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Abstract. After fixing a triangulation L of a k-dimensional simplex that has no new vertices on the
boundary, we introduce a triangulation operation on all simplicial complexes that replaces every k-face
with a copy of L, via a sequence of induced subdivisions. The operation may be performed in many
ways, but we show that the face numbers of the subdivided complex depend only on the face numbers
of the original complex, in a linear fashion. We use this linear map to define a sequence of polynomials
generalizing the Tchebyshev polynomials of the first kind and show, that in many cases, but not all, the
resulting polynomials have only real roots, located in the interval (−1, 1). Some analogous results are
shown also for generalized Tchebyshev polynomials of the higher kind, defined using summing over links
of all original faces of a given dimension in our generalized Tchebyshev triangulations. Generalized
Tchebyshev triangulations of the boundary complex of a cross-polytope play a central role in our
calculations, and for some of these we verify the validity of a generalized lower bound conjecture by
the second author.

1. Introduction

This paper generalizes the following idea of a Tchebyshev triangulation introduced in [7]: given any
simplicial complex K, subdivide each edge into two parts by adding a new midpoint, and triangulate
K by performing a stellar subdivision at each of the newly added midpoints. The order in which
these subdivisions had to be performed was subject to certain rules, and then the face numbers of
the resulting complex K ′ were always the same. The effect of this triangulation operation on the
face numbers fj is most easily described in terms of the F -polynomial

∑
j≥0 fj−1((x− 1)/2)j of these

complexes: the operation taking the F -polynomial of K into the F -polynomial of K ′ is an instance
of the linear map T : R[x]→ R[x] that takes each xn to Tn(x), the nth Tchebyshev polynomial of the
first kind.

A key result of the present paper, Theorem 3.3, is a wide-reaching generalization of the idea pre-
sented above. It states that the stellar subdivision operations above may be performed in any order,
and we always obtain the same face numbers. Furthermore, the statement may be generalized to the
situation where instead of subdividing each edge into two parts, we subdivide each k-dimensional face
in the same way, using a fixed triangulation L of the k-simplex that adds new vertices only in the
interior. The resulting generalized Tchebyshev triangulations are the subject of study of our present
paper.
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As we will see in Section 4, the face numbers in a generalized Tchebyshev triangulation can be easily
computed knowing the number of faces of L with given numbers of vertices on the boundary and in the
interior of the k-simplex. At the level of the F -polynomials, each fixed subdivision L induces a linear
map TL : R[x] → R[x], giving rise to a natural generalization of Tchebyshev polynomials of the first
kind, introduced in Section 5. These polynomials share many properties with the ordinary Tchebyshev
polynomials: they satisfy a Fibonacci-type recurrence (whose degree depends on the dimension k),
their multiset of zeros is symmetric to the origin, and all their real zeros belong to the interval (−1, 1).
The question naturally arises, whether these generalized Tchebyshev polynomials of the first kind also
have only real roots. A first answer to this question is given in Section 6, where we will see that the
answer is always “yes” for k = 1, and it is “no” for the simplest subdivision of a 3-simplex, obtained
by adding one new vertex in the interior and performing a stellar subdivision. In Section 7 we prove
that all roots are real also for generalized Tchebyshev polynomials of the first kind, induced by any
valid subdivision of the two-dimensional simplex.

Generalizing the construction introduced in [7], in Section 8 we introduce analogues of Tchebyshev
polynomials of the second kind, by considering summing over the links of all faces of a given dimension
of the original complex, in the subdivided complex. A lot remains to be explored regarding these
polynomials, but a few results indicate that we have found an “appropriate generalization”: our
generalized Tchebyshev polynomials of the jth kind (where j ≤ k + 1) satisfy the same recurrence
as our generalized Tchebyshev polynomials of the first kind, the multisets of their roots are also
symmetric of the origin, and their real roots also belong to the interval (−1, 1). We chose to postpone
a deeper study of their real-rootedness to a future occasion, but we established the fact that, for k = 1,
all generalized Tchebyshev polynomials of the second kind are real rooted.

Our results in Sections 5 and 8 underline the central importance of the generalized Tchebyshev tri-
angulations of the boundary complex of a crosspolytope, as the coefficients of our generalized Tcheby-
shev polynomials can be directly read off the face count in these complexes, refined by distinguishing
between original and newly added vertices. In the concluding Section 9 we prove the validity of a
conjecture by the second author [11, Conjecture 1.5], on strong generalized lower bounds for the face
numbers of some of these simplicial complexes.

Our generalized Tchebyshev triangulations offer infinitely many new ways to subdivide a simplicial
complex in such a manner that the face numbers change in a predictable fashion. In this sense our
triangulation operations generalize the notion of a barycentric subdivision. In fact, any barycentric
subdivision arises by applying a sequence of generalized Tchebyshev triangulation operations as follows:
for each k that is less than or equal to the dimension of the complex to be subdivided, we take
the generalized Tchebyshev triangulation induced by the stellar subdivision of a k-simplex obtained
after adding a single vertex in its interior (we perform these operation in decreasing order by k).
Investigating whether some face counting polynomial associated to such a triangulation has only real
roots is not a new concern: Brenti and Welker [4] showed that the h-polynomial of the barycentric
subdivision of a simplicial complex with a nonnegative h-vector has only simple real zeros. In the
future, it would be worth finding an exact description of all triangulations of a k-simplex that induces
generalized Tchebyshev polynomials having only real roots. Another interesting question is to fix a
specific generalized Tchebyshev triangulation operation, and to ask: to which simplicial complexes can
we apply them and obtain real-rooted f -polynomials and/or h-polynomials? Finally, once we have a
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better understanding of the generalized Tchebyshev polynomials of the higher kind, it will be worth
finding out how they are interconnected.

2. Preliminaries

First we recall some basic definitions and results related to simplicial complexes. For further back-
ground see, for instance, [2, 10]. Next we recall some basic facts on Tchebyshev polynomials. These
polynomials play an important role in many areas of mathematics, including combinatorics, numerical
analysis and orthogonal polynomials. However, we will only need facts on them that are discussed in
any introductory work on orthogonal polynomials, see for instance [5]. Most important formulas on
Tchebyshev polynomials are listed (without proof) in the work of Abramowitz and Stegun [1].

2.1. Simplicial complexes. A simplicial complex K on the vertex set V is a collection of subsets
of V such that {v} ∈ K for all v ∈ V , and if G ⊂ F and F ∈ K, then G ∈ K. The elements of K
are called faces. In particular, the empty set is a face of K. The link of a face σ is the subcomplex
linkK(σ) = {τ ∈ K : σ ∩ τ = ∅, σ ∪ τ ∈ K}. The join of two simplicial complexes K and L on
disjoint vertex sets is K ∗ L = {σ ∪ τ : σ ∈ K, τ ∈ L}. Thinking of the faces of K as simplices
glued together gives K a topology, and the geometric realization of K, denoted ||K||, stands for this
topological space. We say that K is a triangulation of a topological space X if ||K|| is homeomorphic
to X.

The following well known result in piecewise linear topology will be needed later, see e.g. [8, Cor.
1.16– Lemma 1.18]:

Lemma 2.1. Let L be a triangulation of a simplex such that the only vertices of L on the boundary ∂(L)
are the original vertices of the simplex, and let τ ∈ L be any face. Then linkL(τ) is homeomorphic to a
sphere if and only of it contains at least one vertex in the interior of ||L||, otherwise it is homeomorphic
to a ball.

Let (Ai)i∈I be a family of nonempty sets. Its nerve N ((Ai)I) is the simplicial complex with vertex
set I and faces all F ⊆ I such that ∩i∈FAi 6= ∅. A version of the Borsuk’s nerve-theorem [3] that we
will need is the following, see Björner [2, Theorem 10.6])

Theorem 2.2. (Nerve theorem) Let (Ai)i∈I be a family of subcomplexes of a simplicial complex K
such that ∪IAi = K and for every J ⊆ I, ∩i∈JAi is either empty or contractible. Then the nerve
complex N ((Ai)I) is homotopy equivalent to K.

The dimension of a face σ is defined by dim(σ) := |σ| − 1; the dimension of a simplicial complex
K is defined by dim(K) := max{dim(σ) : σ ∈ K}. Let fi(K) be the number of i-dimensional faces
(i-faces) of K, and let f(K) be the f -vector of K, namely, f(K) := (f−1(K), f0(K), . . . , fdim(K)(K)).

In polynomial form, the f -polynomial of K is f(K,x) :=
∑

0≤i≤dim(K)+1 fi−1(K)xi. This information

can also be encoded in the h-polynomial of K, h(K,x) :=
∑

0≤i≤dim(K)+1 hi(K)xi, given by hi =
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j=0(−1)i−j

(
n−j
i−j
)
fj−1 where n = dim(K)+1. In particular, fi−1 =

∑i
j=0

(
n−j
i−j
)
hj . Given a simplicial

complex K and a map (called coloring) a : V (K)→ {x1, x2, ..., xs}, the flag f -polynomial of (K, a) is

fa(K;x1, ..., xs) :=
∑
F∈K

∏
v∈F

a(v) ∈ Z[x1, ..., xs].

A set F is called a missing face of a simplicial complex K if F /∈ K and its boundary complex
∂(F ) = 2F \ {F} is a subcomplex of K. For F ∈ K, the stellar subdivision of K at F is the simplicial
complex K(F ) = StellarK(F) = (K \ {T ∈ K : F ⊆ T}) ∪ {vF} ∗ ∂(F) ∗ linkK(F), where vF is not a
vertex of K. The j-skeleton of K, denoted K≤j , is the subcomplex of K consisting of all faces in K
of dimension ≤ j.

2.2. Tchebyshev polynomials. The Tchebyshev polynomials Tn(x) of the first kind and the Tcheby-
shev polynomials Un(x) of the second kind are usually defined by the formulas

(2.1) Tn(cos(α)) = cos(n · α) and Un(cos(α)) =
sin((n+ 1)α)

cos(α)
,

see [1, (22.3.15) and (22.3.16)]. Equivalently, they may be defined recursively as follows. Both poly-
nomial sequences satisfy the same recurrence Pn(x) = 2xPn−1(x) − Pn−2(x) (all occurrences of the
letter P need to be replaced by T resp. U), see [1, (22.7.4) and (22.7.5)]. Only the initial conditions
are different: we have T0(x) = 1, T1(x) = x; U0(x) = 1 and U1(x) = 2x.

They share the following properties, which will be explored for our generalized Tchebyshev polyno-
mials.

Theorem 2.3. For all n ≥ 0, the polynomials Tn(x) and Un(x) satisfy:
(1) their degree is n,
(2) symmetry: (−1)nPn(−x) = Pn(x) for Pn = Tn, Un, and
(3) all their roots are real, simple, and belong to the interval (−1, 1).

The first two statements are immediate consequences of the recursive definition, the third statement
may be shown in at least two different ways: by direct calculation of the roots from (2.1), or by invoking
general results from the theory of orthogonal polynomials. We refer the reader to [5] for details which
we will not review here as most of our generalized Tchebyshev polynomials will not be sequences of
orthogonal polynomials, see Remark 5.6.

