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ABSTRACT

WEI HUANG. Frame Wavelets in High Dimension. (Under the direction of DR.
XINGDE DAI)

In this dissertation, the classic one dimension orthogonal wavelet construction

scheme is discussed and extended to construct Parseval’s frame wavelets in high di-

mension scenario. An iterative algorithm is developed to construct various Parseval’s

frame wavelets, where the input is a set of wavelet coefficients which satisfies the

associated Lawton’s System of Equations.

The relation between one dimension and high dimension wavelet coefficients is ex-

plored. Examples are given, showing that, it is possible to use existing one dimension

wavelet coefficients to form high dimension versions, with purposeful rearrangement

of the terms of the wavelet coefficients that satisfy both one dimension and high di-

mension Lawton’s System of Equations associated with. And it follows that one can

obtain one dimension wavelet coefficients sets from high dimension versions.

Applications of Parseval’s frame wavelets in signal processing are discussed. Un-

like the classic axis-by-axis discrete wavelet transform method, a different quincunx

downsampling approach is proposed in the two dimension image processing scenario,

with the use of a quincunx sub-lattice.
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CHAPTER 1: INTRODUCTION: WAVELET THEORY

A wavelet, meaning “small wave”, is an oscillation that resembles a wave with an

amplitude that begins at zero, increases, and then decreases back to zero. Alfred Haar

in [5] introduced the very first wavelet function, known now as the Haar wavelet, is

a “square-shaped” function defined as ψH ≡ χ[0, 1
2

) − χ[ 1
2
,1). Its graph is illustrated in

Figure (1).
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Figure 1: Haar Wavelet

Usually, A set of wavelets(or called “a wavelet family”) is purposefully crafted with

specific properties, and then are combined with input signals, using a technique called

“convolution”, to decompose the original input without gaps or overlap into different

components, thus facilitates the study of each component. This decomposition process

is mathematically reversible, that means, when one wants to recover the original

signal with minimal loss, wavelet based compression/decompression algorithms can

be utilized with these wavelets.

In the field of signal processing, the application of wavelets are referred as wavelet
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transform. One can apply wavelet transform on many different kinds of signal data,

most common ones are audio/video signals and images.

We distinguish between the two wavelet transform: Continuous wavelet transform

and Discrete wavelet transform. In this dissertation, we will focus on the discrete

wavelet transform. More detailed discussions regarding continuous wavelet transform

can be found in [6]. Discrete wavelet transform has two different categories: Or-

thonormal bases of wavelets and redundant systems(called frame wavelets). We will

discuss both categories with an emphasis on the latter.
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1.1 Unitary Operators in Hilbert Space

We first introduce some notations that are used throughout the dissertation.

In a Hilbert space H = L2(R), let Tα be the “translation-by-α” operator and D the

“dilation-by-2”(dyadic) operator acting on H defined by

Tαf(t) = f(t− α); Df(t) =
√

2f(2t), ∀f ∈ L2(R), (1)

where α is an arbitrary real number. In particular, denote T = T1 when α = 1.

Let Me−iαs be the multiplication operator by e−iαs. Tα, D and Me−iαs are unitary

operators in B(H), the space of all bounded linear operators on H.

Remark 1.1. While “dilation-by-m” operators in H are well defined for arbitrary

m ≥ 2, this dissertation will only focus on dyadic dilation operators.

Let F be the Fourier transform on H = L2(R). If f, g ∈ L2(R)
⋂

L2(R), then

(Ff)(s) =
1√
2π

∫
R
e−istf(t)dt = f̂(s),

(F−1g)(t) =
1√
2π

∫
R
eistg(s)ds = ǧ(t).

We write

T̂α = FTαF−1; D̂ = FDF−1, (2)
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then

(T̂αf̂)(s) = (FTαf)(s)

=
1√
2π

∫
R
e−istf(t− α)dt = (e−iαsf̂)(s),

(D̂f̂)(s) = (FDf)(s)

=
1√
2π

∫
R
e−ist
√

2f(2t)dt = (D−1f̂)(s).

so

T̂α = Me−iαs ; D̂ = D−1. (3)

For f ∈ L2(R), we have

(TαDf)(t) = Tα(
√

2f(2t)) =
√

2f(2(t− α)) =
√

2f(2t− 2α) = (DT 2
αf)(t),

so

TαD = DT 2
α. (4)

This as well as (2) implies that

T̂αD̂ = D̂T̂ 2
α. (5)

In the high-dimensional scenario, say, H = L2(Rd), d ≥ 2, we have similar notations.

Unlike the 1-dimensional case, we can no longer define the dilation-by-2 operator

with “multiply-by-2”. Instead, we need matrices:

Definition 1.1. A d × d matrix A is integral if all its entries are integers and is

expansive if all its eigenvalues have norm greater than 1.

We can define the unitary operators T~k and DA acting on H = L2(Rd) as follows:
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Definition 1.2. Let A be an integral expansive matrix, ∀f ∈ L2(Rd), we define

T~kf(~t) = f(~t− ~k); ∀~k ∈ Zd

DAf(~t) = | detA|
1
2f(A~t).

T~k is the “translation-by-~k” operator and DA is the “dilation-by-A” operator. They

are both unitary operators in H.

One last unitary operator we will use in this dissertation is defined as follows:

Definition 1.3. Let S be and integral matrix with | detS| = 1, define

USf(~t) = f(S~t), ∀f ∈ L2(Rd). (6)
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1.2 Frames and Orthonormal Bases of Hilbert Space

We introduce some useful concepts in the Hilbert space H.

Definition 1.4. A set of elements {ψi} is called a frame of H if there exist two

positive constants 0 < A ≤ B such that

A‖f‖2 ≤
∑
i

|〈f, ψi〉|2 ≤ B‖f‖2 , ∀f ∈ H,

where 〈·, ·〉 is the inner product.

The supremum of all such numbers A and the infimum of all such numbers B are

called the frame bounds of the frame and are denoted as A0 and B0. {ψi} is called

a tight frame if A0 = B0.

In particular, {ψi} is called a normalized tight frame(or Parseval’s frame)

if A0 = B0 = 1, since it satisfies the Parseval’s identity

∑
i

|〈f, ψi〉|2 = ‖f‖2 , ∀f ∈ H,

which is equivalent to

f =
∑
i

〈f, ψi〉ψi , ∀f ∈ H.

Definition 1.5. A set of elements {ψi} is orthogonal if

〈ψi, ψj〉 = 0, i 6= j.

If a Parseval’s frame is also orthogonal, then it is an orthonormal basis for H.

And Parseval’s identity holds for any orthonormal basis {ψi}.

Now we see that Parseval’s frames can play the role of orthonormal bases in the
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sense that they satisfy the Parseval’s identity, while not required to be orthogonal.

We will enjoy this flexibility in the construction of wavelets as this leads to a new

type of wavelets — the non-orthonormal bases wavelets, or frame wavelets.

With the unitary operators introduced earlier, we can definite a discrete set of

wavelets from the Haar wavelet ψH as following:

{ψj,k ; j, k ∈ Z} = {DjT kψH ; j, k ∈ Z} (7)

It is easy to verify that {ψj,k ; j, k ∈ Z} is an orthonormal basis for the Hilbert

space L2(R).

For any f ∈ L2(R), we can further definite its discrete wavelet coefficients as

〈f, ψj,k〉 ; j, k ∈ Z (8)

The motivation of wavelet theory is shown here: we can approximate an arbitrary

function f ∈ L2(R) by a finite linear combinations of the set of wavelets that is derived

from the Haar wavelet(or any other wavelets), since f is completely characterized by

its discrete wavelet coefficients. On the other hand, it is possible to recover f from

its discrete wavelet coefficients. That means, L2(R) is spanned by the discrete set of

wavelets {ψj,k ; j, k ∈ Z}.

Before we continue, let’s visit a useful concept of certain structures on L2(R):

Multiresolution analysis(or MRA for short), an elegant framework for wavelet

construction formulated by Y.Meyer [10] and S.Mallat [9].

Definition 1.6. The pair of functions (ϕ, ψ) is called an orthogonal MRA-pair if
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1. {T kϕ ; k ∈ Z} and {T kψ ; k ∈ Z} are orthogonal sets.

2. Let V (0) ≡ span({T kϕ ; k ∈ Z}) and V (n) ≡ DnV (0).

We have V (n) ⊂ V (n+1) ; n ∈ Z

3.
⋃
V (n) = L2(R) and

⋂
n∈Z V

(n) = {0}.

4. Let ψ ∈ W (0) ≡ V (1) 	 V (0), then {T kψ ; k ∈ Z} is an orthonormal basis of

W (0).

