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Abstract

Kinetoplast DNA (kDNA), an essential mitochondrial structure com-
mon to trypanosomes and Leishmania, contains thousands of DNA mini-
circles that are densely packed and topologically linked into a chain mail-
like network. Experimental data indicate that every minicircle in the
network is, on average, singly linked to three other minicircles (i.e., has
mean valence 3) before replication and to six minicircles in the late stages
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of replication. The biophysical factors that determine the topology of the
network and its changes during the cell cycle remain unknown. Using
a mathematical modeling approach, we previously showed that volume
confinement alone can drive the formation of the network and that it in-
duces a linear relationship between mean valence and minicircle density.
Our modeling also predicted a minicircle valence two orders of magnitude
greater than that observed in kDNA. To determine the factors that con-
tribute to this discrepancy we systematically analyzed the relationship
between the topological properties of the network (i.e., minicircle density
and mean valence) and its biophysical properties such as DNA bending,
electrostatic repulsion, and minicircle relative position and orientation.
Significantly, our results showed that most of the discrepancy between
the theoretical and experimental observations can be accounted for by
the orientation of the minicircles with volume exclusion due to electro-
static interactions and DNA bending playing smaller roles. Our results
are in agreement with the three dimensional kDNA organization model,
initially proposed by Delain and Riou, in which minicircles are oriented al-
most perpendicular to the horizontal plane of the kDNA disk. We suggest
that while minicircle confinement drives the formation of kDNA networks,
it is minicircle orientation that regulates the topological complexity of the
network.

Keywords: Kinetoplast DNA, DNA topology, minicircle, Mathematical
Modeling

1 Introduction

Kinetoplastids are single cell flagellated protozoa some of which are parasites
that cause the human diseases African and American trypanosomiasis and Leish-
maniasis [1, 2]. The mitochondrial DNA of these organisms, called kinetoplast
DNA (kDNA), is organized into a catenated network composed of few dozen
maxicircles and thousands of minicircles. Maxicircles do not encode tRNAs
however they do contain ribosomal genes and other mitochondrial genes; their
size ranges from 20 to 40 kb. Minicircles on the other hand range in size from 1kb
to 2.5 kb and encode for guide RNAs that edit maxicircles transcripts [3, 4, 5].
The formation and maintenance of this network is still a major puzzle in spite of
significant advances through numerous biochemical and molecular studies (for
a review see [6]).

In kinetoplastid parasites, kDNA is confined within a small cylindrical struc-
ture, called the kinetoplast disk, in which DNA concentration is comparable to
that of the bacterial nucleoid [7]. Minicircircles are relaxed (instead of super-
coiled) and topologically linked into a planar network [8]. During the early
phase of the kDNA replication cycle in Crithidia fasciculata, an insect parasite
whose kDNA network structure has been studied in the most detail and closely
resembles that of kDNA networks from human parasites, minicircles are singly
linked to three other minicircles (i.e. they have mean valence equal to three) ([8],
Figure 1A). The mean minicircle valence increases from three to six in kDNA
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S-phase returning to three prior to segregation of daughter networks [9, 10].

In our earlier work we hypothesized that volume confinement is the main
contributing factor to the formation of the kDNA network. To test this hy-
pothesis, we introduced a mathematical model in which kDNA minicircles were
modeled as randomly oriented geometric circles whose centers were placed on
a planar square lattice grid (Figure 1B). Our modeling showed, in agreement
with experimental observations, that a network containing nearly all minicircles
is the most likely conformation at high minicircle density and that the mean
minicircle valence increases linearly with minicircle density [11, 12].