3. Generalized Tchebyshev triangulations

In this section we fix a triangulation L of the k-dimensional simplex such that the only vertices of
L on the boundary ∂(L) are the original vertices of the simplex. We will use the notation ∂(L) for
the subcomplex of boundary faces (this is also the boundary complex of the original k-simplex) and
the notation Int(L) for the family of (closed) faces contained in the interior of L. Given any family
of faces C we will use V (C) to denote the set of vertices of the faces in the family C. Any face σ ∈ L
may be uniquely written as the disjoint union of σ ∩ V (∂(L)) and σ ∩ V (Int(L)).
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Definition 3.1. Let L be a triangulation of the k simplex, containing new vertices in the interior only.
Given any simplicial complex K, a simplicial complex K ′ is a generalized Tchebyshev triangulation
of K induced by L if there is an ordered list σ1, . . . , σm of the k-dimensional faces of K, listing each
k-dimensional face exactly once, and an ordered list K0,K1, . . . ,Km of simplicial complexes such that
K0 = K, Km = K ′ and, for each i ≥ 1, the complex Ki is obtained from Ki−1 by replacing the face
σi with an isomorphic copy Li of L and the family of faces {σi ∪ τ : τ ∈ link(σi)} containing σi with
the subdivided complex {σ′ ∪ τ : σ′ ∈ Li, τ ∈ link(σi)}.

Obviously, given any ordered list σ1, . . . , σm of the k-dimensional faces of K, and a list of bijections
φσi : V (∂(L))→ V (σi) for 1 ≤ i ≤ m, there is exactly one list of simplicial complexes K0,K1, . . . ,Km

satisfying the condition given in Definition 3.1. Using a different list may result in a non-isomorphic
triangulation, as shown in the following example.

Example 3.2. Let L be the path with 2 edges (triangulating the 1-simplex), K be the union of the two
triangles {v1, v2, v3} and {v1, v2, v4} sharing the edge {v1, v2}. Let K ′ be the generalized Tchebyshev
triangulation of K defined by the ordering of edges {v1, v2}, {v1, v3}, {v2, v3}, {v1, v4}, {v2, v4} and
let K ′′ be the generalized Tchebyshev triangulation of K defined by the ordering {v1, v3}, {v2, v3},
{v2, v4}, {v1, v4}, {v1, v2}. Then K ′ is a cone (over an 8-cycle) and K ′′ is not, see Fig. 1. (Here
specifying the bijection φσi is not important as we obtain isomorphic complexes for both choices.)

v1

v2

v4 v4 v4

K K ′ K ′′

L

v2 v2

v3 v3 v3

v1v1

Figure 1. Illustration to Example 3.2

However, K ′ and K ′′ have the same f -vector. This is not a coincidence as the following result
shows.

Theorem 3.3. Given a triangulation L of the k-dimensional simplex and an arbitrary simplicial
complex K, all generalized Tchebyshev triangulations of K, induced by L, have the same f -vector.

Theorem 3.3 follows from setting y = x in the following, more general statement.

Let c = cK : V (K ′)→ {x, y} be the coloring c(v) = x if v ∈ V (K) and c(v) = y if v ∈ V (K ′)−V (K).
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Theorem 3.4. Given a triangulation L of the k-dimensional simplex, let K ′ be any generalized
Tchebyshev triangulation of K induced by L. Then the flag f -polynomial of (K ′, c), namely

fc(K
′;x, y) =

∑
σ∈K′

x|σ∩V (K)|y|σ∩(V (K′)\V (K))|,

depends only on the f -vector of K in a linear fashion and is independent of the particular choice of
K ′. Thus, we will denote it by f(K;x, y).

Proof. We need to show that given L, there exist linear functionals li,j : R[z] → R such that for any
simplicial complex K and any generalized Tchebyshev triangulation K ′ of K induced by L, one has

fc(K
′;x, y) =

∑
i,j

li,j(f(K, z))xiyj .

First we reduce to the case where K is a simplex. Do to so, we make the following easy observation:

(*) If H is a subcomplex of K then the induced order on the k-simplices in H (keeping the same
bijections φσ : V (∂(L)) → V (σ) for all k-faces σ ∈ H) gives H ′ which equals to the restriction of K ′

to the subspace ||H|| of ||K||.

In particular, by restriction cK induces a coloring of V (H ′) which is the same as cH : V (H ′)→ {x, y}.
Thus, if F is a top dimensional face of K then

fc(K
′;x, y) = fc((K − {F})′;x, y) + fc(F

′;x, y)− fc((∂F )′;x, y),

hence, by repeating for all top dimensional faces of K,

fc(K
′;x, y) = fc((K≤dim(K)−1)′;x, y) + fdim(K)(K)(fc(F

′;x, y)− fc((∂F )′;x, y)).

By induction on dimension, we already know that there exist linear functionals l
(dim(K))
i,j : R[z]≤dim(K) →

R such that for all complexes T of dimension < dim(K), fc(T
′;x, y) =

∑
i,j l

(dim(K))
i,j (f(T ), z)xiyj . If

we show the assertion of the theorem for the (dim(K))-simplex, then l
(dim(K))
i,j can be extended to

l
(dim(K)+1)
i,j : R[z]≤dim(K)+1 → R by setting l

(dim(K)+1)
i,j (zdim(K)+1) to be the coefficient of xiyj in

fc(F
′;x, y)− fc((∂F )′;x, y).

Thus, assume K is an (n − 1)-dimensional simplex. We will show now by induction on n that
fc(K

′;x, y) does not depend on the choice of K ′, only on n, in which case we use fn(x, y) to stand for
fc(K

′;x, y). We claim that fn(x, y) is given by fn(x, y) = (1 + x)n for n ≤ k and by the recurrence
formula (which shows the independence of the choice of K ′)
(3.1)

fn(x, y) =
∑

∅6=I⊆F(L)

(−1)|I|−1(1 + y)|
⋂

F∈I F∩V (Int(L))|fn−k−1+|
⋂

F∈I F∩V (∂(L))|(x, y) for n ≥ k + 1.

Here F(L) is the set of facets of L and the summation runs over all nonempty subfamilies I of F(L).
For n > k, we argue by induction: the subdivision of σ1 induces a bijection ι from F(σ′1) to F(K1)
by ι(F ) = F ∪ (V (K) − V (σ1)). Denote by U = 2U the simplex on the finite vertex set U and all
its faces, and for a family U of finite sets let U be the simplicial complex ∪U∈UU . For a face σ ∈ K ′
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let N(σ) := σ ∩ (V (K ′) \ V (K)) and O(σ) = σ ∩ V (K). (The letters N and O in N(σ) and O(σ),
respectively, are meant to refer to “old”, respectively, “new” vertices.) Observe that the restriction

of K ′ to ||ι(F )|| is the subcomplex (ι(F ))′ = N(F ) ∗ (V (K)− V (σ) ∗ O(F ))′, and by the induction

hypothesis its contribution to fc(K
′;x, y) is (1+y)|N(F )|fn−|N(F )|(x, y). (Note that indeed |N(F )| > 0

as all facets of σ1 contain a vertex in Int(σ1).) As K ′ = ∪F∈F(σ′1)(ι(F ))′, inclusion-exclusion gives

(3.1). Here are the details:

fn(x, y) =
∑

∅6=S⊆F(σ′1)

(−1)|S|−1fc(∩F∈Sι(F )
′
;x, y) =

∑
∅6=S⊆F(σ′1)

(−1)|S|−1fc(∩F∈SN(F ) ∗ (∩F∈SO(F ) ∗ (V (K)− V (σ1)))′;x, y).

Now, fc(∩F∈SN(F );x, y) = (1 + y)|∩F∈SN(F )| and, by induction,

fc(∩F∈S(O(F ) ∗ (V (K)− V (σ1)))′;x, y) = fn−(k+1)+|∩F∈SO(F )|(x, y).

The bijection ι finishes the proof. �

Example 3.5. Let k = 1 and let L be the triangulation of the 1-dimensional simplex obtained by adding
the midpoint of the 1-simplex as a new vertex, as in Example 3.2. Certain generalized Tchebyshev
triangulations induced by this complex L were considered in [7], where it was shown that the face
numbers in these triangulations are independent of the numbering of the vertices. Theorem 3.3
generalizes these results even for this particular choice of L.

Using Lemma 2.1 we may rephrase (3.1) as follows.

Proposition 3.6. The polynomials fn(x, y) are also given by fn(x, y) = (1 + x)n for n ≤ k and by
the recurrence

fn(x, y) =
∑

σ∈L\∂(L)

(−1)k+1−|σ|(1 + y)|σ∩V (Int(L))| · fn−k−1+|σ∩V (∂(L))|(x, y) for n ≥ k + 1.

Proof. Let us fix a face σ ∈ L and consider only those subsets I ⊆ F(L) for which we have

(3.2) σ =
⋂
F∈I

F.

Note that I 6= ∅ is equivalent to σ ∈ L. Each I ⊆ F(L) satisfying (9.4) contributes a term of the form

(−1)|I|−1(1 + y)|σ∩V (Int(L))| · fn−k−1+|σ∩V (∂(L))|(x, y) to the right hand side of (3.1).

Assume first that σ is not a facet of L. Then we may identify each I with the collection of facets
I ′ := {F \ σ : F ∈ I} of link(σ). Condition (9.4) is then equivalent to requiring that the intersection
of the facets of link(σ) listed in I ′ is empty, equivalently the vertex set I ′ is not a face of the nerve
complex N (link(σ)) of link(σ). In this case the total contribution of all families I ⊆ F(L) satisfying
(9.4) to the right hand side of (3.1) is ∑

I′⊆V (N (link(σ)))

(−1)|I
′|−1 − χ̃(N (link(σ)))

 · (1 + y)|σ∩V (Int(L))| · fn−k−1+|σ∩V (∂(L))|(x, y).
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Here χ̃(N (link(σ))) is the reduced Euler characteristic of N (link(σ)) which is the same as χ̃(link(σ))
by Borsuk’s nerve theorem, Theorem 2.2. By Lemma 2.1, χ̃(link(σ)) is nonzero exactly when σ ∩
V (Int(L)) 6= ∅ and then it is (−1)k−|σ|, the reduced Euler characteristic of a (k − |σ|)-dimensional

sphere. Since σ is not a facet of L, we have |V (N (link(σ)))| ≥ 1 and the sum
∑
I′⊆V (N (link(σ)))(−1)|I

′|−1

is zero.

Finally, consider the case when σ is a facet of L. Then (9.4) holds for exactly one I ⊆ F(L), namely
the family I = {σ}. The contribution of this I to the right hand side of (3.1) is

(−1)|I|−1 · (1 + y)|σ∩V (Int(L))| · fn−k−1+|σ∩V (∂(L))|(x, y)

which equals

(−1)k+1−|σ| · (1 + y)|σ∩V (Int(L))| · fn−k−1+|σ∩V (∂(L))|(x, y),

since |I| − 1 = k + 1− |σ| = 0. �

4. A generating function for the polynomials fn(x, y)

The recurrence given in Proposition 3.6 allows to write a generating function formula for the poly-
nomials fn(x, y). To state it in a more concise fashion we introduce the magic polynomial rL(u, v) of
the simplicial complex L given by

(4.1) rL(u, v) =
∑

σ∈L\∂L

u|σ∩V (∂L)|v|σ∩V (Int(L)| − uk+1.