ϕ and ψ are called the scaling function and the wavelet function for the MRA,

respectively. By the above definition, it is clear that {DnT kψ ; n, k ∈ Z} is an

orthonormal basis for L2(R). Moreover, {DnT kψ ; k ∈ Z} is an orthonormal basis

for W (n) for n ∈ Z and {DnT kϕ ; k ∈ Z} is an orthonormal basis for V (n) for n ∈ Z.

In the case of Haar wavelet, it is easy to verify that (φH ≡ χ[0,1), ψH) is an

orthogonal MRA-pair. The graphs is shown in Figure (2).

x

y

.1

y

.1

.

Figure 2: Scaling function and Wavelet function of Haar Wavelet

The scaling function ϕ satisfies the so called two-scale relation:

ϕ(x) =
√

2
∑
n

hnϕ(2x− n) =

(∑
n

hnDT
nϕ

)
(x), (9)
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where {hn} are the coefficients that can be obtained as 1

hn ≡ 〈ϕ,DT nϕ〉. (10)

Among many possible choices of wavelet function ψ, there exists one that satisfies

gn ≡ 〈ψ,DT nϕ〉 = (−1)n · h1−n. (11)

We can write the previous one into the following equivalent form:

ψ(x) =

(∑
n

gnDT
nϕ

)
(x). (12)

In the previous section, we defined an orthogonal MRA, where the orthonormality

of {T kϕ ; k ∈ Z} is required. As a matter of fact, this requirement can be relaxed: if

{T kϕ ; k ∈ Z} is a Parseval’s frame, we can define a generalized MRA (in [7])/frame

MRA (in [1]) as follows:

Definition 1.7. The pair of functions {ϕ, ψ} is called an MRA-pair if

1. Let V (0) ≡ span({T kϕ ; k ∈ Z}) and V (n) ≡ DnV (0).

We have V (n) ⊂ V (n+1) ; n ∈ Z

2.
⋃
V (n) = L2(R) and

⋂
n∈Z V

(n) = {0}.

3. If {T kϕ ; k ∈ Z} and {T kψ ; k ∈ Z} are Parseval’s frames in V0 and W0,

respectively, then {DjT kψ ; j, k ∈ Z} is a Parseval’s frame in L2(R).

This concepts can be easily extended to high dimension with the use of matrices:

1For Haar wavelet, we have {h0 = h1 =
√
2
2 }.
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Definition 1.8. Let A be a d×d expansive integral matrix with | detA| = 2 and ϕ, ψ

be two functions in L2(Rd). Denote

V
(0)
A ≡ span({T~̀ ϕ, ~̀ ∈ Zd}).

V
(n)
A ≡ Dn

AV
(0)
A , n ∈ Z.

The pair of functions {ϕ, ψ} is called an MRA-pair associated with matrix A if

1. V
(n)
A ⊂ V

(n+1)
A , n ∈ Z.

2.
⋃
n∈Z V

(n)
A = L2(Rd) and

⋂
n∈Z V

(n)
A = {0}.

3. ψ ∈ V (1)
A is a Parseval’s frame wavelet for L2(Rd) associated with matrix A.

Q. Gu and D. Han in [11] proved that, if an integral expansive matrix associates

with a single function orthogonal wavelets with MRA, then the absolute value of the

matrix determinant must be 2. This dissertation studies wavelets associated with

MRAs, thus the matrix A in discussion all satisfies | detA| = 2.
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1.3 Wavelet Decomposition and Reconstruction of Functions

Within the orthogonal MRA framework, we are ready to introduce a fast cascad-

ing wavelet algorithm that is widely used signal analysis to decompose as well as

reconstruct functions in L2(R).

Let (ϕ, ψ) be an orthogonal MRA-pair as defined earlier.

First let’s establish the change-of-basis formulas between the MRA layer. Recall

that {T kϕ(x) ; k ∈ Z} and {T kψ(x) ; k ∈ Z} are the bases in V0 an W0. We have

T kϕ(x) = T k
∑
n

hnDT
nϕ(x) (by (9))

=
∑
n

hnT
kDT nϕ(x) =

∑
n

hnDT
2kT nϕ(x) (by (4))

=
∑
n

hnDT
n+2kϕ(x) =

∑
n

hn−2kDT
nϕ(x)

T kψ(x) = T k
∑
n

gnDT
nϕ(x) (by (12))

=
∑
n

gnT
kDT nϕ(x) =

∑
n

gnDT
2kT nϕ(x) (by (4))

=
∑
n

gnDT
n+2kϕ(x) =

∑
n

gn−2kDT
nϕ(x)

That is 
T kϕ(x) =

∑
n hn−2kDT

nϕ(x);

T kψ(x) =
∑

n gn−2kDT
nϕ(x).

(13)

Apply Dj−1 on both sides, we obtain the following change-of-basis formulas from
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Vj to Vj−1 and Wj−1, for j ∈ Z:
Dj−1T kϕ(x) = Dj−1

∑
n hn−2kDT

nϕ(x) =
∑

n hn−2kD
jT nϕ(x);

Dj−1T kψ(x) = Dj−1
∑

n gn−2kDT
nϕ(x) =

∑
n gn−2kD

jT nϕ(x),

(14)

Next, define Pj as the orthogonal projection onto Vj, and Qj the orthogonal pro-

jection onto Wj, where Vj and Wj are the subspaces in this MRA for j ∈ Z.

Since Vj ⊂ Vj+1, j ∈ Z, we understand that Vj is a “coarser” version of Vj+1.

For an arbitrary function f ∈ L2(R), we start out with the finest-scale approxima-

tion to f , fJ = PJf ∈ VJ . In practice, we just treat fJ as f itself, as fJ is the best

we can do to characterize f . Note that, while the choice of J is arbitrary, we usually

pick J as some positive integer and restrict our attention to only Vj’s and Wj’s for

j ≤ J .

Now, we can represent fJ as:

fJ =
∑
k

cJkD
JT kϕ,

where {cJk ; k ∈ Z} is the discrete wavelet coefficients which can be defined as

cJk = 〈fJ , DJT kϕ〉.

In practice, the actual input signal information is treated as {cJk ; k ∈ Z}. That

is, the function f is introduced here only as a utility function and we don’t really

care about its actual values except for its discrete wavelet coefficients in VJ , which is

{cJk ; k ∈ Z}.

The center of the decomposition process is: we want to find f ’s discrete wavelet co-

efficients in the next level of the MRA, given its discrete wavelet coefficients {cJk ; k ∈
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Z} in VJ .

For f , denote {cjk ; k ∈ Z} as its discrete wavelet coefficients in Vj and {djk ; k ∈ Z}

as its discrete wavelet coefficients in Wj. Apply the change-of-basis formulas in (14),

we have

cJ−1
k = 〈fJ−1, DJ−1T kϕ〉

= 〈Pj−1f
J , DJ−1T kϕ〉

= 〈fJ , P ∗j−1D
J−1T kϕ〉

= 〈fJ , DJ−1T kϕ〉

= 〈fJ ,
∑
n

hn−2kD
JT nϕ〉

=
∑
n

hn−2k〈fJ , DJT nϕ〉

=
∑
n

hn−2kc
J
n;

dJ−1
k = 〈fJ−1, DJ−1T kψ〉

= 〈Pj−1f
J , DJ−1T kψ〉

= 〈fJ , P ∗j−1D
J−1T kψ〉

= 〈fJ , DJ−1T kψ〉

= 〈fJ ,
∑
n

gn−2kD
JT nϕ〉

=
∑
n

gn−2k〈fJ , DJT nϕ〉

=
∑
n

gn−2kc
J
n.

This shows a hierarchical and fast way to compute the wavelet coefficients of a
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Figure 3: Cascading Scheme – Decomposition

Figure 4: Cascading Scheme – Reconstruction

given function: start with the finest-scale level J , we have the wavelet coefficients cJ ,

which fully characterized f in VJ . Then we calculate cJ−1 and dJ−1, the next(coarser)

level’s wavelet coefficients. By doing that, we successfully decomposed the original

functions information cJ into two part: the coarser version of it — cJ−1, and the

difference(or details) of the information between two successive levels — dJ−1. We

can repeat this process for multiple levels.

In practice, we will stop after a finite number of levels.

If we start at level J and stops at level 0, we will decompose cJ into a final coarse

approximation c0 and a serial of details dJ−1, dJ−2, ......, d2, d1, d0. The decomposition

schema is illustrated in Figure (3) and the following formulas are the decomposition

formulas: 
cj−1
k =

∑
n hn−2kc

j
n;

dj−1
k =

∑
n gn−2kc

j
n.

