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Abstract. The mitochondrial DNA of Trypanosomes, known as kinetoplast
DNA (kDNA), is organized into several thousands of minicircles that are
topologically linked, forming a large chainmail-like network. How and why
minicircles form a network in some but not in other kinetoplastid organisms,
remain unanswered questions. Motivated by these questions, in our earlier
studies we introduced some simple analytical and numerical models to study
networks of topologically linked minicircles. In these earlier studies, we used
three key parameters, namely the mean minicircle valence (i.e. the number
of minicircles topologically linked to any given minicircle in the network), the
critical percolation and mean saturation densities to characterize the topological
properties of the minicircle network and how these properties change with
respect to the minicircle density changes. Using these models we showed, both
theoretically and numerically, that high minicircle density leads to the formation
of a linked minicircle network. Our previous studies however did not incorporate
the DNA excluded volume due to electrostatic interactions and one would ask how
these descriptors of the network change in this new scenario. We here characterize,
using a numerical approach, the effects of volume exclusion on the properties of
the network. We find that (1) the linking probability of two minicircles does not
decrease linearly with the distance between the two minicircles, (2) the mean
valence grows linearly with the density of minicircles and decreases with the
thickness of the excluded volume, (3) the critical percolation and mean saturation
densities grow linearly with the thickness of the excluded volume. Our results
therefore validates our descriptors and suggest that the role of volume exclusion
on the formation of kDNA networks is milder than what was initially proposed.

AMS classification scheme numbers: Primary 57M25, secondary 92B99.
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1. Introduction

Trypanosomatids are protozoa parasites that cause fatal diseases in humans and
livestock with significant negative impact on the societal wellbeing and economies of
many third world countries. A distinctive feature of these organisms is the organization
of their mitochondrial DNA, called kinetoplast DNA (kDNA), into two types of
circular structures: maxicircles and minicircles. Maxicircles contain the mitochondrial
genes and minicircles encode transcripts that edit the product of the maxicircles
[3]. The lengths of maxi and minicircles are different for different organisms. The
length of maxicircles ranges between 20 and 40 kb and of minicircles between 1
and 2.5 kb. Typically, in a single cell, there are a few dozen maxicircles and a
few thousand minicircles confined in a structure called the kinetoplast. While the
topological structure of the kinetoplast DNA in free living organisms is mostly trivial,
it becomes really intricate in parasitic species. In Crithidia fasciculata, minicircles
are topologically linked into a planar, chain-mail like structure in which every pair of
minicircles links to three or six of its nearest neighbors through the simplest kind of
topological linkage: the Hopf link [4, 5]. The origin and maintenance of the network
have remained mainly unexplored from a quantitatively view point.

In our earlier work, we presented a mathematical model to study how different
biophysical factors of the network affect the its topological characteristics. In a series
of studies we analyzed the effects of confinement, the minicircle orientation, relative
positions of minicircles, and minicircle flexibility on network formation and on the
topological characteristics of the networks [1, 2, 6, 7, 9]. Our results showed that,
even at a relatively low minicircle density, slightly over D ~ .637, a percolating chain
(cluster) already forms. By further increasing the confinement so that the minicircle
density is increased to D ~ 1.20, a large percentage of minicircles fall into a single
topologically linked chain, a phenomenon observed in C. fasciculata. Our results
showed that the mean valence (i.e. the average number of minicircles topologically
linked to a minicircle) increases linearly with the density of minicircles, a property
in agreement with experimental data [4, 5]. These descriptors of the network (i.e.
mean valence, percolation and saturation densities) were also found when the afore
mentioned factors, however the values were shown to be different for the different
conditions imposed.

In this work we study the impact of the effective helical diameter of the DNA
molecule on the topology of the network. This work is motivated in part by the
discussion in [4, 5] which suggested that the structure of the network was determined,
at least partially, by the volume occupied by the DNA minicircles. To isolate the effects
of DNA volume exclusion, we used our initially proposed model in which minicircles
are randomly oriented with their centers placed on the vertices of the simple square
lattice [7]. The incorporation of volume exclusion has some interesting impacts: (1) the
linking probability of two minicircles changes in an nonlinear fashion with the distance
between the centers of the two minicircles. A property that has been previously
reported [10], (2) the mean valence grows linearly with the density of minicircles and
decreases with the thickness of the excluded volume, (3) the critical percolation and
mean saturation densities grow linearly with the thickness of the excluded volume.