Proposition 4.1. The generating function f(x, y, t) :=
∑∞

n=0 fn(x, y)tn is given by

f(x, y, t) =
1

1− t(x+ 1)

(
1− rL(−1− x,−1− y)

rL(−1/t,−1− y)

)
.

Proof. Proposition 3.6 may be rewritten as

f(x, y, t) =

k∑
n=0

(1 + x)n · tn

+
∑

σ∈L\∂L

(−1)k+1−|σ|(1 + y)|σ∩V (Int(L))|tk+1−|σ∩V (∂(L)|
∞∑

n=k+1

fn−k−1+|σ∩V (∂L)|(x, y)tn−k−1+|σ∩V (∂L)|

=
1− (1 + x)k+1tk+1

1− (1 + x)t

+
∑

σ∈L\∂L

(−1)k+1−|σ|(1 + y)|σ∩V (Int(L))|tk+1−|σ∩V (∂(L)|

f(x, y, t)−
|σ∩V (∂L)|−1∑

n=0

(1 + x)ntn

 .



GENERALIZED TCHEBYSHEV TRIANGULATIONS 9

After subtracting
∑

σ∈L\∂L(−1)k+1−|σ|(1+y)|σ∩V (Int(L))|tk+1−|σ∩V (∂(L)|f(x, y, t) on both sides, the left

hand side becomes1−
∑

σ∈L\∂L

(−1)k+1−|σ|(1 + y)|σ∩V (Int(L))|tk+1−|σ∩V (∂(L)|

 f(x, y, t) = −(−t)k+1rL

(
−1

t
,−1− y

)
f(x, y, t),

and the right hand side becomes

1− (1 + x)k+1tk+1

1− (1 + x)t
− tk+1

∑
σ∈L\∂L

(−1)k+1−|σ|(1 + y)|σ∩V (Int(L))|
(

1

t

)|σ∩V (∂(L)| 1− ((1 + x)t)|σ∩V (∂L)|

1− (1 + x)t

which is easily seen to be equal to

−(−t)k+1rL(−1/t,−1− y) + (−t)k+1rL(−1− x,−1− y)

1− (1 + x)t

Dividing both sides by −(−t)k+1rL(−1/t,−1− y) yields the stated equality. �

Let fon(x, y) denote the contribution to f(K;x, y) of adding a single facet of dimension (n − 1).
Knowing fon(x, y) allows to express f(K;x, y) directly since we have

(4.2) f(K;x, y) =

dim(K)+1∑
j=0

fj−1(K)foj (x, y).

Applying (4.2) to the case when K is the (n− 1)-dimensional simplex yields

(4.3) fn(x, y) =
n∑
j=0

(
n

j

)
foj (x, y).

As an immediate consequence we obtain the generating function identity

∞∑
n=0

fn(x, y)tn =

∞∑
j=0

foj (x, y)tj
∞∑
k=0

(
k + j

j

)
tk =

∞∑
j=0

foj (x, y)
tj

(1− t)j+1
.

Substituting t := u/(1 + u) in the previous equation and rearranging yields

∞∑
j=0

foj (x, y)uj =
1

1 + u

∞∑
n=0

fn(x, y)

(
u

1 + u

)n
=

1

1 + u
f

(
x, y,

u

1 + u

)
.

This equation and Proposition 4.1 have the following consequence.

Corollary 4.2. The generating function fo(x, y, t) :=
∑∞

n=0 f
o
n(x, y)tn is given by

fo(x, y, t) =
1

1− tx

(
1− rL(−1− x,−1− y)

rL
(−1−t

t ,−1− y
) ) .
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5. Generalized Tchebyshev polynomials of the first kind

Following [7] we define the F -polynomial of a simplicial complex K as the polynomial

F (K,x) :=

dimK+1∑
j=0

fj−1(K)

(
x− 1

2

)j
.

Let L be the simplicial complex considered in Example 3.5. As an immediate generalization of [7,
Proposition 3.3], Theorem 3.4 gives the following.

Proposition 5.1. Let L be the path with two edges. Let K be any simplicial complex and K ′ be any
generalized Tchebyshev triangulation of K induced by L. Let Tn(x) be the n-th Tchebyshev polynomial
of the first kind. Then the linear map T : R[x]→ R[x] given by T (xn) := Tn(x) satisfies

T (F (K,x)) = F (K ′, x).

Inspired by Proposition 5.1 we make the following definition.

Definition 5.2. Let L be a triangulation of the k-dimensional simplex such that the only vertices of L
on the boundary ∂(L) are the original vertices of the simplex. We define the generalized Tchebyshev
polynomial TLn (x) of the first kind as the image of xn under the unique linear map TL : R[x] →
R[x] that has the following property: given any simplicial complex K and any generalized Tchebyshev
triangulation K ′ of K, induced by L, we have

(5.1) TL(F (K,x)) = F (K ′, x).

The linear map TL in Definition 5.2 above is well-defined: let T1 : R[x] → R[x] be the invertible
linear map satisfying T1(f(K,x)) = F (K,x) for all simplicial complexes K, and T2 : R[x] → R[x]
be the linear map from Theorem 3.4 satisfying T2(f(K,x)) = f(K ′, x) (plugging y = x). Then
TL = T1T2T

−1
1 . We now compute TLn (x) explicitly. When K is an (n − 1)-dimensional simplex, we

have

F (K,x) =
n∑
j=0

(
n

j

)(
x− 1

2

)j
=

(
x+ 1

2

)n
and F (K ′, x) = fn

(
x− 1

2
,
x− 1

2

)
.

As a consequence TL is given by

(5.2) TL
((

x+ 1

2

)n)
= fn

(
x− 1

2
,
x− 1

2

)
.

Since

xn =

(
2 · x+ 1

2
− 1

)n
=

n∑
k=0

(
n

k

)
(−1)n−k2k

(
x+ 1

2

)k
,

equation (5.2) is equivalent to

(5.3) TLn (x) = TL(xn) =
n∑
k=0

(
n

k

)
(−1)n−k2kfk

(
x− 1

2
,
x− 1

2

)
.
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Using (5.3) we obtain the following generating function formula for the polynomials TLn (x).

∞∑
n=0

TLn (x)tn =
∞∑
k=0

2kfk

(
x− 1

2
,
x− 1

2

)
tk
∞∑
m=0

(
m+ k

k

)
(−t)m

=
∞∑
k=0

fk

(
x− 1

2
,
x− 1

2

)
· (2t)k

(1 + t)k+1
, i.e.,

(5.4)
∞∑
n=0

TLn (x)tn =
1

1 + t
f

(
x− 1

2
,
x− 1

2
,

2t

1 + t

)
.

This equation and Proposition 4.1 yield

(5.5)
∞∑
n=0

TLn (x)tn =
1

1− xt
·
rL
(
−1+t

2t ,−
1+x

2

)
− rL

(
−1+x

2 ,−1+x
2

)
rL
(
−1+t

2t ,−
1+x

2

) .

Combining Equation (5.3) with (4.3) yields

TLn (x) =
n∑
k=0

(
n

k

)
(−1)n−k2k

k∑
j=0

(
k

j

)
foj

(
x− 1

2
,
x− 1

2

)

=
n∑
j=0

foj

(
x− 1

2
,
x− 1

2

)
2j
(
n

j

) n∑
k=j

(
n− j
k − j

)
(−1)n−k2k−j .

The inside sum is (2− 1)n−j = 1 and we obtain

(5.6) TLn (x) =

n∑
j=0

foj

(
x− 1

2
,
x− 1

2

)
2j
(
n

j

)
,

thus by (4.2) we observe that:

Corollary 5.3. TLn (x) is the F -polynomial of the generalized Tchebyshev triangulation of the boundary
complex of an n-dimensional cross-polytope, induced by L.

Corollary 5.3 allows us to prove several properties of the generalized Tchebyshev polynomials of the
first kind.

Theorem 5.4. For all n ≥ 0, the polynomials TLn (x) have the following properties:

(1) TLn (x) is a polynomial of degree n;
(2) TLn (1) = 1;
(3) (−1)nTLn (−x) = TLn (x);
(4) all real roots of TLn (x) belong to the interval (−1, 1).

Proof. Let (f−1, . . . , fn−1), respectively (h0, . . . , hn) be the f -vector and h-vector, respectively, of the
generalized Tchebyshev triangulation of the boundary complex of an n-dimensional cross-polytope,
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induced by L. By Corollary 5.3 we have

TLn (x) =
n∑
j=0

fj−1

(
x− 1

2

)j
.

Clearly TLn (x) has degree n. Substituting fj−1 =
∑j

i=0

(
n−i
n−j
)
hi for each j, the previous equation may

be rewritten as

TLn (x) =

n∑
j=0

(
x− 1

2

)j j∑
i=0

(
n− i
n− j

)
hi =

n∑
i=0

hi

n∑
j=i

(
n− i
n− j

)(
x− 1

2

)j
.

By the binomial theorem we obtain

(5.7) TLn (x) =
1

2n

n∑
i=0

hi(x− 1)i(x+ 1)n−i.

Substituting x = 1 into (5.7) yields TLn (1) = h0 = 1. The third statement follows from the Dehn-
Sommerville equations hi = hn−i.

As a consequence, the set of real zeros of TLn (x) is symmetric to the origin. Thus, to prove the last
statement, we only need to show that TLn (x) has no real zero that is larger than 1. This is an immediate
consequence of (5.7) and the fact that the h-vector of a simplicial sphere has only nonnegative entries,
with h0 = hn = 1 being strictly positive. �

We remark that the above proof shows that the statements in Theorem 5.4 are valid for the F -
polynomial of any homology sphere.

We conclude this section with a recursive description of the polynomials TLn (x).

Theorem 5.5. The polynomials TLn (x) satisfy TLn (x) = xn for n ≤ k. For all n ≥ k+1, the polynomial
TLn (x) satisfies a recurrence of the form

TLn (x) =
k+1∑
j=1

pLj (x)TLn−j(x).

Here each pLj (x) is a polynomial of x and it equals to the coefficient of tj in (−2t)k+1rL
(
−1+t

2t ,−
1+x

2

)
.

Proof. For n ≤ k, the generalized Tchebyshev triangulation of the boundary complex of an n-
dimensional cross-polytope is the boundary complex itself whose F -polynomial is xn.

To prove the second part of the statement, let us rewrite (5.5) as
∞∑
n=0

TLn (x)tn =
1

1− xt
·

(−2t)k+1rL
(
−1+t

2t ,−
1+x

2

)
− (−2t)k+1rL

(
−1+x

2 ,−1+x
2

)
(−2t)k+1rL

(
−1+t

2t ,−
1+x

2

) .