In this work, we first show how the predicted mean valence at the observed
in vivo minicircle density is two orders of magnitude greater than that exper-
imentally observed in kDNA. This surprisingly large discrepancy between the
predicted and observed mean valences suggests that biophysical factors other
than confinement contribute to the topological properties of the network. Type
II topoisomerases (Topo II) actively simplify the topology of DNA [13] even
under crowded cellular conditions and could maintain a lower mean valence.
However, this biological factor seems unlikely since genetic depletion of the
mitochondrial Topo II in T. brucei results in networks with simplified topolo-
gies [14, 15]. We therefore hypothesize that other biophysical factors, inherent
to the minicircle network, may play an important role in creating a network
topology simpler than expected. To test this hypothesis we provide a com-
plete quantitative characterization of the effects induced by minicircle position,
bending, electrostatic repulsion and orientation on the topological properties of
the kDNA network. These factors are of immediate interest for understanding
the formation of the kDNA network and have been qualitatively discussed in
the literature [6, 7, 9, 10, 16, 17] but never quantitatively studied. Our results
show that, while all these factors are consistent with the observed experimental
data, only minicircle orientation contributes significantly to the reduction of the
predicted mean valence. Our findings are consistent with Delain and Riou’s ex-
perimental observations and proposed three dimensional kDNA model [16]. In
their model, minicircles are arranged almost perpendicular to the circular base
of the kinetoplast disk (also known as the horizontal plane of the condensed
kDNA disk). We propose that this arrangement of minicircles is the evolution-
ary solution in Kinetoplastids to the reduction of topological complexity induced
by DNA condensation.

2 Data, Assumptions and Modeling Methods

2.1 Physical characteristics of C. fasciculata kDNA net-
works

The mathematical models in this study are based on previously published data
of the C. fasciculata kDNA network (see [6, 7] for reviews). In C. fascicu-
lata about 5, 000 2.5 kb relaxed minicircles are confined into the kinetoplast
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disk, a cylindrical structure .4 µm in height and 1 µm in diameter. Minicircles
are organized into a planar topological network in which every pair of neigh-
boring minicircles is singly linked by a Hopf link (see Figure 1A, [8]). In a
non-replicating network, each minicircle is linked to an average of three other
minicircles. The area of the horizontal plane of the condensed in vivo kDNA
disk can be expressed in terms of the minicircle radius, and its value is about
47.94r2, where r = .128µm is the radius of a minicircle. Thus the density of
minicircles in the kDNA network of C. fasciculata is about 104.3 minicircles per
squared minicircle radius.

A B	
  

C	
   D	
  

Figure 1: Hopf Links and Models proposed to analyze the topological properties
of the minicircle network. A: A Hopf link; B: A grid of minicircles whose
orientation has been biased. Volume effects are not considered and minicircle
thickness is shown to help trace the trajectory of each minicircle; C: A grid
of minicircles represented by freely jointed closed chains to study the effects of
DNA bending; D: A grid of minicircles, represented by octagonal polygons, to
study the effects of volume exclusion due to electrostatic interactions.

2.2 Biological and Mathematical Assumptions

The models described below are based on the following assumptions:

[Biological assumption] The centers of the kDNA minicircles are distributed
in the horizontal plane of the kDNA disk. This assumption is based on
two experimental observations. First, the height of the kinetoplast disk
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is about half the length of the minicircles [7, 16, 18] and second, kDNA
networks extracted from C. fasciculata are planar instead of three dimen-
sional [8].

[Mathematical assumption 1] Minicircles have their centers at the vertices
of the regular square lattice. This simplification is supported by the au-
thors’ previous work [11, 19] that shows that the topological properties
of the network do not change significantly when minicircles are placed on
triangular or hexagonal lattices or even when they are randomly displaced
from these lattices. We refer to such a lattice region with the minicircles
placed in it as minicircle grid (See Figures 1B, 1C and 1D).

[Mathematical assumption 2] Minicircles are represented by geometric flat
circles (Figure1B) or by flexible minicircles (Figure 1C). The use of rigid
flat circles is justified by three observations: first kDNA minicircles are
relaxed and not supercoiled [8], second they are linked by a single Hopf link
(Figure 1A), the only possible link between two geometrical minicircles and
third the linking probability of two flexible chains with a given radius of
gyration can be seen as the linking probability of two rigid circles whose
radius is the same value as the radius of gyration of the flexible chains
with a noise component. We used freely jointed minicircles, instead of the
more commonly used wormlike chain model [32], because the statistical
properties of these protein-bound molecules may significantly deviate from
those of the wormlike chain (Figure 1D) and because the bending of the
wormlike chain [33] falls in between the freely jointed minicircles and the
rigid minicircles even if localized sequence induced bending were to be
introduced.

