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ABSTRACT

ELIJAH EVERETTE RAY. A random hierarchical laplacian. (Under the direction
of DR. STANISLAV A. MOLCHANOV)

The self-similar Hierarchical Laplacian, essentially proposed by Dyson [4] in his

theory of 1-D ferromagnetic phase transitions, has a discrete spectrum with each

eigenvalue having infinite multiplicity [9]. As a result, the integrated density of states

is piecewise constant and the density of states is a sum of point-masses located on its

spectrum. To correct these “defects”, we present a modification of the Hierarchical

Laplacian obtained by allowing its deterministic coefficients to instead vary randomly.

In this way, the spectrum remains deterministic but the eigenvalues become random

with finite multiplicity and we will obtain a continuous density of states. In the

last section, we will examine the eigenvalue statistics near an individual point of

the spectrum and show that, locally, the spectrum is approximately a Poisson point

process.
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CHAPTER 1: INTRODUCTION

The self-similar Hierarchical Laplacian, essentially proposed by Dyson [4] in his

theory of 1-D ferromagnetic phase transitions, has a discrete spectrum with each

eigenvalue having infinite multiplicity [9]. As a result, the integrated density of states

N(λ) is piecewise constant and the density of states does not exist—or more precisely,

it is a sum of point-masses located on the spectrum of −∆. When the probabilistic

weights for the Hierarchical Laplacian are given by a geometric progression, the Hi-

erarchical Laplacian can have an arbitrary spectral dimension sh and as a result it is

similar to the classical fractals, e.g., the Sierpinskii Lattice.

Usually in Mathematical Physics, after considering the Laplacian, we move on to

consider the Schrödinger operator—in two different directions.

First in the classical spectral theory, the negative Laplacian typically has discrete

non-negative spectrum which accumulates to the point zero. When we add a negative

decreasing potential (potential well), the spectrum below zero will be discrete. The

central questions are: under what conditions are there only finitely many negative

eigenvalues and how can we estimate the number of negative eigenvalues [10], [11].

Let’s formulate several classical results. Consider in Rd, d ≥ 3, the Schrödinger

operator

H = −∆− V (x),
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where V (x) ≥ 0 and V (x) → 0 as |x| → ∞ in some sense. In this situation, the

spectrum of H covers the half axis [0,∞) but for negative energies the spectrum is

discrete. Letting N0(V ) = # {λi < 0}, we have the Lieb-Thirring (LT ) Estimate:

∑
i:λi<0

|λi|γ ≤ Cd,γ

∫
Rd
V d/2+γ(x) dx (1.1)

and taking γ = 0 in (1.1), we have the Cwikel-Lieb-Rozenblum (CLR) Estimate:

N0(V ) ≤ Cd

∫
Rd
V d/2(x) dx. (1.2)

In particular, the CLR estimate implies that the operator H = −∆ + σV (x) has

non-negative spectrum whenever the coupling constant σ is small and V ∈ Ld/2(Rd).

For small dimension, we have N0(σV ) > 0 for any non-vanishing V and any σ > 0.

Another direction is the spectral theory of the random Schrödinger operator, i.e.,

H = −∆ + σVω(x), σ is a coupling constant, V (x) i.i.d. One might conjecture

that, in this case, classical Anderson phase-type transitions would be observed for

small σ and sh > 2, and that together with pure point spectrum, there exists some

kind of continuous spectrum, i.e., Anderson delocalization [1]. Unfortunately, in [9],

this natural conjecture appeared to be wrong. In [5], it is shown that for more or

less general distributions, for arbitrary spectral dimension sh and arbitrary σ, the

spectrum of the random Schrödinger operator is pure point. One can propose the

following physical explanation of this fact. It is well-known from the literature that the

spectrum of the random Schrödinger operator on the lattice Zd is pure point outside

the spectrum of the Laplacian for arbitrarily small σ in any dimension [8]. Since

the spectrum of the self-similar Hierarchical Laplacian consists of isolated points, all



3

energies are outside the spectrum. Taking into account all these facts, it is important

to modify the self-similar Hierarchical model in such a way that — instead of the

isolated eigenvalues of infinite multiplicity — we will get spectrum which is dense on

some interval and obtain a continuous density of states.

The goal of the thesis is the analysis of a random Hierarchical Laplacian obtained

by allowing the deterministic eigenvalues of the Hierarchical Laplacian to instead

vary randomly. The way in which we allow the eigenvalues to be random does not

change which functions are eigenfunctions but it does have the effect of breaking

each isolated (deterministic) eigenvalue of infinite multiplicity into a countable dense

set of eigenvalues each having (the same) finite multiplicity. The spectrum remains

deterministic but the isolated points of spectrum become widened into spectral bands

supporting a continuous density of states. These spectral bands may or may not

overlap depending on the value of a parameter 0 < σ < 1 — for values of σ closer

to one, the spectrum will be an interval while for σ = 0 we obtain the original

(deterministic) Hierarchical Laplacian. In the last section, we examine the eigenvalue

statistics near an individual point of the spectrum and show that, locally, the spectrum

is approximately a Poisson point process.



CHAPTER 2: HIERARCHICAL LATTICE

2.1 Definitions

A hierarchical lattice is an ultrametric space (X, dh) where X is an infinite set and

the hierarchical distance dh is an integer-valued ultrametric with the property that

for each integer r ≥ 1, there exists an integer νr ≥ 2 such that every closed metric

ball of radius r (which we refer to as a cube of rank r)

Q(r)(x) = B(x, r) = {y ∈ X : dh(x, y) ≤ r} (2.1)

contains exactly νr balls of radius r − 1. We call a hierarchical lattice self-similar if

each νr = ν for some integer ν ≥ 2. To say dh is an ultrametric means, instead of

just the triangle inequality, dh satisfies the stronger condition that for all x, y, z ∈ X,

dh(x, y) ≤ max
{
dh(x, z), dh(y, z)

}
. (2.2)

Because dh is an ultrametric, each element of a cube can serve as its center. As a

result, two cubes are either disjoint or one is a subset of the other. In particular,

because two different cubes of the same rank/radius must be disjoint, the hierarchical

distance can be expressed as

dh(x, y) = min
{
r : Q(r)(x) = Q(r)(y)

}
= max

{
r : Q(r−1)(x)∩Q(r−1)(y) = ∅

}
. (2.3)
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Note that the sequence
{
Q(r)(x)

}
r≥0

increases to X, i.e.,

x ∈ Q(0)(x) ⊆ Q(1)(x) ⊆ Q(2)(x) ⊆ · · · ⊆
∞⋃
r=0

Q(r)(x) = X. (2.4)

It follows that for each r ∈ N = {0, 1, 2, 3, . . .}, the collection of all cubes of rank r

Πr =
{
Q(r)(x) : x ∈ X

}
(2.5)

forms a partition of X into finite subsets where every cube belonging Πr is a disjoint

union of νr cubes belonging to Πr−1. Then the cardinality or volume of a cube is

given by ∣∣Q(r)(x)
∣∣ = ν1ν2 · · · νr

and since each νr ≥ 2, it follows that each inclusion in (2.4) is strict and |Q(r)(x)| is

of at least exponential order as r →∞.

The requirement that dh be integer-valued implies X is discrete as a topological

space. In fact, the definition implies the set X—being a countable union (2.4) of

finite sets, must itself be countable. More generally, we could have simply required

dh to take as its values the terms of some strictly increasing sequence, 0 = t0 < t1 <

t2 < · · · . For any such sequence we can define a renormalized hierarchical distance

by taking ρh(x, y) = tdh(x,y). In this case, the cubes remain the same but the dh-balls

of radius r become ρh-balls of radius tr. In a self-similar hierarchical lattice, taking

tr = βr for some β > 1 and all r ≥ 1, the volume of a renormalized metric ball

becomes, essentially as in Rd, a power function of its radius, i.e., if R = βr, we have

| {y ∈ X : ρh(x, y) ≤ R} | = |Q(r)(x)| = νr = Rlogβ ν .
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For each r ≥ 0, we denote the collection of all cubes of rank ≥ r by

Vr =
∞⋃
k=r

Πk.

Cubes belonging to V1 are said to be non-degenerate. For each r ≥ 0, Vr forms a

simple connected graph with edges

Er =
{
{Q,Q+} : Q ∈ Vr

}
where we write Q+ = Q(r+1)(x) whenever Q = Q(r)(x). The graph distance dg

between two cubes Q ∈ Πm and Q′ ∈ Πn is given by

dg(Q,Q
′) =


n−m if Q ⊆ Q′

2r −m− n if dh(Q,Q′) = r > 0

. (2.6)

Note that for y /∈ Q, the mapping Q 3 x 7→ dh(x, y) is constant. Therefore, whenever

Q and Q′ are disjoint we have dh(Q,Q′) = dh(x, x
′) for all x ∈ Q and x′ ∈ Q′.

Equation (2.3) shows that the hierarchical distance can be recovered from a knowl-

edge of the partitions (2.5). To see this, let’s start from scratch and suppose we are

given an abstract countably infinite set X and a sequence {Πr}r≥1 of partitions of X

into finite subsets where every set belonging to Πr is contained in some set belonging

to Πr+1 and contains at exactly νr ≥ 2 subsets belonging to Πr−1. Assume further

that for each x ∈ X,
∞⋃
r=0

Q(r)(x) = X (2.7)

where Q(r)(x) is the unique set from Πr containing x and Q(0)(x) = {x}. If dh(x, y)

is defined by (2.3) then (X, dh) is a hierarchical lattice. We assume (2.7) in order to
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Figure 2.1: Cube of rank 4 in a self-similar hierarchical lattice where ν = 3.

ensure that dh(x, y) <∞ for all x, y ∈ X.

The simplest example of a self-similar hierarchical lattice is given by X = N with

Q
(r)
i =

{
n ∈ N : iνr ≤ n < (i+ 1)νr

}
for all r ≥ 0 and i ∈ N (2.8)

We denote the hierarchical distance on N by d̂h(m,n).

2.2 Enumeration of Self-similar Hierarchical Lattice

Proposition 2.1. In a self-similar hierarchical lattice, we can enumerate the points

X = {x0, x1, . . .} in such a way that dh(xm, xn) = d̂h(m,n) for all m,n ∈ N. As a

result, we can enumerate Πr

Πr =
{
Q

(r)
0 , Q

(r)
1 , Q

(r)
2 , . . .

}
, (2.9)

by defining for each i = 0, 1, 2, 3, . . .,

Q
(r)
i =

{
xn : iνr ≤ n < (i+ 1)νr

}
(2.10)

Q
(3)
0︷ ︸︸ ︷

Q
(2)
0︷ ︸︸ ︷

Q
(1)
0︷ ︸︸ ︷

x0 · · · xν−1

Q
(1)
1︷ ︸︸ ︷

xν · · ·x2ν−1 · · ·
Q

(1)
ν−1︷ ︸︸ ︷

· · ·xν2−1

Q
(2)
1︷ ︸︸ ︷

Q
(1)
ν︷ ︸︸ ︷

xν2 · · · · · ·
Q

(1)
2ν−1︷ ︸︸ ︷

· · · x2ν2−1 · · · · · ·

Q
(2)
ν−1︷ ︸︸ ︷

Q
(1)
(ν−1)ν︷ ︸︸ ︷

x(ν−1)ν2 · · · · · ·
Q

(1)

ν2−1︷ ︸︸ ︷
· · · xν3−1

First we need a lemma.

Lemma 2.2. In a self-similar hierarchical lattice, every cube can be enumerated

Q = {xn : 0 ≤ n < |Q|}
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in such a way that dh(xm, xn) = d̂h(m,n) for all m,n < |Q|.

Proof. For m < n, we have d̂h(m,n) = r if and only if there exist i, j ∈ N with

iνr ≤ m < jνr−1 ≤ n < (i+ 1)νr. (2.11)

But if (2.11) holds we will also have

(i+ 1)νr ≤ m+ νr < (j + ν)νr−1 ≤ n+ νr < (i+ 2)νr

hence d̂h(m+ νr, n+ νr) = d̂h(m,n). It follows by induction that

d̂h
(
m+ kν d̂h(m,n), n+ kν d̂h(m,n)

)
= d̂h(m,n) for all k ≥ 1 (2.12)

Now, let Q ∈ Πr+1 and assume the result holds for all cubes of smaller rank

contained in Q. Then there exist Q(r)
0 , . . . , Q

(r)
ν−1 ∈ Πr with Q =

⋃ν−1
i=0 Q

(r)
i and for

0 ≤ i < ν, we have

Q
(r)
i =

{
x(i)
n : 0 ≤ n < νr

}
with dh(x

(i)
m , x

(i)
n ) = d̂h(m,n).