Since the total degree in u and v of each term of rL(u, v) is at most k + 1, the denominator and the
numerator of the second factor on the right hand side are polynomials of x and t. Substituting x = 1/t
into the numerator on the right hand side makes it vanish. As a consequence, we may always simplify
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by (1 − tx) on the right hand side, yielding a numerator of degree at most k in t. The degree of the
denominator (−2t)k+1rL

(
−1+t

2t ,−
1+x

2

)
, as a polynomial of t is exactly k + 1, and the coefficient of

t0 is (−1) since tk+1 comes only from the term −uk+1 of rL(u, v). Multiplying both sides with the
denominator on the right hand side and comparing coefficients of tn on both sides yields a recurrence
of the stated form. �

Remark 5.6. Theorem 5.5 implies that {TLn (x)}n≥0 is not a sequence of orthogonal polynomials if the
dimension of L is more than one. Indeed, every sequence {Pn(x)}n≥0 of monic orthogonal polynomials
satisfies a recurrence of the form

Pn(x) = (x− cn)Pn−1(x)− λnPn−2(x) for n ≥ 1,

where P−1(x) = 0, P0(x) = 1, the numbers cn and λn are constants, λn 6= 0 for n ≥ 2, and λ1 is
arbitrary (see [5, Ch. I, Theorem 4.1]). If the dimension of L is greater than one, we have TLn (x) = xn

for n ≤ 2, forcing c1 = 0, c2 = 0 and λ2 = 0; in contradiction with the requirement of λn 6= 0 for
n ≥ 2.

Theorem 5.5 may be used to find an explicit formula for TLn (x), whenever the characteristic equation
associated to the linear recurrence can be solved. Note that, by Theorem 5.5, this characteristic
equation is obtained by replacing each tj by qk+1−j in (−2t)k+1rL(−(1+ t)/2t,−(1+x)/2) and finding
the zeros of the resulting polynomial of q. This transformation is the same as substituting t = 1/q
and multiplying by qk+1, thus the characteristic equation of the linear recurrence is

(5.8) (−2)k+1rL

(
−1 + q

2
,−1 + x

2

)
= 0.

If we find k + 1 linearly independent solutions q0(x), q1(x), . . . , qk(x) of Equation (5.8) above then we
may look for a general formula of the form

TLn (x) = α0(x)q0(x)n + · · ·+ αk(x)qk(x)n.

Since TLn (x) = xn holds for n ≤ k, the array of functions (α0(x), . . . , αk(x)) may be found as the
solution of the system of equations

(5.9)


1 1 · · · 1

q0(x) q1(x) · · · qk(x)
...

...
. . .

...
q0(x)k q1(x)k · · · qk(x)k




α0(x)
α1(x)

...
αk(x)

 =


1
x
...
xk

 .

Such a system of equations may be solved using Cramer’s rule and the formula for the Vandermonde
determinant. Explicit examples will be worked out in Section 6.

6. Generalized Tchebyshev polynomials of the first kind and real rootedness

By Theorem 5.4 the generalized Tchebyshev polynomials of the first kind TLn (x) possess many
important properties of the ordinary Tchebyshev polynomials of the first kind Tn(x). An important
property of the polynomials Tn(x) is that all their roots are distinct and real. Since TLn (x) = xn holds
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for n ≤ k, for k ≥ 2 the roots of TLn (x) are not distinct for all n any more. The question remains
whether all roots of all polynomials TLn (x) could still be real. In this section we explore this question.

We begin with a complete description of the case k = 1. The only way to subdivide a 1-dimensional
simplex is to select s ≥ 1 distinct vertices in its interior, thus creating a path of length s + 1. The
magic polynomial rL(u, v) is given by

rL(u, v) = sv + 2uv + (s− 1)v2 − u2.

To use Theorem 5.5, we observe that

(−2t)2rL

(
−1 + t

2t
,−1 + x

2

)
= t2((x2 − 1)(s− 1)− 1) + 2xt− 1,

yielding the recurrence

TLn (x) = 2x · TLn−1(x) + ((x2 − 1)(s− 1)− 1)TLn−2(x) for n ≥ 2.

Note that for s = 1 the above recurrence degenerates into the well-known recurrence of the Tchebyshev
polynomials Tn(x). Taking into account the initial conditions TL0 (x) = 1 and TL1 (x) = x it is not hard
to derive (after solving a quadratic characteristic equation) the following explicit formula:

(6.1) TLn (x) =
(x−

√
s(x2 − 1))n + (x+

√
s(x2 − 1))n

2
for n ≥ 0.

Proposition 6.1. Let s ≥ 1 be an integer and L be the subdivision of the 1-simplex by s interior
vertices. Then the polynomial TLn (x) has n distinct real roots in the open interval (−1, 1).

Proof. Consider the function

φ(x) =
x√

x2 + s(1− x2)

on the interval [−1, 1]. Its derivative, φ′(x) = s/(s(1 − x2) + x2)3/2, is positive on (−1, 1), thus φ(x)
is strictly increasing on (−1, 1). Obviously we also have limx→−1 φ(x) = −1 and limx→1 φ(x) = 1.
Therefore φ(x) is a bijection from [−1, 1] to itself. The function α(x) := arccos(φ(x)) is well-defined
and maps the interval [−1, 1] bijectively onto the interval [0, π]. Using (6.1), it is not difficult to show
that we have

(6.2) TLn (x) =
(√

x2 + s(1− x2)
)n

cos(nα(x)),

which, for s = 1, is equivalent to the first half of (2.1). Now the statement follows from the fact that
there are n different values of α in (0, π) for which cos(nα) = 0. �

Another interesting special case is when L is obtained by adding just one vertex to the interior of
a k-dimensional simplex and we subdivide the simplex into k+ 1 facets by connecting this new vertex
to all other vertices of the simplex. The resulting magic polynomial is

rL(u, v) = (1 + u)k+1v − (1 + v)uk+1.
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Example 6.2. For k = 3, direct calculation shows that

TL6 (x) = 6− 9x2 − 60x4 + 64x6.

By Descartes’ rule of signs, the polynomial 6− 9x− 60x2 + 64x3 has at most two positive roots. As a
consequence TL6 (x) has at most 4 real roots (Maple finds 4 real roots indeed, but this is unimportant).
None of these roots can be a double root, because the derivative of TL6 (x) is relative prime to TL6 (x).
Therefore not all roots of TL6 (x) are real.

As a special case of Theorem 7.14, in the next section we will see that, for k = 2, all roots of TLn (x)
are real.

7. Two-dimensional generalized Tchebyshev triangulations

Let L be an arbitrary triangulation of the two-dimensional simplex that has new vertices only in its
interior. In this section we will show that the generalized Tchebyshev polynomials TLn (x) have only
real roots.

Let m be the number of interior vertices in L and let e be the number of edges in L with one end
on the boundary and the other end in the interior of L. Thus the total number of vertices in L is

f0(L) = m+ 3.

Each edge, except for the three edges on the boundary, is included in exactly two faces, yielding
2f1(L) = 3(f2(L) + 1), whereas Euler’s formula gives f0(L) + f2(L) = f1(L) + 1. Solving these
equations for f1(L) and f2(L) yields

f1(L) = 3(m+ 1) and f2(L) = 2m+ 1.

In order to compute the magic polynomial, we need to refine the above face count. Let us say that a
face has type (i, j) if it has i vertices on the boundary and j vertices in the interior. Of the 3m + 3
edges, 3 edges have type (2, 0), e edges have type (1, 1), and the remaining 3m − e edges have type
(0, 2). Of the 2m + 1 2-faces, three have type (2, 1). To count the number of faces of type (1, 2),
observe that each face of type (1, 2) or (2, 1) contains exactly two edges of type (1, 1) and, conversely,
each edge of type (1, 1) belongs to exactly two faces of type (1, 2) or (2, 1). Thus the total number
of faces of types (1, 2) or (2, 1) is the same as the number of type (1, 1) edges, that is, e. Since the
number of type (2, 1) faces is 3, there are e− 3 faces of type (1, 2). Finally, the remaining 2m+ 1− e
faces must have type (0, 3). Therefore the magic polynomial associated to L is

(7.1) rL(u, v) = mv + euv + (3m− e)v2 + 3u2v + (e− 3)uv2 + (2m+ 1− e)v3 − u3.

A closer look at the face-counting argument above also implies the following statement.

Lemma 7.1. The parameters e and m above satisfy e ≤ min(2m + 1, 3m). Furthermore, e = 3m is
only possible when e = 3 and m = 1.

Indeed, as observed above, 3m−e is the number of edges of type (0, 2), and 2m+1−e is the number
of faces of type (0, 3). The number of edges of type (0, 2) can be zero only if there is one vertex in the
interior of L, in which case we have e = 3.
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By (7.1) we have

(−2t)3rL

(
−1 + t

2t
,−1 + x

2

)
= ((2m+ 1− e) · x3 + (e− 2m)x) · t3 + ((e− 3)x2 − e) · t2 + 3x · t− 1.

By Theorem 5.5, the polynomials TLn (x) satisfy the initial conditions TL0 (x) = 1, TL1 (x) = x, TL2 (x) =
x2 and the recurrence

TLn (x) = 3xTLn−1(x) + ((e− 3)x2 − e)TLn−2(x) + ((2m+ 1− e) · x3 + (e− 2m)x) · TLn−3(x) for n ≥ 3.

The characteristic equation associated to the above recurrence is

(7.2) (q − x)3 + e(1− x2)(q − x) + 2mx(1− x2) = 0.

According to Cardano’s formula, this characteristic equation has the following three solutions:

(7.3) qj(x) = x+ ωju(x) + ω2jv(x)

where j ∈ {0, 1, 2}, ω = ei2π/3,

(7.4) u(x) =
3
√

1− x2 ·
3

√
−mx+

√
m2x2 +

e3(1− x2)

27
and

(7.5) v(x) =
3
√

1− x2 ·
3

√
−mx−

√
m2x2 +

e3(1− x2)

27
.

We restrict the domain of the functions qj(x) to real values of x in the interval [−1, 1]. Note that
q0(x) is a real-valued function, whereas q1(x) and q2(x) are complex valued functions such that q2(x)
is the complex conjugate of q1(x). The common length of q1(x) and q2(x) is given by

||q1(x)||2 = ||q2(x)||2 = q1(x) · q2(x) = (x+ ωu(x) + ω2v(x))(x+ ω2u(x) + ωv(x)), that is,

(7.6) ||q1(x)||2 = ||q2(x)||2 = x2 − (u(x) + v(x)) · x+ u(x)2 + v(x)2 − u(x)v(x).

Similarly, for j = 0, (7.3) yields |q0(x)|2 = (x+ u(x) + v(x))2, that is,

(7.7) |q0(x)|2 = x2 + u(x)2 + v(x)2 + 2x(u(x) + v(x)) + 2u(x)v(x).

For future reference we note that

(7.8) u(0) =
√
e/3, v(0) = −

√
e/3, implying

(7.9) q0(0) = 0, q1(0) =
√
ei and q2(0) = −

√
ei.

Similarly

(7.10) u(1) = u(−1) = v(1) = v(−1) = 0 implies

(7.11) qj(−1) = −1 and qj(1) = 1 for j = 0, 1, 2.

As a part of the derivation of Cardano’s formula, u(x) and v(x) are known to satisfy the following
equalities:

(7.12) u(x) · v(x) = −e
3
· (1− x2), and

(7.13) u(x)3 + v(x)3 = 2mx(x2 − 1).
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Besides these classical identities, we will use the following two inequalities about u(x) and v(x).

