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ABSTRACT
UNKYUNG LEE. Analysis of semiparametric regression models for the cumulative incidence
functions under the two-phase sampling designs. (Under the direction of DR. YANQING SUN)

Competing risks often arise where a subject may be exposed to two or more mutually exclusive
causes of failure. In the competing risks setting, the effects of covariates on the semiparmetric model
for cumulative incidence function can be assessed by using direct binomial regression approach. In
epidemiologic cohort studies, case-cohort study designs have been widely used to evaluate the effects
of covariates on failure times when the occurrence of the failure event is rare. Under the case-cohort
design, the covariate histories are investigated only for the subjects who experience the event of
interest (cases) during the follow-up period and for a relatively small random sample (the subcohort)
from the original cohort. In this dissertation, we study estimating procedures for the cumulative
incidence function based on competing risks data under case-cohort/two-phase sampling designs.

First, we introduce missing model for the cumulative incidence function. The estimation proce-
dure is based on the direct binomial regression model (Scheike et al., 2008), which enables us to
evaluate the effects of the covariates directly when there exists competing risks. We develop an
estimating equation for the missing model by using the inverse probability weighting of the com-
plete cases. We also study the asymptotic properties of the inverse probability weighting estimators.
The simulation studies show that the IPW methods have satisfactory finite-sample performance.
However, this method loses the efficiency because it still use only complete data of subjects.

Second, we proposed an estimating equation by using augmented inverse probability of complete
cases for the semiparametric model using identity link function. The AIPW method is doubly
robust and it can improve efficiency. The asymptotic properties of the propose AIPW estimators
are established. The finite-sample properties of the estimators are investigated by the simulation
studies. We use the auxiliary variables that may improve efficiency through their correlation with
the phase-two covariates.

The proposed estimating methods are applied to analyze data from the RV144 vaccine efficacy

trial.
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FIGURE 15: Comparison of Full, IPW, CC, AIPW-50, ATIPW-80, AIPW-90 esti-

mators for the baseline cumulative coefficient 7o (¢) for average of total missing
probability mg = 0.3 and mg = 0.6, respectively, under (3.30) with sampling
scenario I. For mg = 0.3, m; = 0 and mo = 0.36. For mg = 0.6, m; = 0 and
me = 0.65. These results are based on 1000 simulations with n = 700 and 50%
censoring. (a) (b): The plots of the biases of the estimates of 1y (t) for mg = 0.3
and mgo = 0.6.(c)(d):The plots of the empirical standard errors of the estimates of
no(t) for mg = 0.3 and mg = 0.6. (e)(f): The plots of the average of the estimated
standard errors of the estimates of no(t) for my = 0.3 and mg = 0.6. (g)(h): The
plots of the coverage probabilities of the estimators of 7g(t) for my = 0.3 and
mo = 0.6.

FIGURE 16: Comparison of Full, IPW, CC, ATIPW-50, AIPW-80, AIPW-90 estima-

tors for the cumulative coefficient 1, (¢) for average of total missing probability
mo = 0.3 and mg = 0.6, respectively, under (3.30) with sampling scenario I. For
mo = 0.3, m; = 0 and my = 0.36. For mg = 0.6, m; = 0 and mo = 0.65.
These results are based on 1000 simulations with n = 700 and 50% censoring.
(a), (b): The plots of the biases of the estimates of 7, (¢) for mg = 0.3 and
mo = 0.6.(c), (d):The plots of the empirical standard errors of the estimates
of n1(t) for mg = 0.3 and my = 0.6. (e), (f): The plots of the average of the
estimated standard errors of the estimates of n;(t) for mg = 0.3 and mg = 0.6.
(g), (h): The plots of the coverage probabilities of the estimators of n;(t) for
mgy = 0.3 and mg = 0.6.

FIGURE 17: Comparison of Full, IPW, CC, AIPW-50, ATIPW-80, AIPW-90 esti-

mators for the baseline cumulative coefficient 79 (¢) for average of total missing
probability mg = 0.3 and mg = 0.6, respectively, under (3.30) with sampling
scenario II. For mg = 0.3, m; = 0.2 and my = 0.3. For mg = 0.6, m; = 0.45
and mo = 0.65. These results are based on 1000 simulations with n = 700 and
50% censoring. For mg = 0.3, m; = 0.2 and mg = 0.3. (a), (b): The plots
of the biases of the estimates of ng(t) for mg = 0.3 and mg = 0.6.(c), (d):The
plots of the empirical standard errors of the estimates of 7y(t) for mg = 0.3 and
mo = 0.6. (e), (f): The plots of the average of the estimated standard errors
of the estimates of ng(t) for my = 0.3 and mo = 0.6. (g)(h): The plots of the
coverage probabilities of the estimators of ny(t) for mg = 0.3 and my = 0.6.

FIGURE 18: Comparison of Full, IPW, CC, AIPW-50, ATIPW-80, ATPW-90 estima-

tors for the cumulative coefficient n;(t) for average of total missing probability
mo = 0.3 and my = 0.6, respectively, under (3.30) with sampling scenario II. For
mo = 0.3, m; = 0.2 and my = 0.3. For mg = 0.6, m; = 0.45 and mo = 0.65.
These results are based on 1000 simulations with n = 700 and 50% censoring.
For mg = 0.3, m; = 0.2 and my = 0.3. (a),(b): The plots of the biases of the
estimates of 1 (¢) for mg = 0.3 and mgy = 0.6.(c),(d):The plots of the empirical
standard errors of the estimates of 7 (¢) for mg = 0.3 and mg = 0.6. (e),(f): The
plots of the average of the estimated standard errors of the estimates of 1;(¢) for
mo = 0.3 and mg = 0.6. (g),(h): The plots of the coverage probabilities of the
estimators of 7 (t) for mg = 0.3 and my = 0.6.
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FIGURE 19: Comparison of Full, IPW, CC, AIPW-50, AIPW-80, AIPW-90 esti-
mators for the baseline cumulative coefficient 7o (¢) for average of total missing
probability mg = 0.3 and mg = 0.6, respectively, under (3.30) with sampling
scenario III. These results are based on 1000 simulations with n = 700 and 50%
censoring. (a), (b): The plots of the biases of the estimates of 7y(t) for mg = 0.3
and mo = 0.6.(c), (d):The plots of the empirical standard errors of the estimates
of ng(t) for mg = 0.3 and mg = 0.6. (e), (f): The plots of the average of the
estimated standard errors of the estimates of ny(t) for mg = 0.3 and mg = 0.6.
(g), (h): The plots of the coverage probabilities of the estimators of ny(t) for
mo = 0.3 and mg = 0.6.

FIGURE 20: Comparison of Full, IPW, CC, AIPW-50, AIPW-80, ATPW-90 estima-
tors for the cumulative coefficient 1 () for average of total missing probability
mo = 0.3 and my = 0.6, respectively, under (3.30) with sampling scenario III.
These results are based on 1000 simulations with n = 700 and 50% censoring.
(a), (b): The plots of the biases of the estimates of 7, (t) for mg = 0.3 and
mo = 0.6.(c), (d):The plots of the empirical standard errors of the estimates
of () for mg = 0.3 and mg = 0.6. (e), (f): The plots of the average of the
estimated standard errors of the estimates of n;(t) for mg = 0.3 and mg = 0.6.
(g), (h): The plots of the coverage probabilities of the estimators of n;(t) for
mo = 0.3 and mg = 0.6.

FIGURE 21: (a) and (b) show the comparison of the AIPW estimates of baseline cu-
mulative coefficients 1y (t) and the cumulative coefficients 7 (t) with 95% point-
wise confidence intervals for the immune response R; (IgG-92TH023V1V2) in
model (3.37) for €1; = 1 and €1; = 2, respectively.

FIGURE 22: (a) and (b) show the comparison of the AIPW estimates of baseline cu-
mulative coefficients 7y(t) and the cumulative coefficients 1, (¢) with 95% point-
wise confidence intervals for the immune response R; (IgG3-92TH023V1V2) in
model (3.37) for e1; = 1 and €1; = 2, respectively.

FIGURE 23: (a) and (b) show the comparison of the AIPW estimates of baseline cu-
mulative coefficients 7y(¢) and the cumulative coefficients #; (¢t) with 95% point-
wise confidence intervals for the immune response R; (IgG-A244V1V2) in model
(3.37) for e9; = 1 and ey; = 2, respectively.

FIGURE 24: (a) and (b) show the comparison of the ATIPW estimates of baseline cu-
mulative coefficients 79(¢) and the cumulative coefficients 7, (¢t) with 95% point-
wise confidence intervals for the immune response R; (IgG3-A244V1V2) in model
(3.37) for e9; = 1 and ey; = 2, respectively.

FIGURE 25: Q1 = 0.09027,Q2 = 0.31310 and Q3 = 0.39230 are quartiles of the
predicted immune response R; (IgG-92TH023V1V2) using AIPW method. (a),
(b) and (c) shows that the predicted cumulative incidence function F' for eg; = 1
(red) and €1; = 2 (grey), respectively, at each level of behavioral risk score groups
(low, medium and high) based on the model (3.37).

FIGURE 26: Q1 = —0.4677,Q2 = 0.1196 and Q3 = 0.6484 are quartiles of the pre-
dicted immune response R; (IgG3-92TH023V1V2) using ATPW method. At three
quartiles of immune responses, the graphs show the predicted cumulative inci-
dence function Fy; with each level of behavioral risk score groups (low, medium
and high) based on the model (3.37) .

80

81

82

83

84

85

86

87



FIGURE 27: Q1 = —0.1530,Q2 = 0.3321 and @3 = 0.5514 are quartiles of the pre-
dicted immune response R; (IgG-A244V1V2) using AIPW method. At three
quartiles of immune responses, the graphs show the predicted cumulative inci-

dence function Fy; with each level of behavioral risk score groups (low, medium
and high) based on the model (3.37) .

FIGURE 28: @Q; = —0.38510,Q2 = 0.08807 and Q3 = 0.56800 are quartiles of the
predicted immune response R; (IgG3-A244V1V2) using AIPW method. At three
quartiles of immune responses, the graphs show the predicted cumulative inci-

dence function Fy; with each level of behavioral risk score groups (low, medium
and high) based on the model (3.37).

FIGURE 29: (a) and (b) show that the IPW and AIPW estimates of baseline cumu-
lative coefficients 7y(t) and the cumulative coefficients 7, (¢) with 95% pointwise
confidence intervals for the immune response R; (IgG-92TH023V1V2) in model
(3.37) for €1; = 1. (c¢) and (d) show the the IPW and AIPW estimates of base-
line cumulative coefficients 79 (¢) and the cumulative coefficients 7, (¢t) with 95%
pointwise confidence intervals for the immune response R; (IgG-92TH023V1V2)
in model (3.37) for €1; = 2.

FIGURE 30: (a) and (b) show that the IPW and ATPW estimates of baseline cumu-
lative coefficients 79 (t) and the cumulative coefficients n;(¢) with 95% pointwise
confidence intervals for the immune response R; (IgG3-92TH023V1V2) in model
(3.37) for €3, = 1. (c) and (d) show the the IPW and AIPW estimates of base-
line cumulative coefficients 7y(t) and the cumulative coefficients 7y (¢) with 95%
pointwise confidence intervals for the immune response R; (IgG3-92TH023V1V2)
in model (3.37) for €1; = 2.

FIGURE 31: (a) and (b) show that the IPW and ATPW estimates of baseline cumu-
lative coefficients 79 (t) and the cumulative coefficients 7, (¢t) with 95% pointwise
confidence intervals for the immune response R; (IgG-A244V1V2) in model (3.37)
for €3; = 1. (c) and (d) show the the IPW and AIPW estimates of baseline cumu-
lative coefficients 7 (t) and the cumulative coefficients 1 (¢) with 95% pointwise
confidence intervals for the immune response R; (IgG-A244V1V2) in model (3.37)
for €9; = 2.

FIGURE 32: (a) and (b) show that the IPW and ATPW estimates of baseline cumu-
lative coefficients 7y(t) and the cumulative coefficients 7, (¢) with 95% pointwise
confidence intervals for the immune response R; (IgG3-A244V1V2) in model
(3.37) for €3; = 1. (c) and (d) show the the IPW and AIPW estimates of base-
line cumulative coefficients 79 (¢) and the cumulative coefficients n; (¢t) with 95%
pointwise confidence intervals for the immune response R; (IgG3-A244V1V2) in
model (3.37) for eg; = 2.

FIGURE 33: @1 = 0.0903, Q2 = 0.3131 and @3 = 0.3923 are quartiles of the observed
immune response R; (IgG-92TH023V1V2). The (a), (c) and (e) show the pre-
dicted cumulative incidence function 13’” for €;; = 1 at each level of behavioral
risk score groups (low, medium and high) based on the model (3.37) by using
IPW and ATPW method. The (b), (d) and (f) show the predicted cumulative
incidence function Fb; for e;; = 2 at each level of behavioral risk score groups
(low, medium and high) based on the model (3.37) by using IPW and AIPW
method.
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FIGURE 34: Q7 = —0.4677,Q2 = 0.1196 and @3 = 0.6484 are quartiles of the ob- 95

served immune response R; (IgG3-92TH023V1V2). The (a), (c) and (e) show the
predicted cumulative incidence function Fy; for €1; = 1 at each level of behavioral
risk score groups (low, medium and high) based on the model (3.37) by using
IPW and AIPW method. The (b), (d) and (f) show the predicted cumulative
incidence function in for €1; = 2 at each level of behavioral risk score groups
(low, medium and high) based on the model (3.37) by using IPW and AIPW
method.

FIGURE 35: Q1 = —0.1530,Q2 = 0.3321 and @3 = 0.5514 are quartiles of the 96

observed immune response R; (IgG-A244V1V2). The (a), (c) and (e) show the
predicted cumulative incidence function Fy; for e1; = 1 at each level of behavioral
risk score groups (low, medium and high) based on the model (3.37) by using
IPW and ATPW method. The (b), (d) and (f) show the predicted cumulative
incidence function Fb; for e;; = 2 at each level of behavioral risk score groups
(low, medium and high) based on the model (3.37) by using IPW and AIPW
method.

FIGURE 36: Graphs on the left: @1 = —0.3851,Q2 = 0.0881 and Q3 = 0.5680 97

are quartiles of the observed immune response R; (IgG3-A244V1V2).The (a),
(¢) and (e) show the predicted cumulative incidence function Fy; for ey; = 1 at
each level of behavioral risk score groups (low, medium and high) based on the
model (3.37) by using IPW and AIPW method. The (b), (d) and (f) show the
predicted cumulative incidence function Fy; for e1; = 2 at each level of behavioral
risk score groups (low, medium and high) based on the model (3.37) by using
IPW and AIPW method.
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CHAPTER 1: INTRODUCTION

This chapter aims to review previous work and introduce our missing data on the cumulative
incidence function. In section 1.1, we review basic background for competing risks data, how to
summarize the competing risks probabilities and estimate those probabilities. In section 1.2, we
review literature on regression models to estimate covariate effects for the cumulative incidence
function, focusing on direct regression models such as Fine and Gray model (Fine and Gray, 1999)
and direct binomial model (Scheike et al., 2008). We also review case-cohort study design (Prentice,
1986), which is a form of two-phase sampling (Kulich and Lin, 2004). In section 1.3, we will allow
some covariates have missing data on the flexible direct binomial model proposed by Schike and

others (Scheike et al., 2008).
1.1  Competing Risks Data

The competing risks models are concerned with the situation where each individual may be
exposed to two or more mutually exclusive causes of failure. These causes may compete with each
other, but the eventual failure occurs due to exactly one of these causes of failure. Each of these
causes is called a competing risk.

Competing risks data have arisen in many research area such as biomedical, public health, ac-
tuarial science, social science and engineering. In cancer study, death due to cancer may be of
interest and deaths due to other causes such as surgical mortality and old age are competing risks
(Putter et al., 2007). The study of failures of engines fitted to heavy duty vehicles (Hinds, 1996) is
associated with five different competing risks. A competing risks model is also used in modeling the
unemployment time (Flinn and Heckman, 1983), where failure time is the waiting time till the end
of unemployment and reasons for leaving unemployment were considered as competing risks.

In the presence of competing risks data, a problem arises when the occurrence of the event of

interest is precluded by that of another event.



1.1.1  Modeling Competing Risks Data

Let Ty, be the kth latent failure time with £ = 1,2,..., K and let Z be a possibly time dependent

covariate vector. Let T' = min;<<x {7} be the first observed failure time with the cause of failure

In early approaches, it is well known that there are identifiable problems in modeling competing
risks data in terms of latent failure time (Tsiatis, 1975). The problems arise because we only observe
the earliest of those latent failures T' with failure type € = k.

Let S(t1,...,tx) = P(Ty > t1,...,Tk > ti) the joint survival distribution of the time to the k
different events and let Si(t) = P(T, > t) = S(0,...,0,¢,0,...,0) be the marginal distribution.
Tsiatis (1975) has proved that neither the joint survival distributions nor the marginal distributions
of the latent failure times are identifiable from the observed data if the competing risks are dependent.
The observed data (T, €) cannot provide enough information to tell which one is the true underlying
distribution among two different marginal survival functions since they reproduce the same cause
specific subdistribution function. Moreover, it is not possible to test whether the assumption of
independence of the marginal failure time distributions is valid.

Alternatively, the cause-specific hazard and the cumulative hazard function have been proposed
to summarize the competing risks probabilities. These two functions completely specify the joint
distribution of the failure time 7" and the failure cause ¢ (Lawless, 2003) and both are directly
estimable from the competing risks data (Prentice et al., 1978). None of them makes any assumptions
about the relationship between the competing risks such as independence.

Under competing risks data, the cause-specific hazard function Ag(¢) for cause k is defined as

Pt<T At.e=klT >t Z
M(t17) = fim PUST<tHALe=HT212)

=1
At—0 At » K

o K, (1.1)

where represents that the instantaneous failure rate from cause k at time t in the presence of all

causes of K failure types, given covariates Z. The cumulative cause-specific hazard is defined by

A(tZ) = /O)\k(s|Z)ds. (1.2)
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Failure types are assume to be distinct, one of {1,..., K}. The overall hazard function conditional

on a vector of covariates Z can be defined in terms of cause-specific hazard functions as

PE<T<t+AT>1,7) <«
AtZ) = Jim A =3 A(t2).

An equivalent identifiable quantity is the cumulative incidence function of cause k given covariates

7 is defined as
Fi(t|z) = P(T < t,e=k|Z), (1.3)

and it represents the probability of the subject failing from cause k before given time t in the presence

of all the competing risks. The total cumulative incidence function is

K
F(t|Z)=P(T <tZ) =) Fi(t|Z).
k=1

The overall survival function S(¢|Z) can be expressed in terms of the cause specific hazard function
K
S(t|Z) = P(T > t|Z) = exp(— Z/\k s|Z)ds) = exp(— Z (1.4)
0 k=1 k=1
which is interpreted as the probability of not having failed from any cause at time t.

From the definition of cause-specific hazard function (1.1),
Mt Z)At ~ Pt <T < t+ At,e = k|T > t, 7).

This implies that

PE<T <t+Ate=kZ)
At

~ P(T > )\ (t|2) (1.5)

for a infinitesimal A¢. The left-hand side of (1.5) is approximately the probability density function
for cause k when At goes to 0. Therefore, by integrating both side of (1.5), the cumulative probability
of cause k in (1.3) can be expressed in terms of the cause specific hazards and the overall survival

function as

Fi(t|Z) = /0 Ao(812) S (s—)ds. (1.6)

The cumulative incidence function is also called subdistribution function (Pintilie, 2007) because
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it is not a proper distribution function. More precisely, the cumulative probability of failing from
cause k remains less than one, as lim;_, o, Fx(t) = P(e = k). Other alternative names for this func-
tion are the cause-specific failure probability (Gaynor et al., 1993), the crude incidence curve (Korn

and Dorey, 1992) and absolute cause-specific risk (Benichou and Gail, 1990).

Unfortunately, the standard survival analysis methods such as Kaplan Meire estimator and Log-
rank test have been often misused to analyze competing risks in medical literature. For example, the
standard Kaplan-Meier estimator for the jth failure estimates S;(t|Z) = exp(—A;(¢|Z)). However,
it cannot be interpreted as marginal survival function of the jth failure time. This only makes sense
when analyzing data with a single event of occurrence even in the case of independent censoring
(Lawless, 2003). Furthermore, the complement of the standard Kaplan-Meier estimator, which is
the probability of a subject failing from cause j before or at time ¢, is greater than equal to the

cumulative incidence function,

1-S,2) = /OAj(S|Z)eXp(—Aj(8))ds
t K
> /O)\j(s|Z)exp(—ZAk(s))ds:Fj(t|Z) (1.7)
k=1

with equality at time ¢ if there is no competition, ZkK:Lk# Ak(s) = 0. This shows the bias of the
standard Kaplan-Meier estimator if it is used to estimate F;(¢|Z) (Putter et al., 2007).

These problems come from the violation of assumption on Kaplan-Meier estimator that the dis-
tributions of times to the competing events are independent of the distribution of time to the event
of interest. For example, we consider censored subjects who never failed from the event of interest.
Because of independence of censoring distribution assumption, the subjects who never experience
the event of interest are treated as if they could fail at a later time. In this situation, the standard
Kaplan-Meier estimator overestimates the probability of failure. The bias is greater when the hazard

of the competing events is larger (Putter et al., 2007).



1.1.2  Estimation for Cumulative Incidence Function

The cumulative incidence function F(t) for cause k can be estimated using equation (1.6) in the
presence of competing risk data. Let 0 < t; < t3 < --+ < ty be the ordered distinct time points at
which failures of any cause occur. Let dj; is the number of failures from type k at time ¢;,: =1... N.
It is allowed for a different subject to fail from the same cause k at the same time ¢;. Let n; be the
risk set at time ¢;, which is the number of patients who were not censored and have not failed yet

from any cause up to time ¢;. The discretized version of the cause-specific hazard function (1.1) is
)\k<ti|Z) :P(T:ti,6:k|T>ti,1), (18)

and it can be estimated by

dkz

n;’

Me(t|1Z) = (1.9)

which is the proportion of subjects at risk who fail from cause k. By using the standard Kaplan-
Meier estimator, the overall survival probability at time ¢; including all types of events defined in

(1.4) can be estimated by

S(t:) = S(ti—1)S(t: \t, 1) =S(t = A(ti))
i)
I (1371), (110

where d; = Zle dy; denotes the total number of failures from any cause at t;. Thus, by using (1.9)
and (1.10), the cumulative incidence function (1.3) of cause k can be estimated by

Fe(t1Z) = > Aelti] 2)S(tiza). (1.11)

it <t

In the presence of competing risks, the interrelation among failure types is one of the distinct
problems in the analysis of failure times. The problem of testing the equality of two cause-specific
hazard rates has been studied by Bagai and Kochar (989a,b), Yip and Lam (1992), Neuhaus (1991),

Sen (1979), Aras and Deshpande (1992), Aly et al. (1994), Sun and Tiwari (1995),Sun (2001) and
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Gilbert et al. (2004) among others. Alternatively, Gray (1988), Benichou and Gail (1990), Fine and
Gray (1999), and McKeague et al. (2001) and Scheike et al. (2008) considered the problem on the

cumulative incidence functions.
1.2  Literature Review

It is important to study the covariate effects on the cumulative incidence function of a particular
failure since the cumulative incidence function is a proper summary statistics for analyzing competing
risks data (Zhang et al., 2008).

In the past, hazard-based regression models have been studied by many authors including Prentice
et al. (1978), Cheng et al. (1988), Shen and Cheng (1999), Lin and Ying (1994), and Scheike and
Zhang (2002, 2003). They used to model all cause-specific hazard functions and then estimate the
cumulative incidence function based on these cause-specific hazard functions. From these approaches,
it is quite easy to obtain estimation of the cumulative incidence function if the cause specific hazards
are correctly modeled. However, it is difficult to summarize the effect of covariates on the cumulative
incidence function in the presence of competing risks data in a simple way.

In section 1.2.1, we review Cox proportional regression model as one of the most popular hazard-
based regression models in the presence of competing risk. To overcome disadvantages of hazard-
based competing risks model, Fine and Gray (1999) model based on subdistribution hazard and

Direct binomial regression model Scheike et al. (2008) will be discussed in section 1.2.2.

1.2.1  Hazard Based Regression Model

Prentice et al. (1978) proposed Cox regression model for the cause-specific hazard A, (t|Z) with

possibly time dependent covariate vector Z by
Ae(t1Z) = Aeo(t) exp(By Z), (1.12)

where A o(t) is an unspecified cause-specific baseline hazard rate and the vector fj represents
covariate effects on cause k. Since there is no structure on A (), then there is no need to make

any assumption on the distribution of the lifetimes of the baseline population. The covariate effects
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in (1.12) are proportional for the cause-specific hazards. The model (1.12) treats failures from the
cause of interest k as events, and failures from causes other than k as censored observations. Under
independent censoring assumption, the cumulative incidence function for cause k given covariates Z

in the presence of all competing risks is

t K t
Fk(t|Z):/0 )\k(s|Z)exp(—Z/O \e(s12))ds. (1.13)
k=1

The regression coefficients on the model (1.12) can be obtained by using standard likelihood methods.