(15)

On the other hand, given a final coarse approximation c0 and a serial of details

dJ−1, dJ−2, ......, d2, d1, d0, we do have a reconstruction schema that can restore the
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exact original information cJ . The basic idea is illustrated in Figure (4). And the

reconstruction formula is:

cjn =
∑
k

[
hn−2kc

j−1
k + gn−2kd

j−1
k

]
. (16)

This fast wavelet decomposition and reconstruction algorithm for discrete wavelet

transform(DWT), first proposed by Mallat in [9], is, in fact, a classical scheme in the

signal processing community, known as a two-channel subband coder using conjugate

quadrature filters or quadrature mirror filters (QMFs).

In Chapter 4, we will discuss this topic in more details with examples.

Till now, it might seem like the very first thing we need to have is the scaling

function ϕ or the wavelet function ψ before we can get the coefficients set {hn}.

Luckily, this is not the case. We could obtain the coefficients set {hn} somewhere

else and construct everything including ϕ and ψ from it. The whole process, a frame

wavelet construction scheme, and its natural extension to high dimension, is the center

of this dissertation.



CHAPTER 2: CONSTRUCTION OF PARSEVAL’S FRAMES

2.1 Construct Frames in L2(R)

We will illustrate a construction scheme in L2(R) for Parseval’s frame wavelets

with compact support. This approach, proposed by Lawton[13] and Daubechies[6],

can provide all Parseval’s frame wavelets in the 1-dimensional case. In following

chapters, we will extend this approach to d-dimensional cases.

We start with a system of equations that later referred as Lawton’s System of

Equations. Let {hn ; n ∈ Z} be a complex solution to the following Lawton’s System

of Equations: 
∑

n∈Z hnhn+k = δ0k, k ∈ 2Z∑
n∈Z hn =

√
2.

(17)

Assume further that this solution has only finite many nonzero elements. That is, for

some fixed odd integer N ∈ Z+, hn = 0 if n < 0 or n > N . In such case, |hn| ≤ Mc

for some Mc ∈ R+ when 0 ≤ n ≤ N .

Choose an element q = 1 ∈ Z, we have Z = 2Z
⋃̇

(2Z+ q). We call 2Z a sub-lattice

of Z.

Define a trigonometric polynomial function m0:

m0(ξ) =
1√
2

N∑
n=0

hne
−inξ. (18)

This is a 2π-periodic function with m0(0) = 1. It is called the filter function.
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Next, define

g(ξ) = (2π)−1/2

∞∏
j=1

m0(2−jξ);ϕ = F−1g.

g(ξ) is a L2(R)-function and its extension is an entire function on C. And the scaling

function ϕ(x) is a L2(R)-function with compact support and satisfies the two-scale

relation:

ϕ(x) =
√

2
N∑
n=0

hnϕ(2x− n) =

(
N∑
n=0

hnDT
nϕ

)
(x). (19)

Finally, define the wavelet function ψ as

ψ(x) =
√

2
N∑
n=0

(−1)nh−n+Nϕ(2x− n) =

(
N∑
n=0

(−1)nh−n+NDT
nϕ

)
(x), (20)

and {ψj,k ; j, k ∈ Z} = {DjT kψ ; j, k ∈ Z} constitute a Parseval’s frame for L2(R).

Detailed discussion and proofs for the above construction scheme can be found

in literature [13] and [6]. We completed a proof for this approach with the use of

unitary operator notations, but we omit it here since we will provide a proof for a

more generalized, high dimension version of this construction scheme.
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2.2 Construct Frames in L2(Rd)

2.2.1 Construction Scheme

In this section, we extend the construction scheme to the high dimension.

First we introduce the Partition Theorem for d×d expansive integral matrices from

[3].

Theorem 2.1. Partition Theorem

Every integral matrix B with | det(B)| = 2 is integrally similar to an integral matrix

A with the properties that

1.

AZd = AτZd.

2. There exists a vector ~̀A ∈ Zd such that

Zd = (~̀A + AZd) ·∪AZd.

3. There exists a vector ~qA ∈ Zd

~qA ◦ AZd ⊆ 2Z and ~qA ◦ (~̀A + AZd) ⊆ 2Z + 1.

4. For ~m ∈ AZd, we have

Zd = (~n− AZd) ·∪(~̀A − ~m− ~n+ AZd), ∀~n ∈ Zd.

5. For ~m ∈ ~̀A + AZd, we have

~n− AZd = ~̀
A − ~m− ~n+ AZd, ∀~n ∈ Zd.
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When d = 2, Dai in [2] states that, each expansive integral matrix with determinant

±2 is integrally similar to one of the following 6 matrices: 1 1

1 −1

 ,
 1 −3

1 −1

 ,
 1 1

−1 1

 ,
 −1 −1

1 −1

 ,
 −1 2

−2 2

 ,
 1 −2

2 −2

 . (21)

Each of the above 6 matrix satisfies the 5 properties mentioned in Partition Theo-

rem (Theorem 2.1).

Let A0 be a d× d expansive integral matrix with | det(A0)| = 2. We will construct

Parseval’s frame wavelets associated with A0 in the following 5 steps.

Step 1. Find a d × d integral matrix A from the 6 matrices in (21), which is

integrally similar to A0 with the following properties:

1.

S−1AS = A0,

where S is an integral matrix with | det(S)| = 1.

2.

AZd = AτZd,

where Aτ is the transpose of A.

3. There exists a vector ~̀A ∈ Zd such that

Zd = (~̀A + AZd) ·∪AZd.

4. There exists a vector ~qA ∈ Zd
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~qA ◦ AZd ⊆ 2Z and ~qA ◦ (~̀A + AZd) ⊆ 2Z + 1.

Step 2. Solve Lawton’s System of Equations
∑

~n∈Zd h~nh~n+~k = δ~0~k,
~k ∈ AZd∑

~n∈Zd h~n =
√

2.

for a finite solution S = {h~n : ~n ∈ Zd}. We say S is a finite solution if the index

set of non-zero terms h~n is included in the set Λ0 ≡ Zd ∩ [−N0, N0]d for some natural

number N0.

Step 3. Let Ψ be the linear operator on L2(Rd):

Ψ ≡
∑
~n∈Λ0

h~nDAT~n.

The iterated sequence {Ψkχ[0,1)d , k ∈ N} will converge to the scaling function ϕA in

the L2(Rd)-norm (Theorem 10.2 in [3]).

ϕA satisfies the two-scale relation:

ϕA =
∑
~n∈Λ0

h~nDAT~nϕA. (22)

Step 4. Define function ψA

ψA ≡
∑
~n∈Zd

(−1)~qA◦~nh~̀
A−~nDAT~nϕA.

This is a Parseval’s frame wavelet with compact support associated with matrix A

(Theorem 9.1 in [3]).
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Step 5. Define the wavelet function ψ by

ψ(~t) ≡ UsψA(~t) = ψA(S~t),∀~t ∈ Rd.

The function ψ is a Parseval’s frame wavelet with compact support associated with

the given matrix A0 (Theorem 5.1 in [3]).
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2.2.2 Iterative Algorithm for Wavelet Construction

In this section we will discuss an iterative algorithm that can be used to construct

scaling functions and wavelet functions.

Let f0(~t) be a bounded function in L2(Rd) which is contiguous at ~0. Define

g0(~x) ≡ 1

(2π)d/2
· f0(~x),

gk(~x) ≡ 1

(2π)d/2
· f0((Aτ )−k~x) ·

k∏
j=1

m0((Aτ )−j~x), ∀k ≥ 1,

and

ϕk ≡ F−1gk,∀k ≥ 0.

Since limk f0((Aτ )−k~x) is converging to constant function 1 uniformly on any fixed

bounded region of L2(Rd) and
∏k

j=1m0((Aτ )−j~x) is also converging uniformly on any

fixed bounded region of L2(Rd) (see the proof of Proposition 8.1 in [3]).

Hence, we have

ϕk+1 =
∑
~n∈Λ0

h~nDAT~nϕk, k = 1, 2, · · · ,

and the first term is

ϕ1 =
∑
~n∈Λ0

h~nDAT~nϕ0.

Let Ψ be the linear operator

Ψ ≡
∑
~n∈Λ0

h~nDAT~n. (23)

Theorem 10.2 in [3] guarantees the convergence of the above defined linear operator:
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Theorem 2.2. The limit

lim
k→∞

Ψkχ[0,1)d = ϕ

converges in L2(Rd)-norm.
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2.3 Examples in L2(R2)

In the first example, we will follow the proposed construction scheme step-by-step

to construct a Haar-like frame wavelet.

Example 2.3.1. A Haar-like frame wavelet in 2D. [12]

Step 1. Let A0 ≡

 0 1

2 0

. We find that in Partition Theorem, given A ≡

 1 1

1 −1

 , S ≡
 1 −1

0 1

, we have A0 ≡ S−1AS.