Now, for each N = iνr + n ∈ {0, 1, 2, . . . , νr+1 − 1}, we define xN = x
(i)
n . Then

Q =
{
xN : 0 ≤ N < νr+1

}
and each Q

(r)
i = {xN : iνr ≤ N < (i+ 1)νr} .

Furthermore, for each M = iνr + m and N = jνr + n with 0 ≤ i, j < ν and

0 ≤ m,n < νr,

dh(xM , xN) = dh(x
(i)
m , x

(j)
n ) =


d̂h(m,n) if i = j

r + 1 if i 6= j

.
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If i = j then by (2.12), we have d̂h(M,N) = d̂h(m,n) = dh(xM , xN). If i < j then

0 ≤M < iνr ≤ N < νr+1 hence d̂h(M,N) = r + 1 = dh(xM , xN). �

Proof of Proposition 2.1. It is clear from the construction in Lemma 2.2 that we may

recursively construct an infinite sequence {xn}n≥0 with dh(xm, xn) = d̂h(m,n) for all

m,n ≥ 0 and with the first νr terms of this sequence enumerating Q(r)(x0)

Q(r)(x0) = {xn : 0 ≤ n < νr} for each r.

For the first step of the recursion, we may choose x0 ∈ X (the origin) arbitrarily. At

the rth step, we generate the next νr − νr−1 terms of the sequence which enumerate

Q(r)(x0)�Q(r−1)(x0). By (2.7), this sequence must enumerate all of X. �

2.3 Hierarchical Addition

Enumerating each partition Πr as in (2.9–2.10) we have

Q
(m+r)
i =

νr−1⋃
k=0

Q
(m)
iνr+k =

νm−1⋃
k=0

Q
(r)
iνm+k (2.13)

and in particular, taking m = 0, we have Q(r)(xn) = Q
(r)
i where i = bn/νrc.

Now let’s define a mapping n : X → N by putting n(x) = n if x = xn in the

enumeration of X. Let’s further define, for each r ≥ 0, the rth-coordinate mapping

nr : X → {0, 1, . . . , ν − 1} by putting nr(x) = nr if, in the enumeration of Πr, Q(r)(x)

is the (nr+1)th cube of rank r contained in Q(r+1)(x). Then nr(x) is the (r+1)th digit

of the base-ν representation of n(x), i.e.,

n(x) =
∞∑
r=0

nr(x)νr =

|x|h−1∑
r=0

nr(x)νr



10

where |x|h = dh(x0, x). Notice that |x|h = r if and only if νr−1 ≤ n(x) < νr. We also

have nk(xiνr) = 0 for k < r and nk(xiνr) = nk−r(xi) for k ≥ r, hence |xiνr |h = r+|xi|h.

Define an additive group (hierarchical addition) on X by putting for each r ≥ 0

nr(x +̇ y) = nr(x) + nr(y) mod ν.

It means that we add the indices for x and y in base-ν except that we forget to carry

the “tens” over to the next digit whenever nr(x) + nr(y) ≥ ν. Proposition 2.1 says that

no matter how (X, dh) has been constructed, we may as well assume (X, dh) = (N, d̂h).

Accordingly, we will identify xn ∈ X with n ∈ N and write x +̇n instead of x +̇xn.

The first cube Q(r)
0 of each rank is a subgroup of (X, +̇) whose cosets are given by

Q(r)(x) = x +̇Q
(r)
0 . As a result, we have

Q(r)(x) +̇Q(r)(y) = Q(r)(x +̇ y).

Furthermore, since Q(m)
0 is a subgroup of Q(m+r)

0 , we have

Q
(m)
0 +̇Q

(m+r)
0 = Q

(m+r)
0

so that

Q(m)(x) +̇Q(m+r)(y) = Q(m+r)(x +̇ y).

Similarly, because iνr +̇ jνr = (i +̇ j)νr and Q(r)
i = Q(r)(iνr), we have

Q
(r)
i +̇Q

(r)
j = Q

(r)

i +̇ j

and it follows from (2.13) that

Q
(m)
iνr+k +̇Q

(m+r)
j = Q

(m+r)

i +̇ j
for 0 ≤ k < νr.
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Now (2.13) becomes

Q(m+r)(x) =
νr−1⋃
k=0

Q(m)(x +̇ kνm) =
νm−1⋃
k=0

Q(r)(x +̇ kνr). (2.14)



CHAPTER 3: HEIRARCHICAL LAPLACIANS

3.1 Averaging Operators and Associated Subspaces of CX

We define an operator Ar : CX → CX , the rth-rank averaging operator, in the space

CX of complex-valued functions defined on X by putting

Arf(x) =
1

νr

∑
z∈Q(r)(x)

f(z) (3.1)

for f : X → C. Equivalently,

Arf =
∑
Q∈Πr

fQ1Q (3.2)

where 1Q : X → {0, 1} is the indicator function of a set Q ⊆ X and fQ = f
(r)
i is the

average value of f on the cube Q = Q
(r)
i , i.e.,

fQ =
1

|Q|
∑
x∈Q

f(x).

Then Ar : CX → Mr where Mr is the subspace of functions which are constant on

cubes of rank r. Note that f ∈Mr if and only if Arf = f . Since every cube of rank

k < r is contained in a cube of rank r, we see that

k < r implies Mr ⊆Mk. (3.3)
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Since every cube of rank r is a disjoint union of exactly νr−k cubes of rank k < r,

considering the average of averages, we see that

k < r implies AkAr = ArAk = Ar. (3.4)

Notice that whenever z ∈ Q(r)
0 , since Q(r)(x +̇ z) = Q(r)(x), we have

Arf(x +̇ z) = Arf(x)

for all x ∈ X, i.e., each z ∈ Q(r)
0 is a “period” for Arf . Similarly, we have

f(x +̇ z) ≡ f(x) for all f ∈Mr and z ∈ Q(r)
0 .

It means we may think of Mr as the space of Q(r)
0 -periodic functions defined on the

group (X, +̇).

Proposition 3.1. For 1 ≤ k ≤ r, if f ∈Mr then for every g ∈ CX , we have

Akfg = fAkg. (3.5)

In other words, Ak treats functions f ∈Mr like constants.

Proof. For 1 ≤ k ≤ r, if f ∈Mr then by (3.3), f is constant on cubes of rank k hence

for every g ∈ CX , we have

(Akfg)(x) =
1

νk

∑
y∈Q(k)(x)

f(y)g(y) =
1

νk

∑
y∈Q(k)(x)

f(x)g(y) = f(x)(Akg)(x)

which proves (3.5). �

Now we mention two subspaces related to Mr and corresponding operators related

to Ar which are needed in the sequel. First, the subspace Lr consists of all f ∈ CX
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which are constant on cubes of rank < r with
∑
f = 0 on cubes of rank ≥ r, i.e.,

Akf = f for 1 ≤ k < r and Akf = 0 for all k ≥ r. (3.6)

We have f ∈ Lr if and only if Erf = f where Er : CX → Lr is defined by

Er = Ar−1 − Ar. (3.7)

It follows from (3.4) that

k < r implies EkEr = ErEk = 0. (3.8)

Next, for each Q ∈ Πr (each cube of rank r), the subspace LQ consists of all f ∈ Lr

which vanish outside of Q. Then f ∈ LQ if and only if EQf = f where EQ : CX → LQ

is given by

EQ = 1QEr. (3.9)

Since 1X =
∑

Q∈Πr
1Q, it follows that

Er =
∑
Q∈Πr

EQ. (3.10)

If Q =
⋃ν

i=1
Q

(r−1)
i , then LQ consists of all functions which vanish outside of Q

and are constant on each subcube Q(r−1)
k of preceeding rank with the sum of those

constants being zero, i.e., functions of the form

f = EQf =
ν∑
i=1

ci1Q(r−1)
i

with
ν∑
i=1

ci = 0. (3.11)

Corollary 3.2. For 1 ≤ k ≤ r, if f ∈ Mr and g ∈ Lk then fg is constant on cubes

of rank k − 1 and
∑
fg = 0 on cubes of rank k hence fg ∈ Lk. In other words, Lk
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absorbs multiplication from functions in Mr.

From (2.14) we obtain

Am+rf(x) =
1

νr

νr−1∑
k=0

Amf(x +̇ kνm) =
1

νm

νm−1∑
k=0

Arf(x +̇ kνr).

In particular,

Arf(x) =
1

ν

ν−1∑
k=0

Ar−1f(x +̇ kνr−1)

and therefore

−Erf(x) = Arf(x)− Ar−1f(x) =
1

ν

ν−1∑
k=1

Ar−1f(x +̇ kνr−1).

Next we consider the subspace of functions f ∈ CX which have a limit as x ap-

proaches the point at infinity in the one-point compactification ofX —Proposition 3.3

below shows that Ar is invariant on this subspace. Whenever we write lim
x→∞

f(x) = c

or f(x)→ c as x→∞, it is equivalent to saying that for every ε > 0, there exists n

such that |x|h > n implies |f(x)− c| < ε.

Proposition 3.3. If lim
x→∞

f(x) = c then lim
x→∞

Arf(x) = c.

Proof. Because Ar(f − c) ≡ Arf − c we may assume c = 0. Let ε > 0. Then there

exists n > r such that |x|h > n implies |f(x)| < ε. If |x|h > n then |y|h > n for every

y ∈ Q(r)(x) hence

|Arf(x)| ≤ 1

νr

∑
y∈Q(r)(x)

|f(y)| < ε.

Therefore, lim
x→∞

Arf(x) = 0. �

Lemma 3.4. If lim
x→∞

f(x) = c then lim
r→∞

Arf(x) = c for every x ∈ X.



16

Proof. Again we may assume c = 0. First observe that for r ≥ m we have

Arf(x) =
1

νr−m

νr−m−1∑
k=0

Amf(x +̇ kνm).

If m > |x|h and k > 0 then we have x +̇ kνm ≥ νm−1 so that |x +̇ kνm|h ≥ m hence

|Amf(x +̇ kνm)| ≤ max
|y|h≥m

|f(y)|.

Now let ε > 0 and choose m > |x|h so large that max
|y|h≥m

|f(y)| < ε
2
. Then we have

|Arf(x)| ≤ |Amf(x)|
νr−m

+
νr−m−1∑
k=1

|Amf(x +̇ kνm)|
νr−m

≤ ‖f‖∞
νr−m

+
ε

2

so that |Arf(x)| < ε for all r > m+ logν(1 + 2
ε
‖f‖∞). �

Proposition 3.5. If lim
x→∞

f(x) = c then we have

f(x) = c+
∞∑
r=1

Erf(x) = c+
∑
Q∈V1

EQf(x)

for every x ∈ X.

3.2 Symmetric Random Walk on Cubes of Rank r

To motivate our definition of Ar consider a random walk {xn}n≥0 beginning at the

point x ∈ X which at each step, jumps with equal probabilities to another point

y ∈ Q(r)(x) = x +̇Q
(r)
0 . In other words,

xn = x +̇ z1 +̇ · · · +̇ zn

where {zn}n≥1 is an i.i.d. sequence of uniformly distributed random elements of Q(r)
0 .

It means that, beginning at x ∈ X, the probability, at the nth step, of arriving at



17

y ∈ X is given by

Px(xn = y) =
1r(x, y)

νr

where

1r(x, y) = 1Q(r)(x)(y) = 1Q(r)(y)(x) = 1r(y, x).

Then Px-a.s., {xn} never leaves the cube Q(r)(x) hence for all f ∈ CX and n ≥ 1,

Exf(xn) =
∑

y∈Q(r)(x)

f(y)Px(xn = y) = Arf(x).

We say that Ar generates a symmetric random walk on cubes of rank r.

3.3 Averaging Operators and Associated Subspaces of `2(X)

Let `2(X) be the Hilbert space of square-summable functions on X with inner

product and norm

〈ψ, ϕ〉 =
∑
x∈X

ψ(x)ϕ(x) and ‖ψ‖2 =
∑
x∈X

|ψ(x)|2.