However, the effects of the covariates on the cause-specific hazard rate cannot be translated
directly to an effect on the cumulative incidence function (1.13) under the model (1.12). The reason
is that the failures from competing events are ignored by treating them as censored observations
(A = 0) on the analysis of competing risks data, but the cumulative incidence function (1.13) for
cause k not only depends on the hazard of cause k, but also on the hazards of all other causes.
For example, the important covariate effects for the cause-specific hazards will highly influence the
cumulative incidence probability, but an effect on the cause specific hazard for a particular cause k
may have an adverse effect on the overall survival. Therefore, the significant covariate for all cause-
specific hazards may not affect the cumulative incidence probability for cause k. Also, it is possible
that some covariates influence the cumulative incidence function, but it may not be significantly
associated with any of the cause-specific hazards (Scheike and Zhang, 2008). Therefore, the effect
of covariates through modeling the cause specific hazards can not be simply used to predict the

cumulative incidence function.

1.2.2  Direct Modeling on Cumulative Incidence Function

To overcome those problems as mentioned in section 1.2.1, some new regression approaches have
been considered to evaluate the covariate effects on the cumulative incidence function directly.

Fine and Gray (1999) developed a regression model that directly links the regression coefficients
with the cumulative incidence function using subdistribution hazard introduced by Gray (1988).

They consider a semiparametric regression model with transformation g(u) = log{—log(1 — u)} for



the cumulative incidence function, which is

where hgo(-) is a completely unspecified, invertible, and monotone increasing function and gy is a
p x 1 parameter vector related to cause k. The transformation g(u) = log{—log(1 — u)} leads to a
reasonable assumption that there is a constant difference between cumulative incidence functions for
two individuals with covariate vectors Z; and Zy. That is, g{ Fy(t|Z1)} —g{Fx(t|Z2)} = {Z1— 2>} B
for all ¢.

To directly estimate the model (1.14), they used the subdistribution hazard (Gray, 1988) for

cause k

< T >
Aiftls) = Jlim Pt<T<t+Ate Z|tT7tu{T<t,e7Ak})
—
aF(t]2) dt
1= Fi(t]z)
—dlog{l — Fi(t|2)}

= = . (1.15)

This subdistribution hazard function for cause k represents the probability of a subject to fail from
cause k in a very small time interval At, given the subject experienced no event until time ¢ or
experienced an event other than k before time ¢. By the ordered distinct time points and definitions

in subsection 1.1.2, it can be estimated at time ¢; by

i

* )
[

Niltil2) =

(1.16)

where dj; denotes the number of failures of cause & at time ¢; and n} is the modified risk set including
all subjects who did not experience any event until time ¢; and all subjects that failed before ¢; from
a cause other than k. Thus, the modified risk set has subjects having already experienced events
other than cause k. Those subjects are always at future risks of event of interest cause k.

By using a semiparametric proportional hazards model with time varying covariates Z(t),
No(t1Z) = N o(t|Z) exp(ZT(t)Br) (1.17)

where A; o(t[2) is a completely unspecified, nonnegative function in time ¢ and by applying g(u) =
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log{—log(1—wu)} transformation to (1.14) with hy o(t) = log{fot Ak.o(f)}, they proposed the following

cumulative incidence function for cause k

R2) = 1o |- [ Nl el Z))ds] (118)

which enables us to assess the effect of the covariates on the cumulative incidence function directly.

With complete data, the standard partial likelihood method with modified risk set can be applied
(Fine and Gray, 1999). For right censored incomplete competing risks data, Fine and Gray (1999)
utilized inverse probability of censoring weighted (ICPW) method (Robins and Rotnitzky, 1992)
to construct an unbiased estimating function from the score function of the complete data partial
likelihood (Fine and Gray, 1999). This approach can be analyzed by using the ‘comprsk’ package
for R developed by Robert Gray.

However, the Fine and Gray model may not fit the data well even though it is easy to decide if
covariates significantly affect the cumulative incidence function for a specific cause of failure (Scheike
and Zhang, 2008). To remedy this problem, Scheike et al. (2008) have proposed a class of general
models containing the Fine and Gray model.

Scheike et al. (2008) proposed a fully nonparametric model to evaluate covariate effects directly

on the cumulative incidence function for cause k, that is
ME(Em)} = XTn(t), i = 1,.cm (1.19)

where h(+) is a known link function and 7(t) is time varying effects of the covariate X;. The (p+1)—
dimensional regression coefficient 7(¢) is an unspecified function and X; = (1, X;1,..., X;p)". The
first component of X; yields the time-dependent intercept. This model is very flexible since it allows
covariates to have time varying effects. The model (1.19) contains the Aalen’s generalized additive
model by using log link function h(z) = log(1 — z). They proposed a direct binomial regression

method for a regression analysis by using the inverse probability of censoring weighted response.
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They also proposed a class of general semiparametric models by

WME (X, 2)y = {Xn(®)}e(v, Zi, 1), (1.20)
WMEX,2)) = Xn(t) +9(v, Zit) (1.21)
where g is a known function, 7(t) is the time varying effects of X; = (1, X;1,...,X;,)" and v is a

time invariant coefficient of Z; = (Z;1, ..., Zi)".

With log link function h(z) = log(1 — x) and g(v, Z;,t) = exp(y'Z;), the multiplicative model
(1.20) reduces to a Cox-Aalen model which contains the Cox model and Aalen’s additive model.
When 2 = 1, the model (1.20) reduces to Fine and Gray (1999) model. With log link function
h(z) = log(1 — ) and g(v, Z;,t) = y"Z;t, the model (1.21) generates a partially semiparametric
additive model (McKeague and Sasieni, 1994). When x = 1, the model (1.21) reduces to the Lin
and Ying (1994) special additive model.

Scheike and Zhang (2008) also proposed estimating equations to estimate n(¢) and 7 simultane-
ously. They derived asymptotic results and studied the predicted cumulative incidence function for
a given set of covariate values. Scheike and Zhang (2008) considered a new simple goodness-of-fit
procedure for the proportional subdistribution hazards assumption.

One drawback for both direct binomial and subdistribution approaches is to estimate the censor-
ing distribution for each individual. Usually, the Kaplan-Meier estimator is utilized for the censoring
distribution. This non-augmented inverse probability weighting technique was firstly proposed by
Koul et al. (1981). By using the semiparametric efficiency theory in Bickel et al. (1993), Robins
and Rotnitzky (1992) showed that regression modeling of the censoring distribution improves ef-
ficiency of the inverse probability weighting technique. This is because each censored observation
carries information about the relationship between event time and covariates even if the censoring
is independent of the covariates.

We will allow covariates to have missing values in the general semiparametric additive model
(1.21) in subsection 1.3. We develop estimating equations to analyze the missing model in chapter

2 and chapter 3.
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1.2.3  Case-Cohort/Two Phase Sampling

Epidemiologic cohort studies and disease prevention trials often necessitate the follow-up of several
thousand subjects for a number of years and thus can be prohibitively expensive (Prentice, 1986).
The assembly of covariate histories for all cohort members result in much cost and effort in such
studies. Therefore, it is an important issue to reduce cost in those studies and achieve the same
goals as a cohort study.

Among several study designs proposed to reduce cost, the case-cohort design has been widely used
in those studies to assess the effects of possibly time-dependent covariates on a failure time. The
case-cohort design has been proposed by Prentice (1986). Under this design, the covariate histories
are investigated only for the subjects who experience the event of interest during the follow-up period
(the cases) and for a relatively small random sample (the subcohort) from the original cohort. This
design is very useful where the occurrence of the failure event is rare in large cohort studies since
it is unnecessary to investigate the covariates of event-free subjects more than it needs to be done.
The case-cohort data is a biased sample and thus applying standard methods for randomly sampled
data to the biased data may result in biased estimation (Sun et al., tted).

The case-cohort design is also a form of two-phase sampling. At the first phase, the study cohort
is randomly sampled from a general population. The first phase covariate data are observed on all
of the subjects in the cohort. There are treatment type, age and gender as examples. At the second
phase, the subcohort is randomly selected from the study cohort. Complete covariate histories are
assembled for the cases and the subcohort at this stage by collecting the second phase covariate
including all of the expensive covariates which are not measured at the first phase. Those covariates
are called the second phase covariate data.

The Cox (1972, 1975) proportional hazard model has been widely used in analysis of case cohort
data. Many authors have proposed statistical methods for case-cohort studies by modifying the full
data partial likelihood score function for the Cox model, giving the inverses of true or estimated
sampling probabilities to the score functions as weight functions, including Prentice (1986), Self and

Prentice (1988), Kalbfleisch and Lawless (1988), Lin and Ying (1993), Barlow (1994), Chen and
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Lo (1999), Sgrensen and P.K. (2000), Borgan et al. (2000), Chen (2001), Kulich and Lin (2004),
and Samuelsen et al. (2007). The Cox model assumes that the hazard functions associated with
different covariate values are proportional over time. This assumption may be too restrictive and
the Cox model does not always fit data well in practice. Alternatively, the accelerated failure time
model and the proportional odds model have been studied by Chen (2001) and Kong and Cai (2009),
respectively.

Additive hazard model is another popular framework for the analysis of case-cohort data. This
is because the risk differences between different treatment can be easily derived from the regression
coefficients. Tt also gives a valuable public health interpretation. Kulich and Lin (2000) applied addi-
tive hazards model (Lin and Ying, 1993) to case-cohort study. Kang et al. (2013) recently proposed
an estimation method for case-cohort data with the simple additive model of Lin and Ying (1994)
that allows only constant covariate effects. Sun et al. (tted) proposed an estimation procedure for
the semiparametric additive hazards model with case-cohort/two-phase sampling data, which allows
the effects of some covriates to be time varying while specifying the effects of others to be constant.
They used the inverse probability weighting of complete-case technique of Horvitz and Thompson
(1952). With this approach, if a subject has a missing value for one covariate, then the observed
values of other covariates together with the observed failure/censoring time of the same subject are
not utilized. This leads to loss of efficiency. They also proposed an augmented estimating equation
on the basis of the inverse probability weighting of complete cases by adapting the theory of Robins

et al. (1994). By doing so, they showed the efficiency of the proposed estimators has been improved.

1.3 Model

Let T; be the failure time for the ith subject, ¢ = 1,...,n, and ¢ € {1,2,...,k} denote the
failure type. Let X; = (1, X;1,...,X;p)T and Z; = (Zi1,..., Ziy)" are (p + 1)- and g-dimensional
possibly time-dependent covariate vectors, respectively. Let C; be the right censoring time for the
1th subject. Let A; = I(T; < C;) be the indicator which is 1 when the observation is uncensored.

The observed n independent identically distributed data can be represented by Y; = (X;, Z;, T, €),
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where T, = min(T;, C;) and € = €;A;. The value €; = ¢; indicates that the system failure time is
observed at T} and the cause of failure is of type ¢;, where ¢; = 1,2,..., k. Let [a, 7] be the time
period from which data are collected. We assume that (75, ¢;) are independent of C; given covariates
(Xi, Z;). In follow-up studies, the covariates of a subject are only meaningful in the time interval
when the subject is at-risk and still in the study, i.e., t < T;.

Let Fy(t|X;, Z;) = P(T; <t,e; = 1|X;, Z;) be the conditional cumulative incidence function given
covariates (X;, Z;) for each ith subject. We consider the following the additive semiparametric model
for F1(t|X;, Z;):

Fy(t; X, Zi) = h{Xn(t) + g(v, Zi, 1)} (1.22)

where h(-) is a known link function, g(-) is a known function of (v, Z;,t), n(t) is a (p+1)-dimensional
vector of time-dependent regression coefficients and - is a g-dimensional vector of time-invariant co-
efficients. The first component of X; yields the time-dependent intercept. Under model (1.22), the
effects of the covariates X; change with time while the effects of Z; are time-invariant.

Suppose that X; has two parts (Xi(l), Xi(z)). The covariates le(1) and Z; are observed for all the
cohort members, but Xi(z) is only observed for a subset(subcohort, phase two sample) of the study
subjects. Let & be the indicator of whether the subject ¢ is selected into the phase-two sample.
The subject i with £ = 1 has fully observed X; and Z;. The subject ¢ with £ = 0 does not have
the observed values for Xi(z). Let V; = {Ti, A, e},Xi(l), Z;i, A;} where A; denotes possible auxilary
variables that may be informative for selection of phase-two sample and / or phase-two covariates.
We assume that the probability a subject is missing the phase-two covariates X 52) does not depend
on the values of these covariates P(§; = 1|Xi(2)7 V;) = P(& = 1]V;). This assumption is the missing
at random (MAR) assumption (Rubin, 1976). However, the selection probability may depend on
any of the phase-one information V.

Let (V;, Xi(2), &), 1=1,2,...,n be identically independent distributed data. The observed data
are (Vi,@Xi(Z),fi),i = 1,2,...,n. That is, {Ti,Ai,e},Xi,Zi,Ai} are observed for a subject with
& =1, and {ZIN’Z, A, €, Xi(l), Z;, A;} are observed if §; = 0. The selection probability, defined as the

conditional probability that Xi(z) is observed, is S; = P(& = 1|V;). This selection probability S;
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may depend on outcomes €; based on the competing causes of failure and the censoring indicator.
Under the competing risks model, classical case-cohort design implies that S; = 1 if ¢, = 1 and
Si = P& =1V, & #1) < 1if & # 1. A subject is referred to as the case if the failure time is

observed and the failure has cause 1; and the non-case, otherwise.



CHAPTER 2: ANALYSIS OF A SEMIPARAMETRIC CUMULATIVE INCIDENCE MODEL
WITH MISSING COVARIATES USING INVERSE PROBABILITY WEIGHTED METHOD
In this chapter, we analysis our missing model introduced in section 1.3 in chapter 1 by using

inverse probability weighting of complete cases proposed by Horvitz and Thompson (1952). The
estimation procedure is given in section 2.1. we estimate the selection probability and censoring
distribution. Based on direct binomial estimation on the weighted responses (Scheike et al., 2008),
we also develop estimating equation for the missing model. Asymptotic properties of the inverse
probability weighting estimators will be discussed in section 2.2. We conduct simulation studies
under the subdistribution models to evaluate the finite sample properties of the IPW methods in

section 2.3.

2.1 Estimation

2.1.1 Estimation Procedure

The selection probability S; is unknown in practice, but it can be estimated based on a parametric
model. Assume that ¢(V;,0) is the parametric model for the probability of complete-case S; =
P(& = 1]V;), where 6 is a finite dimensional vector of parameters. For example, one can assume
that the logistic model is logit (¢ (V;,0;1)) = 67 V; for those & = 1 and the different logistic model is
logit(wa(V;,0)) = 03 V; for those & # 1. Let # = (A7,67)T. The parameter 6 can be estimated by 6

as the maximizer of the observed data likelihood:

L) = I {pi(Vi 00)}5 G0 — o (1, 0,)} 1S TE=D

T {02 (Vi, 02) T EFD{L — 0y (W), 0) YT (E#D) (2.1)

where I(D) is the indicator function of the set D.

Let N;(t) = I(T; <t,e; = 1) be the counting process associated with cause 1 and let G(¢|X;, Z;) =
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P(C; > t|X;, Z;) be the conditional survival function of the censoring time for 0 < ¢ < 7. Assume
that there exists a positive number 0 < 6 < 1 such that G(r|x,z) > § > 0 for (z, 2) in the range of
(X, Z;). Under conditional independence between C; and (T3, ¢;) given the covariates (X;, Z;), we

have E(AAXZ, ZiaTi, €i> = G(T’Z‘X“ Zz) It follows that

A;N;(¢) A;N;(t)
B X, Ziy = ElE{ 7o~ T X, Ziy €} X, Zi
{G(Ti|Xi,Zi)‘ ; [ {G(Ti|Xi7Zi)| il |
1
= E[WE{AiNi(t)‘ThXi,Zi7€i}|Xi,Zz‘]

= E[Ni(t)|X;, Zi]

We consider the estimating equation based on the weighted response A;N;(t)/G(T;|X;, Z;). In
practice, the censoring distribution G(¢|x;, 2;) is often unknown and can be estimated by the Kaplan-
Meier estimator or by using a regression model for censoring times such as a Cox regression model
or an additive Aalen regression model to improve efficiency. For simplicity, we use the Kaplan-Meier
estimator G(t) for G(t).

Asymptotic results of the maximum likelihood estimator § and the censoring distribution G(t)

will be discussed in section 2.2.

2.1.2  Inverse Probability Weighted Complete-Case Estimation

Following Horvitz and Thompson (1952), the inverse probability weighting of the complete cases
has been often used in missing data analysis.

Let Dy i(t,n(t),v) = 0F1(t; X4, Z;)/On(t) and D~ ;(t,n(t),v) = OF1(t; Xi, Z;) /0. Let ¢;(0) =
&/ e(Vi, ), where o(V;,0) = I(€; = 1)p1(V;,01) + 1(€ # 1)p2(Vs, 62). By modifying the estimating
equations of Scheike et al. (2008), the regression functions n(¢) and parameters v in model (1.22)

can be estimated based on the following estimating functions:

A; N;(t)

é(TZ) — Fl(t;Xi,Zi)) s (23)

U"](t7n(t)=77é) = sz D’l’], t 77( ) '7) i(t)<

Z /0 Pi(0) Dy i(t,m(t), ¥)w;(t) (W Fl(t;Xi,Zi)> dt, (2.4)

U7(T7n(')ﬂ77é) G(T)
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where w;(t) is a weight function.
Let W (t) = diag(w;(t)) and ¥(0) = diag(v;(0)). Let F1(¢,m(t),~) be the n x 1 vector of the model
Fi(t; X;,Z;) in (1.22) fori = 1, ..., n, denoting the ith element of the vector F1(t,n(t),v) as F1,(t).
R(t) be the n x 1 vector of weighted responses A; N;(t)/G(T), Dy(t,n(t),v) and D~(t,n(t),~) be
the n x (p+ 1) and n x ¢ matrices with the ith rows equal to Dy ;(t,n(t),~) and D~ ;(t,n(t),7),

respectively. The estimating equations given in (2.3) and (2.4) are equivalent to

U"? (tv 77(75)7 v, 0) = (D'f] (ta 71(’5), 7))TW(t)‘I’(é) {R(t) - Fl(tv 77(75)7 7)} ) (25)

Uy(t,n(),7,0) = /OT(D'y(t,n(t),’v))TW(t)‘I’(é) {R(t) = Fu(t,n(t),)} dt.  (2.6)

Let 1°°[0, 7] be the set of uniformly bounded functions on [0, 7] and B = (1°°[0, 7])**! x R%. The
estimating functions Ur,;y(n,'y,é):{UT,(t,n(t),’y,é), U7(T,n(~),7,é)} are the mappings from B
to B. The inverse probability weighting of the complete-case estimators 7j(t) and § of n(t) and ~
solve the join estimating equation Uy ~(n,7, é), that is, Un~(n,7, é) =0.

By mimicking the procedure of Scheike et al. (2008), the estimating equations (2.5) and (2.6) can

be solved by using an iterative algorithm. Consider the following Taylor expansion of F'y(¢,7(t),¥)

around the values (1,(t),q):

Fy(t,m(t),7) F(t,m0(t);v0) + Dn(t,m0(), v0) {M(t) — mo(t)}

+ Dey(t,mo(t), 7o) {7 — Yo} + 0p(n"%). (2.7)

Replacing it into the score equations (2.5) and (2.6), and denoting Dy(t) = Dy(t,no(t), 7o),

D~ (t) = D~(t,no(t),70) and F1(t) = F1(t,m0(t),7o), we have

Un(t,7(1),7,0) = Dy()W (1) % (0) [R(t) = F1(t)— D(t) {0 (1) =o (1)} =Dy (1) {7 =0 }] + 0p(n?)

(2.8)

Uny(m,7(),7,0) = | DY(OW ()% (0)[R(t)~F1(t)— Dy () {A(t) =m0 ()} — Dy (t) {F—0}] dt + 0, (n?).

(2.9)
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Solving equations (2.8) and (2.9) for 7(¢) and 4, the estimators for v and n(t) are given by
7 = 0+ {240} By(0) +o,(nH) (2.10)
At = ml) (2.11)

HTn(t,6)} Dy ()} W (OB (O) R()~ F1 (1)~ Dy (){T~(0) B (0) } +0p(n™ )

where

I~0) = i DX ()W (t)®(0) H (t,6) D~(t) dt,

By(0) = OTD§(t)W(t)‘I’(9)H(t79){R()—Fl(t)} dt,

H(t,0) = I-Dy(t)[Zn(t,0)]  Dpt)W()®(0),

In(t,0) = Dp(t)W()¥(0)Dy(t). (2.12)

The estimators 7j(t) and 4 can be solved iteratively similar to Scheike et al. (2008) based on the
equations (2.10) and (2.11). Specifically, the (m+ 1)th iterative estimators are obtained by replacing
5™ and 7™ (t) for vy and 1, (t) on the right side of (2.10) and (2.11) as the mth step estimators,
and replacing 3™ and ﬁ(m+1)(t) for 4 and 1(t) on the left side (2.10) and (2.11) as the (m+1)th

step estimators;

1" o m) A
ﬁ(erl) _ ﬁ(m)—F{I%m)(@)} BEY )(9) (2.13)
A @) = 5)

+ T 0y D 0y W 0w (0) { R(t) - F™ (1)-DYY (T4 (0 B (9)} , (214)

where I,(-Ym)(é), Bﬂym)(é)’ H™)(t,6) and If(nm)(t,é) are mth step estimators of I»Y(HA), B—Y(é),
H(t,0) and In(t,é) obtained by plugging mth step estimators (ﬁ( )(t), 'Ay(m)) of (n(t),~) into
Dy(t,n(t),v), D~(t,n(t),v) and Fi(t,n(t),v). This approach can be implemented by using

‘timereg’ package for R developed by (Scheike and Zhang, 2008).
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2.2 Asymptotic Results

2.2.1  Asymptotic Results Concerning 6

The estimation method requires the following property on the maximal likelihood estimator 0

and the censoring distribution G(t).

Proposition 1. Let o1 (V;,01) and pa(V;, 62) be the parametric models for P(§; = 1|V, € = 1) and
P(& = 1|V, & # 1), respectively. Assume that the logistic model logit(¢1(Vi,01)) = 01V, holds for
those & = 1 and the different logistic model logit(p2(Vi,02)) = 04V; holds for those & # 1. Let

0= (07,00)7 and let 6y = (00;,00,) " be the true value of 0. Then the mazimum likelihood estimator

0 satisfies
n2 (0 —00) =n"% [J (Vi,00)] " DUV, 00) + 0, (1), (2.15)
i=1
where the fisher information matriz
= _ yexp{0f,viyviv]
EGO I(el o 1) (1+exp93—1\)i)2 :| 0
J(Vi,00) = ) ], @16
~ exp{0y, Vi } ViV,
0 EGO |:I(6’L ?é 1) (1+exp9gzvi)2

and

I(g = 1)[&V, — Yeoelfp VT

14exp”o1 Vi

U(Vi,6o)

I(& # 1)[gV; - LeoolpydyT

T v,
1+exp902v1

Proof of Proposition 1 is shown in section4.1.

2.2.2  Asymptotic Results Concerning é(t)

Proposition 2. The estimator é(t) is asymptotically linear estimator of G(t) with influence func-

tion ICqg such that

(1) Assume that the censoring time is independent of the covariates. If G(t) > 0, then

Nl

n(G(t)—Gt)) = n? —G(t)Z/()TI(Y.(s)>O)CM?Jzy +o,(1)  (2.17)
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where n=1Y(s) 5 y(s) as n B oo with Ya(s) = i, Yi(s) = S0, I(T; > s), and M;(s) =

I(Tj < s,0; =0)— [, Yj(u) d(—log G(u)) is the martingale associated with the censoring time.

(2) If the censoring time follows the Cox model depending on the covariates (X;, Z;).

n3 (Gt X, Z2) — Gt X,, Z4)) = n {G(t|Xi, Z)y. /O 1(Ya(s) > 0) dj‘jz;@ } +op(1),

(2.18)

where n™1Y,(s) 5 y(s) as n 5 oo with Y(s) = S Y;(s)expﬁgxi(SHﬁszi(s) and M;“(s) =

I(fj <s, Aj = 0) — fog Yj(u)expﬁorXi(u)'i'ﬂIZi(u) AO(U) with

_ nooru dZ(T;<s,A;=0) ) . . . .
Ao(u) = >, fo I AP SR R is the martingale associated with the censoring

time.