Obviously, ~̀A ≡

 1

0

 and ~qA ≡

 1

1

. Then it is clear that we have A = Aτ and

it is left to the reader to check that

1. AZ2 = AτZ2,

2. Z2 = AτZ2 ·∪(~̀A + AτZ2),

3. AτZ2 ◦ ~qA ⊂ 2Z, and

4. (AτZ2 + ~̀
A) ◦ ~qA ⊂ 2Z + 1.

Step 2. The Lawton’s system of equations associated with matrix A is
∑

~n∈Z2 h~nh~n+~k = δ~0~k,
~k ∈ AτZ2

∑
~n∈Z2 h~n =

√
2.

(24)

In this example we assume that the only non zero elements are ~n0 = [0, 0]τ and
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~n1 = [1, 0]τ . The system is 
h2
~n0

+ h2
~n1

= 1

h~n0 + h~n1 =
√

2.

We have a solution h~n0 = h~n1 =
√

2
2
.

Step 3.

By Equation (22) we have the two-scale relation equation on the scaling function

ϕ,

ϕ = DA(h~n0I + h~n1T~n1)ϕ =

√
2

2
DA(I + T~n1)ϕ. (25)

Let Ψ be the map
√

2
2
DA(I + T~n1), and f0 = χ[0,1)2 , the characteristic function of two

dimensional set [0, 1)2. We observe that the sequence {Ψnf0} approaches to the charac-

teristic function χQA , where QA is the parallelogram with vertices

 0

0

,

 1

0

,

 2

1


and

 1

1

. Simple calculation shows

Ψ1 =

(√
2

2

)
(DA +DAT~n1)

Ψ2 =

(√
2

2

)2

(D2
A +D2

AT~n1 +D2
ATA~n1 +D2

ATA~n1+~n1)

Ψ3 =

(√
2

2

)3

(D3
A +D3

AT~n1 +D3
ATA~n1 +D3

ATA~n1+~n1

+D3
ATA2~n1

+D3
ATA2~n1+~n1

+D3
ATA2~n1+A~n1

+D3
ATA2~n1+A~n1+~n1

)

...

And the step-by-step iteration results are illustrated in Figure (5). It is clear that the
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iterative result is converging to QA.

x

y

1

f0

y

1

Ψ1f0

y

1

Ψ2f0

x

y

1

Ψ3f0

y

1

Ψ4f0

y

1

Ψ5f0

Figure 5: f0, Ψ1f0, Ψ2f0, Ψ3f0, Ψ4f0 and Ψ5f0

We denote

ϕA ≡ χQA .

Step 4. By Definition the corresponding Parseval’s frame wavelet ψA is

ψA ≡
∑
~n∈Zd

(−1)~qA◦~nh~̀
A−~nDAT~nϕA

= χQ+
A
− χQ−

A
,

where Q+
A and Q−A are parallelograms with vertexes {

 0

0

 ,
 1

0

 ,
 1.5

0.5

 ,
 0.5

0.5

}

and {

 0.5

0.5

 ,
 1.5

0.5

 ,
 2

1

 ,
 1

1

}, respectively as showing in Figure (6) and

Figure (7). It is easy to check that AQ+
A = QA.
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x

y

(0, 0)

(1, 1)

QA

(2, 1)

(1, 0)

y

(0, 0)

(0.5, 0.5)
Q+
A

(1.5, 0.5)

(1, 1)

Q−A

(2, 1)

(1, 0)

Figure 6: Supports of ϕA and ψA

y y1

1

2 1

1

2

−1

x

z z

Figure 7: Graphs of ϕA and ψA

Step 5. Define

ϕA0 ≡ USψA,

ψA0 ≡ USψA.

The support and graph of both scaling function ϕA0 and wavelet function ψA0 associ-

ated with matrix A0 are shown in Figure (8) and Figure (9), respectively.

x

y

(0, 0)

(0, 1)

QA0

(1, 1)

(1, 0)

y

(0, 0) (0.5, 0)

(0.5, 1)

Q−A0

(1, 1)

Q+
A0

(1, 1)

(1, 0)

Figure 8: Supports of ϕA0 and ψA0
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y y1

1

1
2

1

1

x

z z

−1

Figure 9: Graphs of ϕA0 and ψA0

In the next 2 examples, we will present solutions to the Lawton’s system of equa-

tions that produce known wavelets in the literatures.

Example 2.3.2. “Resting Dog”:

Let

A =

 1 1

1 −1

 , S =

 0 1

1 −1

 and A0 =

 0 2

1 0

 .
Then

A0 = S−1AS

We will construct the scaling function ϕA and the related Parseval’s frame wavelet

ψA associated with matrix A. Then, USϕA and USψA will be the scaling function and

Parseval’s frame wavelet associated with matrix A0.

Assume that the support of solution is Λ0

Λ0 =
{ 0

m

 ,m = 0, 1, · · · , 7
}
∪
{ 1

m

 ,m = −1, 0, · · · , 6
}

The reduced Lawton’s system of equations associated with matrix A on Λ0 has the

following 12 equations:
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

∑
~n∈Λ0

h~n =
√

2,∑
~n∈Λ0

h2
~n = 1,∑5

k=0(h0,k · h0,(2+k) + h1,(k−1) · h1,(k+1)) = 0,∑3
k=0(h0,k · h0,(4+k) + h1,(k−1) · h1,(k+3)) = 0,∑1
k=0(h0,k · h0,(6+k) + h1,(k−1) · h1,(k+5)) = 0,∑7
k=0 h0,k · h1,(k−1) = 0,∑5
k=0 h0,k · h1,(k+1) = 0,∑3
k=0 h0,k · h1,(k+3) = 0,∑1
k=0 h0,k · h1,(k+5) = 0,∑5
k=0 h0,(k+2) · h1,(k−1) = 0,∑3
k=0 h0,(k+4) · h1,(k−1) = 0,∑1
k=0 h0,(k+6) · h1,(k−1) = 0.

(26)

Table 1 is a solution to equation system (26). It is from Table A.1 Solution 2 of [4].

We rearranged the terms. The solution satisfies the equations (26) within errors less

than 10−13.

h1,−1 0.011177337112703
h0,0 h1,0 0.052282268983427 -0.019359715773096
h0,1 h1,1 -0.090555546214041 -0.195280287797963
h0,2 h1,2 -0.080300252489051 0.171377820183894
h0,3 h1,3 0.195120084182308 0.777712940352809
h0,4 h1,4 0.003753698026408 0.489561273639764
h0,5 h1,5 -0.118573529719665 0.113496791518999
h0,6 h1,6 0.024264285477802 0.065527403135986
h0,7 0.014008991752812

Table 1: A solution to Equations (26)
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Figure 10: “Resting Dog” Graphs before Us

Based on this solution, we obtain the corresponding two-scale relation associated

with A and {h~n, ~n ∈ Λ0},

ϕA =
∑
~n∈Λ0

h~nDAT~nϕA.

Then we obtain the Parseval’s frame wavelet function ψA and scaling function ϕA

associated with A by applying the iterative algorithm. The graphs of ϕA and ψA are

illustrated in Figure (10).

Then ψA0 ≡ USψA and ϕA0 ≡ USϕA are the wavelet and scaling function associated

with matrix A0. The graphs of ϕA0 and ψA0 are illustrated in Figure (11). This ϕA0

is known as the scaling function “Resting Dog” (Fig. 5.2) in [4].
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Figure 11: “Resting Dog” Graphs

Example 2.3.3. “Devil’s Tower”:

Let

A =

 1 1

1 −1

 , S =

 1 1

1 0

 and A0 =

 0 1

2 0

 .
Then

A0 = S−1AS

We will construct the scaling function ϕA and the related Parseval’s frame wavelet

ψA associated with matrix A. Then, USϕA and USψA will be the scaling function and

Parseval’s frame wavelet associated with matrix A0.

Assume that the support of solution is Λ0, a 6× 2 region:

Λ0 =
{ m

0

 ,m = 0, 1, · · · , 5
}
∪
{ m

1

 ,m = 0, · · · , 5
}

The reduced Lawton’s system of equations related to Λ0 associated with matrix A has
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the following 10 equations.



∑5
n=0 hn,0 + hn,1 =

√
2,∑5

n=0 h
2
n,0 + h2

n,1 = 1,∑3
n=0 hn,0 · hn+2,0 + hn,1 · hn+2,1 = 0,∑1
n=0 hn,0 · hn+4,0 + hn,1 · hn+4,1 = 0,∑0
n=0 hn,1 · hn+5,0 = 0,∑2
n=0 hn,1 · hn+3,0 = 0,∑4
n=0 hn,1 · hn+5,0 = 0,∑4
n=0 hn,0 · hn+1,1 = 0,∑2
n=0 hn,0 · hn+3,1 = 0,∑0
n=0 hn,0 · hn+5,1 = 0.