Lemma 7.2. The function u(x)3−v(x)3 is nonnegative on the interval [−1, 1]. Equality to zero holds
only when x = ±1.

This lemma is a direct consequence of

u(x)3 − v(x)3 = 2(1− x2)

√
m2x2 +

e3(1− x2)

27
.

Lemma 7.3. The functions u(x) and v(x) satisfy

x(u(x) + v(x)) ≤ 0

for all real x ∈ [−1, 1]. Equality holds exactly when x = ±1 or x = 0.

Proof. Consider the function w : [−1, 1]→ R, given by

w(x) =
3

√
−mx+

√
m2x2 +

e3(1− x2)

27
+

3

√
−mx−

√
m2x2 +

e3(1− x2)

27

This is a continuous function on [−1, 1], satisfying w(1) = 3
√
−2m < 0 and w(−1) = 3

√
2m > 0.

Furthermore, the only solution of w(x) = 0 on the interval [−1, 1] is x = 0. We obtain that w(x)
is positive on [−1, 0) and negative on (0, 1]. Since, by (7.4) and (7.5), w(x) satisfies u(x) + v(x) =
3
√

1− x2 · w(x), the function u(x) + v(x) has the same signature on the interval (−1, 1), and the
statement follows directly. �

As indicated at the end of Section 5, we may look for TLn (x) in the form

(7.14) TLn (x) = α0(x)q0(x)n + α1(x)q1(x)n + α2(x)q2(x)n,

where the functions α0(x), α1(x) and α2(x) may be found by solving (5.9).

Lemma 7.4. On the interval (−1, 1), the functions α0(x), α1(x) and α2(x) are given by

α0(x) =
(u(x)2 − u(x)v(x) + v(x)2)(u(x)− v(x))

3(u(x)3 − v(x)3)
, and

αj(x) =
(u(x)2 + (−1)ji

√
3u(x)v(x)− v(x)2)(u(x) + v(x))

3(u(x)3 − v(x)3)
for j = 1, 2.

Proof. We use Cramer’s formula to solve (5.9). For all αj(x), the denominator in this formula is the
Vandermonde determinant

det

 1 1 1
q0(x) q1(x) q2(x)
q0(x)2 q1(x)2 q2(x)2

 = (q1(x)− q0(x))(q2(x)− q0(x))(q2(x)− q1(x)),

which, by (7.3), equals

((ω − 1)u(x) + (ω2 − 1)v(x))((ω2 − 1)u(x) + (ω − 1)v(x))((ω2 − ω)u(x) + (ω − ω2)v(x)).
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After taking out a (ω− 1) from the first factor, (ω2− 1) from the second factor and (ω2−ω) from the
third factor, and after noting that

(ω − 1)(ω2 − 1)(ω2 − ω) = −3
√

3i,

we obtain that the common denominator in Cramer’s formula is

−3
√

3i(u(x)− ω2v(x))(u(x)− ωv(x))(u(x)− v(x)) = −3
√

3i(u(x)3 − v(x)3).

The numerators in Cramer’s formula are also Vandermonde determinants and may be computed in a
completely analogous way. The stated equalities follow after simplifying by −

√
3i. �

By Lemma 7.2, u(x)3−v(x)3 is real and strictly positive on the interval (−1, 1), hence the formulas
stated in Lemma 7.4 above are well-defined. In order to extend the definition of αj(x) to x = ±1 in a
continuous fashion, we state the following, equivalent formulas for αj(x).

Lemma 7.5. On the set (−1, 1) \ {0}, the functions αj(x) are equivalently given by

(7.15) αj(x) =
mx

e(qj(x)− x) + 3mx
for j = 0, 1, 2.

These formulas may be continuously extended to [−1, 1] by setting αj(1) = 1/3, αj(−1) = 1/3 for
j = 0, 1, 2, αj(0) = 0 for j = 1, 2 and α0(0) = 1.

Proof. Observe first that, by (7.13), the sum u(x)3 + v(x)3 is nonzero on the set (−1, 1) \ {0} thus the
same holds for u(x) + v(x) by u(x)3 + v(x)3 = (u(x) + v(x))(u(x)2 − u(x)v(x) + v(x)2). Using these
observations, we may rewrite α0(x) as

α0(x) =

u(x)3 + v(x)3

u(x) + v(x)
(u(x)− v(x))

3(u(x)3 − v(x)3)
=

2mx(x2 − 1)

3(u(x)2 + u(x)v(x) + v(x)2)(u(x) + v(x))
.

Here u(x) + v(x) may be replaced by q0(x)−x. Furthermore, by (7.12), the factor u(x)2 +u(x)v(x) +
v(x)2 in the denominator above may be rewritten as

u(x)2 + u(x)v(x) + v(x)2 = (u(x) + v(x))2 − u(x)v(x) = (q0(x)− x)2 − e(x2 − 1)

3
.

Thus we obtain

α0(x) =
2mx(x2 − 1)

3
(

(q0(x)− x)2 − e(x2−1)
3

)
(q0(x)− x)

=
2mx(x2 − 1)

3((q0(x)− x)3 − e(x2 − 1)(q0(x)− x))
.

After expanding (q0(x) − x)3 and using (7.2) to replace q0(x)3 with a linear expression of q0(x), we
obtain

α0(x) =
2mx(x2 − 1)

6mx(x2 − 1) + 2e(x2 − 1)(q0(x)− x)
.

Simplifying by 2(x2 − 1) yields the stated equation for α0(x). The calculations for α1(x) and α2(x)
are completely analogous, therefore omitted.

Substituting x = 1, respectively x = −1, in the stated formulas for αj(x) yields αj(1) = 1/3 and
αj(−1) = 1/3, as we have qj(1) = 1 and qj(−1) = −1 for j = 0, 1, 2. These are obviously continuous
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extensions of the functions αj(x). By (7.9), for j ∈ {1, 2} the denominator e(qj(x) − x) + 3mx is
nonzero at x = 0 and αj(0) = 0 is a continuous extension of the given formula. Finally, to find the
limit of α0(x) at x = 0, observe that using (7.13) we may rewrite

q0(x) = x+ u(x) + v(x) = x+
u(x)3 + v(x)3

u(x)2 − u(x)v(x) + v(x)2

as

q0(x) = x

(
1 +

2m(x2 − 1)

u(x)2 − u(x)v(x) + v(x)2

)
.

Using (7.8), the last equation yields

(7.16) lim
x→0

q0(x)

x
=
e− 2m

e
.

Equation (7.16) implies

lim
x→0

α0(x) = lim
x→0

m

e(q0(x)/x− 1) + 3m
= 1.

�

Definition 7.6. For j = 0, 1, 2, we define the functions αj(x) on the interval [−1, 1] by the formulas
stated in Lemma 7.5.

Note that the functions αj(x) are also given by the equation (5.9) on the interval (−1, 1), and for
such values of x our definition is equivalent to the solution given in Lemma 7.4. Our definition extends
these functions to x = ±1 in a continuous way, such that they are still solutions of the system (5.9)
which is degenerate for these values of x.

Corollary 7.7. The function α1(x)
x is well-defined and nowhere zero on [−1, 1].

Indeed, by Lemma 7.5 we may write

(7.17)
α1(x)

x
=

m

e(q1(x)− x) + 3mx
.

For a real x, the denominator can only be zero when q1(x)−x = ωu(x) +ω2v(x) is a real number, i.e.,
when u(x) = v(x). The only solutions of u(x) = v(x) are x = ±1, however, by (7.11), the denominator
is nonzero at x = ±1.

Next we make an analogous observation for q1(x).

Proposition 7.8. The function q1(x) is nowhere zero on the interval [−1, 1].

Proof. If q1(x) = 0, then (7.6) gives

x2 − (u(x) + v(x)) · x+ u(x)2 + v(x)2 − u(x)v(x) = 0.

Consider this as a quadratic equation for x, with real coefficients. It can only have a real solution
when its discriminant

D = (u(x) + v(x))2 − 4(u(x)2 + v(x)2 − u(x)v(x))
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is not negative. Using (7.12), the discriminant may be rewritten as

D = −3(u(x)2 + v(x)2) + 2e(x2 − 1).

Here −3(u(x)2 + v(x)2) is at most zero, and, for x ∈ [−1, 1], we also have 2e(x2 − 1) ≤ 0. Thus
D ≥ 0 is only possible when x = ±1. However, q1(x) is not zero at x = ±1, as we have q1(1) = 1 and
q1(−1) = −1. �

The proof of the main result of this section depends on two key inequalities, stated in the next two
propositions.

Proposition 7.9. We have ||q1(x)|| ≥ |q0(x)| for all x ∈ [−1, 1]. Equality holds exactly when x = ±1.

Proof. The difference of (7.6) and (7.7) is

||q1(x)||2 − |q0(x)|2 = −3x(u(x) + v(x))− 3u(x)v(x).

Here, for any x ∈ [−1, 1], the summand −3x(u(x) + v(x)) is nonnegative by Lemma 7.3 and the
summand −3u(x)v(x) is nonnegative by Equation (7.12). The sum is zero only when both summands
are zero, which is only possible when x = ±1. �

Proposition 7.10. The functions αj(x) and qj(x) satisfy

2||α1(x)q1(x)|| ≥ |α0(x)q0(x)|

on the interval [−1, 1]. Equality is only possible when x = 0.

Proof. Assume, by way of contradiction, that

|α0(x)q0(x)| ≥ 2||α1(x)q1(x)|| = ||α1(x)q1(x)||+ ||α2(x)q2(x)||

holds for some x ∈ [−1, 1] \ {0}. Then, by the triangle inequality, we also have

|α0(x)q0(x)| ≥ ||α1(x)q1(x) + α2(x)q2(x)||.

Using (7.14) with n = 1 yields

|α0(x)q0(x)| ≥ |x− α0(x)q0(x)|.

Since we excluded the possibility of x = 0, we obtain that the sign of α0(x)q0(x) must equal the sign
of x. Using (7.15) and the Viète formulas associated to the characteristic equation (7.2) it is easy to
derive the following formula:

α0(x)α1(x)α2(x) =
m2x2

27m2x2 + e3(1− x2)

On the left hand side, α1(x)α2(x) = ||α1(x)||2 is positive by Corollary 7.7. The right hand side is also
positive. We obtain that α0(x) must be positive and thus the sign of x must also equal the sign of
q0(x). Since we also have 3m− e ≥ 0 (by Lemma 7.1), using (7.15) we may write

|α0(x)q0(x)| = |mx|
∣∣∣∣ q0(x)

eq0(x) + (3m− e)x

∣∣∣∣ = |mx| |q0(x)|
e|q0(x)|+ (3m− e)|x|

.
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The rightmost expression can only increase if we replace |q0(x)| with a larger number. Thus, Propo-
sition 7.9 yields

|α0(x)q0(x)| ≤ |mx| ||q1(x)||
e||q1(x)||+ (3m− e)|x|

.