2.3 Quantitative description of minicircle networks

The density of minicircles is defined as the number of minicircles per squared
radius of the minicircle (namely its length divided by 2π) and the density of
minicircles is simply the reciprocal of this distance squared. A minicircle grid
in which most minicircles are linked forming a topological network is called a
saturation network, and the average density at which the saturation network
forms is called mean saturation density. In our studies we measured saturation
as a percentage to avoid artificially high saturation densities caused by mini-
circles along the grid boundary that have a smaller probability of linking than
do minicircles within the grid. In this a network becomes saturated when 99%
of the minicircles are linked together. The mean valence of a minicircle is the
average valence value of a minicircle over the entire ensemble of possible mini-
circle grids. In all the calculations described below, unless stated otherwise,
the mean saturation density was estimated by sampling 10, 000 networks, and
valence calculations for each density were performed by estimating the average
number of minicircles linked to a non-boundary, randomly selected minicircle
over 1, 000 samples of 7 × 7 minicircle grids.
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2.4 Modeling minicircle orientation

Methods for modeling orientation have been previously described [20]. The ori-
entation of any minicircle is given by the orientation of the vector perpendicular
to the plane containing the minicircle, which in turn is given by the the tilting
and the azymuthal angles. In [20] we showed, through computer simulations,
that restrictions on the tilting angle (1) can increase the density of minicircles
while keeping the topology of the network simple and (2) preserve the linear
relationship between density and mean valence. The azymuthal angle, on the
other hand, showed highly nonlinear responses and was not considered biologi-
cally relevant. In this paper, we used the methods in [20] to estimate the effects
of tilting angles that are consistent with experimental data.

2.5 Modeling the effects of DNA bending

We used freely-jointed minicircles to study the role of DNA bending (Figure
1C). This minicircle model reflects the effects of DNA sequence and/or histone-
like proteins that condense DNA molecules hence reducing their overall radius
of gyration and linking probability (Figure 1C). Methods have been reported
elsewhere and will only be briefly reviewed here [21]. To generate grids of freely-
jointed minicircles, we sampled minicircle conformations using the generalized
hedgehog algorithm [22, 23], positioned them at the vertices of the lattice, and
computed the linking number between pairs of neighboring minicircles following
the Gaussian integral formulation [24]. In this study minicircles were represented
by freely-jointed fragments. When modeling naked double stranded DNA in free
solution one uses the value of 300bp per fragment (i.e. one Kuhn length). In this
study we overemphasized the effects of chain bending by representing minicircles
with twice the number of Kuhn lengths of the minicircle. Saturation densities
were estimated on grids of size 100 × 100.

2.6 Modeling the effects of volume exclusion due to elec-
trostatic repulsion of DNA chains

Minicircles with electrostatic volume exclusion were modeled by segmented poly-
gons that traced the contour of the rigid minicircle (Figure 1D) or by freely
jointed circular chains (Figure 1C); volume exclusion was modeled by an im-
penetrable cylinder around each segment of the polygon [25]. Two parameters
defined these models: (1) the number of segments used to represent the DNA
minicircle; and (2) the radius of the cylinder that defines the excluded volume
(denoted by τ). These values were normalized by the length of the minicircle in
order to compare them with experimental data.

We developed new algorithms to generate grids of minicircles with volume
exclusion due to two important factors. First, the linking probability of two
minicircles is not independent of whether other neighboring minicircles are topo-
logically linked or not. This dependency is negligible in systems with no volume
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exclusion but it plays a key role otherwise. Second, previously defined algo-
rithms mostly produce non-admissible conformations, due to the overlapping of
minicircles. This algorithm, whose details are reported in a separate paper [26],
had two stages. In the first stage we estimated the linking probability between
two minicircles in small (10 × 10) grids and in the second stage we used the
estimated linking probabilities and a ‘coin-tossing’ argument to generate large
(1000 × 1000) grids.