Proof of Proposition 2 is shown in section4.1.
2.2.3  Asymptotic Properties for IPW Estimator
We denote Fy(t; X4, Z;), Dny,i(t,n(t),~y) and D~ ;(t,n(t),v) by F1i(t), Dy(t) and D~ ;(t),

respectively. Let

Ai(6) = 0ui(6)/00

k(t.0) = B{DY (w0 0)Dy. ()} [E{ D] 0w (09,0 Dn0)}]
ay(5:t:0) = B |{ DL~ klt.0)D}, (0} w0, ) Zo T < T < 1)

str0) = £{ [ [P0 - ke0)Dh 0] w4 { 0 - P | arf
Gra(t0) = [DL0) - Ke.0)D] 0] w0 0) { A - o}

M) = I(T; <t,A; =0) — /Ot Yi(s)d(—1log G(s)), where Y;(s) = Z(T; > s)

y(t) = lim n7! ZI(ﬁ >t), uniformly ¢ € [0,7]

n—oo 4
=1

Ky i(£,0) = { /0 ’ Wde(s)} (2.19)



21

Theorem 2.1. Under Condition I in section 4.1,
Vi = 70) SN (0,3,) (2.20)
where Xy = Q (00) ™" E{W . i(7,00)}** Q~(60) ™" and where

Wou(r0) = OT Coyi(t,6) di + / "oy (1,0) dt + g, 0) [T (V1. 0)] " UV, 0),

@0 = B{[ [P}~ Kt.0)DF.(0] w0, 0)D (0 dt |

The asymptotic covariance matrix of \/n(9 — 7,) can be consistently estimated by

~ ~—1 A 2 1 «
$, =05 (0) -12{ W,(r0)} @y (0), (2.21)
where
— T/\ T /\ —1
Woi(r0) = [ &yit.0)dt+ / Rryalt,0)dt +3(,0) [TV, 0)] UM, 0),
0 0

Qy(0) = 1Y [ [0 - Rie.0)Dyt)] wiltysi(0) Do),
=1

where Zmi(t, 0), Kv,i(t,0) and §(7,0), defined in (4.29) in section 4.1, are the estimators of ¢~ ;(t,0),
k~y,i(t,0) and g(7,0). Those estimators can be obtained by replacing ;(#) with Pi(0) = &/o(V;, )
and by replacing F1;(t), Dn,i(t),D~,i(t).k(t,0), M{(t), g~(s,t,0), y(t) with F1;(t), Dy,i(t), Dy (t),
f{\(u 0), d~(s,t,0), 4(t), ]\Zc(t) defined in (4.29), which can be estimated by inserting the estima-
tors 0,7(t), 7, @(t) For the logistic regression models for the selection probabilities A;(0) can be

estimated as

Ai(0) = —&IE =)@\ (Vi,00) /07 (Vi,00) — &I (& # 1)h(V;, 02) /03 (Vi, 02)
= —&Vz{f(gz = 1) exp(—élvi) + I(gz 75 1) eXp(—égvi)},
where <p’1(Vi,91) = d@l(vi,ﬁl)/dﬁl and (,O/Q(Vi, 92) = d@Q(Vi, 92)/d92

Under the logistic models for the probabilities of the complete case given in Proposition 1,

~ ~

J(V;,0) = diag(Ji(Vi,01), J2(V;,02))

where :]\1(]/2,91) = Tl71 Z;L:l I(gz = )(elef(j(p(% and JQ(VzaGQ) 71 Z? 1 (Ez 7é 1)%7
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and
Ui (V;, 01) I(& =1) [fiVi - %}
Ui, 0) = =
Ua(Vif) | \1(& # 1) 6V = Preidivs]
Let
ena(t0) = DhOuiow.0){ L - Futo ],
antoit.0) = B{Dh, 000,027 <1, <)},
Kn = TM (s
nﬂ(t’e) - {A y(S) sz( )}a
Qu(t.6) = BE{DR (wi()i(6) Dy.a(t)}.

Theorem 2.2. Under Condition I in section 4.1,

Vi)~ mo(0) = {Qu (.00} nE S Wy (t.60) + o0,(1) (222)

i=1

uniformly in t € [0, 7], where
Wi.ilt,0) = {Cn)i(t, 0) + kn.i(t,0) — Qp~(t,0) {QA,(e)}f1 Wi, 9)} , (2.23)
Qn(t.0) = B{Dh,(hwi(t)ei(0)Dn(0)}. (2.24)

Thus, v/n(1(t) — no(t)) converges weakly to a mean zero Gaussian process on t € [0,7] with the

covariance matriz Xy = Q,Til(t, 00) E {Wn.(t, 90)}®2 Qﬁl(t, o).

The asymptotic covariance matrix of v/n(7(t) — ny(t)) can be consistently estimated by

n

Sn = @;71(75,@)71_12{ﬁ\/ni(t,é)}@z Qn (1,0).
=1
where
—~ ~ ~ ~ -1 _—
Wni(t0) = {En.0)+ &ns1.0) - Q0 {Qy0) Wour)},
Qn(t.0) = n'3 Dy (Hwit),(0) D)
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where Zn’i(t, 0), kn,i(t,0), @n,’r(t7 0), defined in (4.42) in section 4.1, are the estimators of Cy) ;(¢,0),
kn,i(t,0), Qn~(t,0). Similarly, those estimators can be obtained by replacing (), F1;(t),

Dii(t),Dyit), an(s,t.0), ME(t), y(s) with ¢:(0), F1i(t), Dyi(t), Dyi(t), Gp(s,t,0), M; (t),

§(s) defined in (4.42) in section 4.1, which can be estimated by inserting the estimators 0, nt), 7,

G(t). The estimators @7(0) and W%,»(T, ) are described in Theorem 2.1.
2.3 Simulations

In this section, simulation studies have been conducted to evaluate the finite sample properties
of the inverse probability weighted estimators of (n(t),) . In the simulation study, the cumulative
incidence function (1.22) has been considered with two different link functions. Let X; and Z; be
Bernoulli random variables with P(X; = 1) = 0.5 and P(Z; = 1) = 0.5X + 0.2 for a subjec 7. The
covariate X; are always observed and the covariate Z; can be missing. Let ¢; = k, k € {1,2} be the
types of failure and let the event of interest among two competing risks be the £k = 1. We consider

the following semi-parametric models for the cumulative incidence function with cause 1:

log{1 — F1i(t, Xy, Zi) } = —no(t) exp(11 Xi + 72Zi), (2.25)
for 0 < ¢ < 7 and 7 = 3, where 73 = —0.3, 72 = 0.3, no(t) = 0.2 x ¢ for model (2.25) and

no(t) = log(lfg()t)) with p(t) = 0.01 + v/t and 3 = 0.2 for model (2.26).

Given 7)(t),7, X, Z, the conditional probability of observed failure for cause 1 is

Fii(r) = 1—exp(—no(r)exp(1 @i + 72 %)),

exp(no(7) + 7+ 72T2i)

Fi T )
14(7) L+exp(no(7) + 7172 + 727 2)

where 0 < t < 7 for each individual ¢ = 1,2,...,n and 7 = 3 for model (2.25) and (2.26),
respectively. The types of failure ¢; for ith individual have been determined by generating a Bernoulli

random variable with the probability Fy(7), that is, P(e; =1) = Fy;(7), i =1,...,n . The failure
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time T; is generated by conditional probability

Fult) = P(T: < e = 1) = 0l = Dl zn) S,

for ¢th individual and 7 = 3.

Let C;* follow an uniform distribution on [0,3] for both models (2.25) and (2.26). The censoring time
C; is generated by C; = min(C}, 7). Let T; be the observed failure time defined as T; = min(7}, C;).
This gives approximately 45% subjects who are censored before 7 = 3 for both models (2.25) and
(2.26). Let €; = ¢;A; where A; = I(T; < C;).

We consider three simulation scenarios in terms of whether the missing probabilities depend on
the outcome variables €; and how the phase-two covariate Z; is missing. The first two scenarios
are called phase-two sampling design: (I) The first scenario is classical case cohort sampling design,
where phase-two covariate Z; is sampled for all cases €; = 1 and the information of the covariate
Z; will be missing for the non-cases €; = 0 or 2; (II)The second scenario is generalized case-cohort
sampling design, which allows the phase-two covariate Z; to be missing for both cases and non-cases.
In the third scenario, (III) the missing probability does not depend on €; and phase-two covariate
Z; is a simple random sample from the phase-one covariates.

Let mo be the average of total missing probability. We consider my = 0.3 and 0.5 for each
sampling scenario. Let m; and mqy be the average missing probabilities for the cases and the non-
cases, respectively. First, we consider mg = 0.3 for each scenario in model (2.25). For scenario (I),
missing probability ¥1; = P(§; = 0|V;,é; = 1) = 0 for cases. For non-cases ¢; = 0 or 2, we assume

that the missing probability Jo; = P(&; = 0|V;, €; # 1) follows the logistic regression model
logit(o(Vi,02)) = 620 + 01 T; + 022X, + O3 (& = 2) (2.27)

We obtain the average missing probability ms = 0.5 by choosing 63 = (—2.0,0.6,0.8,1.0) in model
(2.27) based on phase-one covariates. Similarly, in the same setting with my = 0.5, we have ¢1; =
P& =0|V;,€; = 1) = 0 for cases. We have about mg = 0.65 by choosing 6, = (1.0,0.3,0.1,0.3) in
(2.27).

For (II), the missing probability dxi = P(& = 0[V;, €; = k) for both cases and non-cases can be
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obtained by the following the logistic regression model
logit(cp(Vi, 01@)) = ekO + lef’i + ngXZ + 9k31(€i = 1) + 0k41(€z = 2), (228)

,which gives m; = 0.15 and mg = 0.35 when 6, = (—1.0,0.1,0.3,—1.0,0.5). Similarly, for get-
ting mo = 0.5 in the same setting, we have about m; = 0.45 and ms = 0.60 by choosing
62 = (1.0,-0.6,—0.4,—0.6,0.3) in (2.27).

For (III), we use the following logistic model for the missing probability 9¥; = P(&; = 0|V;):
logit(ga(Vi, 9)) = 90 + 91X1 (229)

We have 9; = 0.3 with § = (—1.0,0.1) in (2.29), yielding mo = 0.3. The average of total missing
probability m = 0.5 can be obtained by choosing 65 = (—0.1,0.3) in (2.29).

Similar arguments can be applied for model (2.26). Under the average of total missing probability
mg = 0.3, each sampling scenario has the average missing probabilities for case and non-case.
Let I, IT and III be the classical case-cohort design, the generalized case-cohort design and the
simple random sampling, respectively. In the design I, we have about ms = 0.40 by choosing
02 = (—1.5,0.4,0.2,0.4). In the design II, we have about m; = 0.15 and ms = 0.30 when 6, =
(—=1.5,0.2,0.4,-0.5,0.5). From III, we can get my = 0.3 by choosing § = (—1.0,0.2). Similarly,
we consider mg = 0.5 for model (2.26). In the design I, we have about my = 0.65 by choosing
02 = (—0.5,0.3,0.5,1.5). In the design II, we have about m; = 0.60 and ms = 0.50 when 6, =
(0.5,—0.3,—0.1,0.1,—0.3). From III, we can get mo = 0.5 by choosing 6§ = (0.3, —0.5).

We denote the full estimators as Full when all the values of phase-two covariate Z are fully
observed and complete-case estimators as CC where subjects having missing covariate Z are removed.
The performances of the proposed IPW estimators for v and n(t) for ¢ € [0, 3] are summarized by
the bias (Bias), the empirical standard error (SSE), the average of the estimated standard error
(ESE), the empirical coverage probability (CP) of 95% confidence interval. We take sample size
n = 550,700,900 and obtain the average of total missing probabilities as mg = 0.3, and 0.5 by
choosing different missing probabilities (m1,ms2) for cases and non-cases. We denote a classical case

cohort design as I, a generalized case cohort design as II and a simple random sampling design as
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II1. Each entry of the tables is estimated based on 1000 simulations runs.

Table 1 and 2 summarize the Bias, SEE, ESE, CP and REE of the proposed IPW estimator for
~v1 and 75 under the three sampling designs I, II, and III for models (2.25) and (2.26). Those tables
show that the IPW is unbiased estimator. The empirical standard errors tend to decrease as the
sample size increases and the averages of the estimated standard errors are close to the empirical
standard errors. The relative efficiencies of the IPW estimator tend to increase as the sample size
increases. The coverage probabilities are close to the 95% nominal level. At the higher average of
total missing probability with my = 0.5, the empirical standard errors are much larger.

Table 3 and 4 compare the Bias, SSE and ESE of IPW estimator and those of complete case (CC)
estimator for v; and 75 under model (2.25) and (2.26), respectively. The Full estimator is presented
as a gold standard. Table 3 shows that the biases of the CC estimator are larger than those of the
IPW estimator. It means that CC is not a consistent estimator. The CC estimator has the largest
bias when the missing probabilities for the cases and the non-cases differ the most in each average
of total missing probability. Table 4 shows that the empirical standard errors of each estimator
tend to be smaller as the sample size increases. However, the empirical standard errors of the IPW
estimator are worse than or similar to those of the complete-case (CC) estimator. It shows that the
variance of the IPW estimator is not efficient. This is because we still discard the information of
subjects when some of their covariates have been missing. It results in the loss of efficiencies of the
IPW estimator.

Figure 1 to 3 and figure 4 to 6 show that the comparison of the Full, IPW and CC estimators
for the cumulative time varying regression coefficient ny(t), ¢ € [0, 3] under model (2.25) and (2.26),
respectively. Under model (2.25) , the classical case-cohort, the generalized case-cohort and a simple
random sampling design in figure 1, 2 and 3, respectively. Under model (2.26), those sampling
designs have been considered in figure 4, 5 and 6, respectively. We take the sample size n = 550. In
each figure, (a) to (d) are the plots of the Bias, SSE, ESE and the coverage probability for ny(t) over
t € [0, 3] with the average of total missing probability mo = 30% and (e) to (h) are the plots of those

with mg = 50%. The plots show that the IPW estimator is unbiased, comparable to Full estimators
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as if all the values of the covariate Z were observed. The biases of complete case (CC) estimator of
no(t) are much larger, meaning that those estimators are inconsistent. However, under the simple
random sampling ITI, the biases of the CC estimator are small. This is because the design III is not
depending on outcomes €;, giving small biases of all those estimators. The average of the estimated
standard errors (ESE) are close to the empirical standard errors (SSE). The coverage probabilities
of the IPW estimators are close to 0.95 nominal with the average of total missing probabilities
mg = 0.3. However, the coverage probabilities of the IPW estimators are not very close to the 0.95
nominal with my = 0.5. This result shows that variances of the IPW are not good enough. It seams

to appeal another approach to improve the efficiency of the IPW estimators.

2.4 Application

The RV144 vaccine efficacy trial randomized 16,394 HIV negative volunteers to the vaccine (n =
8198) and placebo (n = 8196) groups. We apply the proposed estimating procedures for IPW
method to the vaccine group, which included 5035 men and 3163 women. Subjects enrolled in the
RV144 trial were vaccinated at weeks 0,4,12 and 24. 43 of 8198 vaccine recipients acquired the
primary endpoint of HIV infection after the Week 26 biomarker sampling time point through to the
end of follow-up at 42 months (?). Vaccine recipients were distributed in the Low, Medium, and
High baseline behavioral risk scores, defined as in (?) with 3863 Low, 2370 Medium, and 1965 High.

Three HIV gp 120 sequences were included in the vaccine construct; 92TH023 in the ALVAC
canarypox vector prime component; and A244 and MN in the AIDSVAX protein boost component.
The 92THO023 and A244 are subtype E HIVs whereas MN is subtype B. However, the analysis
focuses on the 92TH023 and A244 insert sequences. This is because the subtype E vaccine-insert
sequences are genetically much closer to the infecting (and regional circulating) sequences than MN;,
meaning that the subtype E HIVs are more likely to stimulate protective immune responses. The
observed failure time 7} is the time to HIV infection diagnosis, which is minimum of failure time or
right-censoring time.

Because vaccine recipients with higher levels of antibodies binding to the V1V2 portion of the HIV
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envelope protein had a significantly lower rate of HIV infection((?), (?), (?)), the VIV2 sub-region
of gp120 may have been involved in the partial vaccine efficacy administered by the vaccine regimen.
The region contains epitopes recognized by antibodies induced by the vaccine. Therefore, we study
the genetic distance of an infecting HIV V1V2 sequence to the corresponding V1V2 sequence in the
vaccine construct(using a multiple sequence alignment), which is called as marks.

For the analysis, two marks V are considered, based on the 92TH023 and A244 vaccine construct
sequences. The way of measuring in the genetic distances is described in ?. The distance V were
re-scaled to take values between 0 and 1. We denote these two genetic distance marks 92TH023V1V2
and A244V1V2 as Vy; and Vy;, respectively, for a subject i. We use each mark to form two causes
of failure by considering each of V;; and V5; one at a time. Let M; be the median of the observed
mark Vi; and My be the median of the observed mark V5; for each subject i.

The cause of failure €1; for the mark Vi; is generated by using the median mark M; of Vi;. We
define €1; = 1 for uncensored subjects ¢ if the mark V3, is less than Mj; otherwise €1; = 2. Similarly,
the cause of failure ey; for the mark V5; is generated by using the median mark My of V5;. We define
€2; = 1 for uncensored subjects i if the mark V5; is less than Ms; otherwise eo; = 2. If subjects are
censored, then €;; = 0 for j =1, 2.

The V1V2 seqeunce of the infecting HIVs has been investigated in (Ligi’s paper). They analysis
IgG and IgG3 biomarkers as correlates of 92TH023V1V2 and A244V1V2 mark-specific HIV infection
for the stratified mark-specific proportional hazards model under two-phase sampling.

Following the analysis in 7, we study IgG and IgG3 biomarkers as correlates of 92TH023V1V2 and
A244V1V2 mark-specific HIV infection for the cumulative incidence model based on competing risks
data. We use IPW method to analysis these subjects under two-phase sampling. In particular, paired
to the 92TH023V1V2 mark variable, we study the two biomarkers Week 26 IgG and IgG3 binding
antibodies to 92TH023V1V2, namely 1gG-92TH023V1V2 and 1gG3-92TH023V1V2; and, paired to
the A244V1V2 mark variable, we study Week 26 IgG and IgG3 binding antibodies to A244V1V2,
namely IgG-A244V1V2 and IgG3-A244V1V2. Therefore, we have four different immune responses

1gG-92TH023V1V2, 1gG3-92TH023V1V2, IgG-A244V1V2 and 1gG3-A244V1V?2 for the analysis.
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The immune response biomarkers were measured for 34 of 43 HIV infected vaccine recipients with
HIV V1V2 sequence data and 212 of 8155 uninfected vaccine recipients at the Week 26 visit post
entry. These observed biomarkers were each standardized to have mean 0 and variance 1 for the
analysis.

Let R; be the immune responses R11,, Ri2,, R21,, and Rao,, respectively, for each analysis. Let §;
be infection status, whose value is 1 if a subject is infected HIV; and 0 if a subject is right censored
over a follow-up period of 42 months. Let €1; = k be the causes of failure for immune responses Ry,
and Rya,, respectively, for k = 1,2. Let e3; = k be the causes of failure for immune responses Ra,
and Ras,, respectively, for k = 1,2. Let By, and Ba; be the dummy variables for baseline behavioral
risk score groups B; (High=1, Low=2, Medium=3), where By; = 1 if a subject is in the low risk
score group; 0 otherwise, Bo; = 1 if a subject is in the medium risk score group; 0 otherwise and
By; = By; = 0 if a subject is in the high risk group. The immune responses R; can be missing for
both case and non-case subjects, and hence are phase two covariates. The baseline behavioral risk
scores B; are measure for all subjects, and hence are phase one covariates.

We consider the following semiparametric additive model for the cumulative incidence function

by using log link function for h(z) = 1 — exp(—z) in (1.22);
sz’ (t; XZ‘, Z,') =1- exp(—{no (t) +m (t)Ri + 'YlBlit + ’Yngit}) (230)

for k =1,2. Let 9; = P(&§ = 1|V, ;) be the selection probabilities, where &; is the indicator of the
immune response data, whose values are §; = 1 if each of four immune response data R; is measured;
otherwise & = 0. To predict the probability of observing the immune response R;, the following
logistic regression model

logit(ﬁi) = 90 + 01(52 (231)

The selection probabilities 9; = P(& = 1|V;,6;) is given by 0 = (—3.6235,4.9526) with standard
errors (0.0696, 0.3813) of coefficients 0 in (2.31). The weights are estimated by ¥ (6;) = & /9;.
We analysis the semiparametric additive model (2.30) with four different settings: (S1). The

model (2.30) is analyzed with immune response R; = Rjj, for €;; = 1. The IPW estimates of
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baseline behavioral risk score for By; and Bs; are (91,%2) = (—0.00115, —0.00122) with standard
errors with (0.000739, 0.000735), yielding p-values (0.118737, 0.096528); Similarly, the model (2.30)
can be analyzed with immune response R; = Ri1, for €;; = 2. The IPW estimates of baseline
behavioral risk score for By; and Bsg; are (91,%2) = (—0.00015,0.00065) with standard errors with
(0.000360, 0.000575), yielding p-values (0.66948, 0.25593);

(S2). The model (2.30) can be analyzed with immune response R; = Ri, for €¢1; = 1. The
IPW estimates of By; and Bsy; are (91,%2) = (—0.00108, —0.00123) with standard errors (0.000751,
0.000738), yielding p-values (0.151167, 0.095754); The same model can be analyzed based on €1; = 2.
The IPW estimates of By; and Ba; are (§1,42) = (—0.00017,0.00064) with standard errors (0.000342,
0.000571), yielding p-values (0.62405, 0.25967);

(S3). The model (2.30) can be analyzed with immune response R; = Raj, for eo; = 1. The
IPW estimates of By; and Bsy; are (91,%2) = (—0.00036, —0.00038) with standard errors (0.000591,
0.000581), yielding p-values (0.54059, 0.51436); The same setting with eo; = 2 can be also analyzed.
The IPW estimates of By; and Bs; are (91,42) = (—0.00086, —0.00010) with standard errors (0.00050,
0.00067), yielding p-values (0.086647, 0.880498);

(S4). The model (2.30) for cases €z; = 1 is analyzed with immune response R; = Raa,. The IPW
estimates of By; and Bs; for this analysis are (-0.00039, -0.00042) with standard errors (0.000611,
0.000592), yielding p-values (0.52576, 0.47455); The same model can be analyzed for ez; = 2 . The
IPW estimates of By; and Bs; for this analysis are (-0.00082, -0.00009) with standard errors (0.00050,
0.00067), yielding p-values (0.097105, 0.892526).

Figure 7 to 10 compares IPW estimates of baseline cumulative coefficients 7(t) and cumulative
coefficients n;(t) with 95% pointwise confidence intervals for the four different immune responses
of R; for €;; = 1 and €;; = 2, respectively, j = 1,2. The analysis with Ri;, and Rja, for €;; =1
have larger IPW estimates of baseline cumulative coefficients no(t) than the analysis with Ry;, and
Ry9, for €1; = 2. The analysis with Ro;, and Rao, for e5; = 1 has similar IPW estimates of baseline
cumulative coefficients 19(t) to the analysis with Rg1, and R, for eg; = 2.

For the IPW estimates of cumulative coefficients 7 (¢), while the effects of immune responses
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Ry, (IgG3-92TH023V1V2) are close to zero over study time with €;; = 1, j = 1,2 in 8, the im-
mune responses Ryq, (IgG-92TH023V1V2), Roy,(IgG-A244V1V2) and Rao, (1gG3-A244V1V2) have
negative effects on the cumulative incidence function with €;; = 1, j = 1,2 in figure 7, 9 and 10.
However, the negative effects of Ry1,(IgG-92TH023V1V2) is less obvious than those negative effects
of Ra1,(IgG-A244V1V2) and Rz, (IgG3-A244V1V2). On the other hands, none of four immune
responses R; has significant negative effects on cumulative incidence function with €¢;; =2, j = 1,2
over study time. By comparing figure 7 to 9 and comparing figure 8 to 10, IgG and IgG3 binding
antibodies responding to A244V1V2 than to 92TH023V1V2 have significantly negatively effects on
the cumulative incidence function, i.e A244 would be more relevant for protection.

Figure 11 to figure 14 show that the cumulative incidence function has been evaluated for €;; =1
and €j; = 2, j = 1,2, respectively, depending on the behavioral risks scores at the first, second and
third quartiles @1, @2 and @3 of the observed the immune responses R;. We expected to have larger
probability of getting infected by HIVs V1V2 sequences if one has higher behavioral risk scores. We
also expected to have lower probability of getting infected by HIVs with V1V2 sequences closer to
92THO023 or A244 (e;; = 1, j = 1,2) and have higher probability of getting infected by HIVs with
V1V2 sequences far away from 92THO023 or A244 (¢j; =2, j = 1,2).

