NiA) | f>2) depends only on A\g for Q) € SL), since the £€1’s are i.i.d.
and independent of F>,, and since each cube contains v cubes of preceeding rank, we

have

E(ZNS)(Aé) | FZQ) = 1/)2 ()\Q . Q S S(LQ)>

where for constants {(q : Q € S(Lz)} C supp(A@),
(1) (1) v
G(lo:Qes?) =] T[4 =TI (EZIAE“ ”Q)> .
QesP QWCQ Qes?

(1)

Recalling that h; = g, is the density for £, we see that

(1)

A E 1L o) PED 4 e 4))

:1+(z—1)/ hi(z — ) dz
A

— 14 E2DAE (3 )+ (2 — TN - 0)



where by Lemma 5.2, the remainder T'g\" (A — ¢) is of order O(v~2F)

[Alllgt o + I1(gH) lloo [ l2ld _ 2772 0772 54072

1
||T9£ )Hoo < 2L—2 = 2L—2 = 2L

Therefore, since

(= = DIAI = DI () —o‘ _ 2Al = Dl _ 27

vl vk - vk
it follows by Lemma 5.4 with ¢ = 203+7/2 that
2u2+7/2
b(e:@es?) = T (1+ 2L Dun (- 2g)) ——y
Qes?
hence taking
SNAY) (o= 1) A|(r—
ey = B(OD | Fug) — 25 VT (14 A (1 - )
Qes?
0 SNAY)
= [ B | F) — T <1+ =DlA= hl()\_)\Q)> =
Qes?

and keeping in mind that |z| = 1, we obtain (5.18) and (5.19) for n = 2.
Now assume (5.18) and (5.19) have been proven for n. Observe that
SR | Al | N I S ) € +29)
Qest™ Qes(L"“ QMCQ
Subtracting ¢,, and then dividing (5.18) by MY for ¢ > n + 1, we obtain

_ X
(E(zNL(Ai) ‘}—Zn) — &?n) z ’“gi\{L (“2)

(n
Qes(™

B H H { (GRESYS) (1 i %thq()\ — g — /\Q))} :

Qes{"t QMCQ

93

(5.21)
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Since F%,, C F>p, we have

E(ANUD | F,) = E(E(ANUD | £, | Fou).
Re-conditioning the right-hand side of (5.21) on Fs,, keeping in mind that each
M) i F~p-measurable for r > n + 1, we obtain

() AN
B | £.,) — o (s @ € 8505 D B | £

where

U1 (g = Q € 87Y)

. H H [ A(E™+40) (1 4 (Z_D‘Z/A#thq()\ — £ — gQ))}

QesitD QM CQ

=11

Qes{

v

E(ZIAE(E(H)+€Q)<1 + (z_l)‘VAL‘(V_l)thfl(A o g(n) . gQ)))] )

Observe that
(n)
R L I S 1)/ 0z — 0)dz
A

=1+ SRR = 0 + (2 - DT (A= 0)

while

(n) ) (n
(=" h (A - g-0)) = / 29w — b1 (A = 2)da

— ( / +(z—1) / i )g@( = Ohya (A = 2)da

= L — g A=) + <z—1>/91 (2~ Ohys (A — x)da
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where we have used (5.16) to arrive at the last equality. Then

) §
E(zlAf(é +é)<1 n (z-1)|A\(y-1)uf£n,l(A_5< )_g)))

v

(n) (n)
=BT e, gy +’“”hn_l(A—f(")—ﬂ))

=1 DA DO | ()

L

The remainder term is O(v=2F). By Lemmas 5.1 and 5.2 we have

Al(v —1 "
'KZ—_l)/ 9w = O i (A — 2)da
A

= A oo + (L lrld) D61 e, (2 = DIAPI G locllFn-1 1
- p2L—2 + p2L—2

272 (v — 1)
— p2L-2 2L—2

ngn)()\ —0) + ”

S 2V3+’Y*2L.