Large samples of small minicircle grids were generated using a simulated an-
nealing algorithm, since even for this small grids, methods used in our previous
studies [11, 20] produced mostly unacceptable conformations. This algorithm
starts with a minicircle grid, which may or may not be acceptable. The grid is
assigned an energy penalty, given by the number of intersecting minicircles. If
the initial energy is positive, a fixed number of minicircles are randomly selected
and their orientations are randomized uniformly over all possible directions. The
new configuration is accepted or rejected according to the standard Monte-Carlo
criterion. This process terminates when a zero energy state is reached (meaning
that an acceptable minicircle grid has been found), or when a pre-determined
number of steps, between 300 and 1,000 (a value dependent on the density of
minicircles), had occurred before reaching a lower energy state. The output of
this algorithm is a large set of tables that contain the linking probability of two
neighboring minicircles in the grid together with the topological state of other
neighboring minicircles.

Next, we generated large grids that did not explicitly represent the minicir-
cles but just their positions on the grid. To decide whether two neighboring
minicircles in the large grid were topologically linked or not we first determined
the topology of the nearby minicircles and looked for the table (produced in the
first stage of the algorithm) that had the same combination of linked/unlinked
neighboring minicircles. Once the table was identified the linking status of the
two minicircles under consideration was decided using a ‘biased coin tossing’
algorithm with the linking probability given by the probability estimated in the
first stage of the algorithm and given by the table.

3 Numerical Results

3.1 Mathematical modeling revealed a discrepancy be-
tween predicted and observed minicircle density and
mean minicircle valences

In our previous work we rigorously showed that, for any fixed minicircle grid
size, a saturation network will form with a probability rapidly approaching 1 as
the minicircle density increases [12]. Numerical results from these studies esti-
mated that the mean saturation density is DSat ≈ 1.37 and its corresponding
mean valence ≈ 4.84. The estimated DSat is therefore much smaller than the
density of the kDNA network (≈ 104.3) and we can safely conclude, in agree-
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ment with experimental observations, that the kDNA network in C. fasciculata
is saturated. There is however a significant discrepancy between the experi-
mentally observed and the expected mean valences: at the density of ≈ 104.3,
we predict a mean valence close to 400, while the experimentally determined
valence in kDNA is only at 3 [10]. The observed differences are robust with
respect to the relative position of minicircles in the grid [11, 19] thus validat-
ing our hypothesis and our use of the square lattice in this and other studies
(Mathematical Assumption 1).

3.2 Neither DNA bending nor volume exclusion due to
electrostatic interactions can account for the discrep-
ancy between observed and predicted mean valences

As discussed in the methods section, the model that evaluates the effects of
volume exclusion due to DNA electrostatics, has two parameters: (1) the number
of segments representing the minicircle; and (2) the radius of the cylinder that
defines the excluded volume. In [26] we concluded that (1) had negligible effects
on the topology of the network and in this study we used a fixed value of 22
segments. The effects of (2) were estimated and revealed that saturation density
increases linearly with the value of τ according to Dτ

sat = 1.3511 + 8.2905τ , a
value that is consistent with the calculated value for rigid minicircles for τ = 0
(D0