The matrix element for Ar is given by

〈Arδx, δy〉 = ν−r1r(x, y) = 〈δx, Arδy〉. (3.12)

hence Ar is self-adjoint. Because A2
r = Ar, it follows that Ar is the orthogonal

projection onto the subspace Mr of `2(X). Similarly, Er is the orthogonal projection

onto Lr and it follows from (3.3) that

Lr = Mr−1 ∩M⊥r .
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For r < s, since Ms−1 ⊆Mr, we have

Lr ∩ Ls ⊆Mr ∩M⊥r = {0}

hence

Lr ⊥ Ls for r 6= s. (3.13)

For each cube Q ∈ Πr, EQ is the orthogonal projection onto LQ. Furthermore, (3.13)

implies that LQ is orthogonal to LQ′ for Q,Q′ ∈ V1 with Q 6= Q′. It follows from

(3.10) that

Lr =
⊕
Q∈Πr

LQ. (3.14)

It follows from (3.11) that LQ is finite dimensional with

dimLQ = dim {(c1 . . . , cν) ∈ Cν : c1 + · · ·+ cν = 0} = ν − 1.

Together with the second equation in (3.14), this further implies that dimLr =∞.

From (3.11), it is immediate that the orthogonal complement of LQ consists of all

ψ ∈ `2(X) which are constant on Q. If ψ ∈
(⊕

Q∈V1

LQ

)⊥ then ψ is constant on

every cube Q ∈ V1 so by (2.4), ψ is constant on X which means ψ ≡ 0 on X. It

follows that

`2(X) =
⊕
Q∈V1

LQ =
∞⊕
r=1

Lr (3.15)

hence

I =
∑
Q∈V1

EQ =
∞∑
r=1

Er. (3.16)

Alternately, for functions in `2(X), (3.16) follows from Proposition 3.5.
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3.4 Heirarchical Random Walk and Laplacian

The hierarchical laplacian is defined for each ψ ∈ `2(X) by

∆ψ(x) =
∑
y∈X

p(x, y)
(
ψ(y)− ψ(x)

)
(3.17)

where p(x, y) are the transition probabilities for the discrete time hierarchical random

walk {xn}n≥0 whose probability matrix is given by I + ∆ = [p(x, y)]X×X where I is

the identity operator on `2(X), i.e., for each ψ ∈ `2(X),

(I + ∆)ψ(x) =
∑
y∈X

p(x, y)ψ(y). (3.18)

It means that ∆ generates the semigroup et∆ = [p(t, x, y)]X×X for the continuous time

random walk, xt = xN(t), where N(t) is a Poisson process independent of {xn}n≥0 with

intensity equal to one. Our definition of the hierarchical Laplacian follows [10, 11]

but sometimes [9, 6], I + ∆ is referred to as the hierarchical Laplacian.

To define the discrete time hierarchical random walk, we fix an i.i.d. sequence

{ρn}n≥1 of random variables supported on the positive integers and we assume there

exist constants p ∈ (0, 1) and α > 0 such that for every r ∈ Z+,

(1/p− 1)pr+α ≤ P(ρ = r) ≤ (1/p− 1)pr−α. (3.19)

In (3.19), we always keep in mind the case where ρ is geometrically distributed, i.e.,

where α = 0. Now, at each time n, the random-walking particle jumps to the site xn

which is uniformly distributed within the cube of rank ρn containing xn−1, i.e.,

P
(
xn = y |xn−1 = x & ρn = r

)
=

1r(x, y)

νr
= 〈Arδx, δy〉 (3.20)
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Since ρn is independent of xn−1 the transition probabilities are easily computed:

p(x, y) = P
(
xn = y |xn−1 = x

)
=
∞∑
r=1

P(ρ = r)1r(x, y)

νr
. (3.21)

In particular, p(x, y) depends only on dh(x, y), i.e., p(x, x) = a1 and p(x, y) = ar for

dh(x, y) = r ≥ 1 where ar =
∑∞

k=r
P(ρ=k)
νk

. This allows us to diagonalize ∆. We do this

by summing first, for each individual rank r, the terms in (3.18) with dh(x, y) = r,

i.e., we first sum over each sphere Q(r)(x)�Q(r−1)(x) of radius r centered around x.

We have

∑
y:dh(x,y)=r

ψ(y) =
〈
ψ,1Q(r)(x)�Q(r−1)(x)

〉
=
〈
ψ,1Q(r)(x)

〉
−
〈
ψ,1Q(r−1)(x)

〉
.

Therefore, since ar − ar+1 = P(ρ=r)
νr

, summation by parts gives us

∑
y:y 6=x

p(x, y)ψ(y) =
∞∑
r=1

ar
∑

y:dh(x,y)=r

ψ(y) = −a1ψ(x) +
∞∑
r=1

P
(
ρ = r

)〈
ψ,1Q(r)(x)

〉
νr

(3.22)

so that

(I + ∆)ψ(x) =
∞∑
r=1

P
(
ρ = r

)〈
ψ,1Q(r)(x)

〉
νr

. (3.23)

Equation (3.23) now becomes

I + ∆ =
∞∑
r=1

P(ρ = r)Ar or ∆ =
∞∑
r=1

P(ρ = r)(Ar − I) (3.24)

which implies ∆ is self-adjoint. If we put λr = P
(
ρ ≥ r

)
, since Er = Ar−1 − Ar,

another summation by parts gives us

−∆ =
∞∑
r=1

(λr − λr+1)(I − Ar) =
∞∑
r=1

λrEr. (3.25)

From (3.15), we see that (3.25) diagonalizes ∆. The functional calculus for ∆ is given
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by

f(∆) =
∞∑
r=1

f(−λr)Er. (3.26)

For any function f which is bounded on Sp(∆) = {−λr : r ≥ 1} ∪ {0}, the operator

f(∆) is bounded with

‖f(∆)‖ = max {|f(λ)| : λ ∈ Sp(∆)} .

Since 〈Arδx, δy〉 = ν−r1r(x, y), the matrix element for f(∆) is given by

f(∆)(x, y) = 〈f(∆)δx, δy〉 =
∞∑
k=1

f(−λk)
(
1k−1(x, y)

νk−1
− 1k(x, y)

νk

)
(3.27)

The sum in (3.27) can be simplified in two ways depending on whether or not

dh(x, y) = 0. We have

f(∆)(x, x) =

(
1− 1

ν

) ∞∑
k=0

f(−λk+1)

νk
(3.28)

and for dh(x, y) = r > 0 we have

f(∆)(x, y) = −f(−λr)
νr

+

(
1− 1

ν

) ∞∑
k=r

f(−λk+1)

νk
(3.29)

In particular, for λ > 0, taking f(x) = 1[0,λ)(−x) in (3.28), we obtain an expression

for the integrated density of states for −∆ (see [11]). We have

N(λ) =

(
1− 1

ν

) ∞∑
k=0

1[0,λ)(λk+1)

νk
. (3.30)

It follows that the “density” of states for −∆ is simply a sum

n(λ) =

(
1− 1

ν

) ∞∑
k=0

δλk+1
(λ)

νk
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of point masses along Sp(−∆). Our assumption (3.19) allows us to find the asymp-

totics of N(λ) as λ→ 0+. Observe that for every r ∈ Z+, by (3.19), we have

pr+α ≤ λr+1 ≤ pr−α. (3.31)

Since 1[0,λ) is non-increasing on [0,∞), it follows that for every k ≥ 0,

1[0,λ)(p
k−α)

νk
≤

1[0,λ)(λk+1)

νk
≤

1[0,λ)(p
k+α)

νk
. (3.32)

The left-hand side of (3.32) is non-zero if and only if k > α + logp λ and the right-

hand side is non-zero if and only if k > −α + logp λ. Summing the geometric series(
1− 1

ν

)∑
1
νk

over all k > ±α + logp λ (separately), we obtain

λsh/2

να+1
≤ N(λ) ≤ ναλsh/2 (3.33)

where sh = −2 logp ν > 0—we call sh the spectral dimension of ∆. The first inequality

in (3.33) is valid for 0 ≤ λ ≤ p−α and the second for 0 ≤ λ ≤ pα. It immediately

implies that

lim
λ→0+

λ−sh/2N(λ) = 1. (3.34)

For the resolvent operator, Rλ = (λI −∆)−1, (3.27) gives us

Rλ(x, x) =

(
1− 1

ν

) ∞∑
k=0

1

νk(λ+ λk+1)

and applying (3.27) to the semigroup

et∆ =
∞∑
r=1

e−λrtEr = [p(t, x, y)]X×X , (3.35)

we obtain the transition probabilities for the continuous-time hierarchical random
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walk. We want to find the asymptotics of

p(t, x, x) =

(
1− 1

ν

) ∞∑
k=0

e−λk+1t

νk
(3.36)

as t→∞ and and of Rλ(x, x) as λ→ 0. For that, we will first find the asymptotics

of the function

θ(t) =

(
1− 1

ν

) ∞∑
k=0

e−p
kt

νk
(3.37)

and its Laplace transform

Θ(λ) =

∫ ∞
0

e−λtθ(t) dt =

(
1− 1

ν

) ∞∑
k=0

1

νk(λ+ pk)
, (3.38)

i.e., p(t, x, x) and Rλ(x, x) in the case where P
(
ρ = r

)
= (1/p − 1)pr. Consider-

ing the continuous analogue of θ(t), i.e., θ̃(t) = log ν
∫∞

0
ν−xe−p

xt dx, we see that

tsh/2θ(t) is essentially the discrete analogue of an incomplete Gamma function—when

we substitute y = pxt, we obtain

tsh/2θ̃(t) = sh
2

∫ t

0

ysh/2−1e−y dy → Γ
(
1 + sh

2

)
as t→∞.

Replacing Γ(1 + sh
2

) with a logarithmically periodic function of t, the same holds for

θ(t).

Proposition 3.6. For arbitrary spectral dimension sh, there exists a periodic function

h(z) =
(
1− 1

ν

)∑∞
−∞

e−p
k+z

νk+z
such that tsh/2θ(t) ∼ h

(
logp t

)
as t→∞.

Proof. First, observe that

h(logp t) = h(z) =

(
1− 1

ν

) ∞∑
k=−∞

e−p
k+z

νk+z
=

(
1− 1

ν

) ∞∑
k=−∞

e−p
k+{z}

νk+{z}

where z = z(t) = logp t and the last equality is from replacing the index k with
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k − bzc. Since {z + 1} ≡ {z}, this also shows that h(z) ≡ h({z}) is periodic with

period one. Next, since t = pz implies tsh/2 = ν−z and e−pkt = e−p
k+z , we have

tsh/2θ(t) =

(
1− 1

ν

) ∞∑
k=0

e−p
k+z

νk+z
=

(
1− 1

ν

) ∞∑
k=bzc

e−p
k+{z}

νk+{z} .

Therefore, since bz(t)c → −∞ as t→∞,

tsh/2θ(t)

h1(logp t)
=

∑∞

k=bzc

e−p
k+{z}

νk+{z}∑∞

k=−∞

e−p
k+{z}

νk+{z}

→ 1 as t→∞

which completes the proof. �

Proposition 3.7. For arbitrary spectral dimension sh, p(t, x, x) � t−sh/2 as t→∞.

More precisely, there exists a periodic function h(z) =
(
1− 1

ν

)∑∞
−∞

e−p
k+z

νk+z
such that

1

να+1
≤ tsh/2p(t, x, x)

h(logp t)
≤ να+1 as t→∞. (3.39)

Proof. As in (3.32), since the function λ 7→ e−λt is decreasing, by (3.31) we have

θ(p−dαet) ≤ θ(p−αt) ≤ p(t, x, x) ≤ θ(pαt) ≤ θ(pdαet) (3.40)

where dαe = min {n ∈ Z : n ≥ α}. Dividing through by t−sh/2h(logp t) and observing

that h
(
logp(p

±dαet)
)

= h(logp t), we have

tsh/2θ(p−dαet)

h
(
logp(p

−dαet)
) ≤ tsh/2p(t, x, x)

h(logp t)
≤ tsh/2θ(pdαet)

h
(
logp(p

dαet)
) . (3.41)

As t → ∞, the left-hand side converges to ν−dαe ≥ ν−α−1 while the right-hand side

converges to νdαe ≤ να+1. �

The next statement provides the asymptotics of Θ(λ) as λ→ +0 in the case where
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α = 0 and sh < 2.