Applying the triangle inequality to the denominator on the right hand side yields

|α0(x)q0(x)| ≤
∣∣∣∣∣∣∣∣ mxq1(x)

eq1(x) + (3m− e)x

∣∣∣∣∣∣∣∣ = ||α1(x)q1(x)||,

which contradicts our assumptions unless α1(x)q1(x) = α0(x)q0(x) = 0, impossible for x 6= 0 by
Corollary 7.7 and Proposition 7.8. �

As a consequence of Corollary 7.7 and Proposition 7.8, for n ≥ 1 we may rewrite (7.14) as
(7.18)

TLn (x)

x
=
||α1(x)q1(x)n||

|x|

 α0(x) q0(x)
x∣∣∣∣∣∣α1(x)

x q1(x)
∣∣∣∣∣∣
(

q0(x)

||q1(x)||

)n−1

+
2∑
j=1

αj(x)
x qj(x)∣∣∣∣∣∣α1(x)
x q1(x)

∣∣∣∣∣∣
(

qj(x)

||q1(x)||

)n−1
 .

Introducing the functions

gn(x) =
α0(x) q0(x)

x∣∣∣∣∣∣α1(x)
x q1(x)

∣∣∣∣∣∣
(

q0(x)

||q1(x)||

)n−1

, ε(x) =
α1(x)
x q1(x)

||α1(x)
x q1(x)||

and ρ(x) =
q1(x)

||q1(x)||
,

we may rewrite (7.18) as

(7.19)
TLn (x)

x
=
||α1(x)q1(x)n||

|x|

(
gn(x) + ε(x) · ρ(x)n−1 + ε(x) · ρ(x)

n−1
)
.

The next three lemmas gather properties of the functions gn(x), ε(x), ρ(x) that will be needed later
for the proof of real-rootedness.

Lemma 7.11. For n > 1, the function gn : [−1, 1]→ R is a real-valued function satisfying gn(−1) =
(−1)n−1, gn(0) = 0 and gn(1) = 1. Furthermore, there exists a positive constant c < 2 such that
|gn(x)| ≤ c holds for all x ∈ [−1, 1].

Proof. The function gn(x) is continuous and real-valued, because the same holds for the functions
α0(x) and q0(x)/x; see (7.3) and Lemma 7.5. Direct substitution (in Equations (7.9) and (7.11), using
Lemma 7.5 and Equations (7.16) and (7.17) ) yields gn(0) = 0, gn(1) = 1 and gn(−1) = (−1)n−1. For
x 6= 0, we have

|gn(x)| = α0(x)q0(x)

||α1(x)q1(x)||
·
(
|q0(x)|
||q1(x)||

)n−1

and the inequality is a direct consequence of Propositions 7.9 and 7.10 as |gn(0)| < 2 (using compact-
ness of [−1, 1]). �

Lemma 7.12. The function ρ : [−1, 1]→ C is a continuous function whose range is the upper half of
the unit circle, centered at the origin. ρ(x) is real if and only if x = ±1, where we have ρ(−1) = −1
and ρ(1) = 1.
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Proof. Clearly ρ is continuous and we must have ||ρ(x)|| = 1 for all x ∈ [−1, 1]. The imaginary part
of q1(x) is

√
3 · (u(x)− v(x)) · i and u(x)− v(x) is strictly positive on (−1, 1), see (7.4) and (7.5). �

Lemma 7.13. The function ε : [−1, 1]→ C is continuous and its range is a proper subset of the unit
circle, centered at the origin. The real number −1 is not part of the range. If e = 3m then ε(x) = 1
for all x ∈ [−1, 1]. If e 6= 3m then ε(x) is real only when x ∈ {−1, 0, 1} and, for all other values of x,
the sign of the imaginary part of ε(x) is the same as the sign of x.

Proof. Clearly ε is continuous and satisfies ||ε(x)|| = 1. Direct substitution (into (7.9), (7.11) and
(7.17)) yields ε(−1) = 1, ε(1) = 1 and ε(0) = 1. In the case when e = 3m, we have

α1(x)

x
· q1(x) =

m

eq1(x)
· q1(x) =

1

3

and ε is identically 1. Assume from now on that e 6= 3m. Assume also that x 6∈ {−1, 0, 1} and ε(x) is
real. Substituting (7.15) into the definition of ε(x) we obtain

mq1(x)

e(q1(x)− x) + 3mx
= r

for some r ∈ R, which may be rearranged as

(m− er)q1(x) = r(3m− e)x.
On the right hand side we have a real number, whereas on the left hand side m− er is real but q1(x)
is not real for x ∈ (−1, 1) \ {0}. The two sides can only be equal, if m − er = 0 but then x must be
zero, in contradiction with our assumptions.

Assume x ∈ (0, 1). We have seen in the proof of Lemma 7.12 that the imaginary part of q1(x) is
positive. Since 3m− e is positive, the argument of e · q1(x) + (3m− e)x is smaller than the argument
of q1(x), but the imaginary part of e · q1(x) + (3m− e)x is also positive. We obtain that the argument
of the quotient

α1(x)

x
· q1(x) =

mq1(x)

e · q1(x) + (3m− e)x
belongs to the interval (0, π) and the imaginary part of ε(x) is positive. A completely analogous
reasoning may be used to prove that the imaginary part ε(x) is negative for negative x. �

Theorem 7.14. Let L be any subdivision of the triangle, with no new vertices added to the boundary.
Then the polynomials TLn (x) have only real roots.

Proof. We only need to show the statement for n ≥ 3. Since we have TLn (0) = 0, it suffices to show
that the polynomial TLn (x)/x has n− 1 distinct roots in the interval [−1, 1]. Consider the expression
of TLn (x)/x given in (7.19). It suffices to show that the function

gn(x) + ε(x) · ρ(x)n−1 + ε(x) · ρ(x)
n−1

has at least n− 1 zeroes in the interval [−1, 1]. By Lemma 7.11, the graph of the continuous function
−gn(x) is in between the horizontal lines y = −c and y = c for some 0 < c < 2. As ε(x) · ρ(x)n−1 is a
unit complex number,

fn(x) := ε(x) · ρ(x)n−1 + ε(x) · ρ(x)
n−1
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equals twice the cosine of the argument of ε(x)·ρ(x)n−1. As a consequence, the graph of the continuous
real-valued function fn(x) is between the horizontal lines y = −2 and y = 2. At the endpoints of the
interval [−1, 1] we have f(−1) = 2 · (−1)n−1 and f(1) = 2. It suffices to prove that there are n − 2
real numbers x1, x2, . . . , xn−2 satisfying −1 < x1 < · · · < xn−2 < 1 and f(xj) = 2 · (−1)n−1−j for
j = 1, . . . , n− 2. Introducing x0 = −1 and xn−1 = 1 we can then say that, for each j ∈ {1, . . . , n− 1},
in each interval (xj−1, xj), the graph of fn(x) enters and leaves the region between y = −c and y = c,
and crosses the graph of −gn(x) at least once, where we have a root of fn(x) + gn(x).

Consider first the special case when e = 3m. By Lemma 7.13 ε(x) is identically 1 and ε(x)ρ(x)n−1 =
ρ(x)n−1. By Lemma 7.12, as x moves from −1 to 1, the argument of ρ continuously changes from π

to 0. We may select xj as the least real number for which the argument of ρ(xj) is n−1−j
n−1 π. Then the

argument of ρ(x)n−1 is (n− 1− j)π and we have f(xj) = 2 · (−1)n−1−j . Because of the continuity of
ρ we must also have −1 < x1 < · · · < xn−2 < 1.

Consider finally the case when e 6= 3m. For j = 0, . . . , n−1, let zj be the least real number such that

the argument of ρ(zj) is n−1−j
n−1 π. Clearly we have −1 = z0 < z1 < . . . < zn−1 ≤ 1. Let us set x0 = −1

and xn−1 = 1 . Let us denote by k the index for which we have zk < 0 ≤ zk+1. For j = 1, . . . , k we
will show that we may select xj as an element of the interval (zj−1, zj) and for j = k+ 1, . . . , n− 2 we
will show that we may select xj as an element of the interval (zj , zj+1). This selection automatically
guarantees −1 = x0 < x1 < . . . < xn−2 < xn−1 = 1, we only need to show that the argument of
ε(xj)ρ(xj)

n−1 is (n− 1− j)π for the xj we selected.

Case 1: 1 ≤ j ≤ k, implying zj < 0. By Lemma 7.13, the imaginary part of ε(x) is negative for all
x ∈ (zj−1, zj), in other words, the argument of ε(x) belongs to the interval (−π, 0) and the argument
of ε(x)−1 belongs to the interval (0, π). The graph of the function (n − 1 − j)π + arg(ε(x)−1)) stays
strictly between the horizontal lines y = (n− 1− j)π and y = (n− j)π. As x moves from zj−1 to zj ,
the argument of ρ(x)n−1 moves from (n− 1− j + 1)π down to (n− 1− j)π, in a continuous fashion.
Thus the graph of arg(ρ(x)n−1) crosses the graph of (n−1− j)π+arg(ε(x)−1) at some xj ∈ (zj−1, zj).
For this xj , the argument of ε(xj)ρ(xj)

n−1 is (n− 1− j)π.

Case 2: k+ 1 ≤ j ≤ n− 2, implying zj ≥ 0. By Lemma 7.13, the imaginary part of ε(x) is positive
for all x ∈ (zj , zj+1). The handling of this case is left to the reader as it is completely analogous to
the previous case.

�

8. Generalized Tchebyshev polynomials of the higher kind

As a direct generalization of the construction introduced in [7], we may introduced generalized
Tchebyshev polynomials of the higher (second, third, . . . , (k + 1)st ) kind as follows.

Definition 8.1. Let L be a triangulation of the k-dimensional simplex such that the only vertices of
L on the boundary ∂(L) are the original vertices of the simplex, and let j ∈ {2, . . . , k + 1}. Let us
define UL,j : R[x] → R[x] as the unique linear map satisfying UL,j(xn) = 0 for n ≤ j − 2 and having
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the following property: given any simplicial complex K and any generalized Tchebyshev triangulation
K ′ of K, induced by L, we have

(8.1) UL,j(F (K,x)) =
∑

σ∈K,|σ|=j−1

F (linkK′(σ), x).

We define the generalized Tchebyshev polynomial UL,jn (x) of the jth kind by

UL,jn (x) = 21−j · (j − 1)!UL,j(xn+j−1).

Similarly to the map TL, the linear maps UL,j are well-defined, as a consequence of Theorem 3.4.
To see this, it is enough to show that

∑
σ∈K,|σ|=j−1 f(linkK′(σ), x) depends linearly on f(K,x). By

Theorem 3.4, there are linear functionals li,p such that fc(K
′;x, y) =

∑
i,p li,p(f(K))xiyp. Now, any

face τ ∈ K ′ with |V (K) ∩ τ | = i + j − 1 and |(V (K ′) \ V (K)) ∩ τ | = p contributes
(
i+j−1
j−1

)
to the

coefficient of xiyp in the polynomial
∑

σ∈K,|σ|=j−1 fc(linkK′(σ);x, y). Thus,

∑
σ∈K,|σ|=j−1

f(linkK′(σ), z) =
1

(j − 1)!

∂j−1

∂xj−1

∑
i,p

li,p(f(K))xiyp

∣∣∣∣∣∣
x=y=z

.