Our results therefore show that the mean valence, percolation and saturation are
good descriptors of the topology of the network since they can be estimated under a
wide variety of conditions and at the same time are sensitive to the different restrictions



The effect of volume exclusion on the formation of DNA minicircle networks 3

imposed on the network. The preserved linear relationship between minicircle density
and mean valence in the presence of volume exclusion shows that volume exclusion
is consistent with the experimentally observed properties of the network. However
the linear response of these descriptors suggest that the volume exclusion of the DNA
molecules has a rather limited impact on the topology of the network characteristics
of the minicircle network.

2. Model descriptions and key topological characteristics of interest

To study the effect of minicircle volume exclusion on network formation we extend
the square lattice minicircle (SLM) model developed in [7]. In the SLM model each
DNA minicircle is modeled by a unit circle with its center uniquely occupying a vertex
of the simple square lattice. The orientation of each minicircle is determined by its
normal vector, which is uniformly distributed on the unit sphere. The density of
minicircles is then increased by reducing the size of the lattice edges. To make the
model incorporating volume exclusion computationally feasible we substituted unit
circles by regular polygons. In this case, a regular polygon is one whose vertices are
equally spaced along a circle. The number of edges of the polygon is an adjustable
parameter, but the length of the polygon is the same as that of a unit circle (2)
so we can compare our results obtained here with our previously published results
[7]. The volume exclusion effect was implemented as an impenetrable cylinder around
each segment of diameter 7. In our studies the radius (thickness) of the cylinders
ranged from 0.01 to 0.05. To facilitate the discussion of our results in this work we
will use the term minicircle from this point on to refer to a regular polygon of a given
thickness. Figure 1 is an illustration of two minicircle grids in the simple square lattice
with different values of the parameter 7.

Figure 1. Minicircle grids modeled by regular polygons with thickness 0.0125
(top) and 0.03 (bottom).
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Now let us briefly revisit the basic definitions needed to describe the topological
properties of a minicircle network (for more details the reader is referred to [7]). A
minicircle grid is a region of a planar lattice with minicircles at its vertices. Minicircle
density is defined as the number of minicircles per unit area of the minicircle grid. If
d is the distance between two adjacent grid points, then the density of the minicircle
grid is given by 1/d?. The topology of the network is obtained by determining the
topological link between all neighboring minicircle pairs. The valence of a minicircle
is the number of minicircles that are topologically linked to it and the mean valence
of a minicircle is its average valence over the entire ensemble of minicircle grids.

A linked cluster is a set of minicircles in which not any part can be separated from
the rest without breaking any minicircles in the cluster. A linked cluster is a percolating
cluster if the cluster reaches two opposite boundaries of the grid. An important
topological characteristic of a minicircle network is its critical percolation density (or
just critical density). This is a positive value D, with the following property: if the
density D > D., then there is a positive probability for the formation of a percolating
cluster regardless the size of the grid and this probability rapidly increases as D
increases; if D < D, then the probability for the formation of a percolating cluster
goes to zero (also rapidly) as the size of the grid goes to infinity. Another important
topological characteristic of a minicircle network is its mean saturation density. When
a large percentage of minicircles in the network fall into the same linked cluster, we
say that the minicircle network saturates and the corresponding density is called its
saturation density. For example, a saturation at the 99% level means that at least 99%
of the minicircles in the network belong to the same linked cluster. Saturation is given
as a percentage to avoid artifacts introduced by single minicircles whose orientation
may drive the saturation density artificially high. The average density at which the
minicircle network reaches saturation at a given level is called its mean saturation
density. In this paper, a 99% saturation level is used.

3. Generation of minicircle grids with volume occupying restriction

In our previous work we introduced algorithms for generating ensembles of minicircle
grids and networks [1, 6, 7]. The addition of volume exclusion requires new algorithms
since previous methods may generate conformations with overlapping thick minicircles
which are invalid. Of course, one may attempt to use an accept/reject approach
based on the previous algorithms. That is, minicircle grids are generated using
previous methods, and the ones in which some thick minicircles overlap are discarded.
Unfortunately, such overlaps occur with very high probability. For example, with a
thickness of .0125, 100,000 runs did not produce any valid 10 x 10 minicircle grids
at density .55 or higher, and only a handful at density .45 and .5. For our purposes,
we would need to use minicircle grids of dimension 100 x 100. Apparently, a simple
accept/reject method is out of question. Our approach to get around this problem
was to adopt a well established statistical method called imputation method. To
apply this method we generated wvirtual minicircle grids. Notice that the linking of a
minicircle to its neighbors follows a probability distribution and it is plausible that
this local probability distribution is the dominate force in determining the topological
properties of the minicircle grid. Thus a virtual minicircle grid can be generated based
on these local (conditional) probabilities and these conditional linking probabilities
(between neighboring minicircles) can be empirically estimated using small minicircle
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grids (n = 5 or n = 10). The number of possible combinations of linked minicircles
(and therefore the number of conditional probabilities) was extremely large, however
most of them were very small and were neglected.