Proposition 3.8.

Θ(λ) =
u(logp λ)

λ1−sh/2
+ c0 +O(λ), as λ→ 0+, (3.42)

where c0 = p(ν−1)
νp−1

, and u(z) = (νp)z
(
1− 1

ν

)∑∞
−∞

(νp)k

1+pk+z
is a positive periodic function

with period one.

Proof. Observe that c0 = −
(
1− 1

ν

)∑∞
k=1 (νp)k and because νp < 1, the series

u(logp λ)

λ1−sh/2
=

(
1− 1

ν

) ∞∑
k=−∞

(νp)k

1 + pkλ

converges for all complex λ /∈ {0} ∪ {−pN : N ∈ Z}. From the series representation

(3.38),

Θ(λ) =

(
1− 1

ν

) 0∑
k=−∞

(νp)k

1 + pkλ
.

Then

Θ(λ)−
u(logp λ)

λ1−sh/2
− c0 =

(
1− 1

ν

) ∞∑
k=1

[
(νp)k − (νp)k

1 + pkλ

]
=

(
1− 1

ν

) ∞∑
k=1

(νp2)kλ

1 + pkλ

so that

∣∣∣∣Θ(λ)−
u(logp λ)

λ1−sh/2
− c0

∣∣∣∣ < (1− 1

ν

) ∞∑
k=1

(νp2)kλ =
p2(ν − 1)

1− νp2
λ.

If λ→ 0 in the complex plane with | arg λ| ≤ π − δ for some δ > 0, we obtain

∣∣∣∣Θ(λ)−
u(logp λ)

λ1−sh/2
− c0

∣∣∣∣ < p2(ν − 1)|λ|
(1− νp2)

√
1− 2p|λ| cos δ

so that (3.42) remains valid. �
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3.5 Heirarchical Laplacian with Variable Coefficients

The diagonalization of the hierarchical laplacian

−∆ψ(x) =
∞∑
r=1

λrErψ(x) (3.43)

displays the fact that each eigenvalue λr = P(ρ ≥ r) is an isolated point in Sp(−∆)

and has multiplicity dimLr =∞. To correct these “defects”, we first observe that by

(3.14), we have the further diagonalization

−∆ψ(x) =
∞∑
r=1

λr

( ∑
Q∈Πr

EQψ(x)

)
=
∑
Q∈V1

λQEQψ(x) (3.44)

where λQ = λr for each Q ∈ Πr. In essence, it seems that because the mapping

Q 7→ λQ from V1 to Sp(−∆) is constant on each Πr ⊆ V1, the finite dimensional

subspaces, LQ for Q ∈ Πr, which should have been the eigenspaces, have instead

been collapsed into the infinite dimensional eigenspace Lr.

A hierarchical Laplacian ∆̃ with variable coeficients is a modification of ∆ where,

in (3.44), we instead allow λQ to vary for different Q ∈ Πr. This amounts to replacing

each constant λr in (3.43) with a function λ(r) : X → R which is single-valued on

every cube of rank r, i.e., ∆̃ is an operator of the form

− ∆̃ψ(x) =
∞∑
r=1

λ(r)(x)Erψ(x) =
∑
Q∈V1

λQEQψ(x) (3.45)

where λQ = λ
(r)
i is now the single value of the function λ(r)(x) on the cube Q = Q

(r)
i .

Note that because λ(r) ∈Mr, it means that we have

Er(λ
(r)ψ) = λ(r)Erψ so that 〈λ(r)Erϕ, ψ〉 = 〈ϕ, λ(r)Erψ〉. (3.46)
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Therefore, since λ(r)(x) is real valued, the operator (3.45) is self-adjoint. This mod-

ification has the effect of breaking each eigenvalue λr ∈ Sp(−∆) with eigenspace Lr

into a collection of eigenvalues

range(λ(r)) = {λQ : Q ∈ Πr} ⊆ Sp(−∆̃) (3.47)

with eigenspaces properly contained in Lr. In particular, if we allow λQ to vary in

such a way that the mapping Q 7→ λQ is one-to-one, each LQ for Q ∈ V1 will itself

be an eigenspace of ∆̃ and the multiplicity of each eigenvalue λQ will be exactly

dimLQ = ν − 1. In order to rid the spectrum of isolated points, we would like to

define ∆̃ in such a way that for each r ≥ 1, the eigenvalues {λQ : Q ∈ Πr} form a

dense subset of the inteveral of length 2σλr centered around λr where σ ∈ (0, 1) is a

coupling constant (measure of disorder). This way, Sp(−∆) is contained in Sp(−∆̃)

but each isolated eigenvalue λr ∈ Sp(−∆) is replaced by an interval

[λr(1− σ), λr(1 + σ)] ⊆ Sp(−∆̃) (3.48)

The condition σ < 1 ensures that we do not gain any negative spectrum. Furthermore,

as σ → 0, Sp(−∆̃) shrinks to Sp(−∆) and we obtain ∆ as a special case of ∆̃.

Proposition 3.9. Suppose ∆̃ is defined by (3.45) where the functions λ(r) ∈Mr are

such that the mapping Q 7→ λQ from V1 to Sp(−∆̃) is one-to-one and for each rank

r, the range of λ(r) is a dense subset of the interval (3.48) where 0 < σ < 1 and

λr = P(ρ ≥ r). Then

• ∆̃ ≤ 0 is self-adjoint with ‖∆̃‖ = 1 + σ,
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• Sp(−∆̃) consists of zero together with the union of intervals in (3.48) for r ≥ 1,

• the eigenspaces for −∆̃ consist of LQ for Q ∈ V1 with each eigenvalue λQ having

multiplicity ν − 1.

Proof. Since {λQ : Q ∈ Πr} is dense in [λr(1− σ), λr(1 + σ)], we have

Sp(−∆̃) ⊇
⋃∞

r=1
[λr(1− σ), λr(1 + σ)].

If λ /∈
⋃∞
r=1 suppλ(r), then there exists an ε > 0 such that |λ− λQ| ≥ ε for every

Q ∈ V1. Using the diagonalization

−∆̃ =
∑
Q∈V1

λQEQ,

we see that

Rλ = (λI + ∆̃)−1 =
∑
Q∈V1

1

λ− λQ
EQ.

Then for every ψ ∈ `2(X), we have

‖(λI + ∆̃)−1ψ‖2 =
∑
Q∈V1

‖EQψ‖2

|λ− λQ|2
≤ 1

ε2

∑
Q∈V1

‖EQψ‖2 =
1

ε2
‖ψ‖2

hence ‖Rλ‖ ≤ ε−1 <∞ and it follows that Sp(−∆̃) =
⋃∞
r=1 suppλ(r). �



CHAPTER 4: RANDOM HEIRARCHICAL LAPLACIAN

4.1 Definition

To define a random hierarchical Laplacian, let {ωQ : Q ∈ V1} be an independent

family of symmetric random variables with continuously differentiable densities sup-

ported on the interval [−1, 1] where for each r ≥ 1, the random variables {ωQ : Q ∈ Πr}

corresponding to cubes of rank r, are identically distributed. Then for any two dif-

ferent cubes Q and Q′, we have ωQ
law
= ωQ′ when Q and Q′ have the same rank but

except for in Section 4.4, we allow for the possibility that ωQ and ωQ′ are distributed

differently whenever Q and Q′ have different ranks.

For each r ≥ 1 we define ω(r) : X → [−1, 1] by ω(r)(x) = ωQ(r)(x) and we define a

random coefficient function ξ(r) : X → [−pr, pr], where pr = P(ρ = r), by

ξ(r)(x) = pr
(
1 + σω(r)(x)

)
(4.1)

Then ξ(r)(x) and ξ(r)(y) are independent for dh(x, y) > r but ξ(r)(x) = ξ(r)(y) when-

ever dh(x, y) ≤ r. For each ψ ∈ `2(X) we define

−∆ωψ(x) =
∞∑
k=1

ξ(k)(x)(I − Ak)ψ(x) =
∞∑
r=1

λ(r)(x)Erψ(x). (4.2)

where

λ(r)(x) =
∞∑
k=r

ξ(k)(x) = λr + σ

∞∑
k=r

pkω
(k)(x). (4.3)
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Observe that (3.19) implies

pα
∞∑
k=r

qpk−1
(
1 + σω(k)(x)

)
≤ λ(r)(x) ≤ p−α

∞∑
k=r

qpk−1
(
1 + σω(k)(x)

)
(4.4)

where q = 1 − p. Let λQ = λ
(r)
i denote the single random value assumed by the

function λ(r) : X → R on the cube Q = Q
(r)
i of rank r. Because {λQ : Q ∈ V1} is a

continuous family of random variables, it means that P-a.s., the mapping Q 7→ λQ is

one-to-one. Therefore, each LQ is an eigenspace for −∆ω with eigenvalue λQ having

finite multiplicity dimLQ = ν − 1. We’ll prove that −∆ω satisfies the conditions of

Proposition 3.9 (see Proposition 4.1).

Consider the rescaling of λ(r)(x) given by

ζ(r)(x) =
λ(r)(x)− λr

σλr
=

1

λr

∞∑
k=0

pr+kω
(r+k)(x). (4.5)

By (3.19) and (3.31) the kth term of this series is of order pk and P-a.s., we have

∣∣ζ(r)(x)
∣∣ ≤ 1

λr

∞∑
k=r

pk = 1. (4.6)

We denote the nth partial sum by

ζ(r)
n (x) =

1

λr

n−1∑
k=0

pr+kω
(r+k)(x). (4.7)

Observe that ζ(r)
n (x) and ζ(r+n)(x) are independent and we have

ζ(r)(x) = ζ(r)
n (x) + λr+n

λr
ζ(r+n)(x). (4.8)

Proposition 4.1. For r ≥ 1, P-a.s., {λQ : Q ∈ Πr} =
[
λr(1− σ), λr(1 + σ)

]
,
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Proof. For (a, b) ⊆
[
λr(1− σ), λr(1 + σ)

]
, let

(z − ε, z + ε) = (a,b)−λr
σλr

=
(
a−λr
σλr

, b−λr
σλr

)
.

Then z ∈ (−1, 1) and we have

λ(r)(x) ∈ (a, b) if and only if |ζ(r)(x)− z| < ε.

Choose an integer n > 2α + 1. Then by (4.8) and (3.31) we have

|ζ(r)(x)− z| ≤ λn+r
λr

∣∣ζ(r+n)(x)− z
∣∣+
∣∣ζ(r)
n (x)−

(
1− λn+r

λr

)
z
∣∣

≤ pn−2αε+
n−1∑
k=0

pr+k
λr
|ω(r+k)(x)− z|

< pε+
n−1∑
k=0

qpk−2α|ω(r+k)(x)− z|

where q = 1− p. For each cube Q(n+r)
i ∈ Πn+r let

η
(n+r)
i =

∏
Q∈S(n+r)i

1(z−qp2αε,z+qp2αε)(ωQ).

Then
{
η

(n+r)
i

}∞
i=0

is an i.i.d. sequence of Bernoulli random variables with

P
(
η

(n+r)
i = 1

)
= P

(
|ωQ − z| < qp2αε

)∣∣∣S(n+r)i

∣∣∣ ∈ (0, 1]

Then P-a.s., there exists a cube Q(n+r)
i ∈ Πn+r with η

(n+r)
i = 1. Then for every

x ∈ Q(n+r)
i ,

|ω(r+k)(x)− z| < qp2αε for 0 ≤ k ≤ r + n

hence ∣∣ζ(r)
n (x)−

(
1− λn+r

λr

)
z
∣∣ ≤ n−1∑

k=0

qpk−2α|ω(r+k)(x)− z| < qε
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so that |ζ(r)(x)− z| < ε. Then P-a.s., we have λ(r)(x) ∈ (a, b) so that

(a, b) ∩ {λQ : Q ∈ Πr} 6= ∅.