Example 8.2. Let L be the path with two edges, considered in Examples 3.2 and 3.5. Using Theo-

rem 3.4, as an immediate generalization of [7, Proposition 4.4] we obtain that the polynomials UL,2n (x)
are the ordinary Tchebyshev polynomials of the second kind.

In general, to compute UL,j , by linearity it suffices to find its value when K is an (n−1)-dimensional
simplex, where n ≥ j − 1. When K is an (n− 1)-dimensional simplex, we have

F (K, z) =

(
z + 1

2

)n
and

∑
σ∈K,|σ|=j−1

F (linkK′(σ), z) =
1

(j − 1)!

∂j−1

∂xj−1
fn (x, y)

∣∣∣∣x=(z−1)/2
y=(z−1)/2

.

As a consequence, 21−j(j − 1)!UL,j is given by

(8.2) 21−j(j − 1)!UL,j
((

z + 1

2

)n)
= 21−j ∂j−1

∂xj−1
fn (x, y)

∣∣∣∣x=(z−1)/2
y=(z−1)/2

.

Since

zn+j−1 =

(
2 · z + 1

2
− 1

)n+j−1

=

n+j−1∑
k=0

(
n+ j − 1

k

)
(−1)n+j−1−k2k

(
z + 1

2

)k
,

Equation (8.2) is equivalent to

(8.3) UL,jn (z) =

n+j−1∑
k=j−1

(
n+ j − 1

k

)
(−1)n+j−1−k21−j+k ∂j−1

∂xj−1
fk (x, y)

∣∣∣∣x=(z−1)/2
y=(z−1)/2

.
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In analogy to the derivation of (5.4), we may use (8.3) to obtain the following generating function

formula for the polynomials UL,jn (x).

(8.4)

∞∑
n=0

UL,jn (z)tn =
21−j

1 + t

∂j−1

∂xj−1
f

(
x, y,

2t

1 + t

)∣∣∣∣x=(z−1)/2
y=(z−1)/2

.

In analogy to Corollary 5.3, a completely analogous computation has the following consequence.

Corollary 8.3. Let ♦(n+j−1) be the boundary complex of an (n+j−1)-dimensional cross-polytope,
and let ♦(n+ j − 1)′ be a Tchebyshev triangulation of it, induced by L. Then we have

UL,jn (x) = 21−j · (j − 1)!
∑

σ∈♦(n+j−1),|σ|=j−1

F (link♦(n+j−1)′(σ), x).

Using this corollary, it is easy to prove the following analogue of Theorem 5.4.

Theorem 8.4. For all n ≥ 0, the polynomials UL,jn (x) have the following properties:

(1) UL,jn (x) is a polynomial of degree n;

(2) (−1)nUL,jn (−x) = UL,jn (x);

(3) all real roots of UL,jn (x) belong to the interval [−1, 1].

Theorem 8.4 naturally inspires the question: which triangulations L induce Tchebyshev polynomials
of the higher kind having only real roots? We postpone the study of this question to a future occasion.
Here we only wish to highlight one important observation that may help handle this problem in
complete analogy of the same question for the generalized Tchebyshev polynomials of the first kind:

as it is the case for the ordinary Tchebyshev polynomials, the polynomials UL,jn (x) satisfy the same
recurrence as the polynomials TLn (x).

Theorem 8.5. For all n ≥ k + 1, the polynomials UL,jn (x) satisfy a recurrence of the form

UL,jn (x) =

k+1∑
`=1

pL` (x)UL,jn−`(x).

Here each pL` (x) is a polynomial of x and it equals to the coefficient of t` in (−2t)k+1rL
(
−1+t

2t ,−
1+x

2

)
.

Proof. To obtain a proof of this statement, observe that the proof of Theorem 5.5 depends on (5.5),
which follows from (5.4) and from Proposition 4.1. In the proof of Theorem 5.5 we observed that on the
right hand side of (5.5) we may simplify by (1− tx). Note that we can make an analogous observation
“one step earlier” about the right hand side of Proposition 4.1: using rL(−1/t,−1−y) as the common
denominator on the right hand side, we may simplify the numerator rL(−1/t,−1−y)−rL(−1−x,−1−y)
by 1− t(x+ 1) and obtain a formula of the form

f(x, y, t) =
r̃L(x, y, t)

rL(−1/t,−1− y)
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for some function r̃L(x, y, t) that is a polynomial of x, y and 1/t. The denominator rL(−1/t,−1− y)
is independent of x, and remains unchanged when we take the partial derivative with respect to x,
even repeatedly. We conclude our proof by referring to (8.4) instead of (5.4). �

Using Corollary 8.3 and Theorem 8.5 it is easy to answer the question on real roots when the
dimension of L is 1.

Proposition 8.6. Let s ≥ 1 be an integer and L be the subdivision of the 1-simplex by s interior

vertices. Then the polynomial UL,2n (x) has n distinct real roots in the open interval (−1, 1).

Proof. Using Corollary 8.3 we obtain that UL,20 (x) = 21−2 · 2 = 1 and

UL,21 (x) = 21−2 · 4 · (1 + 2 · (x− 1)/2) = 2x.

In analogy of (6.1) it is easy to derive

(8.5) UL,2n (x) =
(x+

√
s(x2 − 1))n+1 − (x−

√
s(x2 − 1))n+1

2
√
s(x2 − 1)

for n ≥ 0.

The statement now follows from the fact that, in analogy to (6.2), we have

(8.6) UL,2n (x) =
(√

x2 + s(1− x2)
)n sin((n+ 1)α(x))

sin(α(x))
,

where α(x) is the function introduced in the proof of Proposition 6.1, and from the observation that
there are n different values of α in (0, π) for which sin((n + 1)α) = 0. Note that, for s = 1, (8.6) is
equivalent to the second half of (2.1). �

9. Generalized lower bounds on face numbers

We follow [11], with notational change that dimension d there is replaced by d−1 here. For d, i ≥ 1
integers, let HS(i, d) be the family of (d−1)-dimensional homology spheres without missing faces of di-

mension > i. For ∆ ∈ HS(i, d) let g(i)(∆) := g(d,i)(h(∆, t)) be the vector of coefficients when express-

ing the h-polynomial h(∆, t) in the basis Bd,i := (Pd,i(t), tPd−2,i(t), t
2Pd−4,i(t), ..., t

b d
2
cPd−2b d

2
c,i(t)),

where Pd,i(t) := (1 + t + ... + ti)q(1 + t + ... + tr), and q ≥ 0, 1 ≤ r ≤ i are the unique integers such
that d = qi+ r.

Conjecture 9.1. [11, Conjecture 1.5] If ∆ ∈ HS(i, d) then g(i)(∆) ≥ 0 (componentwise).

The case i ≥ d gives the usual g-vector and the well known g-conjecture, see e.g. [12] for more
details on the latter, and the case i = 1 gives Gal’s γ-vector and conjecture [6]. Generalizing the usual
g-polynomial and Gal’s γ-polynomial we introduce the generalized g-polynomial

(9.1) g(i)(∆, t) =

b d
2
c∑

j=0

g(i)(∆)jt
j
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Conjecture 9.1 is obviously equivalent to stating that, for any ∆ ∈ HS(i, d), all coefficients in g(i)(∆, t)
are nonnegative.

The following related results [11, Propositions 1.6 and 4.1] will be needed.

Lemma 9.2. Let ∆ ∈ HS(i, d) and ∆′ ∈ HS(i, d′).

(1) If g(i)(∆) ≥ 0 then g(i+1)(∆) ≥ 0.

(2) ∆ ∗∆′ ∈ HS(i, d+ d′) and if g(i)(∆) ≥ 0 and g(i)(∆′) ≥ 0 then g(i)(∆ ∗∆′) ≥ 0.

We will verify Conjecture 9.1 for simplicial spheres arising as generalized Tchebyshev triangulations
of ♦(d), the boundary complex of the d-cross polytope, induced by L, for certain triangulations L
considered in previous sections. Denote any simplicial sphere obtained in this way by ♦(d, L). We
have seen in Theorem 3.3 that, although the ♦(d, L) have different combinatorial types, they all have
the same f -vector, and hence the same generalized g-polynomial.

Theorem 9.3. Let ∆ ∈ HS(i, d) and F ∈ ∆ of dimension ≤ i. Note that link∆(F ) ∈ HS(i, d− |F |)
and the stellar subdivision ∆(F ) := Stellar∆(F) ∈ HS(i, d). Assume g(i)(∆) ≥ 0 and g(i)(link∆(F )) ≥
0. Then g(i)(∆(F )) ≥ 0.

Proof. Indeed link∆(F ) ∈ HS(i, d− |F |), see e.g. [11, Lemma 2.3]. To see that ∆(F ) ∈ HS(i, d) note
that the missing faces of ∆(F ) and not of ∆ are F and some missing edges containing the new vertex
vF of ∆(F ).

Let u ∈ F , then the link condition link∆(F )(uvF ) = link∆(F )(vF )∩ link∆(F )(u) holds. Moreover, this
complex is in HS(i, d− 2) and equals the join ∂(F \u) ∗ link∆(F ) of two complexes, where link∆(F ) ∈
HS(i, d − |F |) and ∂(F \ u) ∈ HS(i, |F | − 3). Note that g(|F |−2)(∂(F \ u), t) = g(∂(F \ u), t) = 1,

thus by Lemma 9.2(1) g(i)(∂(F \ u)) ≥ 0. By assumption, g(i)(link∆(F )) ≥ 0, so by Lemma 9.2(2),

g(i)(link∆(F )(uvF )) ≥ 0.

Now, the contraction vF 7→ u in ∆(F ) results in ∆. An easy computation shows h(∆(F ), t) =
h(∆, t) + th(link∆(F )(uvF ), t). Thus the generalized g-polynomial satisfies

g(i)(∆(F ), t) = g(i)(∆, t) + tg(i)(link∆(F )(uvF ), t).

By our assumption, both summands on the right hand side have nonnegative coefficients, therefore
the same holds for the left hand side. �

Corollary 9.4. Let L be the subdivision of the j-simplex with one interior vertex, namely the one
obtained by starring. Assume 1 ≤ j ≤ i. Then g(i)(♦(d, L)) ≥ 0.

Proof. Note that g(1)(♦(d), t) = γ(♦(d), t) = 1, thus by Lemma 9.2(1) g(i)(♦(d)) ≥ 0. Now ♦(d, L) is
obtained from ♦(d) by a sequence of stellar subdivisions at faces of dimension j in ♦(d). As j ≤ i,
thanks to Theorem 9.3, it is enough to verify that when subdividing the (k + 1)’th j-face Fk+1 of

∆ = ∆0 = ♦(d), as a face in the kth complex ∆k, then g(i)(link∆k
(Fk+1)) ≥ 0.
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The key observation here it that for any simplicial complex K, the operations link and stellar
subdivision commute, more precisely, if T * F are sets, then

linkK(T )(F ) ∼= (linkK(F ))(T \ F ).