(27)

Table 2 is a solution to equation system (27). Note that we changed the order of

the indices of h. The original solution is from “Devil’s Tower” Example in [4]. We

rearranged the terms to form a solution for the previous system of equations. It

satisfies the equations (27) within errors less than 10−16.

h0,0 h0,1 0 0.0473671727453765
h1,0 h1,1 -0.176776695296637 0.0473671727453765
h2,0 h2,1 0.176776695296637 0.659739608441171
h3,0 h3,1 0.176776695296637 0.659739608441171
h4,0 h4,1 -0.176776695296637 0
h5,0 h5,1 0 0

Table 2: A solution to Equations (27)

Based on this solution, we obtain the corresponding two-scale relation associated
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Figure 12: “Devil’s Tower” Graphs before Us

with A and {h~n, ~n ∈ Λ0},

ϕA =
∑
~n∈Λ0

h~nDAT~nϕA.

So we obtain the scaling function ϕA as well as the Parseval’s frame wavelet function

ψA that associated with A. The graphs of ϕA and ψA are illustrated in Figure (12).

ψA0 ≡ USψA and ϕA0 ≡ USϕA are the wavelet and scaling function associated with

matrix A0. The graphs of ϕA0 and ψA0 are illustrated in Figure (13). This ϕA0 is

known as the scaling function “Devil’s Tower” (Fig. 5.1) in [4].
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Figure 13: “Devil’s Tower”Graphs

Example 2.3.4. “Devil’s Tower” variant

Let

A =

 1 1

1 −1

 , S =

 0 1

1 −1

 and A0 =

 0 2

1 0

 .
Then

A0 = S−1AS

We will construct the scaling function ϕA and the related Parseval’s frame wavelet

ψA associated with matrix A. Then, USϕA and USψA will be the scaling function and

Parseval’s frame wavelet associated with matrix A0.

Assume that the support of solution is Λ0, a 2× 6 region:

Λ0 =
{ 0

m

 ,m = 0, 1, · · · , 5
}
∪
{ 1

m

 ,m = −1, 0, · · · , 5
}

The reduced Lawton’s system of equations related to Λ0 associated with matrix A has
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the following 10 equations.



∑5
n=0 h0,n + h1,n =

√
2,∑5

n=0 h
2
0,n + h2

1,n = 1,∑3
n=0 h0,n · h0,n+2 + h1,n · h1,n+2 = 0,∑1
n=0 h0,n · h0,n+4 + h1,n · h1,n+4 = 0,∑0
n=0 h1,n · h0,n+5 = 0,∑2
n=0 h1,n · h0,n+3 = 0,∑4
n=0 h1,n · h0,n+5 = 0,∑4
n=0 h0,n · h1,n+1 = 0,∑2
n=0 h0,n · h1,n+3 = 0,∑0
n=0 h0,n · h1,n+5 = 0.

(28)

Table 3 is a solution to equation system (28). Note that this solution is basically the

transpose of the previous solution.

h0,0 h1,0 0 0.0473671727453765
h0,1 h1,1 -0.176776695296637 0.0473671727453765
h0,2 h1,2 0.176776695296637 0.659739608441171
h0,3 h1,3 0.176776695296637 0.659739608441171
h0,4 h1,4 -0.176776695296637 0
h0,5 h1,5 0 0

Table 3: A solution to Equations (28)

Based on this solution, we obtain the corresponding two-scale relation associated

with A and {h~n, ~n ∈ Λ0},

ϕA =
∑
~n∈Λ0

h~nDAT~nϕA.

So we obtain the scaling function ϕA as well as the Parseval’s frame wavelet func-
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Figure 14: “Devil’s Tower” variant Graphs before Us

tion ψA that associated with A. The graphs of ϕA and ψA are illustrated in Figure

(14).

If we apply the unitary operator US where S =

 0 1

1 −1

, we obtain the wavelet

and scaling function associated with matrix A0 =

 0 2

1 0

. The graphs of ϕA0 and

ψA0 are illustrated in Figure (15). We haven’t seen any graphs in the literature that

resembles Figure (14) or Figure (15).
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Figure 15: “Devil’s Tower” variant Graphs

In the following 4 examples, we will focus on plotting the scaling function ϕA and

wavelet function ψA, given the matrix

A =

 1 1

1 −1

 .
Note that, the Lawton’s system of equations is solely determined by the given matrix

A: 
∑

~n∈Z2 h~nh~n+~k = δ~0~k ; ~k ∈ AZ2

∑
~n∈Z2 h~n =

√
2.

(29)

Once we determined the support of solution: Λ0, we can obtain infinitely number

of numerical solutions to the Lawton’s system of equations, since the system is under-

determined.

The following examples will only list the numerical solutions and the graphs of

scaling function ϕA and wavelet function ψA. We choose the support of solution Λ0
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to a 10× 2 region, that is

Λ0 =
{ 0

m

 ,m = 0, 1, · · · , 9
}
∪
{ 1

m

 ,m = 0, 1, · · · , 9
}

Some of the terms are zeroes in the numerical solutions, which indicates a reduced

support.

Example 2.3.5. Solution (a)

h0,0 h0,1 0 0
h1,0 h1,1 0 0
h2,0 h2,1 0 0.557169520516259
h3,0 h3,1 0.0329212028753943 0.749763637537404
h4,0 h4,1 0.0443009172452429 0.249919657900581
h5,0 h5,1 -0.132903578450203 -0.185722018231522
h6,0 h6,1 0.0987642229799393 0
h7,0 h7,1 0 0
h8,0 h8,1 0 0
h9,0 h9,1 0 0

Table 4: Solution (a) to System (29) with Λ0 size 10× 2

The graphs of ϕA and ψA for Solution (a) is illustrated in Figure (16).

If we apply the unitary operator US where S =

 1 1

1 0

, we obtain the wavelet and

scaling function associated with matrix A0 =

 0 1

2 0

. We haven’t seen any graphs

in the literature that resembles Figure (16) or Figure (17).
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Figure 16: Function Graphs for Solution (a)

Figure 17: Function Graphs for Solution (a) after applying US
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Figure 18: Function Graphs for Solution (b)

Example 2.3.6. Solution (b) graphs in Figure (18)

h0,0 h0,1 0 0
h1,0 h1,1 0 0
h2,0 h2,1 0 0.167399394135679
h3,0 h3,1 -0.296808460615992 -0.289943097871612
h4,0 h4,1 0.514085280832949 0.257372203040146
h5,0 h5,1 0.579143657062491 0.14859450413738
h6,0 h6,1 0.334370081652062 0
h7,0 h7,1 0 0
h8,0 h8,1 0 0
h9,0 h9,1 0 0

Table 5: Solution (b) to System (29) with Λ0 size 10× 2
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Figure 19: Function Graphs for Solution (c)

Example 2.3.7. Solution (c) graphs in Figure (19)

h0,0 h0,1 0 -0.042662356611308
h1,0 h1,1 0.229718118426660 0.073893369221408
h2,0 h2,1 -0.397883452534099 -0.058652899137267
h3,0 h3,1 -0.254614013976788 0.103058936292361
h4,0 h4,1 0.433086698471935 0.351421084047414
h5,0 h5,1 0.087682680580658 0.197167971333346
h6,0 h6,1 0.051683876078416 0.498309235953705
h7,0 h7,1 -0.092366711526760 0.287698971517548
h8,0 h8,1 -0.053327945764135 0
h9,0 h9,1 0 0

Table 6: Solution (c) to System (29) with Λ0 size 10× 2
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Figure 20: Function Graphs for Solution (d)

Example 2.3.8. Solution (d) graphs in Figure (20)

h0,0 h0,1 0 -0.071588157760280
h1,0 h1,1 0.156832894292099 0.123994326461062
h2,0 h2,1 -0.271642541211995 0.072824192521115
h3,0 h3,1 -0.372775372167982 -0.018099348797588
h4,0 h4,1 0.408980684972816 0.51321661540415
h5,0 h5,1 0.239130536943095 0.12516496091656
h6,0 h6,1 0.216030240651394 0.340205118613902
h7,0 h7,1 -0.154992908076327 0.196417516811425
h8,0 h8,1 -0.089485197200350 0
h9,0 h9,1 0 0

Table 7: Solution (d) to System (29) with Λ0 size 10× 2
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2.4 Examples in L2(R3)

Example 2.4.1. A Haar wavelet in L2(R3) associated with matrix

A0 ≡


0 1 0

0 0 1

2 0 0

 .

We have A0 = S−1AS where

A ≡


0 2 −1

0 0 1

1 1 0

 and S ≡


−1 0 1

1 0 0

0 1 0

 .

Then det(A) = 2 with eigenvalues { 3
√

2e
ikπ
3 , k = 0, 1, 2.}. The matrix A is expansive.

We have

AZ3 =
{
α


0

0

1

+ β


1

1

0

+ (2Z)3, α, β ∈ Z
}

= AτZ3.