Now by considering (a, b) ⊆
[
λr(1− σ), λr(1 + σ)

]
with rational endpoints it follows

that P-a.s., {λQ : Q ∈ Πr} is dense in
[
λr(1− σ), λr(1 + σ)

]
. �

The eigenvalues are of course dependent but in a sense which we will make precise,

λ(m)(x) and λ(n)(y) become nearly uncorrelated whenever the graph distance (2.6)

between Q(m)(x) and Q(n)(y) is large.

Lemma 4.2. There exists a constant c > 0 such that

∣∣Ef(ζ(r)
n + h

)
− Ef

(
ζ(r)
n

)∣∣ ≤ c|h|
∫ 1

−1

|f(z)| dz (4.9)

and ∣∣Ef(ζ(r)
n + h

)
− Ef

(
ζ(r)
)∣∣ ≤ c(|h|+ pn−2α) ‖f‖1 (4.10)

uniformly for f ∈ L1
(
[−1, 1], dx

)
, r ≥ 1, and 1 ≤ n ≤ ∞ where ζ(r)

∞ = ζ(r).

Proof. Let gk(z) be the density for pr+k
λr
ω(r+k) and let f (r)

n (z) the density for ζ(r)
n . Then

f̂ (r)
n (t) = Eeitζ

(r)
n =

n−1∏
k=0

ĝk(t)

where ĝk(t) = Eeit
pr+k
λr

ω(r+k)

. For each k ≥ 0, because the density for ω(r+k) is contin-

uously differentiable on [−1, 1], it follows that gk(z) is continuously differentiable on[
− pr+k

λr
, pr+k
λr

]
. This implies g′k is bounded and that ĝk(t) is o(t−1) as t→∞— in par-

ticular, tĝk(t) is bounded on R. Then there exists a constant c > max {‖g′0‖∞, ‖g′0‖∞}
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such that

|ĝ0(t)ĝ1(t)ĝ2(t)| ≤ c|t|−3 for all t ∈ R.

Since f (r)
1 = g0, by the Mean Value Theorem, for all λ, µ, we have

∣∣f (r)
1 (λ)− f (r)

1 (µ)
∣∣ ≤ c|λ− µ|.

Similarly, since f (r)
2 = g0 ∗ g1, we have

∣∣f (r)
2 (λ)− f (r)

2 (µ)
∣∣ ≤ ∫ g0(z)|g1(λ− z)− g1(µ− z)| dz ≤ c|λ− µ|.

For 3 ≤ n ≤ ∞ we have

∣∣f (r)
n (λ)− f (r)

n (µ)
∣∣ =

1

2π

∣∣∣∣ ∫ ∞
−∞

(e−itλ − e−itµ)f̂ (r)
n (t) dt

∣∣∣∣ ≤ |λ− µ|π

∫ ∞
0

∣∣tf̂ (r)
n (t)

∣∣ dt.
But since n ≥ 3,

∣∣tf̂ (r)
n (t)

∣∣ =

∣∣∣∣tĝ0(t)ĝ1(t)ĝ2(t)
n−1∏
k=2

ĝk(t)

∣∣∣∣ ≤ c ·min
{

1, |t|−2
}
.

Therefore, we have

1

π

∫ ∞
0

∣∣tf̂ (r)
n (t)

∣∣ dt ≤ c

π

∫ 1

0

dt+
c

π

∫ ∞
1

t−2 dt =
2c

π
≤ c

hence ∣∣f (r)
n (λ)− f (r)

n (µ)
∣∣ ≤ c|λ− µ| for all 1 ≤ n ≤ ∞. (4.11)

Next, for any f ∈ L1
(
[−1, 1], dx

)
, since

Ef
(
ζ(r)
n + h

)
=

∫
f(z)f (r)

n (z − h) dz,
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we have

∣∣Ef(ζ(r)
n + h

)
− Ef

(
ζ(r)
n

)∣∣ ≤ ∫ ∣∣f(z)
∣∣∣∣f (r)

n (z − h)− f (r)
n (z)

∣∣ dz ≤ c|h|
∫ 1

−1

|f(z)| dz.

so that (4.9) is proven. Finally, since ζ(r)
n and ζ(r+n) are independent, by (4.8),

E
(
f
(
ζ(r)
) ∣∣∣ ζ(r+n)

)
= ϕ

(
ζ(r+n)

)
where ϕ(z) = Ef

(
ζ(r)
n + λr+n

λr
z
)
.

Then, by (4.9), (3.31) and (4.6), we have

∣∣Ef(ζ(r)
n

)
− ϕ

(
ζ(r+n)

)∣∣ ≤ c
∣∣λr+n
λr

ζ(r+n)
∣∣ ‖f‖1 ≤ cpn−2α ‖f‖1 ,

P-a.s., so that

∣∣∣Ef(ζ(r)
n + h

)
− ϕ

(
ζ(r+n)

)∣∣∣ ≤ ∣∣∣Ef(ζ(r)
n + h

)
− Ef

(
ζ(r)
n

)∣∣∣+ cpn−2α ‖f‖1 . (4.12)

Taking expectations in (4.12) and again applying (4.9), we obtain

∣∣∣Ef(ζ(r)
n + h

)
− Ef

(
ζ(r)
)∣∣∣ ≤ c|h| ‖f‖1 + cpn−2α ‖f‖1 = c(|h|+ pn−2α) ‖f‖1

so that (4.10) is proven. �

If f(λ) is an integrable function supported on Sp(−∆ω), for each r ≥ 0, we put

fr(z) = f
(
λr(1 + σz)

)
1[−1,1](z).

Then the average value of |f(λ)| on suppλ(r) is given by

1

2σλr

∫
suppλ(r)

|f(λ)| dλ = 1
2
‖fr‖1 .

Proposition 4.3. There exists a constant c > 0 such that for any two integrable
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functions f(λ) and g(λ) supported on Sp(−∆ω), we have

∣∣∣Cov
(
f
(
λ

(m)
i

)
, g
(
λ

(r)
k

))∣∣∣ ≤ cpr−m ‖fm‖1 E|g(λ(r))| (4.13)

whenever Q(m)
i $ Q

(r)
k and

∣∣∣Cov
(
f
(
λ

(m)
i

)
, g
(
λ

(n)
j

))∣∣∣ ≤ cpr
(
‖fm‖1 E|g(λ(n))|

pm
+
‖gn‖1 E|f(λ(m))|

pn
+

pr‖fm‖1‖gn‖1
pm+n

)
(4.14)

for 1 ≤ m ≤ n < r = dh(Q
(m)
i , Q

(n)
j ).

Proof. Let x ∈ Q(m)
i and write λ(m) = λ

(m)
i = λ(m)(x) and λ(r) = λ

(r)
k = λ(r)(x). Then

because ζ(m)
r−m and ζ(r) are independent and we have ζ(m) = ζ

(m)
r−m + λr

λm
ζ(r), it means

that

E
(
f
(
λ(m)

)
g
(
λ(r)
) ∣∣∣ ζ(r)

)
= E

(
fm
(
ζ(m)

) ∣∣∣ ζ(r)
)
g
(
λ(r)
)

= ϕ
(
ζ(r)
)
g
(
λ(r)
)

where ϕ(z) = Efm
(
ζ

(m)
r−m + λr

λm
z
)
. By (4.10), (3.31) and (4.6), we have

∣∣ϕ(z)− Efm
(
ζ(m)

)∣∣ ≤ c
(
λr
λm
|z|+ pr−m−2α

)
‖fm‖1 ≤

2c
p2α
pr−m ‖fm‖1 (4.15)

so that

∣∣∣E(f(λ(m)
)
g
(
λ(r)
) ∣∣∣ ζ(r)

)
− g
(
λ(r)
)
Efm

(
ζ(m)

)∣∣∣ ≤ c
p2α
pr−m ‖fm‖1

∣∣g(λ(r))
∣∣. (4.16)

Taking expectations in (4.16), we obtain (4.13).

Now to prove (4.14), let x ∈ Q(m)
i , y ∈ Q(n)

j , and write

λ(m) = λ(m)(x), λ(n) = λ(n)(y), and λ(r) = λ(r)(x) = λ(r)(y).
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Because ζ(m)
r−m(x), ζ(n)

r−n(y), and ζ(r) are independent, we have

E
(
f
(
λ(m)

)
g
(
λ(n)

) ∣∣∣ ζ(r)
)

= E
(
fm
(
ζ(m)(x)

)
gn
(
ζ(n)(y)

) ∣∣∣ ζ(r)
)

= ϕ
(
ζ(r)
)
γ
(
ζ(r)
)

where

ϕ(z) = Efm
(
ζ

(m)
r−m + λr

λm
z
)

and γ(z) = Egn
(
ζ

(n)
r−n + λr

λn
z
)
.

Let

s = Ef
(
λ(m)

)
= Efm

(
ζ(m)

)
and t = Eg

(
λ(n)

)
= Egn

(
ζ(n)
)
.

Then just like in (4.15) we have

|ϕ(z)− s| ≤ 2c
p2α
pr−m ‖fm‖1 and |γ(z)− t| ≤ 2c

p2α
pr−n ‖gn‖1

so that

|ϕ
(
ζ(r)
)
γ
(
ζ(r)
)
− st| ≤ |ϕ

(
ζ(r)
)
− s||t|+ |γ

(
ζ(r)
)
− t||s|+ |ϕ

(
ζ(r)
)
− s||γ

(
ζ(r)
)
− t|

≤ c0p
r
(
‖fm‖1 E|g(λ(n))|

pm
+
‖gn‖1 E|f(λ(m))|

pn
+

pr‖fm‖1‖gn‖1
pm+n

)
(4.17)

where c0 = max {2cp−2α, (2cp−2α)2}. Since

Cov
(
f
(
λ

(m)
i

)
, g
(
λ

(n)
j

))
= E

(
ϕ
(
ζ(r)
)
γ
(
ζ(r)
)
− st

)
,

taking expectations in (4.17), we obtain (4.14). �

Proposition 4.4. For 1 ≤ m < r and for any two measurable sets A and B, we have

∣∣∣Cov
(
1A
(
λ(m)

)
,1B

(
λ(r)
))∣∣∣ ≤ min

{
4cpr−m, 2cpr+1

σp2m
|A|P

(
λ(r) ∈ B

)}
(4.18)

where |A| denotes the Lebesgue measure of A.
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Proposition 4.5. For 1 ≤ m ≤ n < r = dh(x, y), the following estimates are valid

for any two measurable sets A and B.

∣∣∣Cov
(
1A
(
λ(m)(x)

)
,1B

(
λ(n)(y)

))∣∣∣ ≤ 8cpr−n (4.19)

and

∣∣∣Cov
(
1A
(
λ(m)(x)

)
,1B

(
λ(n)(y)

))∣∣∣ ≤ 4c2pr

σ2

(
|A|P (λ(n)∈B)

p2m
+ |B|P (λ(m)∈A)

p2n
+ |A||B|

p2(m+n)

)
.

(4.20)

Corollary 4.6. For any two measurable sets A and B we have

∣∣∣Cov
(
1A
(
λ

(m)
i

)
,1B

(
λ

(r)
k

))∣∣∣ ≤ 4cpr−m (4.21)

whenever Q(m)
i $ Q

(r)
k and

∣∣∣Cov
(
1A
(
λ

(m)
i

)
,1B

(
λ

(n)
j

))∣∣∣ ≤ 8cpr−n (4.22)

for 1 ≤ m ≤ n < r = dh(Q
(m)
i , Q

(n)
j ).

4.2 Density of States Measure

For r ≤ L, let SL be the set of all non-degenerate sub-cubes of Q(L)
0 , i.e.,

SL =
L⋃
r=1

S
(r)
L where S

(r)
L =

{
Q ∈ Πr : Q ⊆ Q

(L)
0

}
.

For 1 ≤ r ≤ L, there are νL−r cubes of rank r contained in Q(L)
0 hence

∣∣SL∣∣ =
L∑
r=1

∣∣S(r)
L

∣∣ =
L∑
r=1

νL−r =
νL − 1

ν − 1
.
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Then, counting multiplicities, the spectral problem

−∆ωψ = λψ, ψ ≡ 0 on X�Q(L)
0 (4.23)

has νL − 1 eigenvalues {λQ : Q ∈ SL} (recall that each eigenvalue has multiplicity

dimLQ = ν − 1).