sat ≈ 1.354) [26]. Two values of the parameter τ were considered of biological
relevance: τ ≈ .008 and τ ≈ .02. The value τ ≈ .008 corresponds to 2nm and
it is the geometric diameter of the DNA double helix. The value τ ≈ .02
corresponds to 5nm and it is the effective diameter of the DNA double helix
under physiological conditions (i.e. NaCl concentration of 0.15M) [25].
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Figure 2: Estimation of the mean minicircle valence as a function of the mini-
circle density for biologically significant radii. The sample size for each data
point is 105 and the sizes of the error bars are less than the sizes of the plotted
data points.
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Figure 2 shows the relationship between minicircle density and mean valence
for different excluded volumes. The Figure clearly shows two important phe-
nomena: first, there is a linear relationship between mean valence and minicircle
density for each fixed τ value; second increasing minicircle volume exclusion re-
duces the value of the mean valence. The linear relationship between mean
valence and minicircle density result is in good agreement with our previous
studies [11, 12, 20] and therefore help validate the results presented here. The
inverse relation between volume exclusion and mean valence supports the hy-
pothesis that volume exclusion has a simplifying effect on the topology of the
network [9]; interestingly both phenomena are conserved for moderate increases
of the parameter τ [26] hence we conclude that our results do not change even
if the salt conditions are somewhat different from those discussed above. Based
on these results we argue that the topological simplification is very small and
conclude that volume exclusion does not have leading role on determining the
topology of the network.

We found significant differences when we took DNA bending into account. It
is well known that factors such as stretches of specific DNA sequences [27] and
DNA-protein interactions [28, 29, 30] can alter the overall shape of minicircles.
To study DNA bending we used the freely-jointed model [31]. As described in
the methods section we represented each minicircle by a freely jointed polygonal
chain with 16 edges. Using this model we estimated a mean saturation density
of 3.04±.06 [21], a value not much larger than that observed for rigid mincircles.
The mean valence at this density was ≈ 80 a significant decrease from 104.3 but
not large enough to reach the experimentally observed values.

To test whether a combination of DNA bending and volume exclusion could
have a significant effect on the mean valence of the network we added volume
to the freely jointed minicircles. Instead of generating an entire network of
minicircles, as in the previous studies, we compared the linking probabilities
of two rigid minicircles and of two flexible minicircles with excluded volume.
The radius of the rigid minicircles was equal to the radius of gyration of the
flexile minicircles. We argue that if the linking probabilities between the two
are similar then the induced network structure will not be too different. Re-
sults of these calculations are shown in Figure 3. The column on the left shows
the comparison between the linking probabilities of the two models for differ-
ent excluded volumes (τ = 0.01, 0.03 and 0.05) and different bending rigidities
(seg = 6, ..., 20); the column on the right shows a magnification of the graph on
the left for those linking probabilities for which the network forms. As expected
the geometric minicircle (x-axis) reaches a linking probability equal to one faster
than flexible minicircles, however there is a strong linear relationship for most of
the compared values (left column) which is robust with respect to the bending
rigidity of the minicircle. These results therefore suggest that adding volume
exclusion to freely jointed minicircles simplifies the topology of the network but,
as argued above, the effects are not strong enough to significantly decrease the
value of the mean valence from 80 to near 3.
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Figure 3: Relationship between the linking probability (LP) of rigid (Geo Circ)
and freely jointed minicircles (ERP) with volume exclusion.

3.3 The relative orientation of minicircles significantly de-
creases mean valence and explains most of the discrep-
ancy between observations and predictions

Experimental studies show that the height of the kinetoplast disk is roughly half
of the length of the minicircle length and that minicircles are aligned almost
perpendicular to the horizontal plane of the kDNA disk [16, 17]. In a previous
study we characterized the effect of minicircle orientation on the topological
properties of minicircle grids [20]. We therefore extended our previous study
by sampling tilting values near 90 degrees. Clearly the tilting angle cannot
be exactly 90 degrees because minicircles cannot be linked in this situation
even if the azimuthal angle has no restrictions. Numerical estimations of the
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mean saturation densities, as well as the corresponding mean valences at these
densities, are plotted in Figure 4. The angle that best represents the observed
experimental data was 88 degrees. At this angle, the mean saturation density is
94.74 with a mean valence of 11.17. These values are within the same order of
magnitude of the minicircle density and mean valence observed experimentally
in a kDNA network and less than two fold of the replicated network.
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Figure 4: Estimated average saturation density for various restriction angles.
Each data point in the figures is based on samples of sample size 1000 and
minicircle grids of dimension 1000×1000. The 95% standard error bars are less
than .0005 in all cases.