In order to empirically estimate the conditional probabilities, we generated large
samples of 10 x 10 valid minicircle grids. As we pointed out in the above, this
was also a very difficult task. To overcome this problem, we adopted a simulated
annealing algorithm. In this algorithm a minicircle grid was first generated (which
may or may not be valid) and an energy penalty, given by the number of intersecting
minicircles, was associated to this grid. If the energy was positive, a fixed number of
minicircles were randomly selected and their orientations changed (according to the
uniform distribution). The new configuration was accepted/rejected according to the
standard Monte-Carlo criterion. This process was continued until the minicircle grid
reached a zero energy state, or was terminated when a preset number of steps had
occurred without reaching a zero energy state. In this paper, this number was preset
at 300. All the conditional probabilities were empirically estimated from samples of
10 x 10 minicircle grids and a total number of sampled grids, for each fixed 7 and
density, between 62,500 to 100,000. The reason for the smaller sample sizes was
purely technical since the success rate for generating valid grids became very low for
large thickness and density.

Once the conditional probabilities were estimated, large virtual minicircle grids
were generated using the imputation method. We filled the entire grid by filling
consecutive rows and columns with virtual minicircles. Specifically, virtual minicircles
were placed starting at (1,1) to (1,n), then from (2,1) to (2,n), and so on, where
(i,7) stands for the grid vertex on the i-th row and j-column in the grid. At any
given point, when a virtual minicircle was to be placed, its linking with neighboring
virtual minicircles already placed was determined based on the estimated conditional
probability distribution for the specific conformation of these neighboring minicircles.
We illustrate the algorithm with an example. Suppose that we are about to place the
virtual minicircle at grid point (2,3) . At this point, all virtual minicircles on the
first row and at (2,1) and (2,2) have been placed and we know how they are linked
to each other. The immediate neighbors of (2,3) (that precede it in our ordering)
are (2,2), (1,2), (1,3) and (1,4). Suppose that (2,2) is linked with (1,2), (1,3) is
linked with (1,4). Then the linking of (2, 3) with (2,2), (1,2), (1,3) and (1,4) is based
on the empirical linking probability distribution conditioned on (2,2) being linked
with (1,2) and (1, 3) being linked with (1,4). Notice when a virtual minicircle not on
the boundary is to be placed, that there are 4 neighboring minicircles already being
placed, thus the total number of linking conditions to be considered is 2% = 256, even
if we only consider the linking among these minicircles. So these are rather large data
sets and we shall not provide further details about them.

4. Numerical results

4.1. Linking probability between two neighboring minicircles

We first determined the linking probability of two adjacent minicircles as a function
of the distance between their centers. For this analysis we first picked the number of
edges representing the minicircle to be equal to 22. Results are as shown in Figure 2.

From previous studies [8] we know that the linking probability for geometric circles
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Figure 2. Estimation of the linking probabilities as a function of thickness of
and distance between the centers of the polygons. The sample size for each data
point is 10,000 and the sizes of the error bars are less than the sizes of the plotted
data points. The linking between two minicircles is determined by computing the
linking number between using the Gaussian integral formula.

without thickness is 1 — r/2 when r < 2 and 0 when r > 2, where r is the distance
between the centers of the circles. A rigorous formula for this probability seems to be
out of reach when thickness is introduced. However, If one considers two minicircles
(i.e. polygons of length 22) of radius 7 some qualitative features of this probability
are not that hard to observe and can be used to check the consistency of our numerical
results. First, the linking probability of two minicircles without volume exclusion (i.e.
7 = 0) is closely approximated by the linking probability of geometric circles. But they
are not identical since it can be rigorously shown that the linking probability of two
such regular polygons does not completely vanish when r = 2; indeed our numerical
simulations suggest it is about .00007. Second, as r — 0, the linking probability will
no longer approach 1. In fact the linking probability becomes zero when r is very
small as the two minicircles would overlap each other and become an invalid pair.
Similarly the linking probability is zero when r > 2 — 27 since the minicircles would
overlap. Lastly, at close distances (but 27 away from zero) the linking probability of
the polygons increases with the radii of the minicircles (Figure 2). This trend reverses
for distances larger than 1, that is the linking probability of the minicircles decreases
with their thickness 7. In fact, this trend becomes more apparent at distances close
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to 2 (Figure 2).