Furthermore, since the numbers of behavioral risks scores for €;; = 1 and €;; = 2 are uneven,
figure 11 and 12 did not show the desirable results we have expected. For example, for mark
92TH023V1V2 with e¢;; = 1, the number of observed behavioral risks scores are 9, 6, and 4 for
high, row and medium, respectively. However, for mark 92TH023V1V2 with €;; = 2, the number
of observed behavioral risks scores are 3, 5, and 7 for high, row and medium, respectively. This
is because the probability of getting infection by HIVs with e;; = 2 (3 for high) lower than the
probability of getting infection by HIVs with €;; = 2 (9 for high), which can not be comparable.
For the mark A244V1V2 with €;; = 1, the number of observed behavioral risks scores are 6, 7, and
5 for high, row and medium, respectively and for the mark A244V1V2 with €;; = 2, the number of
observed behavioral risks scores are 6, 4, and 6 for high, row and medium, respectively, which are

relatively comparable. Therefore it is reasonable to look at the results on figure 13 and 14. Figure 13
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and 14 show that the subjects with higher behavioral risk scores have higher probability of getting
infected by HIVs with V1V2 sequences than the subjects with lower behavioral risks scores. On the
medium risk and high risks graphs, predicted probability of infection by HIVs with V1V2 sequence
with e5; = 1 tends to have lower probability of infection by HIVs with V1V2 sequences with e; = 2.

These results imply that since IgG3 antibodies to 92TH023V1V2 does not have effect on cumula-
tive incidence function on Figure 8, other IgG subclasses besides type3 induced by 92TH023 would
have negative effects on the cumulative incidence function, then would be relevant for protection.
This seems that A244 was more important than 92TH023 for induction of protective IgG3 anti-
bodies. These results also imply that mark distances smaller than the median of observed marks
has more protection against the HIV infection than mark distances larger than the median marker.
Therefore, it supports the hypothesis that vaccine recipients exposed to HIVs with V1V2 sequences
close to A244 (smaller markers than the median marker) may be more likely to be protected by
antibodies than vaccine recipients exposed to HIVs with V1V2 sequences with larger markers than

the median marker.
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Table 3: The bias (Bias) for Full, IPW and CC estimators of 7; and 2 under model (2.25) and (2.26)
with average of total missing probabilities mg = 0.3, 0.5 and about 45% censoring percentage based
on 1000 simulation for each sampling scenario where m and mq are average of missing probabilities
for cases and non-cases, respectively.

Bias(71) Bias(y2)

Model Sample mg  (m1,m2) n Full IPW CcC Full IPW CcC

(2.25) I 0.3 (0,0.40) 550 -0.0042 -0.0091 0.2548 0.0030  0.0123 -0.0025
700 -0.0054 -0.0108 0.2523 0.0070  0.0144 -0.0024

900 -0.0002 -0.0033  0.2627 0.0018  0.0035 -0.0108

II (0.15,0.35) 550 -0.0047  0.0626 0.0012 -0.0095
700 -0.0076  0.0612 0.0072 -0.0034

900 -0.0048  0.0628 0.0081 -0.0019

111 550 -0.0076 -0.0187 0.0074  0.0069
700 -0.0077 -0.0081 0.0065  0.0066

900 -0.0074 -0.0078 0.0061  0.0063

I 0.5 (0,0.65) 550 -0.0268  0.2674 0.0190  0.0260

700 -0.0029  0.3341 0.0208 -0.0753

900 -0.0107  0.2772 0.0171  0.0264

II (0.45,0.60) 550 0.0015 -0.0424 0.0013 -0.0082
700 -0.0205 -0.0533 0.0099 -0.0069

900 -0.0160  0.0532 0.0152  0.0020

111 550 -0.0121 -0.0160 0.0082  0.0092
700 -0.0099 -0.0117 0.0013  0.0022

900 0.0044 0.0020 -0.0013  0.0002

(2.26) I 0.3 (0,0.40) 550 -0.0078 -0.0112  0.0752 0.0119  0.0142 0.0180

700 0.0005 -0.0021 0.0759 -0.0073 -0.0034 0.0044

900 -0.0091 -0.0105 0.0708 -0.0011 -0.0010  0.0066

II (0.15,0.30) 550 -0.0051  0.0489 0.0113 0.0118
700 -0.0023  0.0534 -0.0090 -0.0085

900 -0.0073  0.0477 -0.0019 -0.0015

III 550 -0.0055 -0.0063 0.0105 0.0109
700 -0.0031 -0.0036 -0.0054 -0.0059

900 -0.0068 -0.0072 -0.0023 -0.0021

I 50%  (0,0.65) 550 -0.0171  0.3192 0.0350  0.0448

700 -0.0035 0.3081 -0.0014 0.0114

900 -0.0180  0.3109 0.0074 0.0215

II (0.60,0.50) 550 -0.0077  0.0057 0.0136  0.0102
700 -0.0130  0.0024 0.0024 -0.0003

900 -0.0144 -0.0004 -0.0009 -0.0021

III (0.5,0.5) 550 -0.0196 -0.0124 0.0278  0.0236
700 -0.0065 -0.0028 0.0062  0.0061

900 -0.0136 -0.0108 -0.0035 -0.0042
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Figure 1: Comparison of Full, IPW, CC estimators for the basline cumulative coefficient 7(t) under
(2.25) with mg = 0.3, 0.5, n = 700 and about 45% censoring percentage based on 1000 simulation
for sampling design I. Left graphs are for my = 0.3. Right graphs are for mg = 0.5. (a), (b):
The plots of the biases of the estimates. (c), (d): The plots of the empirical standard errors of the
estimates. (e), (f): The plots of the average of the estimated standard errors of the estimates. (g),
(h): The plots of the coverage probabilities of the estimators.
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Figure 2: Comparison of Full, IPW, CC estimators for the basline cumulative coefficient 7(t) under
(2.25) with mg = 30%, 50%, n = 700 and about 45% censoring percentage based on 1000 simulation
for sampling design II. Left graphs are for my = 0.3. Right graphs are for mo = 0.5. (a), (b): The

plots of the biases of the estimates. (c), (d):

The plots of the empirical standard errors of the

estimates. (e), (f): The plots of the average of the estimated standard errors of the estimates. (g),
(h): The plots of the coverage probabilities of the estimators.
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Figure 3: Comparison of Full, IPW, CC estimators for the basline cumulative coefficient 7(t) under
(2.25) with mg = 0.3, 0.5 n = 700 and about 45% censoring percentage based on 1000 simulation
for sampling design III. Left graphs are for mg = 0.3. Right graphs are for mg = 0.5. (a), (b):
The plots of the biases of the estimates. (c), (d): The plots of the empirical standard errors of the
estimates. (e), (f): The plots of the average of the estimated standard errors of the estimates. (g),
(h): The plots of the coverage probabilities of the estimators.
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Figure 4: Comparison of Full, IPW, CC estimators for the basline cumulative coefficient 7(t) under
(2.26) with mg = 0.3, 0.5, n = 700 and about 45% censoring percentage based on 1000 simulation
for sampling design I. Left graphs are for my = 0.3. Right graphs are for mg = 0.5. (a), (b):
The plots of the biases of the estimates. (c), (d): The plots of the empirical standard errors of the
estimates. (e), (f): The plots of the average of the estimated standard errors of the estimates. (g),
(h): The plots of the coverage probabilities of the estimators.
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Figure 5: Comparison of Full, IPW, CC estimators for the basline cumulative coefficient n(t) under
(2.26) with mg = 0.3, 0.5 and about 45% censoring percentage based on 1000 simulation for sampling
design II. Left graphs are for mg = 0.3. Right graphs are for mg = 0.5. (a), (b): The plots of the
biases of the estimates. (c), (d): The plots of the empirical standard errors of the estimates. (e),
(f): The plots of the average of the estimated standard errors of the estimates. (g), (h): The plots
of the coverage probabilities of the estimators.
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Figure 6: Comparison of Full, IPW, CC estimators for the basline cumulative coefficient 7(t) under
(2.26) with mg = 0.3, 0.5, n = 700 and about 55% censoring percentage based on 1000 simulation
for sampling design III. Left graphs are for mg = 0.3. Right graphs are for mg = 0.5. (a), (b):
The plots of the biases of the estimates. (c), (d): The plots of the empirical standard errors of the
estimates. (e), (f): The plots of the average of the estimated standard errors of the estimates. (g),
(h): The plots of the coverage probabilities of the estimators.
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Estimated Cumulative Coefficients for IgG-92TH023V1V2

(aV]
2] — &=t
€4 =2
[{e]
—~ o
K=} S 7
= °
=
S
< T T T 1
0.2 1.2 2.3 3.5
t
(a)
Al
o
S _
o
[ T -TTT"
,o-=-2--C22C N
o — R == 2N e————\
‘ -
~~ ‘- T
= . ——
= \
[aV]
o |
S I
o ~
| ~ N
N, -~~~
<
o
O_ —
< T T T 1
0.2 1.2 2.3 3.5

Figure 7: (a) and (b) show that comparison of the IPW estimates of baseline cumulative coefficients
1o(t) and the cumulative coefficients 7 () with 95% pointwise confidence intervals for the immune
response R; (IgG-92TH023V1V2) in model (2.30) for €17 = 1 (red) and €17 = 2 (grey), respectively .
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Estimated Cumulative Coefficients for IgG3-92TH023V1V2
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Figure 8: (a) and (b) show that comparison of the IPW estimates of baseline cumulative coefficients
1o(t) and the cumulative coefficients 7 () with 95% pointwise confidence intervals for the immune
response R; (IgG3-92TH023V1V2) in model (2.30) for €14 = 1 (red) and €17 = 2 (grey), respectively.
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Estimated Cumulative Coefficients for IgG-A244V1V2
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Figure 9: (a) and (b) show that comparison of the IPW estimates of baseline cumulative coefficients
1o(t) and the cumulative coefficients 7 () with 95% pointwise confidence intervals for the immune
response R; (IgG-A244V1V2) in model (2.30) for eoi =1 (red) and ez = 2 (grey), respectively.
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Estimated Cumulative Coefficients for IgG3-A244V1V2

0.008

— =1
81:2

0.004
|

Mo(t)

-0.001
|

0.002
|

T - = T ———

0
|
i
iy
)
[1
]
]

M4(1)

-0.002
|

-0.004
|

0.2 1.2 2.3 3.5

Figure 10: (a) and (b) show that comparison of the IPW estimates of baseline cumulative coefficients
1o(t) and the cumulative coefficients 7, (t) with 95% pointwise confidence intervals for the observed
immune response R; (IgG3-A244V1V2) in model (2.30) for e3i = 1 (red) and exi = 2 (grey),
respectively.
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Estimated C.I.F for IgG-92TH023V1V2
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Figure 11: @1, Q2, Q3 are the first, second and third qualtie of the observed the immune response
R; = Ry1, (IgG-92TH023V1V2), where Q1 = 0.09027, Q2 = 0.31310 and Q3 = 0.39230. (a), (b) and
(c) show the predicted cumulative incidence function F for e;; = 1 (red) and e1; = 2 (grey) at each
level of behavioral risk score group(low, medium, high),respectively, based on the model (2.30).
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Estimated C.I.F for |gG3-92TH023V1V2
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Figure 12: @1, Q2, Q3 are the first, second and third qualtie of the observed the immune response
R; = Ry2, (1gG3-92TH023V1V2), where @)1 = —0.4677, Q2 = 0.1196 and Q3 = 0.6484. (a), (b) and
(c) show the predicted cumulative incidence function F for e;; = 1 (red) and e1; = 2 (grey) at each
level of behavioral risk score group(low, medium, high),respectively, based on the model (2.30).
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Estimated C.I.F for IgG-A244V1V2
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Figure 13: @1, Q2, Q3 are the first, second and third qualtie of the observed the immune response
R; = Ra1, (IgG-A244V1V2), where@Q; = —0.1530,Q2 = 0.3321 and Q3 = 0.5514. (a), (b) and (c)
show the predicted cumulative incidence function F for eyi = 1 (red) and eyi = 2 (black) at each
level of behavioral risk score group(low, medium, high),respectively, based on the model (2.30).
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Estimated C.I.F for IgG3-A244V1V2
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Figure 14: @1, Q2, Q3 are the first, second and third qualtie of the observed the immune response
R; = Ras, (1gG3-A244V1V2), where Q1 = —0.3851,Q2 = 0.08807 and Q3 = 0.5680. (a), (b) and
(c) show the predicted cumulative incidence function F for epi = 1 (red) and eyi = 2 (black) at each
level of behavioral risk score group(low, medium, high),respectively, based on the model (2.30).



CHAPTER 3: ANALYSIS A SEMIPARAMETRIC ADDITIVE MODEL WITH MISSING
COVARIATE USING AUGMENTED INVERSE PROBABILITY WEIGHTED COMPLETE
CASE METHOD

In this chapter, we propose an improved estimating equation by adapting the theory of Robins,
Rotnizky and Zhao (1994). In section 3.1, augmented IPW of complete case estimating equations
have been derived for a semiparametric additive model using identity link function in model (1.22).
We also describe the estimation procedure to obtain the augmented IPW estimators. In section 3.2,
asymptotic results have been investigated. Some simulation results for the AIPW estimator have

been discussed in section 3.3, showing that those estimator improve efficiency.

3.1  Augmented IPW of Complete Case Estimating Equation for a Semiparametric Additive

Model

We assume that the selection probability S;, the conditional expectations E{XZ-(Q) |V} and E{XZ-(Q) (Xi(Q))TWi}

are known for those with missing covariates Xi(Q).

Let
einwt) = FE Dn,i(t,n(t),‘r)wi(t){ @(Tl()t) Fl(tQXiaZi)} |Vz] ;
ein(t) = E D’)’,z‘(t,”l(t)")’)wi(t){ @(Tf)t) —Fl(tQXivzi)} M’] ;

where observed phase-one V; = {Zf’i,Ai,@,Xfl),Zi,Ai}. Following the augmentation theory of

Robins, Rotnizky and Zhao (1994), we consider the following augmented IPW estimating equations

for (n(')a v 9)

Un(t.n(t),7.0) = > [%‘(é)Dn,i(taU(t)ﬂ)wz‘(f) {AéNl(t) - Fi(t; X5, Zz‘)} +(1- wi(é))ei,n(t)(t)] , o (31)
=1 i

~ N - T N A; N;(t N

U~(1,n(),7,0) = ;/0 [1/%( ) D~ i(t,m(t), v)wi(t) {C:‘(Tl() - it X, Zz)} +(1- Zbi(@))@i,w(t)]dt-(?)-m
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In equation (3.1), the first part of the contribution, ¢i(é)Dn,i(t, n(t),v)w;(t) {Aé\](\[ﬁ — Fi(t; X, Zi)},
represents the inverse probability weighting of complete case. The second part of the contribution,
(1-— wi(é))em(t) (t), is the augmentation to the first part with the knowledge of the conditional
expectations E{XZ@)WZ} and E{XZ@) (Xf2))T|Vi} for the missing covariates. The contribution from
subject ¢ with & = 0 only involves the conditional expectation e; ,(t). A similar interpretation

applies to the equation (3.2).

The estimating functions given in (3.1) and (3.2) are equivalent to

Un(t,n(t),7,0) = (Dnlt,;n(),7) W (¥ (@) {R(t) - Fi(t,n(),7)}
+E (D (t,n(0),9) WO (I~ ¥O)(R() - Fit.n®. )} V], (33)

U’Y(Tvn(')a’)/’ 9) = /OT(D'Y(tvn(t)77))TW(t)\Il(é) {R(t) - Fl(t7 n(t)77)} dt

+

| E[(Da .m0 WO - $@)RO) - Filtn0. 7} V] di3)

Consider the following semiparametric additive model by using identity link function h(z) = z in
(1.22):

Fui(t;n ) = Xin(t) + 9(v, Zi,t). (3.5)

with the ith row vector Dy ;(t,n(t),y) = X[, D, (t,n(t),y) = 0g(v, Z;,t)/0y where X =

(1, X1, , Xip) and g(v, Z;,t) is known function.

Note that
i (t) = E[X][Vi]wi(t) {Aié\;(;) - 907, ZM)} — (N} E[X: X [V;] wi(t),
ein(t) = {09(v, Zi,t)/0v} T wi(t) {Aéé\;(;) — (v, Zi,t) — E[X] V] ﬁ(t)} ~

Let X = (X1, -+, X,,)" and dg(v, Z,t) /07 be the n x (p+1) and n x ¢ matrices, respectively. Let

V=V V) Vo= (B{Xi} o B{XG V)T, Vae(0) = 5011 (1 = ¢i(0))wi () E [ X3 XT V],
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where
xM
BE{Xi|Vi} = ,
B{XP v}
(3.6)
xPxT xP BTV
E{X;X v} = for each 1.
EXP W B{XP (X))
Let
an(t> 77(07’77 9) = VzTW(t)(I - ‘I’(@)) {R(t) - 9(77 Za t)} - sz(e)n(t)a (37)

e (rn0)70) = [P TW @)1 - w(0) (R~ Vinlt) ~ 90 Z,0) dt, - (3)
where V,..(0) = E(XTW (t)(I — ¥(0))X|V).

The estimating equations are followed by (3.3) and (3.4) that

Un(t:m(t),7,9) XTW ()% (0) {R(t) — F1(t,n(t),7)} + ay(t,n(t),7,6), (3.9)

Oyrn()md) = [ 1SN W 0w 0) (R0 - Fitn(@). ) do+ an(rn()2.0). (310

3.1.1 Estimation Procedure

Let p1(V;, 1) and pa(Vi, ag) be the parametric models for E{Xl@\vi} and E{Xi@)(Xi(Q))TWi}7
respectively, where a1 and as are r; and 7o dimensional vectors of parameters belonging to some
compact sets, and pq(-, 1) and pa(-, ae) are some smooth functions. For example, p1(-, 1) and
u2(+, 2) can be approximated by the first order or second order linear functions of the variables in
V; or their transformations. In this case the parameters oy and as can be estimated by &; and &o

(2)

using the least square regressions of Xi(Q) on V; and X, (Xi(Q))T on V;, respectively, based on the
observations with & = 1.
By replacing E{X;2)|Vi} and E{Xi(Q) (XZ»(Q))TWZ-} with pa (Vi, &1) and pe(Vi, éa), respectively,

and replacing Vi, Vie(0) by Vi, Vie(f) in a(7,1(-),7,8) and a(7,7(-),7, ) defined in (3.7) and
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(3.8), the estimators d, (t,7(t),, ) and a~ (7,1(-),7, 0) of ay,(t,n(t),7,8) and a(7,7(-),7,8) can be
obtained, respectively,

dﬂ(ta n(t)’ Y, é) = vaW(t)(I - ‘Il(é)) {R(t) - g(')/a Zv t)} - ‘//;w(é)n(t)’ (3'11)

~

ay (r.n(),7.0) = / (P20 ”’Zt VW ()1 - w(0) {R() - Van(t) = 9(, 2,6)} dt. (312)

Replacing (3.11) and (3.12) into the score functions (3.9) and (3.10), we obtain the following
augmented IPW estimating equation for n(t) and ~:

~

ﬁ'f](t’ U(t)7 Y, é) XTW(t)\I’(é) {R(t) - Fl(tv 77(75)7’7)} + &ﬁ(f'a n(t)’ Y, 9)7 (313)

Osytrn)0) = [{PGEDTW0%(6) (RO) - Faleon). ) di+ aslrn0), 2,031

The augmented inverse probability weighted of the complete-case estimators 7)(¢) and 4 of n(t) and
v solve the equation ﬁ"'],’)’(ﬁv:)\’7 9) =0, where U77 ’7(77 s ) {U'r,(t 77( ) vé)a 67(7'777(')7% é)}
Similar to numerical algorithm in section 2.1.2, the estimating equations (3.13) and (3.14) can be

solved by using an iterative algorithm.

[Computational Algorithm] The estimators of 7n(t) and v can be obtained though the

following algorithm.
1. Given inverse probability weighting estimators () (¢) and v(©) as initial values.
2. Estimate V, and Vm(é) by XZJ and IA/M(HA)

3. Using Taylor expansion of F'1(t,n(t),~) around the values (ﬁ(i) (t),:)\/(i)) at ith iteration, we

have

Fitn(t).7) ~ Fit.7”0).57) + D7 0.5 {ne) - a0
+ Dyt 1,5 {y -7} (3.15)
4. Using (3.7) and (3.8), a,(t, 7" (t),7,8) and a- (7,57 (-),5", ) are estimated by

(827 (0,5,0) = VIW O/ — w(0) {B() - 93", 2,6)} ~ Ve 07V (1),

A()

(3.16)

00790 = [ (820 vy 41— wii) { R - 00 - 95, 2,00} a1
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and we denote @l (t,0) = a,(t, 7" ()3, ) and 4% (0) = a, (r, 57 (), 7", 6).

5. Plugging (3.15), (3.16), and (3.17) into (3.13) and (3.14), respectively, to get the approximate

estimating equations

Un(t,7" (1).3.0)
~ (DR OY WO @) [RO)-F0)-Dy (1) {n®) -7 1) } DY () {-3"}]
+al(t,0) = 0, (3.18)
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+al)(0) =0, (3.19)

where Dy (t) = Dy (1,77 (1),59), DY (1) = DY (6,77 (¢),5"), and F{ (1) = F1 (.77 (1), 7).

6. Solving equation (3.18) for n(t) to get

() = 700+ (T 0.0} DY 0 Wt e@) {R)-FP (1) -DY (1) {~ -5}
HIyy (1,0)) 16 (1,0). (3.20)

7. Plugging (3.20) into (3.19) and then solving (3.19) for v — 5. Then the resulting estimate

of v is Q(HU at (i 4+ 1)th step estimation. Specially, the (i + 1)th step estimate for ~ is

. ; N ,a) L i) /A NOY ) (0
0 = 504 {100 [BY @) + P (0) - AP O} (3.21)
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where

90) = /0 T{D$> YW () (O)HD (t,0)DY) (1) dt
BY(6) = /OT{D?(t)}TW(t)\P(é)H(”(t,é) {RO)-FP)} a
HO@W) = 1-DRw [20.)] (DY 1) W@w)
I (t.0) = {Dy )} "W )®(0)Dy (t)
AD(G) = / ’ K9 (t,0)al)(t,0) dt
0
KO(t0) = {DY )} W(t)®(6)D§ (1) [15? (t,é)} o (3.22)

8. The estimate of n(t) at (i + 1)th iteration is obtained by plugging 5 into (3.20). Then the

(¢ + 1)th step estimator for n(t) is

A = @)+ (T .0} DY Y W w0) {Rt) - PP (1)~ DY (){ZY (0}
[BY@)+a00) - AP )} } + 12 1.6) o) (1.0). (3:23)

9. Repeat steps 7 and 8 until convergence. We use the criteria of H’?er) — 70 || <1074

3.2  Asymptotic Properties

We derive the expressions for the proposed AIPW estimators and study asymptotic results for

those estimators.

Theorem 3.1. Assume that the models for the selection probability P(§; = 1|Vi) and both the
conditional expectations E{XZ-(Q) |Vi} and E{XZ@) (X£2))T|Vi} of the phase-two covariates are correctly
specified. The estimators of v and n(t) obtained by solving equations (3.13) and (3.14) have the

following expressions:

=70 = {Z00)} " {By(0) +y(00) — Ay(80)} +0p(n%), (3.24)

{Zn(t,60)} " {Dn(t)} W (t)¥(6p) { R(t)~ F1(t) — Dy (t){Z~(b0)} "

3
—~~
~~
~—
|
3

o
—~
o~
~

{B~(00) + a+(00) — Ay(00) } } + {Zn(t, 00)} " ay(t, 00) + op(n"%),  (3.25)
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where

A,(0) = /0 K(t,0)a,(t,0) dt
K(t,0) = DIOW()®(0)Dy(t) [Zn(t,0)] "
ay(t,0) = Vi W) —¥(0){R(t) — g(7, Z, 1)} — Vau(0)i)(t)

iy (0) = / {ag %’Z 2 YW — 2 (0) {R(t) — Vail(t) — 9(3, Z,0)} dt, (3.26)

and where Z~(0), B~(0) and Ly(t,0) are defined in (2.12).  Proof of Theorem 3.1 is given in
section 4.1.

Let

@5 (5,1,7,0) = n—lZ{ag U )

n

y(t) = lim n~* ZI(TZ >s), uniformly ¢ € [0, 7],

n—o00 _
=1

M) = (F 0.8, =0~ [ T 2 )il Tog 615,

Tay(st,y.0)
K% ;(t,~,0 :/ ——————dM{(s),
V0= f T M

¢ (bt Z / (02001 - 4(0) {Aéiv;ff) V() — gl zm} ,
(s,t,0) —n_leT w;(t 1_¢i(9))Aé](\;_(;)I(3§ﬁ§t)a
o B qn(s,t,ﬁ) o4
T],i(tva) _A y(s) dMZ ( )7
Cip (), 7,0) = 1Z{VT )1 = (00 { S0 = i3 20) | = Vern(®)}.