Let

~̀
A ≡


1

0

0

 , ~qA ≡


1

1

0

 .

The vectors ~̀A, ~qA and matrix A satisfies the properties (1)-(5) in the Partition The-

orem (Theorem 2.1). In this example we assume that the only non zero elements for
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h~n are at

~n0 =


0

0

0

 and ~n1 =


1

0

0

 ∈ ~̀A + AZ3.

So the product h~n0h~n1 is not in any of the equations. The reduced Lawton’s System of

Equations is 
h2
~n0

+ h2
~n1

= 1

h~n0 + h~n1 =
√

2.

The system has one solution h~n0 = h~n1 =
√

2
2

.

The two-scale relation equation (22) is

ϕA =

√
2

2
DA(I + T~n1)ϕA.

By Step 5 in Theorem 2.1,

ϕA0 = USϕA =

√
2

2
DA0(I + TS−1~n1

)ϕA0 =

√
2

2
DA0(I + T~e3)ϕA0 .

Notice that we have (I + T~e3)χ[0,1)3
= χ

[0,1)2×[0,2)
and

√
2

2
DA0χ[0,1)2×[0,2)

= χ
[0,1)3

. The

function χ
[0,1)3

is the scaling function ϕA0 . Then the related normalized tight frame

(orthogonal) wavelet is

ψA0 = χ
Q+ − χQ− , with Q+ ≡ χ

[0,0.5)×[0,1)2
and Q− ≡ χ

[0.5,1)×[0,1)2

This is a Haar wavelet in L2(R3).

The function graphs of ϕA, ψA, and the resulting functions after applied US, ϕA0

and ψA0, are in illustrated in Figure (21) and Figure (22).

With this method, we can find examples of Haar wavelets in any dimension.
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Figure 21: Function Graphs for A Haar wavelet in L2(R3) before US

Figure 22: Function Graphs for A Haar wavelet in L2(R3)



46

Example 2.4.2. Let

A ≡


−2 1 −2

1 0 0

2 0 2

 , ~̀A ≡


0

0

1

 and ~qA ≡


0

0

1

 .

It is clear that det(A) = −2. Also, we have

AZ3 =
{
α~e1 + β~e2 + (2Z)3, α, β ∈ Z

}
= AτZ3.

The vectors ~̀A, ~qA and matrix A satisfy the properties (1)-(5) in the Partition The-

orem (Theorem 2.1). So, given a finite solution to the Lawton’s System of Equations,

we will have a Parseval’s frame wavelet associated with matrix A.

In this example we choose

Λ0 ≡
{
~n = α~e1 + β~e2 + γ~e3, α = 0, 1, 2, 3, β = 0, 1, γ = 0, 1,

}
.
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The corresponding reduced Lawton’s system of equations is

∑
~n∈Λ0

h2
~n = 1,∑

~n∈Λ0
h~n =

√
2,∑3

k=0(hk,0,0 · h(1+k),0,0 + hk,0,1 · h(1+k),0,1 + hk,1,0 · h(1+k),1,0 + hk,1,1 · h(1+k),1,1) = 0,∑2
k=0(hk,0,0 · h(2+k),0,0 + hk,0,1 · h(2+k),0,1 + hk,1,0 · h(2+k),1,0 + hk,1,1 · h(2+k),1,1) = 0,∑1
k=0(hk,0,0 · h(3+k),0,0 + hk,0,1 · h(3+k),0,1 + hk,1,0 · h(3+k),1,0 + hk,1,1 · h(3+k),1,1) = 0,∑0
k=0(hk,0,0 · h(3+k),1,0 + hk,0,1 · h(3+k),1,1) = 0,∑1
k=0(hk,0,0 · h(2+k),1,0 + hk,0,1 · h(2+k),1,1) = 0,∑2
k=0(hk,0,0 · h(1+k),1,0 + hk,0,1 · h(1+k),1,1) = 0,∑3
k=0(hk,0,0 · hk,1,0 + hk,0,1 · hk,1,1) = 0,∑3
k=1(hk,0,0 · h(k−1),1,0 + hk,0,1 · h(k−1),1,1) = 0,∑3
k=2(hk,0,0 · h(k−2),1,0 + hk,0,1 · h(k−2),1,1) = 0,∑3
k=3(hk,0,0 · h(k−3),1,0 + hk,0,1 · h(k−3),1,1) = 0

(30)

Solutions to this system of equations (30) are plentiful. In Table 8 we show two sets

of solutions. The solution satisfies the equations (30) within errors less than 10−13.
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α β γ Solution (1) Solution (2)
0 0 0 0.00000000000000003754 -0.00000000000000000294
1 0 0 0.08378339374280850000 0.03292120287539430000
2 0 0 0.49453510790101500000 -0.13290357845020300000
3 0 0 0.00000000000000024969 0.00000000000000017890
0 1 0 0.00000000000000002218 0.00000000000000004947
1 1 0 0.35330635188230000000 0.55716952051625900000
2 1 0 -0.22451807131547000000 0.24991965790058100000
3 1 0 0.00000000000000011746 -0.00000000000000000691
0 0 1 0.00000000000000007270 -0.00000000000000000396
1 0 1 0.16226597620431900000 0.04430091724524290000
2 0 1 -0.25534514772672400000 0.09876422297993930000
3 0 1 -0.00000000000000012892 -0.00000000000000013295
0 1 1 0.00000000000000004295 0.00000000000000006657
1 1 1 0.68425970262500800000 0.74976363753740400000
2 1 1 0.11592624905984000000 -0.18572201823152200000
3 1 1 -0.00000000000000006065 0.00000000000000000514

Table 8: Solutions to System (30) with Λ0 size 4× 2× 2



CHAPTER 3: ONE DIMENSION AND HIGH DIMENSION

In one dimension, plenty of wavelet coefficients have been proposed and studied.

Here, we will illustrate an approach that will convert one dimension wavelet coeffi-

cients into high dimension ones.

In the 2D case, we use A =

 −1 2

−2 2

 as the default dilation matrix for this

chapter. Recall that a dilation matrix is used to populated the Lawton’s System of

Equations for the wavelet coeffients.

We start with a well-known wavelet – db16, and its graphs are shown in Figure

(23).

h1 0.0544158422431072
h2 0.3128715909143166
h3 0.6756307362973795
h4 0.5853546836542159
h5 -0.0158291052563823
h6 -0.2840155429615824
h7 0.0004724845739124
h8 0.1287474266204893
h9 -0.0173693010018090
h10 -0.0440882539307971
h11 0.0139810279174001
h12 0.0087460940474065
h13 -0.0048703529934520
h14 -0.0003917403733770
h15 0.0006754494064506
h16 -0.0001174767841248

Table 9: Wavelet Coefficients for db16
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Figure 23: Graphs of db16

Its wavelet coefficients satisfy the following Lawton’s System of Equations 31.



∑16
n=1 hn =

√
2,∑16

n=1 h
2
n = 1,∑14

n=1 hn · hn+2 = 0,∑12
n=1 hn · hn+4 = 0,∑10
n=1 hn · hn+6 = 0,∑8
n=1 hn · hn+8 = 0,∑6
n=1 hn · hn+10 = 0,∑4
n=1 hn · hn+12 = 0,∑2
n=1 hn · hn+14 = 0.

(31)

In the 2D case, given the support of the solution is 2× 8, the associated Lawton’s
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System of Equations is:

∑8
n=1 h1,n + h2,n =

√
2,∑8

n=1 h
2
1,n + h2

2,n = 1,∑7
n=1 h1,n · h1,n+1 + h2,n · h2,n+1 = 0,∑6
n=1 h1,n · h1,n+2 + h2,n · h2,n+2 = 0,∑5
n=1 h1,n · h1,n+3 + h2,n · h2,n+3 = 0,∑4
n=1 h1,n · h1,n+4 + h2,n · h2,n+4 = 0,∑3
n=1 h1,n · h1,n+5 + h2,n · h2,n+5 = 0,∑2
n=1 h1,n · h1,n+6 + h2,n · h2,n+6 = 0,∑1
n=1 h1,n · h1,n+7 + h2,n · h2,n+7 = 0.

(32)

The following set of wavelet coefficients is a valid solution to system (32):

h1,1 h2,1 0.0544158422431072 0.3128715909143166
h1,2 h2,2 0.6756307362973795 0.5853546836542159
h1,3 h2,3 -0.0158291052563823 -0.2840155429615824
h1,4 h2,4 0.0004724845739124 0.1287474266204893
h1,5 h2,5 -0.0173693010018090 -0.0440882539307971
h1,6 h2,6 0.0139810279174001 0.0087460940474065
h1,7 h2,7 -0.0048703529934520 -0.0003917403733770
h1,8 h2,8 0.0006754494064506 -0.0001174767841248

Table 10: Wavelet Coefficients for a 2D version of db16

Note that, all terms in the above solution are actually from db16, the one dimension

solution. We only rearranged the terms as follows: h1,1 = h1, h2,1 = h2, h1,2 = h3,

h2,2 = h4, ..., h1,8 = h15, h2,8 = h16. A close examination shows that the two

systems of equations, (31) and (32), are the same after applying the above mentioned

substitution.
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Figure 24: Graphs of a 2D version derived from db16

The graphs of the 2D scaling function and wavelet function are in Figure (24).