Let NL(A) be the random number of eigenvalues for (4.23) which belong to the

measurable set A ⊆ Sp(−∆ω), i.e.,

NL(A) =
∑
Q∈SL

1A(λQ) =
L∑
r=1

N (r)
L (A) (4.24)

where

N (r)
L (A) =

∑
Q∈S(r)L

1A(λQ) =
∑

i<νL−r

1A(λ
(r)
i ). (4.25)

We see that

E
[
N (r)
L (A)

]
=
∑
Q∈S(r)L

P(λQ ∈ A) = νL−rP(λ(r) ∈ A)

and

E
[
NL(A)

]
=

L∑
r=1

νL−rP(λ(r) ∈ A).

Lemma 4.7. For any two measurable sets A,B ⊆ Sp(−∆ω) we have

∣∣Cov
(
NL(A),NL(B)

)∣∣
_
< νL

(
L2 + (νp)L

)
(4.26)

and for 1 ≤ k ≤ r ≤ L we have

∣∣Cov
(
N (k)
L (A),N (r)

L (B)
)∣∣

_
< νL

(
L+ (νp)L

)
(4.27)

where x
_
< y means x = O(y) as L→∞.
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Proof. For i, j < νL−k, considering the isometry ϕ : X → X which swaps the cubes

Q
(k)
i and Q(k)

j , we see that
(
λ

(k)
i ,N (r)

L (B)
) law

=
(
λ

(k)
j ,N (r)

L (B)
)
. This means we have

Cov
(
N (k)
L (A),N (r)

L (B)
)

=
∑

i<νL−k

Cov
(
1A(λ

(k)
i ),N (r)

L

)
= νL−kCov

(
1A(λ

(k)
0 ),N (r)

L

)
.

(4.28)

But

Cov
(
1A(λ

(k)
0 ),N (r)

L

)
= Cov

(
1A(λ

(k)
0 ),1B(λ

(r)
0 )
)

+
L−r∑
n=1

νn−1∑
i=νn−1

Cov
(
1A(λ

(k)
0 ),1B(λ

(r)
i )
)
.

Since Q(k)
0 ⊆ Q

(r)
0 , we have

∣∣Cov
(
1A(λ

(k)
0 ),1B(λ

(r)
0 )
)∣∣

_
< pr−k. For νn−1 ≤ i < νn we

have dh
(
Q

(k)
0 , Q

(r)
i

)
= r + n so that

∣∣Cov
(
1A(λ

(k)
0 ),1B(λ

(r)
i )
)∣∣

_
< p(r+n)−r = pn hence∣∣∣∣∣

νn−1∑
i=νn−1

Cov
(
1A(λ

(k)
0 ),1B(λ

(r)
i )
)∣∣∣∣∣ _< (νn − νn−1)pn

_
< (νp)n. (4.29)

It means that

∣∣Cov
(
N (k)
L ,N (r)

L

)∣∣
_
< νL−k

(
pr−k +

L−r∑
n=1

(νp)n

)
= νL

(
pr

(νp)k
+

1

νk

L−r∑
n=1

(νp)n

)
. (4.30)

Now, because we have

Cov
(
NL(A),NL(B)

)
=

L∑
r=1

r∑
k=1

2Cov
(
N (k)
L (A),N (r)

L (B)
)

(4.31)

it follows from (4.30) that

∣∣Cov
(
NL(A),NL(B)

)∣∣
_
< νL

L∑
r=1

[
r∑

k=1

pr

(νp)k
+

(
r∑

k=1

1

νk

)(
L−r∑
n=1

(νp)n

)]

≤ νL
L∑
r=1

[
r∑

k=1

pr

(νp)k
+

L−r∑
n=1

(νp)n

] (4.32)
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For νp 6= 1 we have

r∑
k=1

pr

(νp)k
+

L−r∑
n=1

(νp)n = νp
|νp−1|

(
1
νp
|pr − ν−r|+

∣∣(νp)L−r − 1
∣∣)

_
< L+ (νp)L−r (4.33)

and for νp = 1 we have

r∑
k=1

pr

(νp)k
+

L−r∑
n=1

(νp)n = rpr + L− r ≤ L+ (νp)L−r (4.34)

so that

∣∣Cov
(
NL(A),NL(B)

)∣∣
_
< νL

L∑
r=1

(
L+(νp)L−r

)
= νL

(
L2+

L−1∑
r=0

(νp)r

)
_
< νL

(
L2+(νp)L

)
.

From (4.30) we also find that

∣∣Cov
(
N (k)
L ,N (r)

L

)∣∣
_
< νL

(
1 +

L−r∑
n=1

(νp)n

)
_
< νL

(
L+ (νp)L

)
(4.35)

which completes the proof. �

The empirical measures for {λQ : Q ∈ SL} and {λQ : Q ∈ S
(r)
L } are given by

NL(A) =
NL(A)

|SL|
=

(ν − 1)NL(A)

(1− ν−L)νL
and N

(r)
L (A) =

N (r)
L (A)∣∣S(r)
L

∣∣ =
N (r)
L (A)

νL−r
.

Observe that

E
[
N

(r)
L (A)

]
=

1∣∣S(r)
L

∣∣ ∑
Q∈S(r)L

P(λQ ∈ A) = P(λ(r) ∈ A).

Therefore, since

Var
[
N

(r)
L (A)

]
_
<
νL
(
L+ (νp)L

)∣∣S(r)
L

∣∣2 _
<

L

νL
+ pL → 0 as L→∞,
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we see that P-a.s., N (r)
L (A)→ P(λ(r) ∈ A) as L→∞. We also have

E
[
NL(A)

]
=

1

|SL|

L∑
r=1

∣∣S(r)
L

∣∣E[N (r)
L (A)

]
=

ν − 1

1− ν−L
L∑
r=1

P(λ(r) ∈ A)

νr
.

Let

N(A) = lim
L→∞

E
[
NL(A)

]
=
∞∑
r=1

ν − 1

νr
P(λ(r) ∈ A). (4.36)

Then because

Var
[
NL(A)

]
_
<
νL
(
L2 + (νp)L

)
|SL|2 _

<
L2

νL
+ pL → 0 as L→∞,

we see that P-a.s., NL(A)→ N(A) as L→∞.

Proposition 4.8. For each measurable set A ⊆ Sp(−∆ω), lim
L→∞

Var
[
NL(A)

]
= 0.

Therefore, with probability one, lim
L→∞

NL(A) = N(A).

4.3 Density of states

It is clear from (4.36) that the measure N(dλ), which depends on the parameter

0 < σ < 1, is supported on Sp(−∆ω) and has a continuous distribution function and

density given by

N(0, λ] =
∞∑
r=1

ν − 1

νr
P
(
λ(r) ≤ λ

)
(4.37)

and

n(λ) = d
dλ
N(0, λ] =

∞∑
r=1

ν − 1

νr
g(r)(λ) (4.38)

where

g(r)(λ) = d
dλ

P(λ(r) ≤ λ) (4.39)
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is the density for λ(r). Since P-a.s., λ(r) lies between (1± σ)λr, if we let β = logp
1−σ
1+σ

,

then we may write

suppλ(r) = (1 + σ)[pβλr, λr]

and we have

Sp(−∆ω) = (1 + σ)
∞⋃
r=1

[pβλr, λr]. (4.40)

Observe that (3.31) implies that for all r ≥ 1,

p1+2α ≤ λr+1

λr
≤ p1−2α. (4.41)

The expression (4.40) shows that Sp(−∆ω) is connected, i.e., Sp(−∆ω) = [0, 1 + σ],

if and only if pβ ≤ infr≥1
λr+1

λr
which by (4.41) is the case whenever

1−p1+2α

1+p1+2α ≤ σ < 1.

On the other hand, whenever

0 < σ < 1−p1−2α

1+p1−2α ,

the union in (4.40) is disjoint and it is “physically impossible” that two eigenvalues of

different rank assume the same value.

We would like to estimate the number |I(λ)| where

I(λ) = {r ≥ 1 : gr(λ) > 0}

is the set of all ranks for which it is physically possible that some eigenvalue λ(r)
i

assumes the value λ ∈ Sp(−∆ω). Then

r ∈ I(λ) ⇔ (1− σ)λr < λ < (1 + σ)λr ⇔ λ
1+σ

< λr <
λ

1−σ (4.42)
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which implies the sum for n(λ) is actually finite (see Lemma 5.5 below). If we write

I(λ) = {m+ 1,m+ 2, . . . ,M}

then (4.38) becomes

n(λ) =
M∑

r=m+1

ν − 1

νr
g(r)(λ) (4.43)

and we have

λM+1 ≤ λ
1+σ

< λM < · · · < λm+2 < λm+1 <
λ

1−σ ≤ λm

so that by (3.31),

pα+1 λ
1+σ

< pM ≤ p−α λ
1+σ

and pα+1 λ
1+σ
≤ pm+β < p−α λ

1+σ
. (4.44)

hence

−α ≤M − logp
λ

1+σ
< α + 1 and − α < m+ β − logp

λ
1+σ
≤ α + 1.

Since |I(λ)| = M −m, it follows that

β − (2α + 1) ≤ |I(λ)| < β + (2α + 1). (4.45)

This means for each λ ∈ Sp(−∆ω), there are approximately β ± (2α + 1) values of r

where gr(λ) > 0 and for each of these,

− α− β < r − logp
λ

1+σ
< α + 1. (4.46)
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4.4 Lifshitz Exponent

In the case where ω(r) law
= ω(s) even for r 6= s, (4.4) implies that for L = 1, 2, 3, . . .,

P(λ(r) ≤ p2αλ) ≤ P(λ(r+L) ≤ pLλ) ≤ P(λ(r) ≤ p−2αλ) (4.47)

and from (4.46), it follows that I(pLλ) = L+ I(λ). Therefore, since

N(0, pLλ]

ν − 1
=

∞∑
r=L+m+1

P(λ(r) ≤ pLλ)

νr
=

∞∑
r=m+1

P(λ(r+L) ≤ pLλ)

νr+L
, (4.48)

we have

ν−LN(0, p2αλ] ≤ N(0, pLλ] ≤ ν−LN(0, p−2αλ]. (4.49)

The inequality (4.49) allows us to compute the Lifshitz exponent.

Proposition 4.9. Provided ω(r) law
= ω(s) for all r, s, lim

λ↘0

logN(0,λ]
log λ

= sh
2
.

Proof. Write λ = pL+x where L = blogp λc and x = {logp λ}. Then we have

−L log ν + logN(0, px−2α]

(L+ x) log p
≤ logN(0, λ]

log λ
≤ −L log ν + logN(0, px+2α]

(L+ x) log p

where both the right and left-hand sides tend to − log ν
log p

= sh
2
as L→∞. �



CHAPTER 5: POISSON STATISTICS

5.1 Preliminaries

In the spirit of [7, 6], we will study the distribution eigenvalues for −∆ω in the near

vicinity of a given point λ ∈ Sp(−∆ω). The set of eigenvalues for the spectral problem

(4.23) is a point process in R (see [2, 3, 6]). After applying a scaling transformation

x 7→ |SL|(x− λ) to these eigenvalues, i.e., we are really considering the spectrum of

the operator

Hλ
L = −|SL|(λ+ ∆ω)1QL0 ,

we will prove that the set

Sp(Hλ
L) = {|SL|(λQ − λ) : Q ∈ SL} (5.1)

of rescaled eigenvalues converges, as L→∞, to a Poissson point process. Let

µλL(A) =
∣∣A ∩ Sp(Hλ

L)
∣∣ (5.2)

be the number of rescaled eigenvalues which belong to a bounded measurable set

A ⊆ R. Alternately, we may write

µλL(A) =
∑
Q∈SL

1A
(
|SL|(λQ − λ)

)
=
∑
Q∈SL

1AλL(λQ) = NL(AλL) (5.3)

where

AλL = λ+ 1
|SL|

A =
{
λ+ x

|SL|
: x ∈ A

}
.
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In view of Proposition 4.8 but ignoring the fact that there is a double limit involved,

we should expect that as L→∞,

NL(AλL) ≈ |SL|N(AλL) = |SL|
∫
AλL

n(x) dx =

∫
A

n(λ+ x
|SL|

) dx ≈ n(λ)|A|.