Theorem 3.2. Under Condition I in Chapter 4.1, if the selection probability P(&; = 1|V;) or both

the conditional expectations E{Xi(Z)Wi} and E{Xl@ (X1;(2))T|Vi} are correctly specified, then

M\»—l

n? (3 —vy) 5 N(0,24),

where covariance matriz X5 = Qﬁy(ﬁo)*lE{ny,i(T, no('),'yo,ﬁo)}@)zQW(Go)*l, where Q~(0) is
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defined in Theorem 2.1 and where

Wa (0 = [ Gyaltondes [ nyat o)t [ wh (o) [ G o). y.0de
0 0 0 0

_ _/OTk:(t,G){f-enl( 6) — Cralt,m(t),,0) } dt. (3:27)

The asymptotic covariance matriz of n%(fy — o) can be consistently estimated by

_ ®2 ~—1 4
27 ny ! Z { ), 9)} Q'y (0),
where
ﬁ\/’y,i(Tvn(')7779) = E’)’,z(t?e) dt + / R’)/,z(t79) dt — / gfy7z(ta779)dt+ / 2’771(tan(t)57a9) dt
0 0 0 0

- /OT K(t,0) {E;M(t’ 0) — Cpi(tm(t). 7, 9)} dt,

where @7(9), Z%i(t, 0), K,i(t,0) are described in Theorem 2.1, and where Ry ;(t,7,0), Efy’i(t, n(t),~,0)
E;M(t,@) and E;7i(t,n(t),7,ﬁ) are the estimators of k%, ;(t,,0), ¢y,i(t,n(t),7.0) kp.(t,0) and
C%’i(t,n(t),'y,ﬁ). Similar arquments with Theorem 2.1, those estimators can be obtained by using
definition in (4.81) in section 4.2 and by replacing V. and V, with YA/JE and 17m, where the unknown
conditional expectations E(XZ»(2)|V7;) and E(XZ-(Q) (X£2))T|Vi) in E(X;|Vi) and E(X;(X;)T|V;) can be

obtained by p1(Vi, &) and pa(Vi, éa).

Theorem 3.3. Under Condition I in section 4.1, if the selection probability P(& = 1|V;) or both

the conditional expectations E{Xf2)|Vi} and E{XZ@) (XZ»(2))T|V,'} are correctly specified, then

03 (@(t) = mo(t)) = {Qn(£.00)} " n 3 S Wiy (£:m0(), 70, 60) + 0p(1). (3.28)

i=1

where Qn(t, 0) is defined in Theorem 2.2, and where
W;7,z(t7n(t)a779) = C’I’],z(t79) + K’n,i(ta 9) - Q’I’],’)/( ) {Q"y } Tz ZW»-Y T, 'f] 9)
+K“:Ik’],i(t79) - C;?,z(tvn(t)7’779) (329)

By using lemma 1 of Sun and Wu (2005), n= (7j(t)—n(t)) converges weakly to a mean-zero Gaussian

process ont € [0, 7] with the covariance matriz Xy = Qp (L, 90)_1E{W;‘7’i(t, 70(t), Yos 90)}®2Qn(t, )1,
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which can be consistently estimated by
A~k ~—1 ~ 1 n % o A ®2 ~_1 N
Sp o= Q@O0 Y {Wiata0).5.0)}  Qy t.0),
i=1
where

s ~ ~ ~ -1, O s
Woatn(t),7,0) = Cput,0) +Fnilt.0) = Quy (6.0 {Qy(0))  n7F S W4 (r.0(),7,0)

i=1

+;<‘\"'>;’],i(t7 9) - Z?’],i(t7 T’(t)7 v, 9)7
where 627(9) is defined in Theorem 2.1. @777,7(25,(9), @n(t,ﬁ),znﬁi(t,ﬁ), and Ky ;(t,0) can be ob-
tained as described in Theorem 2.2, me(ﬂn(),'y, 0) is defined in Thorem 3.2, and R:;,_’i(t, 0), and

E;}’i(t,n(t),'yﬁ), defined in section 4.2, are the estimators of n*n’i(t,e) and C’,'i,)i(t,n(t),'yﬁ).

3.3 Simulations

In this chapter, a simulation study has been conducted to evaluate the finite sample properties
of the augmented inverse probability weighted estimators of (n(t),~). Let X be a Bernoulli random
variable with P(X = 1) = 0.6 and Z be a Bernoulli random variable with P(Z = 1|X) = 0.4X +0.2.
The covariate X can be missing and the covariate Z is always observed. Let ¢ = k be the types of
failure and let k& = 1 be the event of interest among two competing risks k& € {1,2}. From model
(3.5), we consider the following semi-parametric additive model with identity link for the cumulative

incidence function with cause 1 :

Fl (tv €, Z) = ﬁo(t) + nl(t)X + ’YZtv (330)

where n9(t) = 0.01 x ¢, n1(t) = 0.03 x t and v = 0.1 where 0 < ¢ <7 and 7 = 3.

We consider the auxiliary covariate A, which may give information on missing covariate X. The
correlation coefficient p can be obtained from the relationship A = a1 X + as with parameters oy
and ag. The correlation coefficients p = 0.5,0.8 and 0.9 are given by the choice of (a1, ag) =

(0.5,0.3),(0.8,0.12) and (0.92,0.05). Based on 7(t),7, X, Z, the conditional probability of failure
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for cause 1 is

Fi(1) =no(7) + xiTm(T) +~ 2T where 0<t<T

for each individual, where ¢ =1,2,...,n and 7 = 3. The types of failure ¢; = k for ith individual
have been determined by generating a Bernoulli random variable with the probability Fy;(7) =

P(e; =1), i=1,...,n. The failure time T; is generated by conditional probability for cause 1:

Fult) = PUTs < tle = 1) = oty = P znd) _ Adh,

for ith individual and 7 = 3.

Let C* follow an uniform distribution on [0,3]. The censoring time C; is generated by C; =
min(C#, 7). Let T; = min(T}, C;) be the observed failure time. Tt gives about 50% subjects who are
censored before 7 = 3. Let ¢; = ¢;A;, where A; = I(T; < C}).

Let V; = {ﬂ, A;, €, Z;, A;} be the phase one data for each individual i. Let X; be the phase-
two covariate, which can be missing. We consider three simulation scenarios in terms of whether
the missing probabilities depend on the outcome variables €; and how the phase-two covariate X;
is missing. The first two scenarios are called phase-two sampling design: (I) The first scenario is
classical case cohort sampling design, where phase-two covariate X; is sampled for all cases €; = 1
and the information of the covariate X; will be missing for the non-cases €; = 0 or 2; (II)The second
scenario is generalized case-cohort sampling design, which allows the phase-two covariate X; to be
missing for both cases and non-cases. In the third scenario, (IIT) the missing probability does not
depend on €; and phase-two covariate X; is a simple random sample from the phase-one covariates.

Let mg be the average of total missing probability. We consider mg = 30% and 60% for each
sampling scenario. Let m; and my be the average missing probabilities for the cases and the non-
cases, respectively.

First, we consider mg = 0.3 and p = 0.5,0.8,0.9 for each scenario. For scenario (I), missing
probability ¢1; = P(&; = 0|V;,€; = 1) = 0 for cases. For non-cases ¢; = 0 or 2, we assume that the

missing probability Jo; = P(& = 0|V, €; # 1) follows the logistic regression model

IOgit(gOm(Vi7 92)) = Oy + 031 4; + 922Ti + 0237; + 924I(€i = 2) (331)
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based on phase-one covariates. We have about the average missing probability ms = 0.36 by choosing
0> = (—1.5,0.3,0.4,0.3,0.5). We have the linear model with the observed non-cases covariates A;,

Z; and log(T}-) to estimate E{X;|V;, €& # 1} and E{XiTXZ-|Vl-, €; # 1} for those with missing X;:

E{X;|Vi,& # 1} = ¢10 + d114i + 012Z; + r3log(T;) + ¢p1al (& = 2), (3.32)

E{X;" XV, & # 1} = doo + d21A; + b22Z; + b23log(Ti) + doal (€, = 2). (3.33)

where estimators of coefficients ¢ can be obtained by fitting linear model based on the observed
response variable X; and the predictors A4;, Z; and log(ﬂ-) that are observed non-cases.

For (IT), the missing probability ¢; = P(&; = 0|V, €;) for both cases and non-cases can be obtained

by the following the logistic regression model
1ogit(<pm(vi, 0)) = 01 +6:4A; + Hgﬁ +047; + 95I(€i = 1) + 06](& = 2), (334)

,which gives m; = 0.2 and my = 0.3 when (0) = (-1.2,0.1,0.1,0.1,—0.5,0.5). We use the following

linear models to estimate E{X;|V;,¢;} and E{XiTXi|Vi,€i}:

E{X;|Vi,&} = ¢1 + ¢2As + $3Z; + palog(T;) + ¢s1(& = 1) + dpsl (€ = 2), (3.35)

for those missing X; based on the observations that are case and non-cases and with observed value
of X.

For (IIT), we use the following logistic model for the missing probability ¥3; = P(&; = 0|V;):
logit(wm (V“ 93)) = 930 + 931AZ + 932Zi. (336)

We have ¥3; = 0.3 with 03 = (—0.5,—0.6,0.2) in (3.36) and therefore, mg = 0.3. To estimate
conditional expectations, we use linear models E{X;|V;} = ¢19 + d114; + ¢12Z; + (blglog(ﬁ-) and
E{X;TX;|V;} = oo + o1 4i + ¢p22Z; + ¢a3log(T;) for those with missing X;.

Similarly, we consider my = 0.6 and p = 0.5,0.8,0.9 for each scenario. For (I), we have m; =0
by ¢1; = 0 and mg = 0.65 by choosing (02) = (—1.5,0.6,0.6,0.8,2.5) in (3.31). Similar to (3.32)
and (3.33), conditional expectations for those missing X; can be estimated by E{X;|V;, € # 1} and

E{XiTXi|Vi, € # 1}. For (II), we have about m; = 0.45 for the cases and my = 0.60 for the non-
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cases by choosing § = (—0.5,0.3,0.3,0.4, —0.5,1.0) in (3.34). Conditional expectations E{X;|V;, €},
E{XiTXi|Vi,€i} can be estimated by (3.35). For (III), ¥3; = 0.6 can be obtained by choosing
(03) = (—0.1,0.5,0.6) in (3.36). Similarly, E{X;|V;} and E{X;” X;|Vi} can be estimated by using
linear models with predictors 4;, Z; and log(Ti).

We denote the full estimators as Full when all the values of phase-two covariate X are fully
observed, inverse probability weighted estimators as IPW obtained by the estimating procedure
in chapter 2.1.2, and complete-case estimators as CC where subjects having missing covariate X
are removed. The result of simulations for the proposed AIPW estimators for v and 7(t), where
t € [0, 3], are summarized by the bias (Bias), the empirical standard error (SSE), the average of the
estimated standard error (ESE), the empirical coverage probability (CP) of 95% confidence interval
and the relative efficiency (REE), which is defined by SSE of the Full estimator divided by SSE of
ATPW estimator. We take sample size n = 600, 700,900 and consider the total missing probability
as mo = 0.3 and 0.6 by choosing different average missing probabilities (m1,mso) for cases and
non-cases. We denote a classical case cohort design as I, a generalized case cohort design as II
and a simple random sampling design as III. Each entry of the tables is estimated based on 1000
simulations runs.

Table 5 to ?? consider each sampling scenario with the average of total missing probability
mg = 0.3 and the correlation coefficient p = 0.5, 0.8, 0.9. Table 5 summarizes the Bias, SSE,
ESE, CP and REE for the AIPW estimator of . Table 5 shows the AIPW estimator for v with
correlation coefficients p = 0.5,0.8,0.9 performs well under three scenarios I, IT and III. The biases
are small for each sample size. The empirical standard errors decrease as the sample size increases
and the averages of the estimated standard errors are very close to the empirical standard errors. The
coverage probabilities are close to the 95% norminal level. The relative efficiency of AIPW estimator
compared to the Full estimator tends to increase as the sample size increases. This tendency is more
obvious in scenario I and II than III. The efficiency of the AIPW estimator is very close to 1,
meaning that it can be comparable to that of the Full estimator. This is because the information on

other fully observable covariates of individuals can be used in the analysis of the AIPW estimating
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equation, even though the individuals have missing covariates.

Table 6 compares the Bias, SSE, ESE, CP for the AIPW estimator to those for Full, IPW and
CC estimators of . We use Full estimator as a gold standard. The biases of AIPW, IPW estimators
are very small as if all the covariates of X are fully observed. The complete case (CC) estimator
has much larger biases than the AIPW and IPW estimators have. However, the CC estimator has
smaller biases in sampling scenario III because missingness of phase-two covariate X; does not de-
pend on outcome variable €; and phase-two covariate X; is a simple random sample from phase-one
covariates. The ESE for each estimator agrees to the SSE for the corresponding estimator, having
a tendency to decrease as the sample size increases. The empirical coverage probability of each

estimator is close to 95% nominal.

The similar results have been shown for each sampling scenario with the average of total missing
probability my = 0.6 and the correlation coefficient p = 0.5, 0.8, 0.9, summarized in table 7 to 77.
Table 7 shows that the Bias, SSE, ESE, CP and REE for the AIPW estimator of v. The AIPW
estimator for =y is unbiased under scenario I, IT and III with my = 0.6. At each scenario, as the sample
size increases, then the SSE decreases. The ESE are getting closer to the SSE. This phenomenon
is clear when the sample size increases. The coverage probabilities are close to 95% nominal level,
changing between 0.94 and 0.98. When the correlation is higher between auxiliary covariate and
phase-two covariate, the REE tends to be closer to 1. Table 8 compares the Bias, SSE, ESE, CP for
the ATPW estimator to those for Full, IPW, and CC estimators of 7y. The biases of AIPW estimator
are as small as the biases of Full estimator are. The IPW and CC estimators have larger biases
than ATPW estimator has. The SSE of the AIPW estimator is smaller than the SSE of the IPW
estimator. The SSE of the IPW estimator is smaller than the SSE of the CC estimator. As the
sample size increase, the ESE of each estimator is closer to the SSE of the estimator. The empirical
coverage probability of each estimator is close to 95 % nominal.

Let ATPW-50, ATPW-80 and ATPW-90 estimators be the AIPW estimators corresponding the

correlation coefficients p = 0.5, 0.8, 0.9, respectively. Figure 15 though Figure 17 compares the Full,
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IPW, CC estimators with p = 0.5, AIPW-50, ATPW-80 and AIPW-90 estimators for the cumulative
coefficient 7, (¢) and the baseline cumulative coefficient 79(t). We take n = 600 with average of total
missing probability mo = 0.3 and with 80% censoring for each scenario. The same setting with
mgo = 0.6 are plotted in Figure 18 though Figure 20.

Figure 15 compares those estimators under the classical case cohort design with the average
missing probability m; = 0 for cases and mo = 0.3 for non-cases. Figure 1 (a) and (b) plot the
biases of each of estimators for 71 (t) and ng(t) for ¢ € [0, 3], respectively. Figure 1 (c) and (d) plot the
empirical standard errors and (e) and (f) plot the average of the estimated standard errors of each
of estimators for 71 (¢) and ng(t), respectively. Figure 1 (g) and (h) plot the coverage probabilities
of the those estimators.

The biases of AIPW-50, AIPW-80 and AIPW-90 estimators are very small comparable to the
bias of Full estimator. The bias of the IPW estimator is relatively small, but slightly larger than
the ATIPW estimators. The complete case (CC) estimator for both 7, (¢) and 79 (¢) have much larger
biases than the AIPW and IPW estimators have. The averages of estimated standard errors for n (¢)
and 7o(t) have good agreements to the empirical standard errors for those estimators by observing
plots in figure 1 (c),(e) and (d), (f), respectively. The SSE of the AIPW-50 estimator is slightly
smaller than the SSE of the IPW estimator when the correlation between the auxiliary variable
A and the phase-two covariate X is low with p = 0.5. However, the empirical standard errors of
the ATPW-80 and ATPW-90 estimators are much smaller than that of the IPW estimator. This is
because the auxiliary variable A carries more information on the phase-two covariate X with the
correlation coefficients p = 0.8 and 0.9. This phenomenon is more obvious where sampling design IT
and III. The coverage probabilities for the ATPW-50, ATPW-80 and AIPW-90 estimators are close
to 95% nominal shown in Figure 1 (g) and (h).

The performances of those estimators under the sampling designs II and IIT in Figures 16 and
17. Those can be interpreted in a similar way to the sampling design I. However, in design III,
17 (a) and (b) show that all estimators have very small biases. There is no difference between the

performances of the IPW and CC estimators. Similarly, Figure 18 and 20 plot those estimators with
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mg = 0.6. The behaviors of those estimators are very similar to or even much noticeable than those
with mg = 0.3. Therefore, those can be interpreted in the similar way. By comparing figure 15 to 18
and figure 16 to 19, as the total missing probability increases, the performance of the complete case
(CC) gets worse under the phase two sampling designs I and II. The bias of the CC estimator with
mg = 0.6 is much larger than that with my = 0.3. The SSE of the CC estimator with mg = 0.6 is
much larger than those with my = 0.3. The performances of the AIPW estimators are robust even
with larger total missing probability mo = 0.6 under all sampling designs. Figure 20 shows that SSE
of the IPW estimator is even larger than that of the CC estimator. When the sampling design III
does not depend on outcome variables €;, the IPW estimator is not that useful. Even under design
11, the AIPW estimators perform well by improving efficiency. The higher correlation is between

the auxiliary values A and the missing values X, the better efficiency is gained.
3.4  Application

The RV144 vaccine efficacy trial randomized 16,394 HIV negative volunteers to the vaccine (n =
8198) and placebo (n = 8196) groups (ref.Liqi). We apply the proposed estimating procedures for
ATPW method to the vaccine group, which included 5035 men and 3163 women. Subjects enrolled
in the RV144 trial were vaccinated at weeks 0,4,12 and 24. 43 of 8198 vaccine recipients acquired
the primary endpoint of HIV infection after the Week 26 biomarker sampling time point through to
the end of follow-up at 42 months (ref.The New England Jounal of Medicine). Vaccine recipients
were distributed in the Low, Medium, and High baseline behavioral risk scores, defined as in (?)
with 3863 Low, 2370 Medium, and 1965 High.

Three HIV gp 120 sequences were included in the vaccine construct; 92TH023 in the ALVAC
canarypox vector prime component; and A244 and MN in the AIDSVAX protein boost component.
The 92THO023 and A244 are subtype E HIVs whereas MN is subtype B. However, the analysis
focuses on the 92TH023 and A244 insert sequences. This is because the subtype E vaccine-insert
sequences are genetically much closer to the infecting (and regional circulating) sequences than MN|,
meaning that the subtype E HIVs are more likely to stimulate protective immune responses. The

observed failure time 7} is the time to HIV infection diagnosis, which is minimum of failure time or
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right-censoring time.

Because vaccine recipients with higher levels of antibodies binding to the V1V2 portion of the HIV
envelope protein had a significantly lower rate of HIV infection ((?), (?), (7)), the V1V2 sub-region
of gp120 may have been involved in the partial vaccine efficacy administered by the vaccine regimen.
The region contains epitopes recognized by antibodies induced by the vaccine. Therefore, we study
the genetic distance of an infecting HIV V1V2 sequence to the corresponding V1V2 sequence in the
vaccine construct (using a multiple sequence alignment), which is called as marks.

For the analysis, two marks V are considered, based on the 92TH023 and A244 vaccine construct
sequences. The way of measuring in the genetic distances is described in ?. The distance V were
re-scaled to take values between 0 and 1. We denote these two genetic distance marks 92TH023V1V2
and A244V1V2 as Vy; and Vs, respectively, for a subject i. We use each mark to form two causes
of failure by considering each of V;; and V5; one at a time. Let M; be the median of the observed
mark Vi3; and Ms be the median of the observed mark V5; for each subject i.

The cause of failure €1; for the mark Vi, is generated by using the median mark M; of Vi;. We
define €1; = 1 for uncensored subjects 7 if the mark V7, is less than Mj; otherwise €1; = 2. Similarly,
the cause of failure ey; for the mark V5; is generated by using the median mark My of V5;. We define
€9; = 1 for uncensored subjects i if the mark V5; is less than Ms; otherwise eo; = 2. If subjects are
censored, then €;; = 0 for j =1, 2.

The V1V2 seqeunce of the infecting HIVs has been investigated in ?. They analysis IgG and
IgG3 biomarkers as correlates of 92TH023V1V2 and A244V1V2 mark-specific HIV infection for the
stratified mark-specific proportional hazards model under two-phase sampling.

Following ?, we study IgG and IgG3 biomarkers as correlates of 92TH023V1V2 and A244V1V2
mark-specific HIV infection for the cumulative incidence model based on competing risks data. We
use AIPW method to analysis these subjects under two-phase sampling. In particular, paired to
the 92TH023V1V2 mark variable, we study the two biomarkers Week 26 IgG and IgG3 binding
antibodies to 92TH023V1V2, namely IgG-92TH023V1V2 and IgG3-92TH023V1V2; and, paired to

the A244V1V2 mark variable, we study Week 26 IgG and IgG3 binding antibodies to A244V1V2,
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namely IgG-A244V1V2 and IgG3-A244V1V2. Therefore, we have four different immune responses
1gG-92TH023V1V2, 1gG3-92TH023V1V2, IgG-A244V1V2 and 1gG3-A244V1V2 for the analysis.

The immune response biomarkers were measured for 34 of 43 HIV infected vaccine recipients with
HIV V1V2 sequence data and 212 of 8155 uninfected vaccine recipients at the Week 26 visit post
entry. These observed biomarkers were each standardized to have mean 0 and variance 1 for the
analysis.

Let R; be the immune responses Ri1,, Ri2,, Ra1,, and Ras,, respectively, for each analysis. Let 6,
be infection status, whose value is 1 if a subject is infected HIV; and 0 if a subject is right censored
over a follow-up period of 42 months. Let €1; = k be the causes of failure for immune responses Ri1,
and Ryg,, respectively, for k = 1,2. Let e5; = k be the causes of failure for immune responses Ra;,
and Ras,, respectively, for k = 1,2. Let By; and Bay; be the dummy variables for baseline behavioral
risk score groups B; (High=1, Low=2, Medium=3), where By; = 1 if a subject is in the low risk
score group; 0 otherwise, By; = 1 if a subject is in the medium risk score group; 0 otherwise and
Bjy; = By; = 0 if a subject is in the high risk group. The immune responses R; can be missing for
both case and non-case subjects, and hence are phase two covariates. The baseline behavioral risk
scores B; are measure for all subjects, and hence are phase one covariates.

We consider the following semiparametric additive model for the cumulative incidence function

by using identity link function for h(z) = x:
Fi(t; X, Z;) = no(t) + n(t)Ri + v2Buit + 3 Bait (3.37)

Let ¥; = P(& = 1|V;,0;) be the selection probability with & be the indicator of the immune
response data, whose values are ; = 1 if each of four immune response R; is measured at each
analysis; otherwise & = 0. To predict the probability of observing the immune response R;, we use
a logistic regression model with

The estimated selection probabilities J; is estimated by 6 = (—3.6235,4.9526) with standard errors

(0.06959, 0.38127) in the model (3.38). The weights are given by 1(6;) = & /J;.
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To implement the AIPW method, we use the following linear models:

E{R;|V;,6;} = c10 + s11B1i + s12B2; + <13 IOg(Ti) + 61405 + G150; * IOg(Ti),

E{R?Q\Vm 0i} = G20 + S21B1i + S22 B2; + So3 log(fi) + $240; + So50; * log(f}-). (3.39)

We analysis the semiparametric additive model (2.30) with four different settings: (S1). The
model (3.37) is analyzed with the immune response R; = Ry, for €1;=1. The estimated the first mo-
ment E{R;|V;, d;} and the second moment E{R;82 [Vi, d;} can be estimated by ¢; = (0.2538, —0.2678, 0.0118, —0.0963, -
and ¢ = (—0.5754,1.3439, —0.2953, 0.8834,

1.1671, —0.7601) in linear models (3.39). This gives ATPW estimates of By;, Ba; as ¥ = (—0.00156, —0.00157)
with standard error of (0.000895,0.000978) , yielding p-value=(0.081469,0.107513) for testing v =

0; Similarly, the model (3.37) is analyzed with the immune response R, = Rj;, for €; = 2.