To test whether the number of edges in the polygon had a significant impact on
the numerical results of the model, we examined how linking probabilities between
two thick regular polygons changed with the number of edges. A systematic testing
showed that these probabilities had very small variations. The following table is a
snapshot of this systematic study. It lists the estimated linking probabilities for 22,
30 and 40 edges and 7 = .02 at 4 different distances .2, .7, 1.5 and 1.9 (in that order).
Thus we conclude that the number of edges in the polygon has little impact on the
overall results of the SLMT model.

n 22 30 40 22 30 40
P(linking) | .986 .987 .986 | .670 .672 .669

n 22 30 40 22 30 40
P(linking) | .229 .233 .230 | .025 .027 .027

We therefore chose to use polygons of 22 edges and the following rescaling was
performed to compare our results obtained here with our previously published results
[7]. A 22-edged regular polygon was generated by first selecting a point uniformly
selected on the unit circle. This point would completely determine the polygon since
the vertices of the polygon are equally spaced on the unit circle. The arc length of a
polygon generated this way has length 44 sin(m/22), which is different from the length
of a unit circle (27). So we re-scale the polygons by a factor of 7/(22sin(7/22)) so
that the re-scaled polygons will have the same length as a unit circle.

4.2. Mean valence of minicircles
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Figure 3. Estimation of mean valence as a function of the minicircle density with
various thicknesses. Each data point is based on a sample of 10% 7 x 7 minicircle
grids. The sizes of the error bars are less than the sizes of the plotted data points.
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In our previous studies we found, in agreement with experimental observations,
that the mean valence of minicircles grows linearly with the density of minicircles.
From a theoretical point of view, we know that this will not be the case once thickness
is considered, since it introduces a constant upper bound to the minicircle density.
However one may suspect that this linear behavior still holds true at relatively low
densities. Furthermore, based on the results obtained above regarding the linking
probability between thick minicircles, one would expect a lower mean valence with a
higher thickness. This is clearly observed in our numerical results as shown in Figure
3. Notice also that for each given thickness, the mean valence does follow a mostly
linear pattern with respect to the minicircle density.

4.8. Estimation of the critical percolation density

In our previous work where minicircles are modeled by unit circles, we established the
existence of the critical percolation density rigorously. We also estimated numerically
the critical percolation density to be D =~ 0.637 [7]. Here we estimated the critical
percolation density as a function of the minicircle radius 7 (denoted by D). We found
that for 7 = 0 the critical percolation density Dy ~ 0.642. It is a well known fact that
the percolation probability undergoes a rapid phase change when the density crosses
the critical percolation density.

. =0
0.5 * 1=0.0125
O  1=0.02

Percolation Percentage
*

o

L * | * L L L L L I
858 0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76
Minicircle density

Figure 4. The phase changes in the percolation probability around the critical
percolation densities for the cases of 7 =0, 7 = .0125 and 7 = .02.

Figure 4 shows this phenomenon for the cases 7 = 0, 7 = .0125 and 7 = .02: the
percolation probability changes quickly from near zero to near one once the density
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goes beyond the critical percolation density increases as 7 increases. The numerical
results presented here are based on 10,000 virtual minicircle grids of size 100 x 100.
Furthermore we found that D, grows linearly with 7 as shown in Figure 5 with a best
linear fit equation of y = 2.2689x + .6424 (where x is the thickness 7 and y is the
critical percolation density) and R? = .999. We notice that within the range of the 7
values (< .05) all critical percolation values D, are below 1.

0,685~
¥ = 2.2689%x + 0.64238 e

068

Minicircle density

0655

oess-

, , , , \ , , , , \
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
Thickness (meridian radius)

Figure 5. Estimation of critical percolation densities for various thicknesses.

4.4. Mean saturation densities

Next we estimated the mean density at which at least 99% of the minicircles are linked
into one single unsplittable linked cluster and the results are shown in Figure 6.