Following the above approach, we can construct other 2D wavelets from known 1D

wavelet coefficients.

db8 is another well-known wavelet and its graph is shown in Figure (25).

h1 0.2303778133088964
h2 0.7148465705529154
h3 0.6308807679298587
h4 -0.0279837694168599
h5 -0.1870348118790931
h6 0.0308413818355607
h7 0.0328830116668852
h8 -0.0105974017850690

Table 11: Wavelet Coefficients for db8

The wavelet coefficients satisfy the following Lawton’s System of Equations in 33:
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Figure 25: Graphs of db8



∑8
n=1 hn =

√
2,∑8

n=1 h
2
n = 1,∑6

n=1 hn · hn+2 = 0,∑4
n=1 hn · hn+4 = 0,∑2
n=1 hn · hn+6 = 0.

(33)

In the 2D case, given the support of the solution is 2× 4, the associated Lawton’s

System of Equations is:
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

∑4
n=1 h1,n + h2,n =

√
2,∑4

n=1 h
2
1,n + h2

2,n = 1,∑3
n=1 h1,n · h1,n+1 + h2,n · h2,n+1 = 0,∑2
n=1 h1,n · h1,n+2 + h2,n · h2,n+2 = 0,∑1
n=1 h1,n · h1,n+3 + h2,n · h2,n+3 = 0.

(34)

The following set of wavelet coefficients is a valid solution to system (34):

h1,1 h2,1 0.2303778133088964 0.7148465705529154
h1,2 h2,2 0.6308807679298587 -0.0279837694168599
h1,3 h2,3 -0.1870348118790931 0.0308413818355607
h1,4 h2,4 0.0328830116668852 -0.0105974017850690

Table 12: Wavelet Coefficients for a 2D version of db8

Note that, all terms in the above solution are actually from db8, the one dimension

solution. We only rearranged the terms as follows: h1,1 = h1, h2,1 = h2, h1,2 =

h3, h2,2 = h4, ..., h1,4 = h7, h2,4 = h8. A close examination shows that the two

systems of equations, (33) and (34), are the same after applying the above mentioned

substitution.

The graphs of the 2D scaling function and wavelet function are in Figure (26).

Lastly, we want to show that we can do the same to db4.

The wavelet coefficients for db4 are:

h1 0.4829629131445341
h2 0.8365163037378077
h3 0.2241438680420134
h4 -0.1294095225512603

Table 13: Wavelet Coefficients for db4
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Figure 26: Graphs of a 2D version derived from db8

The Lawton’s Systems of Equations for both 1D and 2D are listed below:

1D



∑4
n=1 hn =

√
2,∑4

n=1 h
2
n = 1,

h1 · h2 + h3 · h4 = 0.

2D



∑2
n=1 h1,n + h2,n =

√
2,∑2

n=1 h
2
1,n + h2

2,n = 1,

h1,1 · h2,1 + h1,2 · h2,2 = 0.

The reader can find out the pattern of mapping from 1D terms into 2D terms.

The graphs for both 1D and 2D scaling functions and wavelet functions are shown

in Figure (27) and Figure (28).

So given a set of wavelet coefficients in one dimension, we can obtain high dimension

wavelet coefficients sets by rearranging the terms. As long as the new coefficients set

satisfies the high dimension Lawton’s System of Equations, the constructed scaling

function and wavelet function from its 1D counterpart are valid 2D scaling function

and wavelet function in 2D.
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Figure 27: Graphs of db4

Figure 28: Graphs of a 2D version derived from db4
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The above examples also show that, given a set of wavelet coefficients that satisfies

the 2D Lawton’s System of Equations, we can obtain an 1D version of the same set of

numbers, which satisfies the 1D Lawton’s System of Equations. And we can construct

a 1D scaling function and wavelet function using the new 1D wavelet coefficients.

An interesting observation we have is that, while the smoothness of Daubechies’

wavelet(db16, db8, db4 etc.) in 1D is decent, the smoothness is not carried over to

the 2D counterparts. We would like to explore this further in the future, as there are

many different ways to construct high dimension wavelet functions from 1D wavelet

coefficients. We here only proposed one possible way that is associated with the given

matrix A.



CHAPTER 4: APPLICATION OF FRAMES IN SIGNAL PROCESSING

In Section 1.3, we discussed a discrete wavelet transform(DWT) algorithm that

can be used to decompose as well as perfectly reconstruct signals in one dimension.

The theory behind the algorithm is captured completely by the orthogonal MRA

framework.

In this chapter, we will demonstrate that this algorithm can be (1) implemented

with frame MRA to decompose signals. That is, we can use frame wavelets and frame

wavelets coefficients, rather than using the counterpart of orthogonal wavelets; (2)

extend to higher dimensions with a different, more natural sub-lattice scheme.

Classically, the DWT is defined for signal sequences with length of powers of 2.

Various methods can be used for extending signal samples of other sizes, including

zero-padding, smooth padding, periodic extension, and boundary value replication

(symmetrization). For simplicity of the presentation in the dissertation, we will omit

the discussion of these methods and work only on examples with signal length of

powers of 2.
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4.1 Signal Analysis – 1-dimensional Case

In Section 2.1, we have already shown that, frame wavelets can be constructed from

{hn}, a solution to the Lawton’s System of Equations. We call a even length {hn}

scaling filter, denoted as H. As a matter of fact, Lawton’s System of Equations

gives a way to obtain the scaling filters.

In signal processing, a filter with finite impulse response(FIR)(or response to any

finite length input) is called an FIR filter.

As discussed before, the fast cascading DWT algorithm is a classical two-channel

subband scheme with quadrature mirror filters (QMFs). The direct connection be-

tween the solution of Lawton’s System of Equations and QMFs is that we can derive

all 4 QMFs from H, which is illustrated in the following chart:

Filter Description Note

Lo R = norm(H) Low-Pass Reconstruction Filter normalize with sum
√

2
Hi R = qmf(Lo R) High-Pass Reconstruction Filter Y (k) = (−1)kX(N + 1− k),

N the length of the filter
Lo D = rev(Lo R) Low-Pass Decomposition Filter flips Lo R
Hi D = rev(Hi R) High-Pass Decomposition Filter flips Hi R

Table 14: Computing Quadrature Mirror Filters from Scaling Filter

Before we go deep dive into the details of the example of DWT, we need one more

operation defined:

Definition 4.1. Let S be a signal sequence and H a FIR filter with length N , then

the discrete convolution between S and H is

(S ∗H)(n) =
m=N∑
m=1

S(n−m)H(m).
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Figure 29: Decomposition from cj to cj−1 and dj−1

Note that S can be zero-padded and the length of the resulting sequence equals the

length of S plus N − 1.

Recall the decomposition formulas we have in Section 1.3:
cj−1
k =

∑
n hn−2kc

j
n;

dj−1
k =

∑
n gn−2kc

j
n.

In practice, we do the following to obtain cj−1 from cj:

Step 1. Convolute cj−1 with Lo D;

Step 2. Downsample(dyadic decimation) the result from last step, this is cj−1.

Some algebra exercises will show that this practical approach is equivalent to the

decomposition formula.

Similarly, we have the following to obtain dj−1 from cj:

Step 1. Convolute cj−1 with Hi D;

Step 2. Downsample(dyadic decimation) the result from last step, this is dj−1.

Notice that, the only difference between the two is the filter used in Step 1. We

illustrate this decomposition process in Figure (29).
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Figure 30: Reconstruction from cj−1 and dj−1 to cj

For the reconstruction, recall the formula is:

cjn =
∑
k

[
hn−2kc

j−1
k + gn−2kd

j−1
k

]
.

And in practice, we use the following approach which leads to the same cj as in

the reconstruction formula.

Step 1. Upsample(dyadic zero inserting) cj−1;

Step 2. Convolute the result from last step with Lo R, this is the first summation

in the reconstruction formula;

Step 3. Upsample(dyadic zero inserting) dj−1;

Step 4. Convolute the result from last step with Hi R, this is the second summation

in the reconstruction formula;

Step 5. Add the results from Step 2 and Step 4. The center part of the sum is cj.

This reconstruction process is illustrated in Figure (30).

Example 4.1.1. 2-level decomposition and reconstruction with orthogonal wavelet

“db4”.