This gives AIPW estimates of Bi;, Ba; as 4 = (—0.0005566, —0.0001040) with standard error of
(0.0004189,0.0006799) , yielding p-value=(0.18394,0.87838) for testing v = 0;

(S2). The model (3.37) is analyzed with immune response R; = Rjo, for €1;,. The estimated the
first moment E{R;|V;, d;} and the second moment E{R§2|Vi, J; } are estimated by ¢ = (0.3166, —0.3996, —0.1080, —0.
and ¢ = (0.5267,0.6413,0.1473,
0.1257,0.3857, —0.5138) in (3.39). This gives the ATPW estimates of By;, Ba; ¥ = (—0.001488, —0.001582)
with standard error of (0.000886,0.000982) , yielding p-value=(0.093214,0.107275) for testing v = 0;
Similarly, the model (3.37) is analyzed with immune response R; = R1s, for €1, = 2. This gives the
ATPW estimates of By;, Ba; ¥ = (—0.000581, —0.000116) with standard error of (0.000411,0.000676)

, yielding p-value=(0.15749, 0.86411) for testing v = 0;

(S3). The model (3.37) with immune response R; = Ra;, is analyzed for e3; = 1. The conditional
expectations are obtained by ¢; = (0.2110, —0.2858, —0.0593, —0.0290, —0.2944, —0.0026) and & =
(—0.4441,1.1693, —0.2345,0.7951,1.2254, —0.5539) in model (3.39). Our method gives the AIPW
estimates of By;, Bs; as 4 = (—0.000835,—0.000808) with standard error of (0.000570,0.000626) ,
yielding p-value=(0.14261,0.19699) for testing v = 0; Similarly, the model (3.37) with immune re-

sponse R; = Ry, is analyzed for ez; = 1. Our method gives the AIPW estimates of Bg;, B3; as 4 =
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(—0.00124, —0.000809) with standard error of (0.000722,0.000822) , yielding p-value=(0.08619, 0.32526)
for testing v = 0;

(S4). The model (3.37) with immune response R; = Ra, is analyzed for cases ez; = 1. The
conditional expectations are obtained by ¢ = (0.3217,—0.4299, —0.1495, —0.0622, —0.2350, 0.0670)
and ¢, = (0.3486,0.5998, —0.0997, 0.3130,

0.9022, —0.6895) in model (3.39). This setting gives AIPW estimates of By;, Ba; as 5 = (—0.000864, —0.000852)
with standard error of (0.000577,0.000651) , yielding p-value=(0.13433,0.19080) for testing v = 0;
Similarly, the model (3.37) with immune response R; = Rgq, is analyzed for cause ez; = 1. This

setting gives AIPW estimates of Bi;, Bo; as 4 = (—0.0012116, —0.0008022) with standard error of
(0.000713,0.000825) , yielding p-value=(0.089439,0.330911) for testing v = 0.

Figure 21 to 24 compares AIPW estimates of baseline cumulative coefficients 7o(¢) and cumulative
coefficients 7, (¢) with 95% pointwise confidence intervals for the four different immune responses of
R; for €;; = 1 and €;; = 2, respectively, j = 1,2.

The analysis with Ry;, and Rjs, for €;; = 1 have larger AIPW estimates of baseline cumulative
coefficients 79 (¢) than the analysis with Ryq, and Ry, for €1; = 2. The analysis with Ra1, and Rao,
for e3; = 1 has smaller ATPW estimates of baseline cumulative coefficients 79(¢) than the analysis
with Ra1, and Rag, for ey, = 2.

For the ATPW estimates of cumulative coefficients 7 (), while the effects of immune responses
Ri2,(IgG3-92TH023V1V2) are close to zero over study time with €;; = 1, j = 1,2, the immune re-
sponses Ri1,(IgG-92TH023V1V2), Ray, (IgG-A244V1V2) and Rao, (IgG3-A244V1V2) have negative
effects on the cumulative incidence function with €;; =1, j = 1,2. However, the negative effects of
R11,(IgG-92TH023V1V2) on cumulative incidence function is less obvious than those negative effects
of Ro1,(IgG-A244V1V2) and Rao, (IgG3-A244V1V2) on cumulative incidence function. On the other
hands, none of four immune responses R; has significant negative effects on cumulative incidence
function with €;; = 2, j = 1,2 over study time. By comparing figure 21 to 23 and comparing figure
22 to 24, IgG and IgG3 binding antibodies responding to A244V1V2 than to 92TH023V1V2 have

significantly negative effects on the cumulative incidence function, i.e A244 would be more relevant
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for protection.

Figure 25 to figure 28 show that the cumulative incidence function has been evaluated for €;; =1
and €j; = 2, j = 1,2, respectively, depending on the behavioral risks scores at the first, second and
third quartiles @1, @2 and @3 of the observed the immune responses R;. We expected to have larger
probability of getting infected by HIVs V1V2 sequences if one has a higher behavioral risk score.
We also expected to have lower probability of getting infected by HIVs with V1V2 sequences closer
to 92THO023 or A244 (¢j; = 1, j = 1,2) and have higher probability of getting infected by HIVs with
V1V2 sequences far away from 92THO023 or A244 (¢j; =2, j = 1,2).

However, figure 25 and 26 did not show the desirable results we have expected since the numbers
of behavioral risks scores for €;; = 1 and €y; = 2 are uneven. For example, for mark 92TH023V1V2
with €;; = 1, the number of behavioral risks scores are 11, 6, and 4 for high, row and medium,
respectively. However, for mark 92TH023V1V2 with €;; = 2, the number of observed behavioral
risks scores are 6, 8, and 8 for high, row and medium, respectively. Therefore, two figures can not
be comparable.

However, for the mark A244V1V2 with €1; = 1, the number of behavioral risks scores are 8, 8,
and 5 for high, row and medium, respectively and for the mark A244V1V2 with €;; = 2, the number
of behavioral risks scores are 9, 6, and 7 for high, row and medium, respectively, which are relatively
comparable. Therefore it is reasonable to look at the results on Figure 27 and 28. Figure 27 and 28
shows that the subjects with higher behavioral risk scores have higher probability of getting infected
by HIVs with V1V2 sequences than the subjects with lower behavioral risks scores. For the low risk
group, predicted probability of infection by HIVs with V1V2 sequence with e3; = 2 is higher than
predicted probability of infection by HIVs with V1V2 sequence with e5; = 1 by the time 1.8. After
that, two predicted probability of infection are similar. For the medium risk and high risks graphs,
predicted probability of infection by HIVs with V1V2 sequence with €3; = 1 tends to have lower
probability of infection by HIVs with V1V2 sequences with ey; = 2.

These results imply that since IgG3 antibodies to 92TH023V1V2 does not have effect on cumula-

tive incidence function on figure 22, other IgG subclasses besides type3 induced by 92TH023 would
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have negative effects on the cumulative incidence function, then would be relevant for protection.
This seems that A244 was more important than 92TH023 for induction of protective IgG3 anti-
bodies. These results also imply that mark distances smaller than the median of observed marks
has more protection against the HIV infection than mark distances larger than the median marker.
Therefore, it supports the hypothesis that vaccine recipients exposed to HIVs with V1V2 sequences
close to A244 (smaller markers than the median marker) may be more likely to be protected by
antibodies than vaccine recipients exposed to HIVs with V1V2 sequences with larger markers than

the median marker.
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Table 5: Bias, empirical standard error(SSE), average of the estimated standard error(ESE), em-
pirical coverage probability(CP) of 95% confidence intervals, and relative efficiencies(REE) for the
ATPW estimator of v under model (3.30) with p = 0.5, 0.8, 0.9 and with average of total missing
probability mg = 0.3 and about 50% censoring based on 1000 simulations for each sampling scenario,
I, IT or III, where m; and my are the average missing probabilities for the cases and the non-cases,
respectively.

~
Sampling p mgy  (mi1,me) n Bias SSE ESE CP

I 0.5 03 (0,0.36) 500 0.0022 0.0216 0.0220 0.952
700 0.0025 0.0186 0.0186 0.953
900 0.0018 0.0159 0.0163 0.956

II (0.20, 0.30) 500 0.0019 0.0217 0.0221 0.953
700 0.0024 0.0190 0.0187 0.953
900 0.0018 0.0160 0.0164 0.955

IT1 500 0.0019 0.0220 0.0224 0.954
700 0.0024 0.0192 0.0189 0.943
900 0.0019 0.0163 0.0166 0.956

I 0.8 03 (0,0.36) 500 0.0021 0.0215 0.0220 0.955
700 0.0024 0.0187 0.0186 0.952
900 0.0018 0.0159 0.0163 0.955

II (0.20, 0.30) 500 0.0019 0.0216 0.0220 0.954
700 0.0024 0.0187 0.0186 0.952
900 0.0018 0.0160 0.0164 0.958

111 500 0.0019 0.0219 0.0222 0.952
700 0.0024 0.0188 0.0187 0.945
900 0.0018 0.0162 0.0165 0.958

I 09 03 (0,0.30) 500 0.0021 0.0214 0.0220 0.958
700 0.0024 0.0986 0.0186 0.953
900 0.0018 0.0159 0.0163 0.952

1II (0.20, 0.30) 500 0.0020 0.0215 0.0220 0.959
700 0.0024 0.0187 0.0186 0.954
900 0.0018 0.0159 0.0163 0.953

I11 500 0.0020 0.0216 0.0220 0.961
700 0.0024 0.0187 0.0186 0.950
900 0.0019 0.0161 0.0163 0.951
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Table 7: Bias, empirical standard error(SSE), average of the estimated standard error(ESE), em-
pirical coverage probability(CP) of 95% confidence intervals, and relative efficiencies(REE) for the
ATPW estimator of v under model (3.30) with p = 0.5, 0.8, 0.9 and with average of total missing
probability mg = 0.6 and about 50% censoring based on 1000 simulations for each sampling scenario,
I, IT or III, where m; and my are the average missing probabilities for the cases and the non-cases,
respectively.

Sampling p mgy  (mi1,me) n Bias SSE ESE CP

I 0.5 0.6 (0,065 500 0.0030 0.0226 0.0262 0.978
700 0.0029 0.0193 0.0218 0.968
900 0.0022 0.0167 0.0189 0.972

II (0.45, 0.60) 500 0.0019 0.0228 0.0237 0.967
700 0.0018 0.0195 0.0199 0.954
900 0.0019 0.0166 0.0175 0.967

IT1 500 0.0023 0.0242 0.0242 0.957
700 0.0030 0.0196 0.0204 0.960
900 0.0017 0.0179 0.0180 0.948

I 0.8 0.6 (0,065 500 0.0025 0.0219 0.0264 0.980
700 0.0026 0.0191 0.0219 0.969
900 0.0020 0.0163 0.0190 0.979

II (0.45, 0.60) 500 0.0021 0.0225 0.0232 0.959
700 0.0026 0.0187 0.0197 0.961
900 0.0017 0.0166 0.0173 0.949

111 500 0.0026 0.0231 0.0236 0.953
700 0.0027 0.0188 0.0199 0.958
900 0.0017 0.0172 0.0175 0.950

I 09 06 (0,0.65) 500 0.0022 0.0216 0.0264 0.977
700 0.0025 0.0187 0.0219 0.972
900 0.0019 0.0161 0.0190 0.984

1II (0.45, 0.60) 500 0.0023 0.0222 0.0231 0.963
700 0.0026 0.0184 0.0195 0.963
900 0.0019 0.0164 0.0171 0.952

I11 500 0.0026 0.0226 0.0232 0.952
700 0.0027 0.0184 0.0196 0.962
900 0.0018 0.0167 0.0172 0.947
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Figure 15: Comparison of Full, IPW, CC, ATPW-50, ATPW-80, ATPW-90 estimators for the base-
line cumulative coefficient 7o(t) for average of total missing probability my = 0.3 and mg = 0.6,
respectively, under (3.30) with sampling scenario I. For my = 0.3, m; = 0 and my = 0.36. For
mo = 0.6, m; = 0 and mo = 0.65. These results are based on 1000 simulations with n = 700
and 50% censoring. (a) (b): The plots of the biases of the estimates of 7y(t) for mg = 0.3 and
mo = 0.6.(c)(d):The plots of the empirical standard errors of the estimates of 7o(¢) for mo = 0.3
and mg = 0.6. (e)(f): The plots of the average of the estimated standard errors of the estimates of
no(t) for mo = 0.3 and mo = 0.6. (g)(h): The plots of the coverage probabilities of the estimators
of ng(t) for my = 0.3 and mgy = 0.6.
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Figure 16: Comparison of Full, IPW, CC, AIPW-50, ATPW-80, AIPW-90 estimators for the cumu-
lative coefficient 7, (t) for average of total missing probability my = 0.3 and mg = 0.6, respectively,
under (3.30) with sampling scenario I. For mq = 0.3, m; = 0 and my = 0.36. For mg = 0.6, m; =0
and mg = 0.65. These results are based on 1000 simulations with n = 700 and 50% censoring. (a),
(b): The plots of the biases of the estimates of 1, (¢) for mg = 0.3 and mg = 0.6.(c), (d):The plots
of the empirical standard errors of the estimates of 7 (¢) for mg = 0.3 and mg = 0.6. (e), (f): The
plots of the average of the estimated standard errors of the estimates of n;(t) for mg = 0.3 and
mo = 0.6. (g), (h): The plots of the coverage probabilities of the estimators of n;(¢) for mg = 0.3

and mg = 0.6.
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Figure 17: Comparison of Full, IPW, CC, ATPW-50, ATPW-80, ATPW-90 estimators for the base-
line cumulative coefficient 7o(t) for average of total missing probability my = 0.3 and mg = 0.6,
respectively, under (3.30) with sampling scenario II. For mg = 0.3, m; = 0.2 and ms = 0.3. For
mo = 0.6, m; = 0.45 and mo = 0.65. These results are based on 1000 simulations with n = 700
and 50% censoring. For mg = 0.3, my = 0.2 and ms = 0.3. (a), (b): The plots of the biases of the
estimates of 7y(t) for mg = 0.3 and mgo = 0.6.(c), (d):The plots of the empirical standard errors of
the estimates of 1 () for mg = 0.3 and mo = 0.6. (e), (f): The plots of the average of the estimated
standard errors of the estimates of ng(t) for my = 0.3 and mg = 0.6. (g)(h): The plots of the
coverage probabilities of the estimators of ny(t) for mg = 0.3 and my = 0.6.
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Figure 18: Comparison of Full, IPW, CC, AIPW-50, ATPW-80, AIPW-90 estimators for the cumu-
lative coefficient 7, (t) for average of total missing probability my = 0.3 and mg = 0.6, respectively,
under (3.30) with sampling scenario II. For my = 0.3, m; = 0.2 and my = 0.3. For my = 0.6,
my = 0.45 and mo = 0.65. These results are based on 1000 simulations with n = 700 and 50%
censoring. For mg = 0.3, m; = 0.2 and ma = 0.3. (a),(b): The plots of the biases of the estimates of
M (t) for mg = 0.3 and mg = 0.6.(c),(d):The plots of the empirical standard errors of the estimates of
M1 (t) for mg = 0.3 and mgy = 0.6. (e),(f): The plots of the average of the estimated standard errors
of the estimates of 11 (¢) for mg = 0.3 and mg = 0.6. (g),(h): The plots of the coverage probabilities
of the estimators of 1, (¢) for mg = 0.3 and mgy = 0.6.
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Figure 19: Comparison of Full, IPW, CC, ATPW-50, ATPW-80, ATPW-90 estimators for the base-
line cumulative coefficient 7o(t) for average of total missing probability my = 0.3 and mg = 0.6,
respectively, under (3.30) with sampling scenario ITI. These results are based on 1000 simulations
with n = 700 and 50% censoring. (a), (b): The plots of the biases of the estimates of ng(t) for
mo = 0.3 and mo = 0.6.(c), (d):The plots of the empirical standard errors of the estimates of 7y (t)
for mo = 0.3 and my = 0.6. (e), (f): The plots of the average of the estimated standard errors of
the estimates of ng(t) for my = 0.3 and my = 0.6. (g), (h): The plots of the coverage probabilities
of the estimators of ng(t) for mg = 0.3 and mgy = 0.6.
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Figure 20: Comparison of Full, IPW, CC, AIPW-50, ATPW-80, AIPW-90 estimators for the cumu-
lative coefficient 7, (t) for average of total missing probability mg = 0.3 and mq = 0.6, respectively,
under (3.30) with sampling scenario III. These results are based on 1000 simulations with n = 700
and 50% censoring. (a), (b): The plots of the biases of the estimates of 7;(t) for my = 0.3 and
mo = 0.6.(c), (d):The plots of the empirical standard errors of the estimates of 7 (t) for mg = 0.3
and mo = 0.6. (e), (f): The plots of the average of the estimated standard errors of the estimates of
M1 (t) for mg = 0.3 and mo = 0.6. (g), (h): The plots of the coverage probabilities of the estimators
of n1(t) for my = 0.3 and mgy = 0.6.
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Figure 21: (a) and (b) show the comparison of the ATPW estimates of baseline cumulative coefficients
1o(t) and the cumulative coefficients 7 (¢) with 95% pointwise confidence intervals for the immune
response R; (IgG-92TH023V1V2) in model (3.37) for €1, = 1 and €;; = 2, respectively.
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Figure 22: (a) and (b) show the comparison of the ATPW estimates of baseline cumulative coefficients
1o(t) and the cumulative coefficients 7 (¢) with 95% pointwise confidence intervals for the immune
response R; (IgG3-92TH023V1V2) in model (3.37) for €;; = 1 and €;; = 2, respectively.
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Figure 23: (a) and (b) show the comparison of the ATPW estimates of baseline cumulative coefficients
1o(t) and the cumulative coefficients 7 (¢) with 95% pointwise confidence intervals for the immune
response R; (IgG-A244V1V2) in model (3.37) for e2; = 1 and ey; = 2, respectively.
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Figure 24: (a) and (b) show the comparison of the ATPW estimates of baseline cumulative coefficients
1o(t) and the cumulative coefficients 7 (¢) with 95% pointwise confidence intervals for the immune
response R; (IgG3-A244V1V2) in model (3.37) for e2; = 1 and ey; = 2, respectively.
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Figure 25: @1 = 0.09027, Q> = 0.31310 and Q3 = 0.39230 are quartiles of the predicted immune
response R; (IgG-92TH023V1V2) using ATPW method. (a), (b) and (c) shows that the predicted
cumulative incidence function F' for e;; = 1 (red) and e1; = 2 (grey), respectively, at each level of
behavioral risk score groups (low, medium and high) based on the model (3.37).
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Figure 26: Q1 = —0.4677,Q2 = 0.1196 and Q3 = 0.6484 are quartiles of the predicted immune
response R; (IgG3-92TH023V1V2) using ATPW method. At three quartiles of immune responses,
the graphs show the predicted cumulative incidence function Fy; with each level of behavioral risk
score groups (low, medium and high) based on the model (3.37) .
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Figure 27: @1 = —0.1530,Q2 = 0.3321 and Q3 = 0.5514 are quartiles of the predicted immune
response R; (IgG-A244V1V2) using ATPW method. At three quartiles of immune responses, the
graphs show the predicted cumulative incidence function Fy; with each level of behavioral risk score
groups (low, medium and high) based on the model (3.37) .
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Figure 28: Q1 = —0.38510, Q> = 0.08807 and @3 = 0.56800 are quartiles of the predicted immune
response R; (IgG3-A244V1V2) using AIPW method. At three quartiles of immune responses, the
graphs show the predicted cumulative incidence function Fy; with each level of behavioral risk score
groups (low, medium and high) based on the model (3.37).



90

' =15 103 (Lg°¢) PPow Ut (ZATAELTOHLE6-D3I) *y osuodsox
QUNIWI 979 I0] S[RAIOIUT 9oUSPYU0D ostmautod 9466 YIm (2) T STUSIDIPO0D SATJR[NUIND o) Pue (7)0U SJUSIDIO0D SATJR[NIUND SUI[OSR( JO S91et1Ise M JIV

pue M JT 93 oY) moys (p) pue (9) "1 = 12 107 (Lg'¢) opow Ul (GATAETOHILE6-DS) y osuodsal sunuImil o1} I0J STRAISIUT 20UapYu0d asimjutod 9466
UM (7) T $HURIOYJO0D DATYRINTUND oY) pue (7)0l SHUSIOIJO0D SATJRINUIND dUIPSR( JO sojemipse M ATV Pue M JI 942 1B} moys (q) pue (®) :6g oInSrq

() ()
} }

ge 9 8’1 3 2o ge 9C 8l 3 2o

1
¥00°0—
1
¥00°0—

(Ok7
(Ok7

I
2000
I
2000

g€ 9¢ 8l 3 [ g€ 9¢ 8l L [

1
100°0—
1
100°0—

\
T
§00°0
T
§00°0

®°%
®°%

T
00
\
T
00

MV — MV —
Mdi Mdl

§1L0°0
§10°0

2="3 10} SJUSIOIB0D BAIIRINWIND PATRWISS | =13 10} S]UBIO}B0D SAIIBINWND PBJBWIISS



91

g = "1 10§ (Lg°€) PO I (ZATAEGOHLE6-6D5T) ‘Y osuodsor
QUNWITT 91} I0J S[RAIOIUT 90UPYUO0D dastmjutod 9,66 I (7) Wi SHUSIOFO0D SATYRTNTIND BT[) PUR (7)0U SJUSIDYO0D SATJRTNUIND SUTI[ISR( JO S99RTUNSD M JTV
pue M JT oY} o3 moys (p) pue (9) T = 12 107 (L€°¢) [Ppow Ul (GATAECOHILE6-CDST) “Y osuodsor sunuItl o1} I0J S[RAII)UT 90UPYU0d astmyutod 9466
UM (7) T $HURIOYJO0D DATYRINTUND ST} pue (7)0l SHUSIONJOO0D SATJRINUIND dUIPSR( JO sojemipse M ATV Pue M JI 942 1B} moys (q) pue (®) :0g oInSrq

() ()
} }

ge 9 8’1 3 2o ge 9C 8l 3 2o

1
¥00°0—
1
¥00°0—

(Ok7
(Ok7

I
2000
I
2000

g€ 9¢ 8l 3 [ g€ 9¢ 8l L [

1
100°0—
1
100°0—

v
T
§00°0
T
§00°0

®°%
®°%

T
00
v
\
T
00

MV — MV —
Mdi Mdl

§1L0°0
§10°0

2="3 10} SJUSIOIB0D BAIIRINWIND PATRWISS | =13 10} S]UBIO}B0D SAIIBINWND PBJBWIISS



N
[=p)

g = "6 10§ (Lg'€) PPOW W (GATAVPEV-DSI) 'Y dsuodsor
QUNWITT 91} I0J S[RAIOIUT 90UPYUO0D dastmjutod 9,66 I (7) Wi SHUSIOFO0D SATYRTNTIND BT[) PUR (7)0U SJUSIDYO0D SATJRTNUIND SUTI[ISR( JO S99RTUNSD M JTV
pue M JI 941 o) moys (p) pue (0) T = %@ 10] (L€°¢) [PpoW Ul (ZATAFFEV-DSI) y osuodsol sunurwl oY) I0J STRAISIUI 9oUSPYU0D astmiutod 94GE
UM (7) T $HULIOYJO0D DATYRINTUND oY) pue (7)0l SHUSIONJO0D SATJRINUIND dUIPSR(] JO sojemipse M ATV Pue M JI oY1 1B} moys (q) pue (®) :Tg oInSrq

() ()
) }
Ge 92 8L b 20 g€ 9¢ 8l 3 A
L | | | ] S L | | | ] S
r o r o
o o
= ~ =

0L
@'Y

I
2000
I
2000

g€ 9¢ 8l 3 [ g€ 9¢ 8l L [

1
100°0—
1
100°0—

T
§00°0
T
§00°0

®°%
®°%

T
00
T
00

MV — MV —
Mdi Mdl

§1L0°0
§10°0

2=23 10} SJUSIOIB0D SAIIRINWIND PATRWIISS | =23 JO} S]UBIOI}S0D SAIIBINWND PBJEWIISS



93

'z =% 10§ (Lg'g) PPOW Ul (ZATAVYEY-€DSI) 'y dsuodsor
QUNIWI 979 I0] S[RAIOIUT 9oUSPYU0D ostmautod 9,66 YIm (7) T STUSIDIFO0D dATJR[NUIND o) PUe (7)0U SJUSIDIIO0D SATJR[NIUND SUI[OSR( JO S91etIse M JIV
pue AT 9Y2 o3 moys (p) pue (9) T = % 10 (L€'¢) [Ppow Ul (ZATAFFEV-£DS]) "y osuodsel sunurwl o1} I0J S[RAIINUT 20ULPYU0d astmjurod 9466
UM (7) T $HURIOYJO0D DATYRINTUND oY) pue (7)0l SHUSIONJO0D SATJRINUIND dUIPSR( JO sojemipse M ATV Pue M JI 942 1By} moys (q) pue (®) :gg oInSrq

() ()
) }
Ge 92 8L b 20 g€ 9¢ 8l 3 A
L | | | ] S L | | | ] S
r o r o
o o
= =

0L
@'Y

I
2000
I
2000

1
100°0—
1
100°0—

T
§00°0
T
§00°0

®°%
®°%

T
00
T
00

MV — MV —
Mdi Mdl

§1L0°0
§10°0

2=23 10} SJUSIOIB0D SAIIRINWIND PATRWIISS | =23 JO} S]UBIOI}S0D SAIIBINWND PBJEWIISS



94

‘POl M ATV PUe MJT Sutsn £q (2¢'¢) [opow o) Uo paseq (ST pue wnIpaw ‘Mo]) sdnoil 91008 YSLI [RIOIABTD( JO
[9A9] oo Je g = 'T3 I0] *& UOIJoUNJ 9oUSPIOUl dAlpe[nuNd pajorpald o) moys (J) pue (p) ‘(q) oL 'poyewm MJIV Pue MJI Susn £q (Lg'¢) [opowt
oy uo poseq (ySIy pue wmipew ‘mof) sdnois oI008 YSL [RIOIARYS( JO [0A9] UorD j8 [ = ‘I3 10§ Ly UOHOUNJ 90USPIOUL SATJR[IWND Po3orpald oy} Moys
(®) pue () ‘(e) oL "(GATAECOHLE6-D3I) " 9suodsor ountuuil POAISSAO A1} Jo so[iprenb axe ¢z6¢ 0 = £0) Pue 1¢1¢°0 = ) ‘€060°0 = ') €€ omsLg