In our earlier work [7] we showed that the probability for a minicircle network
to become saturated increases exponentially to 1 with the density of minicircles at
any given grid size. Our simulations studies showed that for grid sizes ranging from
100 x 100 to 1000 x 1000 the mean saturation density ranges from 1.183 £ .002 to
1.153 + .001 and that it decreases as the grid size increases. In the case of the
thick minicircles, since the linking probability between minicircles decreases when
the thickness 7 of the minicircle increases, we expect an increased mean saturation
density with a larger 7 value. This increased density may cause a small error in
our calculations because at these larger densities non-neighboring minicircles may
link. Thus, the estimated mean 99% saturation densities obtained here (as presented
in Figure 6) are overestimates since we only considered linking between neighboring
minicircles. Similarly to the critical percolation density results we observe a strong
linear relation between the mean saturation density and the minicircle thickness 7.
Each data point presented here is based on 10,000 100 x 100 minicircle grids. At
7 = 0 the mean saturation density is estimated at D =~ 1.3511 and it increases to
D ~ 1.5193 as 7 increases to .02. The best linear fit y = 8.2905z + 1.3511 (with =
being the thickness and y being the mean saturation density) has a R? value of .999.
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Figure 6. Mean saturation densities at different thicknesses.

5. Discussions and ending remarks

Trypanosomatida are characterized by a number of singular features including the
organization of their mitochondrial DNA (kDNA) into large networks of minicircles. In
[4, 5] the topology of the KkDNA network for C. fasciculata was characterized and it was
found that minicircles are organized into a planar topological network in which every
pair of neighboring minicircles is singly linked and that in a non-replicating network,
each minicircle is linked to an average of three or six other minicircles, depending on
the cell’s replication stage. These same studies proposed that DNA volume exclusion
should play an important role determining the topological properties of the network.

In [7] we presented, to our knowledge, the first effort to quantitatively describe
kDNA networks. There we showed: (1) the formation of a network of topologically
linked DNA minicircles is an unavoidable event when minicircles are highly confined
and in the presence of DNA strand passing agents (as found in the kinetoplast), (2)
there is a possible evolutionary pathway in which the initial formation of a percolating
network is followed by the formation of a saturating network , and (3) the mean value
of the valence increases linearly with density. In a series of studies we showed that these
topological properties of the network can be estimated when minicircles are positioned
in other lattices different from the simple square lattice [6, 9], when minicircles are
randomly oriented with certain bias [1], or when minicircles are modeled as flexible
objects rather than rigid ones [2]. These studies however did not incorporate the
effects of volume exclusion on the formation of the network.

To address this issue we had to introduce new algorithms because the
computational complexity of the problem rapidly explodes. While we have not
developed a way to test the accuracy and reliability of our new algorithms, the
numerical results obtained are quite consistent and convincing. First, we notice that
the empirical linking probabilities obtained using the two different methods are very
similar to each other. Second, in the case of zero thickness, our estimated critical
percolation density (using the imputation approach) is very close to the estimation
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obtained using the directly generated minicircle grids. Third, it is possible to compare
the minicircle grids to a standard square lattice bond percolation model where each
pair of neighboring vertices may be connected by a bond with a probability p and
this probability is independent to whether/how these vertices are connected to other
vertices. It is known that the critical percolation probability is p = 1/2 in this case.
In our case, the linking probabilities play a role somewhat similar to the probability
p in the square lattice bond percolation model. The difference is that the linking
probabilities are not all the same (each minicircle has 8 neighboring minicircles, 4
of which are at a distance farther away) and are not independent of each other. For
comparison, we can define a “vertex” to be a grid point, but we say that two vertically
or horizontally neighboring vertices are connected by a “bond” if the minicircles
centered at these two grid points are either linked directly or linked together through
a minicircle that is diagonally neighboring them. By generating large sample of 3 x 3
minicircle grids directly and compute the empirical linking probability of the minicircle
centered at the middle grid point, one can verify that for the thicknesses we studied, the
probability that the middle vertex is connected to a vertical (or horizontal) neighboring
vertex by a bond in the above sense is always greater than 1/2 when the minicircle
density is close to 1, regardless how the other vertices are connected. This numerically
proves that the critical percolation density is indeed less than 1 in all cases that we
have covered.

Using these new algorithms in previous studies we were able to compute the
critical percolation and saturation densities as well as the mean valence of a minicircle.
Overall, our numerical results show that the three key topological characteristics did
not change drastically when we added volume exclusion. Interestingly we found that
both the critical percolation density and the mean saturation density increase linearly
with the radius of the minicircles. The behavior of the mean valence is not that
different form that observed previously without volume exclusion. However, at high
densities we know the mean valence of the thick minicircles will behave very differently
by a rigorous argument as the density is bounded above by a constant and therefore
the linking probability becomes zero after the density passes that bound. Therefore
we conclude that for minicircles with large radius of gyration such as geometric circles
or regular polygons, volume exclusion only slightly increases the critical percolation
density and mean saturation density. Finally, these results apply only when minicircles
are relaxed. One can envision situations in which volume exclusion may still play a
much more prominent role. This includes cases in which minicircles have specific
orientations or shapes.
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