We want to prove that µλL converges weakly as L→∞ to an integer-valued random

measure µλ which possesses the property that for any collection A1, . . . , An of pairwise

disjoint measurable sets, µλ(A1), . . . , µλ(An) is a collection of independent Poissonian

distributed random variables with

E
[
µλ(A)

]
= n(λ)|A|

where |A| is the Lebesgue measure of A. We must prove that

lim
L→∞

EzNL(AλL) = en(λ)|A|(z−1) for all z ∈ C with |z| = 1.

Observe that for a continuous function f(x),

∫
AλL

f(x) dx =
1

|SL|

∫
A

f(λ+ x
|SL|

) dx ≈ |A|f(λ)

|SL|
≈ |A|(ν − 1)f(λ)

νL
. (5.4)

Because |SL| = νL−1
ν−1
≥ νL−1, we obtain the following estimate.

Lemma 5.1. If f(x) is bounded then∣∣∣∣∣
∫
AλL

f(x) dx

∣∣∣∣∣ ≤ ν1−L|A|‖f‖∞

Using the fact that I(λ) is finite, the next lemma will allow us to keep the error in

the approximation (5.4) of order O(ν−2L).
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Lemma 5.2. Define an operator T by

Tf(λ) =

∫
AλL

f(x) dx− |A|(ν − 1)

νL
f(λ).

Whenever f(x) is continuously differentiable,

‖Tf‖∞ ≤ ν2−2L
(
|A|+

∫
A
|x|dx

) (
‖f‖∞ + ‖f ′‖∞

)
. (5.5)

Proof. We have∣∣∣∣∣
∫
AλL

f(x) dx− (ν − 1)|A|f(λ)

νL

∣∣∣∣∣ ≤ 1

|SL|

∫
A

∣∣f(λ+ x
|SL|

)− (1− ν−L)f(λ)
∣∣dx

≤ |A||f(λ)|
νL|SL|

+
1

|SL|

∫
A

∣∣f(λ+ x
|SL|

)− f(λ)
∣∣dx

≤ |A|‖f‖∞
νL|SL|

+
‖f ′‖∞

∫
A
|x|dx

|SL|2

≤
|A|‖f‖∞ + ‖f ′‖∞

∫
A
|x|dx

ν2L−2

which implies (5.5). �

Lemma 5.3. Let zn,k and wn,k be two triangular arrays of complex numbers. If there

exists a constant c > 0 such that |zn,k| ≤ c
n
, |wn,k| ≤ c

n
, and |zn,k − wn,k| ≤ c

n2 for all

n, k with 1 ≤ k ≤ n, then∣∣∣∣∣
n∏
k=1

(1 + zn,k)− exp

(
n∑
k=1

wn,k

)∣∣∣∣∣ ≤ C

n
(5.6)

for every n ≥ 1 where C = c(1 + cec)ec(2+cec).

Proof. First observe that for all z, w ∈ C, we have

∣∣ew − (1 + z)
∣∣ ≤ |w − z|+ ∞∑

n=2

|w|n

n!
≤ |w − z|+ |w|2e|w|
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so that ∣∣ewn,k − (1 + zn,k)
∣∣ ≤ c

n2
+
( c
n

)2

ec/n ≤ c+ c2ec

n2
.

Therefore, using the inequality

(
1 +

c

n

)n
≤ ec (5.7)

and the formula

∏
k∈S

xk −
∏
k∈S

yk =
∑

∅6=T⊆S

[(∏
k/∈T

yk

)(∏
k∈T

(xk − yk)
)]

(5.8)

for a difference of products with S = {1, 2, . . . , n}, we have∣∣∣∣∣
n∏
k=1

(1 + zn,k)−
n∏
k=1

ewn,k

∣∣∣∣∣ ≤ ∑
∅6=T⊆S

(∏
k/∈T

|1 + zn,k| ·
∏
k∈T

∣∣ewn,k − (1 + zn,k)
∣∣)

≤
∑

∅6=T⊆S

(∏
k/∈T

(
1 +

c

n

)
·
∏
k∈T

c(1 + cec)

n2

)

=

(
1 +

c

n

)n ∑
∅6=T⊆S

(
c(1 + cec)

n2 + nc

)|T |
≤ ec

∑
∅6=T⊆S

(
c(1 + cec)

n2

)|T |
= ec

[(
1 +

c(1 + cec)

n2

)n
− 1

]
.

Applying the inequality

∣∣(1 + z)n − 1
∣∣ ≤ n|z|(1 + |z|)n−1, (5.9)

we have ∣∣∣∣∣
n∏
k=1

(1 + zn,k)−
n∏
k=1

ewn,k

∣∣∣∣∣ ≤ ec · n · c(1 + cec)

n2
·
(

1 +
c(1 + cec)

n2

)n−1

≤ c(1 + cec)ec

n
· ec(1+cec)/n ≤ C

n

which establishes (5.6). �
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Lemma 5.4. Let
{
zQ, wQ : Q ∈ S

(r)
L

}
⊆ C and assume there exists a constant c > 0

such that |zQ| ≤ 1 + c
νL
, |wQ| ≤ c

νL
, and |zQ − (1 +wQ)| ≤ c

ν2L
for all Q ∈ S

(r)
L . Then∣∣∣∣∣ ∏

Q∈S(r)L

(zQ)ν −
∏

Q∈S(r)L

(1 + νwQ)

∣∣∣∣∣ ≤ ec/ν
r−1

νr−1
ν2−L.

Proof. First, we have

∣∣(zQ)ν − (1 + wQ)ν
∣∣ ≤ ∣∣(zQ)− (1 + wQ)

∣∣ ν−1∑
k=0

|zQ|ν−k|1 + wQ|k ≤
νc

ν2L

(
1 +

c

νL

)ν
and ∣∣(1 + wQ)ν − (1 + νwQ)

∣∣ ≤ ν2|wQ|2(1 + |wQ|)ν−2 ≤ ν2c2

ν2L

(
1 +

c

νL

)ν
hence

|(zQ)ν − (1 + νwQ)| ≤ νc

ν2L

(
1 +

c

νL

)ν
+
ν2c2

ν2L

(
1 +

c

νL

)ν
≤ ν2(c+ 1)2

ν2L

(
1 +

c

νL

)ν
.

Therefore, using the formula (5.8) for a difference of products, we have∣∣∣∣∣ ∏
Q∈S(r)L

(zQ)ν −
∏

Q∈S(r)L

(1 + νwQ)

∣∣∣∣∣ ≤ ∑
∅6=T⊆S(r)L

(∏
Q/∈T

|zQ|ν
)(∏

Q∈T

∣∣(zQ)ν − (1 + νwQ)
∣∣)

≤
∑

∅6=T⊆S(r)L

∏
Q/∈T

(
1 +

c

νL

)ν ∏
Q∈T

(
ν2(c+ 1)2

ν2L

(
1 +

c

νL

)ν )
=
(

1 +
c

νL

)νL−r−1
[(

1 +
ν2(c+ 1)2

ν2L

)νL−r
− 1

]
.

Finally, applying the inequalities (5.7) and (5.9), we obtain∣∣∣∣∣ ∏
Q∈S(r)L

(zQ)ν −
∏

Q∈S(r)L

(1 + νwQ)

∣∣∣∣∣ ≤ ec/ν
r−1

νL−r
1

ν2L−2

(
1 +

ν2(c+ 1)2

ν2L

)νL−r−1

≤ ec/ν
r−1

νr
eν

2(c+1)2/νL+r

ν2−L ≤ ec/ν
r−1

νr−1
ν2−L

as required. �
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Lemma 5.5. Let M be an integer which exceeds max I(λ). If L is taken so large that

|x| ≤ pM |SL| for every x ∈ A, then

⋃
x∈A

I(λ+ x
|SL|

) ⊆ {1, 2, . . . ,M} (5.10)

hence

n(λ+ x
|SL|

) =
M∑
r=1

g(r)(λ+ x
|SL|

)

νr
for all x ∈ A (5.11)

and

NL(AλL) =
M∑
r=1

N (r)
L (AλL), P-almost surely. (5.12)

Proof. Since M exceeds max I(λ), we have λ ≥ (1 +σ)λM . It means for each r > M ,

λ+ x
|SL|
≥ (1 + σ)(λM − pM) = (1 + σ)λM+1 ≥ (1 + σ)λr

hence g(r)(λ+ x
|SL|

) = 0 which establishes (5.10) and (5.11). This further implies that

P
(
λ(r) ∈ AλL

)
= 0 for each r > M

which establishes (5.12). �

Let g(r)
n be the density for

λ(r) − λ(r+n) = ξ(r) + ξ(r+1) + · · ·+ ξ(r+n−1)

Then g(r)
1 is the density for ξ(r) so we have

g
(r)
n+1 = g(r)

n ∗ g
(r+n)
1 (5.13)

and

g(r) = g(r)
n ∗ g(r+n) (5.14)
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where g(r) is the density for λ(r). Now put

hn =
n∑
r=1

νn−rg
(r)
n−r+1 = νn−1g(1)

n + νn−2g
(2)
n−1 + · · ·+ νg

(n−1)
2 + g

(n)
1 . (5.15)

Notice that h1 = g
(1)
1 and for n > 1, by (5.13), we obtain the recursive formula

hn = νhn−1 ∗ g(n)
1 + g

(n)
1 = (νhn−1 + δ) ∗ g(n)

1 . (5.16)

By (5.14), we obtain n(λ) by convolution of ν−MhM(λ) with (ν − 1)g(M+1)(λ)

n(λ) =
M∑
r=1

(ν − 1)g(r)(λ)

νr
=

(ν − 1)(hM ∗ g(M+1))(λ)

νM
(5.17)

where M exceeds max I(λ).

5.2 Proof of Poisson statistics

Let F≥r be the σ-algebra generated by all eigenvalues of rank at least r, i.e.,

F≥r = σ
(
λQ : Q ∈ Vr

)
and similarly,

F>r = σ
(
λQ : Q ∈ Vr+1

)
.

Proposition 5.6. Let M and L be as in Lemma 5.5. Then for 2 ≤ n ≤M + 1,

E
(
zNL(AλL)

∣∣F≥n) = z

M∑
r=n
N (r)
L (AλL)∏

Q∈S(n)L

(
1 + (z−1)|A|(ν−1)

νL
νhn−1(λ− λQ)

)
+ εn (5.18)

where

‖εn‖∞ ≤ ν2−L
n−1∑
k=1

e2ν2+γ−k

νk
(5.19)



52

and γ is chosen so large that

νγ/4 > max
{
|A|,

∫
A
|x|dx, ‖g1

(n)‖∞, ‖(g1
(n))′‖∞, ‖hn‖∞

}
for all n ≤M + 1.

Proof. The proof is by induction. We will first establish (5.18) and (5.19) for n = 2.

Since N (r)
L (AλL) is F≥2-measurable for r ≥ 2, it follows from (5.12) that

E
(
zNL(AλL)

∣∣ F≥2

)
= z

M∑
r=2
N (r)
L (AλL)

E
(
zN

(1)
L (AλL)

∣∣ F≥2

)
. (5.20)

Note also that

zN
(1)
L (AλL) =

∏
Q∈S(1)L

z
1
Aλ
L

(λQ)
=
∏

Q∈S(2)L

∏
Q(1)⊆Q

z
1
Aλ
L

(ξ(1)+λQ)
.

Since E
(
zN

(1)
L (AλL)

∣∣ F≥2

)
depends only on λQ for Q ∈ S

(2)
L , since the ξ(1)’s are i.i.d.

and independent of F≥2, and since each cube contains ν cubes of preceeding rank, we

have

E
(
zN

(1)
L (AλL)

∣∣ F≥2

)
= ψ2

(
λQ : Q ∈ S

(2)
L

)
where for constants

{
`Q : Q ∈ S

(2)
L

}
⊆ supp(λ(2)),

ψ2

(
`Q : Q ∈ S

(2)
L

)
= E

∏
Q∈S(2)L

∏
Q(1)⊆Q

z
1
Aλ
L

(ξ(1)+`Q)
=
∏

Q∈S(2)L

(
Ez

1
Aλ
L

(ξ(1)+`Q)
)ν
.