SISU UBIH (3) S YBIH (8)
1 1
S 92 8L 3 20 Se 92 8l 3 20
L L L L | L L L L |

T
€000
T
€000

03
0y

T
S00°0
T
$00°0

T

£00°0
T

2000

*Su wnipe (p) *su wnipsy ()
1 1
g€ 92 8t 1 20 g 92 8t ' 20
L 1 1 1 1 L 1 1 1 1

T
£00°0
T
€000

03
0y

T
$00°0
T
$00°0

T

£00°0
T

£00°0

s Mo () 51 o (e)
il 1
g€ 92 8t 1 20 g 92 8t ' 20
L 1 1 1 1 L 1 1 1 1

T
£00°0
T
€000

03
0y

T
$00°0
T
$00°0

T

£00°0
T

£00°0

2='3 UoIoUN SOUBPIOU BANEINWING P3JIIPAI 1 =13 UolloUN BoUBPIOU| SANEINWIND PaJOIPaId



95

‘PO M JTV PUe M JT Sutsn £q (2¢'¢) [opow o1} Uo paseq (YSIy pue wNIpaw ‘Mo]) sdnoId 21008 NSLI [RIOTARYD( JO [9AJ]
Yoo Je g = ‘T3 10] '] UOIJOUNJ 90ULPIOUT dATje[NWND Pa3otpald oy moys (J) pue (p) ‘(q) oy, ‘poyrewr MJIV Pue MJI Suisn £q (Lg'¢) [opour o)
uo peseq (YSIy pue wnipout ‘mof) sdnoisd 01008 YSU [RIOIARYO] JO [0A9] UoRD J8 | = 13 10§ “L7 UOIjOUN) 00USpIOUL oAljR[IWIND pajotpald oy moys (o)
pue (9) ‘(e) oy, (ZATALTOHLE6-DS) Y osuodsol ounurwil poAIdsqo oy} jo so[iprenb ore §879°0 = £ Pue 9611°0 = ) ‘LLIV'0— = ') ¢ omSig

SISU UBIH (3) S YBIH (8)
1 1
S 92 8L 3 20 Se 92 8l 3 20
L L L L | L L L L |

T
€000
T
€000

03
0y

T
S00°0
T
$00°0

T

£00°0
T

2000

*Su wnipe (p) *su wnipsy ()

g€ 92 8L 3 Y ge

T
£00°0
T
€000

03
0y

T
$00°0
T
$00°0

T

£00°0
T

£00°0

s Mo () 51 o (e)

g€ 92 8L 3 Y ge 92 8L 3 20

T
£00°0
T
€000

03
0y

T
$00°0
T
$00°0

T

£00°0
T

£00°0

2='3 UoIoUN SOUBPIOU BANEINWING P3JIIPAI 1 =13 UolloUN BoUBPIOU| SANEINWIND PaJOIPaId



96

‘POl M ATV PUe MJT Sutsn £q (2¢'¢) [opow o) Uo paseq (ST pue wnIpaw ‘Mo]) sdnoil 91008 YSLI [RIOIABTD( JO
[9A9] oo Je g = 'T3 I0] *&J UOIJoUNJ 9oUSPIOUl dAlpe[nuNd pajorpald o) moys (J) pue (p) ‘(q) oL 'poydw MJIV Pue MJI Susn £q (Lg'¢) [opowt
o1} U0 paseq (YSH] pue WNIPaUI ‘MO]) sdNOIS 91008 YSILI [RIOTARTA( JO [9AJ] [DBD Je T = I3 10J *I,7 UOI}OUN] 9OUSPIDUT SATYRININD Pajarpaid a1} moys
(0) pue (9) ‘(e) oUL “(CATAFFEY-DSI) %y osuodsor ounurur poaTasqo oY Jo sanrenb o8 166 ) = £¢) pue 1gee’0 = °0) ‘0£5T0— = 'O G¢ omSig

SISU UBIH (3) S YBIH (8)
1 1
S 92 8L 3 20 Se 92 8l 3 20
L L L L | L L L L |

T
2000
T
2000

03
0y

T
000
T
¥00°0

T

9000
T

9000

*Su wnipe (p) *su wnipsy ()
1 1
g€ 92 8t 1 20 g 92 8t ' 20
L 1 1 1 1 L 1 1 1 1

T
2000
T
2000

03
08!

T
¥00°0
T
¥00°0

T

9000
T

9000

s Mo () 51 o (e)
il 1

g€ 92 8L 3 Y ge 92 8L 3 20

=

2000
03
T
2000
08!

000
T
¥00°0

T

9000
T

9000

2=%3 UOIOUN SOUBPIOU| BANEINWING P3JOIPAId 1=23 UOI1oUN B0USPIOU| SANEINWIND PaJOIPald



L~
[=p)

‘oot MJTV Pue M JI Sursn £q (2¢°¢) [opout o) uo paseq (Y31 pue wmipow ‘mof) sdnois 91008 NSII [RIOIARYD( JO [9AJ] [ORD e
¢ = 15 10] %] UOIIOUNJ 90ULPIOUL dATYRINWND Pagorpald o) moys (J) pue (p) ‘(q) oyl ‘poyrewt MJIV Pue A\JI Suisn Aq (2g°¢) [opOu o1} U0 poseq
(y8ry pue wnipeur ‘mof) sdnoid 01008 YSU [RIOIARYD] JO [0A9] RO J8 T = *I5 10§ L7 UOIOUNY 00UepIOUl dAlye[mUIY pajotpald oty moys (o) pue (2) ‘(v)
oL (ZATAFFEY-€DST) % 9S1u0dsor ounurtar poaIssqo oYy Jo sofraenb ore 089¢'0 = £¢) Pue 1880°0 = &) ‘TG8E'0— = '¢) :3Jo[ 91 uo syders) :9g oms1g

SISU UBIH (3) S YBIH (8)
1 1
S 92 8L 3 20 Se 92 8l 3 20
L L L L | L L L L |

T
2000
T
2000

03
0y

T
000
T
¥00°0

T

9000
T

9000

*Su wnipe (p) *su wnipsy ()
1 1
g€ 92 8t 1 20 g 92 8t ' 20
L 1 1 1 1 L 1 1 1 1

o o
L g L g
3 S
s =

03
0y

T
¥00°0
T
¥00°0

T

9000
T

9000

s Mo () 51 o (e)
il 1

g€ 92 8L 3 Y ge 92 8L 3 20

2000
03
T
2000
08!

000
T
¥00°0

T

9000
T

9000

2=%3 UOIOUN SOUBPIOU| BANEINWING P3JOIPAId 1=23 UOI1oUN B0USPIOU| SANEINWIND PaJOIPald



CHAPTER 4: PROOFS OF THE THEOREMS

4.1  Proofs of the Theorems in Chapter 2

Condition I.

I.1. The regression function 7(t) is right-continuous with left-handed limits on [a, 7].

1.2. The link function h(-) is three times continuously differentiable and invertible, and Oh(-)/0x is
bounded away from zero. The weight function w(t) is a bounded, deterministic and continuous

function.

13. oV, 0) = 1(&; = 1)p1(V;, 0) + 1(€; # 1)1 (V;, 0) is twice differentiable with respect to ¢ and
©'(Vi,0) = dp(V;,0)/df is uniformly bounded and bounded away from zero, i.e., p(V;,0;) >

€ > 0.

4. The estimator 6 satisfies n2 (8 — 6y) = n=2 [J (6p)] " St Ui, 0) + 0p(1), where J (6p) is
the positive definite fisher information matrix and U(V;,6p), i = 1,...,n, are iid mean zero

random variables.

1.5. The estimator (A;(t) is asymptotically linear with influence function ICs such that
n%((}' —Q)(t,z,2) =n"2 Z ICq(t, @, 2;Y;) + 0p(1),
i=1

uniformly in (¢, z, 2).

1.6. Assume that G(t) is continuous. If 7 € (0,00] is such that Y (7) 5 oo as n — oo, then

SUPg<i<r IG(t) — G(t)] B 0 as n 5 0o, where Y (t) = I {T > t} at risk process.

Proof of Proposition 1

Let

n

logLy (61) = > I(& = 1) [&{0] Vi} — log{1 + exp(6] Vi)}] ,

=1
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n

logLa(02) = > I(& # 1) [&{03 Vi} — log{1 + exp(63 Vi)}] -

=1

From the likelihood defined in (2.1), we have the following log-likelihood function
log L(G) = log L1 ((91) + log L2 (92)

By taking derivative with respect to 6 = (8],6J)T, the score functions are

T
° n ~ V; ex ol v
U0) Ur(Vi, 61) ala‘gig];w > 1(E&=1) {giVi - HEXEG}W}
o - = = T >
o n ~ i €X olv;
Us(Vi, 02) Howlt: > (& #1) |:€ivz‘ - ﬁe;ﬁz"i}

which has zero at . The second-order partial derivatives of log L(6) is

Zn I(N 1) expe-lrvi v 0
— . € = _—
H(0) = - (rexp’t V)2 (4.1)
n ~ expegvi ViViT ’
0 T (e # 1y

(1exp®Vi)2
which is negative on H(#). Moerover, the Jacobian of H(6) is obviously positive. Thus, the log
likelihood function log () has a local maximum at 6= (él, ég) Therefore, the selection probability
S; can be estimated by its parametric model SA'l =o(V; é)

Since 6 is maximum likelihood estimator of log L(0), the 0 is consistent estimator of the true value

fo. Moreover, by using Taylor series expansion,

1

UV, 0) =U(V;,00) + %U(Vi, 00)(6 — 00) + 0p(n"2), (4.2)

where U(V;, é) = 0. By the standard arguments of asymptotic normality for M-estimators, it can

be shown that we have the following asymptotic linear expression such that

\/E(é — 90) = n_% [J (VZ, 90)]71 i U(Vl, 90) + Op(l)7 (43)

i=1

and its limiting distribution

V@ —6) 5 N(0,J7 (Vi 0)), (4.4)
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where the fisher information matrix

~ ex 901 Vi v V]
B|1E =18 s gglvi);] 0
J(Vi,00) = P ]
~ exp902vi ViV;;r
0 E |:I(€Z # 1) (1+exp952\/i)2:|

(4.5)

and

Proof of Proposition 2

(1) By the corollary 3.2.1 of (Fleming and H arrington, 2013), we have, for any ¢ € [0, 7] such that

+ nt {G(t) /0(1 - écg:)) )I(Y(s) > 0) d%i;)} +0,(1) (4.6)

By Lenglart’s inequality, the second term of (4.6) is

e fron [ (-G o) =

0 p Lo [ (1 G IV >0

< ferfer [ (-G PR o )

< e p{en YD b i v = 0)

< ! (4.7)

since Y (1) & 0o as n & 0.
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Therefore, we have

nz(G(t) — G(t)) = n? {—G(t) /OTI(Y(s) > O)dy(i‘;)} +0,(1)
= n*% — ’ s dM(s) [0
= wt{eao [0 > 0B o) (48)

where n=1Y'(s) = n~ ' 321, Yi(s) & y(s) with s € [0, 7].
(2) It is easy to derive when the censoring time follows the Cox model with hazard function

A(t) = Mo(t) exp(BoX; + S1Z;) where baseline A\o(t) and possibly time dependent covariates X;

Proof of Theorem 2.1

Let Dy(t), D~(t), R(t), F1(t), Z~ (9), B»y(é), H(t,0), Iyt 0) are all evaluated at the true value

{no(t),vo} of {n(t),~}, where I»y(é), B'y(é) H(t,0), ZIy(t,0) are corresponding terms for (2.12).

By (2.10), we have
n?(§—v9) = {n7" Zy(0)} ' 2 By(0) +o0,(1). (4.9)
Let A(#) = 0% (6)/06. The Taylor expansion of W (f) around the true value 6y is
W(0) = W(6y) + A(6o)(6 — bo) + 0, (n" 7). (4.10)

R . -1
Let K(t,0) = DI),(t)W(t)\II(H)Dn(t) [In(t, 9)} and evaluate at the true values {n,(t),v,}. By

plugging H (¢, 6) in the formula for B»-y(é) in (2.12), we have

[
S
N
T
_|

n"3Bey(0) =n" LOW (1) (0) {1 — Dp(t) [In(t, é)} o Dg(t)vv(t)\y(é)} (R(t) — F1(t)} dt

n"% /0 ' {DI,(t)—DI,(t)W(t)wé)Dn(t) [In(t,é)} D%(t)} W ()% (0) {R(t) - F1(t)} dt

(4.11)

I
:|
NI
h
—
-
24
=
=
a@#
N
>
S -
—
N
——
2
=
S
=
—~—
=
~
~
I
=
—
=~
~
—
U
&

By plugging (4.10) into (4.11) and decomposing { R(t) — F1(t)} into {Aé](\;ii(;) — Aé](\%(;) + Aé](\%(;) — Fli(t)},
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then (4.11) can be split into the following four terms

nEBy(0) = hY / ' [DR.0) ~ K(t.0)D} )] wilte,(60) {AGJ(VT(? - mt)} at
#7030 - K(6.0)D] 0] w0400 - 00) { ) — )}

i=1

i [T A AN (1) ANi(t)
+n 22/0 [D'Ty,i(t)—K(tﬂ)DI;,i(t)} wz‘(ﬂﬁ’i(%){ = ~ G }dt

=1 G(T)
3 Y [ D30 - K. 0D]0)] w4 60) 0 - 60 {AiNi(t) - AiNi(t)} it

i Gy  GT)
+op(1). (4.12)

The fourth term of (4.12) is shown to be equal to o,(1) in Appendix A. That is,

"D | PR - K0.0)D5 0] wi A 00)6 —%){ i) o } dt = 0y(1)
(4.13)
Denote the first term of (4.12) by
By(@) = w7t [ [0 - K 0] wiowon { T - P | a

i=1
It is shown in the Appendix A that

n

" Z /OT {K(t’ é) - k(t,@o)] D%,i(t)wi(t)lbi(go) {AiNi(t)

G(T:)

- Fh—(t)} dt =o0,(1).  (4.14)

AN, (t)
G(T3)

Cryi(t,0) = {D’Ty,i(t) —k(t, G)D%,i(t)} w; (t)1;(0) { - Fli(t)} . (4.15)

It follows by (4.14) that

Byld) = w7 Y [ D50~ kie.00. D3 0] w000 { T - P | a
A

T,
. zn:/OT [K(t,é) - k(wo)} D;,’i(t)wi(t)wi(eo){ G](\’T()’f) _ Fu‘(t)} dt

i=1

n

= Y [ Gt i+ o). (4.16)
=1
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Denote the second term of (4.12) by

N [T - X o AiNi(t) -
Dy() = n ; /O DL .(0) = K (1,0)D ()] wi() As(60) { T Fh(t)} dt (6— 0y).
By similar argument in (4.14), we have
Dy(l) = w3 [ [DR0) - k(t.00) DYy (0] wit) Aoo) {Ag(gajﬁ - m(t)} 0t (6 - 00) + oy(1).
By the law of large numbers,
nl Z [ [50- k 000h, 0] i a0 (G- P @b o). @)
It follows by (2.15) in proposition 1 and (4.17) that
Dry(0) = n? (0 00) (9(r,00) + 0p(1)) + 0p(1).
= g(r,00)n? (6 — 6o) + 0,(1).
= g(T, 9()) {n_éJ_l (Vu 9()) zn: U(Vz, 00)} + Op(l). (418)
=1

Now consider the third term of (4.12). Let
Ay(@) = n2) /0 | D () = K (1,0)DF, (8)] ()% (00) i Ni(0) {

i=1

With similar arguments in (4.14), we have

=n"2 Z/ k(t,00)D (t)} w;(t)1;(00)Ai N;(t) {

nzA;N; =n"2 U<t - [ s<T; dM;”(s) 0
AN AN =G5> |z =T o). (20)
By plugging (4.20) into (4.19), we have

_1 - T[T 1 - T AzNz(t) - dMg()
A~(0) =n 22/0/0 n Z{D%i(t) k(t,GO)DnZ(t)}wz(t)@bz(&O) GT) I(s<T;<t)d ()



By law of large numbers,

= AjN;(t) ~

Jj=1

Let

Thus, we have

=1 0
Let
E"Y(G) = n?2 Z/ C"y z(tae) dt7
i=170
Ax(0) = n %Z/ Ky i(t,0) dt,
i=1 0

It follows by (4.12), (4.13), (4.16), (4.18), (4.22) and (4.23) that
n"EBy(6) = B~(00) + Avy(60) + Dy(00) + 0p(1).
By plugging the expression of H (t,0) into Z~(f) from (2.12), we have
nt Iy (0) = / ’ [ny(t) - K(t,é)D,T?(t)} W (£)® () Doy (t) dt.
Let
nZy(0) = nt Z / DI .(t) — k(t,0)Dy (¢ )} wi(£)4p;(0) Dy (1) dt
Qy(0) = E { / [Dw(t) - k:(t,@)D,TN(t)] wi(£)4h;(0) Doy 1(2) dt}.

It is shown in the Appendix A that

n_llry(é) = n "Iy (6o) + 0p(1)

= Q~(00).

= {D,“ k(t,00) D5, (¢ )}wj(t)zpj(ao) Gy =TS £) % gy (s,t,60).
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(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)
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Let
W, .(r,0)= C,W(t7 ) dt + / Ky i(t,0)dt +g(7,0)[J (Vi,ﬁ)]_l Uv;,0).
0 0

It follows by (4.9), (4.24), (4.26) that /n(¥ — 7,) is asymptotically equivalent to the following

identically independent distributed decomposition

W@ =90 = {Qy )} 0 E Y {Walr 00} + 0,01, (4.27)

Since C~ ;(t,60) has mean zero by (2.2), K~,(t,00) is mean zero local square martingale, and the
score function U(V;,6p) has mean zero, by the law of large numbers, n=' 3" {W., ;(7,6y)} has
mean zero. By the central limit theorem, n2 Z?zl W, .i(7,60) converges in distribution to a mean
zero normal random vector with covariance matrix E {W, ;(7,00)}%>.

By slutsky’s theorem, we have
~ d
V(¥ =) = N(0,%,), (4.28)
where 33, = Qo (00) " E{W ,i(7,600)}** Q~(00)~*

Let f‘u(t), 137771-(t) and 13771-(15) be the estimator of Fy;(t), Dp,(t) and D~ ;(t) by plugging
estimators 7)(t) and 7 into Fi;(t,n(t),~y), Dn,(t,n(t),7), D~.:(t,n(t),v) , respectively, and let

A;(0) = 0ui(0) /00 where ¥;(0) = & /o(Vi,0).
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Let

=1
B(t,0) = n*lzﬁT :(0) (1) [Tt 9)]71
Coyalt,0) = [D7y (1) — K (1, 0) Dy (1) st >{AGi](VJ'if)’ - ﬁm-(t)}
(s,£,0) = n~! Z{ K (t,0) Dy ;(t )}w]—(t)¢j(9)Ai](\;'()t)I(s <T; <t

~ Ta’y(satve) I
Ry,ilt,0 =/ O AME(s),

. _ ® T AT T AT » _ A;N;(t) -y
9(7—7 9) - ;/0 [D’y,z(t) K(t76‘)D’r],z(t)} z(t)Az(e){ é\(Tl) Flz(t)} dt. (4'29)

The asymptotic covariance matrix of /n(4 —4,) can be consistently estimated by

S, =0 flz{ L0} 0y o),
where

-1

W.i(r0) = /T27it6)dt+/0727»(t 9) dt + §(r.0) [f(e)] UV, 0),

Q4(0) = *12 / (D740 ~ K(t.0)Dyy ()] wi ()0, (0) Dy ()t (430)

Proof of Theorem 2.2.

From (2.11), we have

Vn(@(t) —mo(t))

= [n' Ty 0)] 0 DR W () {R(t) ~ Fi(t) - D(t) {Z4(0)}

B»Y(é)} +0,(1). (4.31)

We consider the expression n*%D,E(t)W(t)\Il(é) {R(t) — F1(t) — D~(t) {I»Y(é)} B—y(é)} It



can be decomposed into two terms

™3 DY (W ()% () {R(t) — Fy(t) — D~y(t) {L,(é)}_l B»y(é)}
=0~ i Dp(O)W ()W) {R() - F1(1)}

_1 5 5 5
—n~ % D} ()W (£)®(8) D~ (1) {I.,(a)} B~ (0).
The first term of (4.32) can be decomposed into four terms

n~2 Dy ()W ()8 (0) {R(t) — F(t)}

=073 S D00 { o - Fulo)}

. . AiNi(t)  ANi()
+n ZD (1) z(t)du(@o){ am)  GT) }

AiNi(t)
G(T3)

Fu(t)}

173 S DL w0 30) — ,(60) { e } +0y(1).

G(T3)
It is shown in the Appendix A that the third and the fourth term are o,(1), that is,

AN, (t)
G(T3)

AN AN _ )
Gr,) Gm [ T

n"z Z D-’;—],i(t)wi(t)('lpi(é) — (b)) { - Fli(t)} = 0,(1),

=1

=Y Dy (i (1) (,(0) — ,(60)) {
It follows that

n=> Dy (W (1) ®(0) {R(t) — F1(t)}

—n3 > Gt bo) + n"3 > kmilt, 00) + 0p(1),

i=1 =1
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(4.32)

(4.33)

(4.34)

(4.35)

(4.36)



where
ena(t0) = Dh@uiw0){ o - Fulo}.
anst0) = B{ DY, 0w 0,0 Z P < T <0},
. B an(s,t,O) (s
mieo) = [ o)
y(s) = nleréon71 ZI(T}ZS), where s € [0, 7].

Now we consider the second term of (4.32). Note that
n_l Z DT7i(t)wi(t)¢i(90)D7,i(t) £> Q’I’],’)’(t’ 90)

i=1

where Qp ~(t,0) = E {Dg,i(t)wi (t)¢i(9)D7,i(t)}. It follows by (4.9) and (4.27) that

—n~ 3 D} ()W (£)®(8) D~ (1) {I»y(é)}_l B (0)

. —1pT -1 N B! H
= -n Dn(t)W(t)\Il(G)D7(t){n 17(9)} =3 By (6)

1

Qu~ (1, 60) {QV(GO)}_l {n_2 S Wl 90)} +0,(1).

i=1

It follows by (4.32), (4.36) and (4.37) that

W ADROW OO {RO - i)~ Dy(0) {24} B4®)}
= n_% Z W'r]’i(t, 90) + Op(l)7
where
Wi(t.0) = { . (0.0) + kni(t0) - Q1.0 {0} Wostr)}.

From (2.12), we have

Iy(t, 0) = Z Dy ,i(t)wi(t)wi(é)D’r],i(t)~
i—1

{Qnﬁ(tﬁo) + Op(l)} {Qv(‘%)}il {n_i‘ Zn:Wv,i(T’ 90)} +0p(1).
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(4.37)

(4.38)

(4.39)
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It is shown in the Appendix A that

n'Int,0) = n'Iy(t,00) + o,(1)

5 Qy(t,60), (4.40)

where Qp(t,6) = E{Dg) ;(t)wi(t)1i(0) Dn.i(t)}.
By plugging (4.38) and (4.40) into (4.31), /n(n(t) — ny(t)) is asymptotically equivalent to the
following identically independent distributed decomposition
. 1 $
VR - ) = {Qut00} mE Y Wy (t.60) + 0,(1). (4.41)
i=1
By the functional central limit theorem for empirical process, n3 >y Wai(t,0p) converges in
distribution to a normal random vector with zero-mean and covariance matrix E {Wy;(t, 90)}®2.
By the slutsky’s theorem and an application of Theorem 19.5 of van der Vaart(1998), v/n(7(t)—nq(t))
converges weakly to a mean zero Gaussian process on t € [0, 7] with the covariance matrix Xy =
- ®2 -
Qn' (t,00) E{Wn(t,00)} " Qp'(t,00).