The original signal is of length 128. We first decomposed it into cA1 and cD1.

Then further decomposed cA1 into cA2 and cD2. On the reconstruction part, we
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started from cA2, cD2 and cD1, and first reconstructed cA1 from cA2 and cD2, and

then reconstructed the original signal from the reconstructed cA1 and cD1.

The following is the Matlab script for the process.

% Load data

load leleccum;

S = leleccum(1:128);

% db4 wavelet coefficient

H = [0.34150635094622 0.591506350945867

0.158493649053779 -0.091506350945867]*sqrt(2);

% Compute the 4 QMFs w.r.t H

[Lo_D,Hi_D,Lo_R,Hi_R] = orthfilt(H);

% Decomposition Level 1

% Convolution with Lo_D and downsampling to get Appr. Coef. -- cA1

% downsampling, retaining even-indexed terms

cA1 = dyaddown( conv(Lo_D,S) ,0);

% Convolution with Hi_D and downsampling to get Detail Coef. -- cD1

% downsampling, retaining even-indexed terms

cD1 = dyaddown( conv(Hi_D,S) ,0);
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% Decomposition Level 2

% Convolution with Lo_D and downsampling to get Appr. Coef. -- cA2

% downsampling, retaining even-indexed terms

cA2 = dyaddown( conv(Lo_D,cA1) ,0);

% Convolution with Hi_D and downsampling to get Detail Coef. -- cD2

% downsampling, retaining even-indexed terms

cD2 = dyaddown( conv(Hi_D,cA1) ,0);

% Here we have the approximation cA2 and the details sequence cD2, cD1

% Reconstrucion Level 2

% Reconstruct cA1 from cA2 and cD2

% pad zeros at odd-index of cA2 and cD2

% conv with Lo_R and Hi_R respectively

cA1_r = conv(Lo_R,dyadup(cA2,1)) + conv(Hi_R,dyadup(cD2,1));

% keep the central part of cA1_r with the same length as cA1

cA1_r_trim = wkeep(cA1_r,length(cA1),’c’);

% Reconstrucion Level 1

% Reconstruct SS from cA1_r_trim and cD1

% pad zeros at odd-index of cA1_r_trim and cD1,

% conv with Lo_R and Hi_R respectively

S_r = conv(Lo_R,dyadup(cA1_r_trim,1)) + conv(Hi_R,dyadup(cD1,1));



64

Figure 31: 2-level Signal Analysis Example

% keep the central part of S_r with the same length as original signal S

S_r_trim = wkeep(S_r,length(S),’c’);

% S_r_trim is the reconstructed signal
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4.2 Image Decomposition – 2-dimensional Case

The traditional approach when applying DWT in a 2D scenario is to use tensor

product. That is, to apply the 1D DWT algorithm to x-axis and y-axis respectively.

The details of this approach can be found in [8].

Here in this section, we propose a different approach that utilizes the so called

quincunx sub-lattice in 2D. This is a natural 2D extension than the traditional method

because here we are working on both axes simultaneously.

The work flow resembles the 1D case, only that we are applying a 2D convolution.

Given matrix A as a matrix that populates the quincunx sub-lattice in 2D, the

decomposition formula is 
cj−1
~k

=
∑

~n h~n−A~kc
j
~n;

dj−1
~k

=
∑

~n g~n−A~kc
j
~n.

In practice, we do the following to obtain cj−1 from cj, note that the the wavelet

filters are all in 2D:

Step 1. Convolute cj with Lo D;

Step 2. Downsample(quincunx) the result from last step, note that the result is

sparse.

Step 3. Rotate the sparse result 45◦, to form a dense image, this result is cj−1.

We can repeat the above mentioned process as many times as we want to obtain

the desired approximation c0 and the detail sequences d0, d1, ..., dj−1.

In the following example, the input image is decomposed 4 times, resulting cA4

and the details sequence cD4, cD3, cD2 and cD1.



66

Figure 32: 4-level Image Decomposition
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APPENDIX A: Some Wavelet Coefficients from Daubechies in [6]

size n hn
N = 2 1 0.7071067811865476

2 0.7071067811865476
N = 4 1 0.4829629131445341

2 0.8365163037378077
3 0.2241438680420134
4 -0.1294095225512603

N = 8 1 0.2303778133088964
2 0.7148465705529154
3 0.6308807679298587
4 -0.0279837694168599
5 -0.1870348118790931
6 0.0308413818355607
7 0.0328830116668852
8 -0.0105974017850690

size n hn
N= 16 1 0.0544158422431072

2 0.3128715909143166
3 0.6756307362973195
4 0.5853546836542159
5 -0.0158291052563823
6 -0.2840155429615824
7 0.0004724845739124
8 0.1287474266204893
9 -0.0173693010018090
10 -0.0440882539307971
11 0.0139810279174001
12 0.0087460940474065
13 -0.0048703529934520
14 -0.0003917403733770
15 0.0006754494064506
16 -0.0001174767841248

Table 15: Wavelet Coefficients from Daubechies in [6]
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APPENDIX B: Parametric Form Solution for a Lawton’s System of Equations

We here will present a parametric form solution for a simple Lawton’s System of

Equations.

Consider the 1D Lawton’s System of Equations with only 4 non-zero terms:

∑4
n=1 hn =

√
2,∑4

n=1 h
2
n = 1,

h1 · h2 + h3 · h4 = 0.

(35)

We have a solution in parametric form:

h1 =
√

2
2
· t(1+t)

1+t2
,

h2 =
√

2
2
· 1+t

1+t2
,

h3 =
√

2
2
· 1−t

1+t2
,

h4 =
√

2
2
· −t(1−t)

1+t2
,

(36)

where t ∈ R.

In particular, we have db4 when t =
√

3
3

.

Also, following the process presented in Chapter 3, we can “upgrade” this 1D

wavelet coefficients set to a 2D one:

h1,1 h2,1 h1 0
h1,2 h2,2 h2 h3

h1,3 h2,3 0 h4

h1,4 h2,4 0 0

Table 16: A Parametric Solution in 2D

The associated matrix populates the quincunx sub-lattice, so

 1 1

1 −1

 fit the

bill. This 2D solution is used in Secion 4.2.
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APPENDIX C: Matlab Scripts for Secion 4.2

Note that quincunxdown is a customized function that downsamples the input by

quincunx sublattice.

load woman;

% X contains the loaded image. map contains the loaded colormap.

% for this t’s value, we are using 2D version of db4, but other values also work

t = 1/sqrt(3);

H = [t*(1+t), 1+t, 0, 0;

0, 1-t, -t*(1-t), 0 ]/(1+t^2)/sqrt(2);

% Decomposition Level 1

% cA

% convolute with low-pass decomp filter

cA1_same = conv2(X,Lo_D,’same’);

% downsample by quincunx sublattice, retain even-index sum terms,

% then rotate clockwise to form center dense, diamond shape

cA1 = quincunxdown(cA1_same,0,1);

% cD

% convolute with high-pass decomp filter

cD1_same = conv2(X,Hi_D,’same’);
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% downsample by quincunx sublattice, retain even-index sum terms,

% then rotate clockwise to form center dense, diamond shape

cD1 = quincunxdown(cD1_same,0,1);

% Decomposition Level 2

% cA

% use the dense diamond to convolute with low-pass decomp filter

cA2_same = conv2(cA1,Lo_D,’same’);

% downsample by quincunx sublattice, retain even-index sum terms,

% then rotate counter-clockwise to form center dense square shape

cA2 = quincunxdown(cA2_same,0,-1);

% cD

% use the dense diamond to convolute with high-pass decomp filter

cD2_same = conv2(cA1,Hi_D,’same’);

% downsample by quincunx sublattice, retain even-index sum terms,

% then rotate counter-clockwise to form center dense square shape

cD2 = quincunxdown(cD2_same,0,-1);

cA2_temp = cA2;

% keep only the center non-zero part

cA2 = wkeep(cA2, floor((size(X))/2));

cD2 = wkeep(cD2, floor((size(X))/2));
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% Decomposition Level 3

% cA

cA3_same = conv2(cA2,Lo_D,’same’);

cA3 = quincunxdown(cA3_same,0,1);

% cD

cD3_same = conv2(cA2,Hi_D,’same’);

cD3 = quincunxdown(cD3_same,0,1);

% Decomposition Level 4

% cA

cA4_same = conv2(cA3,Lo_D,’same’);

cA4 = quincunxdown(cA4_same,0,-1);

% cD

cD4_same = conv2(cA3,Hi_D,’same’);

cD4 = quincunxdown(cD4_same,0,-1);

% keep only the center non-zero part

cA4 = wkeep(cA4, floor((size(cA2))/2));

cD4 = wkeep(cD4, floor((size(cA2))/2));

% so we have cA4 and the details sequence cD4, cD3, cD2, cD1