Recalling that h1 = g
(1)
1 is the density for ξ(1), we see that

Ez
1
Aλ
L

(ξ(1)+`)
= 1 + (z − 1)P

(
ξ(1) + ` ∈ AλL

)
= 1 + (z − 1)

∫
AλL

h1(x− `) dx

= 1 + (z−1)|A|(ν−1)
νL

h1(λ− `) + (z − 1)Tg
(1)
1 (λ− `)
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where by Lemma 5.2, the remainder Tg(1)
1 (λ− `) is of order O(ν−2L)

‖Tg1
(1)‖∞ ≤

|A|‖g1
(1)‖∞ + ‖(g1

(1))′‖∞
∫
A
|x|dx

ν2L−2
≤ νγ/2 + νγ/2

ν2L−2
≤ ν3+γ/2

ν2L
.

Therefore, since

∣∣∣∣(z − 1)|A|(ν − 1)h1(λ− `)
νL

∣∣∣∣ ≤ 2|A|(ν − 1)‖h1‖∞
νL

≤ 2ν1+γ/2

νL
,

it follows by Lemma 5.4 with c = 2ν3+γ/2 that∣∣∣∣∣ψ2

(
λQ : Q ∈ S

(2)
L

)
−
∏

Q∈S(2)L

(
1 + (z−1)|A|(ν−1)

νL
νh1(λ− λQ)

) ∣∣∣∣∣ ≤ e2ν2+γ/2

ν
ν2−L

hence taking

ε2 = E
(
zNL(AλL)

∣∣ F≥2

)
− z

M∑
r=2
N (r)
L (AλL)∏

Q∈S(2)L

(
1 + (z−1)|A|(ν−1)

νL
νh1(λ− λQ)

)

=

(
E
(
zN

(1)
L (AλL)

∣∣ F≥2

)
−
∏

Q∈S(2)L

(
1 + (z−1)|A|(ν−1)

νL
νh1(λ− λQ)

))
z

M∑
r=2
N (r)
L (AλL)

and keeping in mind that |z| = 1, we obtain (5.18) and (5.19) for n = 2.

Now assume (5.18) and (5.19) have been proven for n. Observe that

zN
(n)
L (AλL) =

∏
Q∈S(n)L

z
1
Aλ
L

(λQ)
=

∏
Q∈S(n+1)

L

∏
Q(n)⊆Q

z
1
Aλ
L

(ξ(n)+λQ)
.

Subtracting εn and then dividing (5.18) by zN
(r)
L (AλL) for r ≥ n+ 1, we obtain

(
E
(
zNL(AλL)

∣∣F≥n)− εn) z− M∑
r=n+1
N (r)
L (AλL)

= zN
(n)
L (AλL)

∏
Q∈S(n)L

(
1 + (z−1)|A|(ν−1)

νL
νhn−1(λ− λQ)

)

=
∏

Q∈S(n+1)
L

∏
Q(n)⊆Q

[
z
1
Aλ
L

(ξ(n)+λQ)
(

1 + (z−1)|A|(ν−1)
νL

νhn−1(λ− ξ(n) − λQ)
)]
.

(5.21)
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Since F>n ⊆ F≥n, we have

E
(
zNL(AλL)

∣∣ F>n) = E
(
E
(
zNL(AλL)

∣∣ F≥n) ∣∣ F>n).
Re-conditioning the right-hand side of (5.21) on F>n, keeping in mind that each

zN
(r)
L (AλL) is F>n-measurable for r ≥ n+ 1, we obtain

E
(
zNL(AλL)

∣∣ F>n) = ψn+1

(
λQ : Q ∈ S

(n+1)
L

)
z

M∑
r=n+1
N (r)
L (AλL)

+ E
(
εn
∣∣ F>n)

where

ψn+1

(
`Q : Q ∈ S

(n+1)
L

)
= E

∏
Q∈S(n+1)

L

∏
Q(n)⊆Q

[
z
1
Aλ
L
(ξ(n)+`Q)

(
1 + (z−1)|A|(ν−1)

νL
νhn−1(λ− ξ(n) − `Q)

)]

=
∏

Q∈S(n+1)
L

[
E

(
z
1
Aλ
L
(ξ(n)+`Q)

(
1 + (z−1)|A|(ν−1)

νL
νhn−1(λ− ξ(n) − `Q)

))]ν
.

Observe that

Ez
1
Aλ
L

(ξ(n)+`)
= 1 + (z − 1)

∫
AλL

g
(n)
1 (x− `)dx

= 1 + (z−1)|A|(ν−1)
νL

g
(n)
1 (λ− `) + (z − 1)Tg

(n)
1 (λ− `)

while

E
(
z
1
Aλ
L
(ξ(n)+`)

hn−1(λ− ξ(n)− `)
)

=

∫
z
1
Aλ
L
(x)
g

(n)
1 (x− `)hn−1(λ− x)dx

=

(∫
+(z − 1)

∫
AλL

)
g

(n)
1 (x− `)hn−1(λ− x)dx

= 1
ν
(hn − g(n)

1 )(λ− `) + (z − 1)

∫
AλL

g
(n)
1 (x− `)hn−1(λ− x)dx
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where we have used (5.16) to arrive at the last equality. Then

E

(
z
1
Aλ
L
(ξ(n)+`)

(
1 + (z−1)|A|(ν−1)νhn−1(λ−ξ(n)−`)

νL

))
= Ez

1
Aλ
L
(ξ(n)+`)

+ (z−1)|A|(ν−1)
νL

ν E
(
z
1
Aλ
L
(ξ(n)+`)

hn−1(λ− ξ(n)− `)
)

= 1 + (z−1)|A|(ν−1)hn(λ−`)
νL

+ (z − 1)

[
Tg

(n)
1 (λ− `) + |A|(ν−1)

νL−1

∫
AλL

g
(n)
1 (x− `)hn−1(λ− x)dx

]
.

The remainder term is O(ν−2L). By Lemmas 5.1 and 5.2 we have∣∣∣∣∣Tg(n)
1 (λ− `) +

|A|(ν − 1)

νL−1

∫
AλL

g
(n)
1 (x− `)hn−1(λ− x)dx

∣∣∣∣∣
≤
|A|‖g(n)

1 ‖∞ +
(∫

A
|x|dx

)
‖(g(n)

1 )′‖∞
ν2L−2

+
(ν − 1)|A|2‖g(n)

1 ‖∞‖hn−1‖∞
ν2L−2

≤ 2νγ/2

ν2L−2
+

(ν − 1)νγ

ν2L−2
≤ 2ν3+γ−2L.

Furthermore we have∣∣∣∣E(z1AλL(ξ(n)+`)
(

1 + (z−1)|A|(ν−1)
νL

νhn−1(λ− ξ(n) − `)
))∣∣∣∣

≤ 1 + 2|A|(ν−1)ν‖hn−1‖∞
νL

≤ 1 + 2(ν−1)ν1+γ/2

νL
≤ 1 + 2ν3+γ

νL

and

∣∣∣1 + (z−1)|A|(ν−1)
νL

hn(λ− `)
∣∣∣ ≤ 1 + 2|A|(ν−1)‖hn‖∞

νL
≤ 1 + 2(ν−1)νγ/2

νL
≤ 1 + 2ν3+γ

νL
.

It follows by Lemma 5.4 with c = 2ν3+γ that∣∣∣∣∣ψn+1

(
λQ : Q ∈ S

(n+1)
L

)
−

∏
Q∈S(n+1)

L

(
1 + (z−1)|A|(ν−1)

νL
νhn(λ− λQ)

) ∣∣∣∣∣ ≤ e2ν3+γ−n

νn
ν2−L.
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Finally, taking

εn+1 = E
(
zNL(AλL)

∣∣ F>n)− z M∑
r=n+1
N (r)
L (AλL) ∏

Q∈S(n+1)
L

(
1 + (z−1)|A|(ν−1)

νL
νhn(λ− λQ)

)

=

[
ψn+1

(
λQ : Q ∈ S

(n+1)
L

)
−
∏

Q∈S(n+1)
L

(
1 +

(z−1)|A|(ν−1)νhn(λ−λQ)

νL

)]
z

M∑
r=n+1
N (r)
L (AλL)

+ E
(
εn
∣∣F>n)

and keeping in mind that |z| = 1, we obtain (5.18) and (5.19) for n+ 1. �

Corollary 5.7. Let M , L and γ be as in Lemma 5.6. Then

E
(
zNL(AλL)

∣∣F>M) =
∏

Q∈S(M+1)
L

(
1 + (z−1)|A|(ν−1)

νL−1 hM(λ− λQ)
)

+O(ν−L). (5.22)

Proof.

‖εM+1‖∞ ≤ ν2−L
M∑
k=1

e2ν2+γ−k

νk
≤ 2ν2e2ν1+γ

νL
. (5.23)

�

Theorem 5.8. lim
L→∞

EzNL(AλL) = e(z−1)n(λ)|A|.

Proof. Applying Lemma 5.3 to (5.22) we see that

E
(
zNL(AλL)

∣∣F>M) = exp

(∑
Q∈S(M+1)

L

(z − 1)|A|(ν − 1)hM(λ− λQ)

νL−1

)
+O(ν−L).

as L→∞. We may rewrite the sum inside the exponent as an integral with respect

to the empirical measure N (M+1)
L (dx) of eigenvalues for (4.23) of rank M + 1. We

have

∑
Q∈S(M+1)

L

(ν−1)hM (λ−λQ)

νL−1 = 1∣∣S(M+1)
L

∣∣ ∑
Q∈S(M+1)

L

(ν−1)hM (λ−λQ)

νM
=

∫
(ν−1)hM (λ−x)

νM
N

(M+1)
L (dx)
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so that, as L→∞,

E
(
zNL(AλL)

∣∣F>M) = exp

(
(z − 1)|A|(ν − 1)

νM

∫
hM(λ− x)N

(M+1)
L (dx)

)
+O(ν−L).

But N (M+1)
L (dx) converges weakly as L → ∞ to N (M+1)(dx) = g(M+1)(x)dx. There-

fore, applying (5.17)

n(λ) =
(ν − 1)(hM ∗ g(M+1))(λ)

νM
=
ν − 1

νM

∫
hM(λ− x)g(M+1)(x) dx,

we see that

lim
L→∞

E
(
zNL(AλL)

∣∣F>M) = e(z−1)n(λ)|A|.

Taking expectations, we obtain our result. �

5.3 Statistics for eigenvalues of rank r

Theorem 5.9. lim
L→∞

EzN
(r)
L (AλL) = e(z−1)|A|(ν−1)g(r)(λ)/νr

Proof. We may directly condition on λ(L). Observe that the random variables

λQ − λ(L) = λ(r) + λ(r+1) + · · ·+ λ(L−1), for Q ∈ S
(r)
L ,

are i.i.d. with density g(r)
L−r. Then

E
(
zN

(r)
L (AλL)

∣∣λ(L)
)

= ψ(λ(L))



58

where for ` ∈ supp(λ(L)),

ψ(`) = E
∏

Q∈S(r)L

z
1
Aλ
L

(λQ−λ(L)+`)
=
(
z
1
Aλ
L

(λQ−λ(L)+`)
)νL−r

=

(
1 + (z − 1)

∫
AλL

g
(r)
L−r(x− `)dx

)νL−r

=

(
1 +

(z − 1)|A|(ν − 1)

νL
g

(r)
L−r(λ− `) + (z − 1)Tg

(r)
L−r(λ− `)

)νL−r

.

In the proof of Lemma 4.2, it was shown by considering the characteristic functions

of g(r)
n that there exists a constant c for which

∣∣g(r)
n (x)− g(r)

n (y)
∣∣ ≤ c|x− y|

(σλr)2

uniformly for all r ≥ 1 and 1 ≤ n ≤ ∞. From this it follows that ‖g(r)
n ‖∞ ≤ 2c

σλr
for

all n hence (z−1)Tg
(r)
L−r(λ−λ(L)) is O(ν−2L) as L→∞. Then, applying Lemma 5.3,

we have

E
(
zN

(r)
L (AλL)

∣∣λ(L)
)

= exp

(
(z − 1)|A|(ν − 1)

νr
g

(r)
L−r(λ− λ

(L))

)
+O(ν−L) as L→∞

hence

EzN
(r)
L (AλL) = Ee(z−1)|A|(ν−1)g

(r)
L−r(λ−λ

(L))/νr +O(ν−L) as L→∞.

Again appealing to Lemma 4.2, one can prove that g(r)
L−r(λ− λ(L))→ g(r)(λ) in some

sense and thereby obtain the result. �
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