(Here, if F ′ /∈ K ′ for a complex K ′ and a set F ′ then define K ′(F ′) := K ′. For |T \ F | = 1 and
F ∪ T ∈ K the isomorphism is given by mapping vT to the vertex of T \ F and the other vertices
to themselves.) Let the order of the j-faces in ∆ be F1, F2, . . .. We will prove the following stronger
assertion by double induction on d and k (for fixed 1 ≤ j ≤ i):

(**) If F ∈ ∆ is of dimension ≥ j, and does not contain any of F1, . . . , Fk, then g(i)(link∆k
(F )) ≥ 0.

The base case d < j is trivial and the base case k = 0 follows for any d as link♦(d)(F ) ∼= ♦(d−|F |), so

it has g(1)(link♦(d)(F ), t) = 1, hence g(i)(link♦(d)(F )) ≥ 0. For k > 0, link∆k
(F ) ∼= (link∆k−1

(F ))(Fk \
F ). If Fk ∪ F /∈ ∆k−1 then link∆k

(F ) = link∆k−1
(F ) and we are done by induction on k. Else, as

Fk∪F ∈ ∆k−1 and Fk, F ∈ ∆ we conclude that Fk∪F ∈ ∆. By induction on k, g(i)(link∆k−1
(F )) ≥ 0.

Also, linklink∆k−1
(F )((Fk \ F )) = link∆k−1

(F ∪ Fk). By construction of ∆k−1, F ∪ Fk does not contain

any of F1, . . . , Fk−1 (as F ∪ Fk ∈ ∆k−1), hence the induction on k says g(i)(link∆k−1
(F ∪ Fk)) ≥ 0.

Thus, by Theorem 9.3 we conclude that g(i)(link∆k
(F )) ≥ 0. �

Remark 9.5. For any subdivision L of the 1-simplex (say with k interior points), g(1)(♦(d, L)) =
γ(♦(d, L)) ≥ 0. This is known, and also follows from Theorem 9.3, as L is obtained by a sequence of
k stellar subdivisions at an edge.

We now turn to arbitrary subdivisions L of the 2-simplex.

Theorem 9.6. Let L be a subdivision of the 2-simplex, where all the new vertices are in the interior.
Then ♦(d, L) ∈ HS(2, d) and satisfies g(2)(♦(d, L)) ≥ 0.

It is clear that ♦(d, L) ∈ HS(2, d). Below we state and prove two generalizations of the second
statement.

Theorem 9.7. Let L be a subdivision of the 2-simplex, where all the new vertices are in the interior.
Then complexes ∆k = ♦(d)k, arising in the definition of a ♦(d, L), satisfy

(i) g(2)(∆k) ≥ 0 and

(ii) g(2)(link∆k
(Tk+1) ≥ 0 where Tk+1 is the (k + 1)th 2-simplex of ∆0 = ♦(d) that is subdivided.

Proof. We proceed by induction on d and k and instead of (ii) we will prove the following stronger
assertion:

(iii) If F ∈ ∆0 is of dimension ≥ 2, and does not contain any of T1, . . . , Tk, then g(2)(link∆k
(F )) ≥ 0.

The base case d < 2 is trivial, and the case k = 0 is clear as both ∆0 and link∆0(T1) are boundary
complexes of cross polytopes. Let m be the number of interior vertices in L, and T be the 2-simplex
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L subdivides. By Euler’s formula applied to the 2-sphere S = L ∪ {T}, one gets that the polynomial
f(L0, t) counting faces of L0 := L \ ∂L satisfies f(L0, t)− t3 = mt+ 3mt2 + 2mt3.

Then

f(∆k+1, t) = f(∆k, t)− t3f(link∆k
(Tk+1), t) + f(L0, t)f(link∆k

(Tk+1), t)
= f(∆k, t) + f(link∆k

(Tk+1), t)(mt+ 3mt2 + 2mt3).
(9.2)

For any (d − 1)-dimensional homology sphere ∆, h(∆, t) = (t − 1)df(∆, 1
t−1), and combined with

equation (9.2) we get

h(∆k+1, t) = h(∆k, t) +mt(t+ 1)h(link∆k
(Tk+1), t).

Note that the suspension Σ∆, i.e. the join of ∆ with the two points complex, has h-vector (1+t)h(∆, t).
Thus

h(∆k+1, t) = h(∆k, t) +mt · h(Σ link∆k
(Tk+1), t).

By induction, g(2)(∆k) ≥ 0 and g(2)(link∆k
(Tk+1)) ≥ 0, so by Lemma 9.2 also g(2)(Σ link∆k

(Tk+1)) ≥ 0.
Thus,

g(2)(∆k+1, t) = g(2)(∆k, t) +mt · g(2)(Σ link∆k
(Tk+1), t)

has only nonnegative coefficients, proving (i).

To prove (iii), if F ∪Tk /∈ ∆k then link∆k
(F ) = link∆k−1

(F ) and we are done. Else, we treat different
cases according to the cardinality of F ∩ Tk:

Case |F ∩Tk| = 0: Then link∆k
(F ) = (link∆k−1

(F ))(Tk). By induction on k, g(2)(link∆k−1
(F )) ≥ 0,

and g(2)(linklink∆k−1
(F )(Tk)) = g(2)(link∆k−1

(F ∪ Tk)) ≥ 0. Thus, by Theorem 9.3 we are done.

Case |F ∩ Tk| = 2: Then link∆k
(F ) ∼= link∆k−1

(F ), via the isomorphism mapping the vertex
v ∈ Int(Tk) adjacent to the edge Tk ∩F to the vertex Tk \F , and the other vertices to themselves. We
are done by induction on k.

Case |F ∩ Tk| = 1: Let v be the common vertex of F and Tk, and let P be the link of v in the
subdivision of Tk induced by L and the bijection φ : V (∂L) → Tk. Then P is a path, say with s
interior points (then s ≥ 1).

Then link∆k
(F ) equals the subdivision of link∆k−1

(F ) induced by subdividing the edge Tk \F by s
interior points. Thus,

f(link∆k
(F ), t) = f(link∆k−1

(F ), t) + st(1 + t)f(linklink∆k−1
(F )(Tk \ F ), t),

equivalently,

h(link∆k
(F ), t) = h(link∆k−1

(F ), t) + st · h(linklink∆k−1
(F )(Tk \ F ), t),

equivalently,

g(2)(link∆k
(F ), t) = g(2)(link∆k−1

(F ), t) + st · g(2)(linklink∆k−1
(F )(Tk \ F ), t).

By induction, both summands on the right hand side have nonnegative coefficients (for the rightmost
summand consider link∆k−1

(Tk∪F )), hence the left hand side has also only nonnegative coefficients. �
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Theorem 9.6 is a special case of Theorem 9.7 above, since ♦(d, L) is the last complex in the
sequence of complexes ∆1,∆2, . . .. Before proving the second generalization, let us make the following

observation. Obviously, for any homology sphere ∆ ∈ HS(i, d), we have g
(i)
0 (∆) = 1, since we have

h0(∆) = 1, the constant term of Pd,i(t) is 1 and all other polynomials in the basis Bd,i have zero

constant term. Therefore g(i)(∆) ≥ 0 holds (componentwise) whenever the generalized g-polynomial
given in (9.1) has only real negative roots. Theorem 9.6 is thus also a consequence of the already
shown Corollary 5.3, Theorems 5.4 and 7.14, and of Theorem 9.8 below.

Theorem 9.8. Let ∆ be a homology sphere. Then the following are equivalent:

(i) the roots of F (∆, t) are all real numbers in the interval (−1, 1);
(ii) the roots of h(∆, t) are all real and negative;

(iii) the roots of g(2)(∆, t) are all real numbers in the interval [−1, 0).

Proof. The equivalence of the first two statements may be shown by refining the argument presented
in [7, Section 6]. It was noted there that the F -polynomial and the h-polynomial of ∆ are connected
by the formula

(1− t)d · F
(

∆,
1 + t

1− t

)
= h(∆, t).

The Preliminaries of [7] remind of the well-known fact that the map µ : x 7→ t = (x − 1)/(x + 1)
establishes a bijection between the unit disk |x| < 1 and the open left t-halfplane. Using this bijection
it is easy to show that the Schur-stability of F (∆, x), defined as having all its roots inside the unit
disk |x| < 1, implies the Hurwitz-stability of h(4, t), defined as having all its zeros in the open
left t-halfplane. As noted in [7, Proposition 6.4], the converse is also true when the reduced Euler
characteristic of ∆ is not zero, which is the case for homology spheres. To arrive at the presently
stated equivalence we only need to observe that the restriction of µ to the interval (−1, 1) establishes
a bijection between this interval and the set of all negative real numbers.

We are left two show the equivalence of the second and the third statement. Directly from the
definitions we have

Pk,2(t) =

{
(1 + t+ t2)k/2 for even k;

(1 + t+ t2)(k−1)/2(1 + t) for odd k.

Using this formula it is easy to show

h(∆, t) =

{
(1 + t+ t2)d/2g(2)(∆, t/(1 + t+ t2)) for even d;

(1 + t+ t2)(d−1)/2(1 + t)g(2)(∆, t/(1 + t+ t2)) for odd d.

Without loss of generality we may assume d is odd, the case of even d being similar but simpler.
Assume first all roots of g2(4, t) are real from [−1, 0), i.e., we have

g(2)(∆, t) = r(t− r1)(t− r2) · · · (t− r(d−1)/2)

for some positive real number r and some negative real numbers r1, . . . r(d−1)/2 ∈ [−1, 0). (The fact

that r is real and positive follows from g(2)(∆)0 = 1.) Then we have

(9.3) h(4, t) = r(1 + t)(t− r1(1 + t+ t2)) · · · (t− r(d−1)/2(1 + t+ t2)).
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The roots of h(4, t) are −1 and the roots of all quadratic equations of the form t− rk(1 + t+ t2) = 0,
that is numbers of the form

(9.4) sk =
(rk − 1)−

√
(rk − 1)2 − 4r2

k

(−2rk)
and of the form tk =

(rk − 1) +
√

(rk − 1)2 − 4r2
k

(−2rk)
.

Here rk − 1 is negative, the summand
√

(rk − 1)2 − 4r2
k is real but strictly less than |rk − 1|, and the

denominator −2rk is positive. We obtain that each sk and tk is a negative real number. To prove the
converse, observe that Equation (9.3) holds in general for any homology sphere ∆, with some complex
roots r1, . . . , r(d−1)/2 and complex leading coefficient r. The roots of h(4, t) are still −1 and the
complex numbers sk and tk given by (9.4). (Recall that taking the square root of a complex number
is unique up to sign, thus the pair {sk, tk} is well-defined.) Assuming that each sk and tk is a negative
real number, we obtain that each

1− rk
rk

= sk + tk

is a negative real number and so each rk is a real number, belonging to the set (−∞, 0)∪ (1,∞). Thus√
(rk − 1)2 − 4r2

k = (−rk)(tk − sk)

is also a real number, and we must have (rk − 1)2− 4r2
k ≥ 0. This is equivalent to rk ∈ [−1, 1/3]. The

intersection of [−1, 1/3] with (−∞, 0) ∪ (1,∞) is the set [−1, 0). �

Remark 9.9. An analogous statement for i = 1 was shown by Gal [6, Remark 3.1.1] who proved that,
for a homology sphere ∆, the polynomial h(∆, t) has only negative real roots if and only if the same

holds for g(1)(∆, t).
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