4 Conclusion

Mitochondrial DNA from most organisms in the group of Kinetoplastida is com-
posed of numerous minicircles and maxicircles. Interestingly, only the parasites
in the group contain a large network of topologically linked molecules [34]. The
establishment of the kDNA network has been a topic of interest and various
hypotheses have been proposed with confinement being the prevailing one of
biophysical nature (see [6, 7, 34] for reviews). Although this hypothesis is sup-
ported by indirect experimental results that show that the topological complex-
ity of single and multiple circular chains increases in the presence of condensing
agents [35, 36, 37, 38, 39, 40, 41] it remains to be determined how to directly
test this hypothesis in vivo since disruption of the kDNA structure has been
shown to be severely detrimental for the cell (reviewed in [6]).

In our previous work [12] we used mathematical modeling of the C. fas-
ciculata kDNA network to test for confinement. Our results, in agreement
with experimental data, supported the confinement hypothesis and showed that
a network is the most likely conformation when minicircles are in a confined
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volume and that in confined conditions the mean minicircle valence increases
linearly with density. This second observation is particularly relevant since it
is in close agreement with the observed changes in the topology of the kDNA
network during the cell cycle [9]. Our mathematical modeling approach also
estimated, for the first time, the variance of the mean valence and predicted a
critical density threshold in the evolution of kDNA in which the network first
formed (i.e. a critical percolation density) and the topology became an essential
component of the kinetoplast DNA .

One would intuitively predict that the topology of the network is very com-
plex since 5,000 minicircles of 0.5 µm in diameter are condensed into a horizontal
disk that is just 1 µm in diameter. This intuitive argument is at odds with ex-
perimental results that show that the mean minicircle valence in kDNA is only
three. How can the topology of the network remain so simple given the high
density of minicircles? In this study we tested the most plausible biophysical
factors that may contribute to such phenomenon. We first tested those factors
that have been previously proposed in the most recent literature [10]: DNA
bending induced by DNA sequence or DNA binding proteins and volume exclu-
sion induced by electrostatics. Our results show that neither factor can account
for the observed mean valence in vivo. On the other hand we found that the
proposed 3D kDNA model by Delain and Riou [16], in which DNA filaments
appear to be preferentially oriented to the height of the disk, can bring the value
of the mean valence closer the value observed experimentally. We therefore pro-
pose that the topological simplicity of minicircle networks is mostly controlled
by the stacking of minicircles and modulated to a lesser extent by DNA bending
and volume exclusion among other factors.

One may wonder what are the mechanisms keeping minicircles in such posi-
tion. Experimental evidence suggest that the Tripartite Attachment Complex,
a set of filaments that connect the flagellar basal body to the kDNA, may have
an important role on this positioning and in preserving a simplified topology.
In fact, mutations on members of these complex [43, 44] show enlarged and
potentially more complicated networks. Other proteins, including histone-like
or DNA binding proteins [45, 46, 47, 48], may also be involved in the position-
ing of minicircles since their mutations disrupt the topological features of the
network, driving it into a more complicated topological state. Finally it is also
possible that the position of some minicircles is not directly determined by a
protein complex but instead by some neighboring minicircles, since it is well
known that at high concentrations DNA molecules align parallel to each other
(e.g., [49, 50]).

Our proposed arrangement of minicircles, with a tilting angle of about 88 de-
grees with respect to the horizontal plane of the condensed kDNA disk, produces
a network that is consistent with the available experimental data. We however
believe that there is still room for improvement, for instance our results above
show a mean valence that is very close to that observed in nature (in partic-
ular it is less that 2 fold the value of the replicated network) but still a little
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larger than the value observed in the pre-replicated network. This suggests that
further experimental and computational studies need to be performed to accu-
rately quantify the relative contribution of DNA bending and volume exclusion
in the reduction of topological complexity in kDNA since multiple combinations
of the two could reach the observed mean valence.
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