Furthermore we have

(n)
‘E(zlf‘i(5 +’”(1 + EDAE=D yp, (A — €M) — f))) ‘
1+v/2 2V3+'y

S 1 + 2|A\(l/—1l)/1£||hn_1||oo S 1+ Z(V—lgz < 1 +

and

‘14_%;1 (A — g)‘ <14 Al 1)|Ihn||oo <14 A )lﬂ/ <1+ 21/3+'Y
It follows by Lemma 5.4 with ¢ = 23%7 that
u3tY—n
Uni1(Ag: Q€ Sglﬂ)) - H (1 + —(z DA ) h, (A — )\Q)) e e

QGS(anLl)
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Finally, taking

S5 A4

enp1 = B(2NAD) | FL) — 2=t I1 <1+ (-DlAlw=1) hn(A_AQ))
QES(LH+1)
1 1)|A|(v=1)vha(A=X S Ny
—[Uni1 (Ao Q€ SIHY) — T (14 B 00y it T B (e, | )
Qes{"t
and keeping in mind that |z| = 1, we obtain (5.18) and (5.19) for n + 1. [

Corollary 5.7. Let M, L and ~y be as in Lemma 5.6. Then

B(NUD | Foy) = [T (1+ ELAD R (A - 2)) + 0. (5.22)

QGS(LMH)

Proof.

2u2+W k 2V262u1+7

llermr+1]loo < v LZ <

UL (5.23)

Theorem 5.8. lim EzVt(A1) — E=Drl4]
L—oo

Proof. Applying Lemma 5.3 to (5.22) we see that

B (U0 | Foy) = eXP( y A A AQ)) + o).

M+1 VL_l
Qesg +1)

as L — oo. We may rewrite the sum inside the exponent as an integral with respect
to the empirical measure N( +) (da:) of eigenvalues for (4.23) of rank M + 1. We

have

Z (V—l)};ﬁ/f_(;\—/\Q _ ‘5<M+1‘ Z y— 1h;VJIMA o) _ / (yfl)l;%()\fm)NéM—H)(dx)

Q68§:M+1) QGS(LMH)
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so that, as L — oo,

B(=M [ Foy) = exp<<z e - x)NéM“)(d:c)) +0(v™).

But N (dz) converges weakly as L — oo to NM+1(dz) = g™+ (2)dz. There-
fore, applying (5.17)

n()) = (v — 1)(h1\4l/zg(M+1))()\) _ V};ﬁ/hM(A — 2)g™ ) () de,

we see that

lim E(AAD | FL ) = elFmDnOAL

L—oo

Taking expectations, we obtain our result. [

5.3  Statistics for eigenvalues of rank r
Theorem 5.9. lim EZNS)(AD = e DIAl=1gN) /v
L—oo
Proof. We may directly condition on A*¥). Observe that the random variables
Ao — AD = A L \OHD L NEED for Q€ 8(L7“)7

are i.i.d. with density g(LTzT,. Then

B (V0 | A0 = p(AD)
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where for ¢ € supp(A(H),

VL*T

V() =E H g oA _ (ZlA%()\Q/\(L)Jre))

Qestn
L—r

- (1460 [ o)

L

_ <1+ (= DAl - 1)

L—r

9 A =0+ (2= 1)Tg (A - £>>

v
In the proof of Lemma 4.2, it was shown by considering the characteristic functions

of ¢\ that there exists a constant ¢ for which

clr —y|
(oA-)?

199 () — 9 (y)| <

uniformly for all » > 1 and 1 < n < co. From this it follows that ||g{"||s < chTcr for
all n hence (z—1)Tg" (A= A®)) is O(v~2F) as L — oo. Then, applying Lemma 5.3,

we have

—DIA|(vr =1
4 )| ’(V )g(err()‘ _ )\(L))) + O(V_L) as L — o0

yT

E(ZNEH(Az)‘)\(L)) = exp ((
hence
E N (4 — ReDIAI-1g, A-2E) /v | O(vr) as L — oc.

Again appealing to Lemma 4.2, one can prove that g(LTET()\ — X)) = ¢(X) in some

sense and thereby obtain the result. [ |
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