Let

Cpa(t,0) = Dy (Duws(0)w,(6) { AdVi(t) _ fru(t)} 7

a(T,)
5 -1 = Aij t ~
Gy (s.1.0) = n ;DLJ(t)wj <t>¢j<e>é(Tj()>z<s <T <),

j(t) = n*ZI(i > t),

—C

W) =20 < 5.8, =0) - [ LT > u) d(~ log G(u)),

~ Ta’r[(s7t79) ==
R (L, 0 :/ I T N (s),
S TR

Qn~(t,0) fn*ZDm Jw;(£)4p;(0) Dy (t). (4.42)

=1

The asymptotic covariance matrix of \/n(7j(t) — 1o(t)) can be consistently estimated by

Sy = On'(t0) flz{wn, 0} @y .0)
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where
Wi(t.0) = {qu(0.0)+ Fna(t.0) - Qa0 {240} Wm0},
Quft.0) = 0 Y Dy 00 (1,0) Do)
and where {@7(9)}71 and W ;(7,0) are defined in (4.30). 0

4.2  Proofs of the Theorems in Chapter 3

Proof of Theorem 3.1

We have the following estimating equations from (3.13) and (3.14)

~

Un(t,n(t),7,0) = Dy()W ()% (0) {R(t) = F1(t,n(t), )} + an(t,n(t),7,0), (4.43)

D
57(7,77(-),%9) = /OTDg(t)W(t)‘I’(é){R(t)—Fl(tm() Y} dt + ay (1,n(),7.0). (4.44)

For model (3.5), Dy(t) is the n x (p + 1) matrix of X = (Xi,---,X,)" with the ith row vector
Dyi(t,n(t),y) = X = (1, X51,--+, X;p) , D~(t) is the the n x ¢ matrix of dg(v, Z,t)/dy with
the ith row vector D, ;(t,n(t),y) = 0g(v, Z;,t)/07, and where dn(t,n(t)ﬁ,é) and d,Y(T,n(~),'y,9A)
are defined in (3.11) and (3.12) with V, = (E{X1|W1}, -+, E{X,|Va )T and V,, () = Yo (11—

Ui 0)wi(H)E [ X XT V).

Let
Un(t.n(t),7.0) = Dpt)W @)% (0){R(t) — Fi(t,n(t),7)} + an(t.n(t),7.0), (4.45)
ij”y(ﬂn(')?’%e) = / DT ){R Fl(t Tl ) )} dt +CL7(T 77() 77'9)7 (446)

where

an(ta n(t)v s 0) = VmTW(t)(I - ‘I’(a)) {R(t) - 9(77 Z? t)} - sz(a)n(t)v

i (r, / (20 ”’Z DYTW (1) (T — W (0)) (R(1) — Van(t) — g(v. Z.1)} dt,
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where V, = (E{X1|V1}, -+, E{Xy|Va})T and Vo, (0) = 37 (1 — 0i(0))wi (1) E [ X; X[ |Vi] .
By adapting the theory of Robins, Rotnizky and Zhao (1994), if either P(&; = 1|V;) or E{X(2 [Vi}
and E{XZ»(Q)(Xi(z))TWi} is correctly specified, we have 6 % 6, &n(t,n(t),’yﬁ) 2 an(t,n(t), 7, 60)
dV(T,n(~),7,9A) 2@, (r,m(-),7,600). Tt follows that the estimating equation (4.43) and (4.44) are

asymptotically equivalent to (4.45) and (4.46). That is,

Nl=

Un(t,n(®),7.0) = Unt,n(t),7,00) + op(n?),

).

~

ﬁ’Y(T"r’(')v’Yaé) = U’Y(Tvn(')a7a90)+op(n

N

By using the Taylor expansion in (2.7) and replacing it into the estimation equations (4.45) and

(4.46), we have

Un(t.7i(t),5.00) = Dyp()W () (%) [R(t)—F1(t)— Dy (t) {7i(t) = (£)} = D (£) {F—0}]

N

+ay(t,00) + 0p(n?) =0, (4.47)
Uy (7,7(),7,6) = /OTD»Ty(t)W(t)‘I’(Qo)[R(t)—Fl(t)—Dn(t){ﬁ(t)—no(t)}—Dv(t) {F—0}] at

+i,(00) + 0p(n?) = 0. (4.48)

where Dp(t) = Dy(t,no(t),v0), Dv(t) = D~(t,m0(t),70), F1(t) = F1(t,mo(t), o), ay(t,00) =
&71(7&7;’7\(7")7%700) and dv(eo) = dv(ﬂ;”\(')vﬁv‘90)'

From (4.47), it can be solved for {n(t)—ny(¢t)}. That is,

Dy ()W (£)®(60) Dy (1) {(t) —mo(t)} = Dp(t)W () ®(0o) [R(t)— F1(t)— D~ (1) {F—7o}] + an(t, 00),
W) —mo(t) = [Tn(t60)] " Dy ()W (£)® (6o) [R(t)— F1(t) = D~ (t) {70}
+ [Zn(t,00)] " ay(t, 00) + 0p(n?), (4.49)
where Zy(t,0) = Dy (t)W (¢)®(6) Dy (2).
By solving (4.48) for {4 —=,},
| DL OW %) Dy () (G0} dt = [ DLW (0w en) (Rie)- i) s

/ DY (YW (£)%(60) Dy (£) {A(t) —mo (£)} dt+ @, (60) + 0, (n™ 4 )(4.50)
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By substituting (4.49) into (4.50),

/ DY, (t)W ()% (60) Doy (t) {5~} t
_ / DL (t) [R(t)—F, ()] dt
/ DA (¢ @(00) Dy (1) [Zny(t,60)] " Dy ()W ()% (0p) [R(t)— F1 (1)
/DT W(09) Dy (1) [Zny(t,60)] " Dy ()W (£)¥(09) Doy (£) {370}
/DT W (00) Dy (£)[Zn(t,00)] " n(t, 60)dt+ s (60) + 0p(n). (4.51)

By combining like terms of {¥—=,} and R(t)—F1(¢) in (4.51), we have

/ Dt (1= Dy(0)[Z(t,00)] ™" D (O)W (1) (80)| Doy (1) {70}
/ DLW (1)% (60T — Dig(t) [Zn(1,60)] " D)W (1) (6)| [R(t)~F (1)
/ DI ()W (£)% (60) Diy (O[T (1, 00)] " i 1, 60+ iy (6) + 0y (n). (4.52)
Let
A,0) = /Kt9 (t,0)
K(t,0) = DY(t)W()®(0)Dy(t) [Tn(t.0)]

Using (2.12), (4.52) can be reduced to

Zy(60){7—70} = Bry(00) — Ay(f0)+ a(00) + 0p(n?).
Thus, we have
T = [Ty(00)] " {B~(00) — Ay(00)+ @ (00)} + 0p(n~?). (4.53)
Again by substituting (4.53) into (4.49), we have
A(t) =mo(t) = {Zn(t,00)}"{Dn()} W ()¥(8) { R(t)—F1(t)— Dy (D{Z(00)} "

{Bry(00) +(00) — Ay (00)}} + (Tt 00)} (1, 00) + 0p (%),
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Proof of Theorem 3.2

From (3.24), we have

E-0) = {TT00} 0 By a0 - A0} Fo). (450

Consider n_%B'Y(HO) in (4.54). Using (2.12), with similar arguments to (4.11), we have

[N

n=2Bay(0y) = n~ /0 {D,T),(t)—K(t, 9O)DI,(t)} W (£)®(0) {R(t) — Fy1(t)} dt.

With similar argument to (4.12), it can be decomposed by

w By = w7 [ [P0~ K0 DR 0] 0w { T - P} i
w3 [ D80 - K00 R (1) wi<t>wi<eo>{AGZ()) Agf(VTZ_(f)}dt (4.55)

By using consistency of K (t,6y) shown in (A.3) in Appendix 4.2, we have

n":B~(f) = n—%z/o C.),,i(t,eo)dt—f—n_%Z/o Ky,i(t,00) dt +o0,(1).  (4.56)
i=1 i=1

where C~ ;(Z,0) and K~ ;(t,60) are defined in (4.15) and (4.21), respectively.

Consider a., (o) is defined in Theorem 3.1. The term n_%&v(eo) can be decomposed into four parts

_%d o % 89 ’yo,Z“t ) s AlNl(t) _ AiNi(t)
n=za,(0y) = / Z{ 90 w;(t)(1 %(90)){ a(T) G(Ty) }dt

+ 72 / Z ag 75;02“t w; (6)(1 — i (6p)) {Aéj(\%()t) — Vzino(t) — g(vo, Zi7t)} dt

o4 / Z 89 ’Yg’%Z“t w; () (1 = i(00))Ve,i {0(t) — no(t)} dt

n / Z ag Vg’%z“t wi(t)(1 = i(00)) {9(7, Zi, t) — 9(0, Zi, 1)} dt (4.57)

It is shown in the Appendix A that the third and fourth terms of the above equation are equal to

0p(1), respectively. That is,

nd / Z (2 Vao;oz“t wi)(1 = :(00))Vai () — mo(8)} dt = 0,(1), (4.58)

%/ Z 39 ’Ya(),%Zz,t wi(t)(1 = i(00)) {9(7, Zis 1) — g(v0, Zi, t)} dt = 0p(1).  (4.59)
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Consider the first term of (4.57). By using (4.20) and the law of large numbers,

~

L < t) D gk . .
870 a(T) <t) = ay(s,t,%, b0) (4.60)

It follows that

- 39 ’Yo,me PV AiNi(t) — AiNi(t)
/Z oy, wid MGU)){ Q) G }dt

3 -1 agVO,Zut T, o A;N;(t) G T dM;(s) .
" Z// Z{ 1027 (t)(1 = :(6o)) G(T;) I(s<T; <) (s) dt + o, (1).

_n;;/() {W +op(1>}de(s>+op(1)

IN

where K23 ;(t,7,0) = fOT{qﬁ),(s,t7'7,9)/y(s)}dMic(s).

Now consider the second term of (4.57).

vt [ S 00 o) { ) Ve - o0 20|

m\»—t

/ ch,xt,no(w,vo,e@)dt, (4.62)
=1

where ¢4, (6,m(8),7,0) = {25203 Ty (1)(1 = 44(0)) { S02 = Veun(t) — 9(7. Z, D)}

Therefore, it follows by (4.57), (4.58), (4.59), (4.61) and (4.62) that
niéa'y(oo) = —n7: Z/ “fy,i(t770790)dt+”7% Z/ ny,i(tvno(t),'YoﬁO)dt+0p(1)-(4-63)
=170 i=170
Consider —n~2 A, (f) in (4.54). From (3.26), we have

Cn b A (6) = /0 " Kt 00)an (1, 00) dt. (4.64)
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To finish this, first we consider i.i.d expression for a,(t,6y). It can be decomposed into four terms

b Y VL0 = w00 { S a0, 208} = Vews o)

Y VI~ il00) {905, %) — 90, Zi D)

Y Va0 )~ (0} (1.69)
i=1

It is shown in the Appendix A that the third and fourth terms of (4.65) are shown to be equal to

0p(1), respectively. That is,

— nE Z VT ;Wi () (L —:(600) {97, Ziy t) — g(y0, Ziy t)} = 0,(1), (4.66)
— va,iwo) {A(t) = no(t)} = 0p(1). (4.67)

Consider the first term of (4.65). By using (4.20) and the law of large numbers,

n Z %(%))Aé](%()t)z(s < T3 <) 5 aps,t,00). (4.68)

It follows that

) n T (L i A;N;(t) _AiNi(t)

I A AGNi(t) 7o 7 o M)

) Z/ Z TGy T = TR0

=ty [ e 4 o)
=1 0

= -n %in (t,00) + 0,(1), (4.69)
i=1

where k3, ;(t,0) = fOT{q?,(S,t,0)/y(s)}dMic(s).
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Consider the second term of (4.65). We have,

w7t 3 [Vt = vston) { D 00,208} = Va0
i—1 ’
= nE Y Gt mo(6), %0, 6o). (4.70)

where Cr(tm(t),%,0) = VEwi(t) (1= vi(0)) { 2952 ~ (7, Zi,0) | = Vi (O)().
It follows by (4.65), (4.66), (4.67), (4.69) and (4.70) that
n_%dﬁ(tv 90) = _n_% Z {K':;],i(ta 90) - C;],i(ta 770(75)’ Yo 90)} + Op(l) (4'71)

i=1

Note that K (t,600) > k(t,0). From (4.64) and (4.71), we have

[N

b A 6) = n /0 k(t,00)in (¢, 00) dt +n~ /0 (K (1,00) — k(t, 80)} i (1, 00) dt

n

Nl=

/T k(t,00)n(t, 00) dt + op(1)
0

_— / (1. 00) {000 — Gyt m(0). 70, 80) )t 4 0,(1). (472
i=1

It follows by (4.26), (4.54),(4.56), (4.63), (4.72) that

=) = {000} 0 {By() + @y (00) - A,(00)
= (@300} 7 Wm0l Fop), (4T)

where Q~ () is defined in Theorem 2.1, and where

W’*)’,i(Tvn(')v’Yve) = / C’)’,z(t70) dt + / K’Y,i(t79) dt — / K"*}’,i(ta779)dt+ / C’*}’,z(tan(t)af)lve)dt
0 0 0 0

- /OT k(ta 90) {K’j)k’],i(ta 90) - C;’],i(tv 770(07707 90)} dt. (474)

Since €y ;(t,00) and K,i(t, 0) has mean zero from Theorem 2.1, and since k% ;(t,,6) has mean
zero local square martingale and, by missing at random assumption, C;;,i(t, 10(t), 7o, o) has mean
zero, then, by the standard central limit theorem, n= Y7 W2 i(T,m0(-), Y0, 00) has mean zero
normal random vector with covariance matrix E{WZ ;(7,1,("), Yo, 0o)}%2% .

By slutsky’s theorem, we have

Nl=

n

(3 —70) % N(0,52), (4.75)
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where 3% = Q~ ™' (60) E{W 3, ;(7, 10 ("), Y0, 00)}**Q~ " (60)-

Let
@5 (s.4.7.0) -12{69” P w01~ 0) G T S T <)
=n7t sz > t)
i=1
—~C ~ t ~ ~
M) =10 < 1.8, = 0) ~ [ T(T; 2 ) d(-1ogG(s)
0
~k _ T 71\%/(57@%9) Trc
K”Yi(t’e)_/o TdMi (s)
_ 897 Z; t AN ()
0)d ! — (0 - — Vo) — gy, Zi,t) p dt.
&y altn(),v,0) dt = Z/{ w1 w<>>{ iy Vean) — gt t)} t
(4.76)
The asymptotic covariance matrix of nz (9 — ) can be consistently estimated by
~—1 4 LR L Y®2 (1
(@7 @)} v S {W5ma0)5.0) {@y 0},
i=1
where 6)7(9) is defined in (4.30), and where
‘7/*7,1-(7,17(-)7%9 = / ZW t 9)dt+/0 R,Y,i(t,e)dt—/0 (T 9dt+/ 4’71
/ K(1.0) { ~Cpaltn(t).y.0) )t (4.77)

Proof of Theorem 3.3

From (3.25),

nd @) —me(t) = {n'In(t.0o)} " [n_%{Dn(t)}TW(t)‘I’(ﬁ’o){R(t)—F1(t)}
—n"2{Dp(t)} W (1)¥(00) { Dy (){Z(00)} " {Bry(60) + i (60) — Ay(60)}}

n n—%an(t,ao)} +o0,(1). (4.78)

Consider —n =2 {Dyy(t)}TW (£)®(0) {D~ (t){Z~(00)} ~* { B~ (60) + @ (60) — Ay(60)} }-
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Note that n='{Dyn(t)}TW (£)¥(6y) D~(t) LS Qnp,~(t,60). It follows by (4.73) that

—n =D (6)} W ()2 (0) {Dry (1) {n ™ Ty (00} n % { By (00) + @, (60) — Ay (60)} }

= _Q’I’],’y(tveo) {Q’y(90>}71 n_% ZWf)/,i(T7 ,’70(')7’70790) +0;D(1)' (479)

i=1
It follows by (4.36), (4.71), (4.79) that (4.78) is

n

n2 (@) = mo(1) = {n'In(t,0)} " 072y Wi (tm(t),v0,00) +0p(1),  (4.80)
i=1
where
-1 N n
W;},i(tvno(t)y'YoﬁO) = C’r],i(tveo) + £n.i(t,6o) — Q'I’[,’)’(ta ) {Q'y(eo)} n-2 Z ny,qz(T» Mo(): Yo, 60)
i=1

_K’;],i(tv 90) + C;i’,i (ta nO(t)a Yo> 00)

By using (4.40), we have the following i.i.d decomposition

(@) o) = AQp(t:00)} nE S Wi (. mo(1), %o, 60) + 0p(1).
Let
qn s, t,0) —n_leTwl (1 — (0 ))Aéi\;(;)l(s<i<t)
T -1 ZI(T >t

M (t) = T(Tj < t,4, —o>—/0tz<T > 5) d(—log G(s))
- T Gp(s,t,0) .

Riat.0) = [ TSN (o

Enatn(®),7,0) = 71 S V(1) (1 - 4(0)) {AGJ(VT()) g 2, t)} - Vm,iw)n(t)}
=1 7

(4.81)

By using lemma 1 of Sun and Wu (2005), n2 (7j(t)—n(t)) converges weakly to a mean-zero Gaussian
process on ¢ € [0, 7] with the covariance matrix Xy = Qp(t, 90)_1E{W;k7’i(t, 170(t), Yos 90)}®2Qn(t, )1,
which can be consistently estimated by

~ ~ ~ % A Y®2 ~
Sn o= Qn 0 (W ta0,5.0)} @y (¢.0),

i=1
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where

e ~ ~ ~ -1 D
W?’],i(tv n(t),v,0) = C’I],i(t’ 0) + Kn,i(t,0) — Qn,’y(ta 0) {Q'y(g)} no? Z W")/,i(Ta n(-),7.0)
i=1

—Ryi(t,0) + Cp s (£ (1), 7.0),

and where @7(0) is defined in (4.30), @77=7(t’0)’ @n(t,ﬁ),fnyi(t,e), and Ky i(t,0) are defined in

(4.42) and ﬁ\/;’i(T,’l’](-),’77 0) is defined in (4.77). O
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APPENDIX A: PROOFS IN CHAPTER 4

Lemmas

Lemma A.1. Suppose X, 4 X, Then, X,, = Op(1).
Proof of Lemma A.1

Given € > 0, we choose sufficiently large k so that P(|X| > k) < e. By the assumption,
P(|X,| > k) — P(]X| > k). There exists some m such that for n > m, P(|X,| > k) < e. We also
choose sufficiently large k1 so that P(|X;| > €) <e¢, for i = 1,...,m — 1. Then, for ky = max(k, k1),

we have P(|X,| > ko) < € for all n. O

Proof of 4.13

Let the fourth term of (4.12) be
C»y(é) = nw Z/OT [D,T),Z(t) - K(t,é)D%,i(t)} w; () A;(00) A N, (t) {

By using (A.3), it can be divided into two parts

In order to prove related K (t, é) term, we use the following properties. First, since n2 (é —bp) =

O,(1), by using Delta method, we have

Nl

nz(K(t,0) — K(t,60)) = 0,(1). (A.2)

Second, from definition of K (t,60), K(t,00) = [% S DIY’i(t)wi (t)’lﬁi(@o)Dn,i(t)} [% Dy D%’i(t)wi(t)¢i(90)Dn’<

By law of large numbers, we have
K(t,600) 5 k(t,6,). (A.3)

It follows by uniform consistency of G(t) in condition (1.6) and (A.1), the first term of (A.1) is,
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for G(1) > 0

nz (6 — 6y) —12/ DX (1) = k(t,00) Dy i(t )} wi(t)Ai(Qo)AiNi(t){

< n Z/ k(t,00) Dy (t )} w;(t)Ai(00)AiNi(t) {@(7)16‘(7-) } sup |G(t) — G

It follows by (A.2), (A.3) and (I.6) that the last term of (A.1) is equal to

n

“nd 3 [ [K(0.0) - k(60 DY (0] wi (0 4 G0 AN {a} (6 = 60)

i=1

I
5
(=}

)
—0—00) xS [ [K(60) — K(t.00)] Dy (0w (04 (000 {Gm_m} d

i=1 70

—nd@—60) xn 'Y /OT (K (1, 80) — Fo(t, 80)] D} ,(0)w: (1) As(00) AsNi (1)

i=1

By the similar argument to (A.4) and Slutsky’s theorem, the above equation reduce to o,(1). It
follows by (A.1), (A.4) and (A.5) that the fourth term of (4.12) is C7(é) 2 0 uniformly in t € [0,7].

O

Proof of 4.14 From (4.14), we have

n ZZ / [7(0.0) ~ kit 00)] DYy Owstoyputon) { Lo = Futo) }
= " Z [} [k - @] of i) { S = Pt} at
- AGN;(2)

+n”~ 12/ K(t,00) — k(t,00)] D (t)wi(t)d;i(@o){ é(fz) —Fh-(t)} dt  (A.6)

By (2.2), we note that

w3 [ DR oo { S - Pt

(A4)
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has mean zero. By the central limit theorem and Lemma A.1, we have

DY /O T 8Ka(;’ d Dy . (t)wi(t);(6o) {AG](\;(; ) _ Fu(t)} dt = Op(1)
i=1 v

By the Taylor expansion of K (i, é) around the true value 6, the second term of A.6 is equal to

iy / [K(t0) — K (.00)] DYy (0w (26, 60) {%Zﬂff - Fu(t)} at

=1

I
S

Ay [8K§§’ - 00)+ op(n—éﬂ D}, (Hwi(t) 9, (60) {A(';Zif)“ - m(t)} i

n

L o T OK(t,0) _ ANi(t)
= Gt [P PEGEODG e { ) P | @

s, xS [ D 0wt 00 { i - Futo)

= 0,(1) x 0,(1) +0,(1)

= 0p(1)

With similar arguments, by the central limit theorem, we have

n=3 Z/OT Dy (t)wi(t)3;(60) {AG](\;(;) _ Fu(t)} dt = 0,(1)

It follows by Slutsky’s theorem that the second term of (A.6) is equal to

_% n T _ T . ws . A1N1<t) _ )
n ;—1/0 [K(t790> k(t700)] Dn,z(t) Z(t)’ll]z(eo){ G(Tz) Fll(t)} dt
_ N [ DT AN

=) xnd 3 [ D o) { T Futo ]

where K (t,00) — k(t,6) = 0,(1) uniformly in ¢ € [0, 7]. O
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Proof of 4.26 From (4.25), it can be decomposed into two parts.

W Iy () = -12 / K (1.0) D} (1) (1), (6) Dy o (1)
_ ,12 / DY, (t) — k(t,00) D (1) wa(t)2p,(9) Dy (1) (A7)
-12 / — k(£.00)] DYy ()i (£)2,(6) Doy o (1) (A.8)
_ —12/ (D3, (1) — k(t,60) DYy (1)] wi(0)86, () Doy 1) dit + 0 (1) (A.9)

By using (4.10), (A.9) can be decomposed as

*12 / DY, () ~ k(t, 00) D7 (6)] wit)ap,(60) Dyi(t) dt
B Z/ k(t,00)D (t)} wi(t) (Az'(9o)(é —6o) + op(n*%)> Dn i(t) dt + 0,(1).
= Z [ P30 k008 0] wite oD a
+(0 - 6o) x Z / DY, .(t) = k(t, 60) D) (1) wi(t) Ai(00) Dryi()
top(n-}) ,IZ / (DT, (1) — k(t, 00) D3 (1)) wi(t) Dy (1)
+op(1).
- ,12 / R(t, 60) DRy (1) wi (19 (60) Dry.a(8) dt + 0,(1).

followed by sums of the last three terms in second equality is equal to o,(1).

Let
Ty(0p) = n! Z / DX, () — k(t,00) D3 ()] wi(t)ap,(00) Doy (1) .
Therefore, we have
n~! Iy (0) = 07t Iy (60) + 0,(1).
Let

Q(6o)

E {/(: [DTy,Z-(t) - k(t,eo)Dﬁi(t) w;(t);(00) D i (t) dt}.
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By the law of large numbers,

n~" Iy (60) > Q~(60).

Proof of 4.34 We consider the third term of (4.33). By the law of large numbers,

nt Y DRy (i (1) As(00) { AGJ(VT(;) .y t)}

has mean zero.

By (4.10) and (A.1), we have

wt Y DR 0w wi0) — wio0) { T - o)}
= nz ZDI?,i(t)wi(t) (Az‘(HO)(é — o) +0p(n_%)) {Aéz(\;g) —Flz‘(t)}
ok USC DT (Pl (0A. AiNi(t) o
= b0 xS DR 0460 { T Pl
RS AiNi(t)
+ op(1) xm ZDTVi(t)wi(t){ Gt Fli(t)}

i=1

(A.10)

Proof of 4.35

With similar argument, the fourth term of (4.33) is

n ;D i (Bwi(t)(4,(6) %(00)){ o) o)

n

= 0 DR (Owit) (AilB0) (0 60) + 0p(n~ 1)) AiNi(t) {

1=

(A.11)
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Similar to (4.13), by the consistency of CA}’(t)7 the fourth term of (4.33) is equal to 0,(1) uniformly

intel0,7] O
Proof of 4.40
Let
In(t,00) =Y Dy (t)w;(t)i(6o) Dn.i(t).
i=1
By using (4.10) and the consistency of 0, we have
n_lIn(t7 é) = pnt Z D! ’i(t)wi(t)lﬂi(eo)D'r],i(t)
i=1
+(0 — 60) x 0™ ZDT ()i (£) Ai(80) D o(1) + 0, (n” %)

= n! Z Dy, (H)w;(£);(80) Do) + 0, (1) + 0, (n~2). (A.12)

Therefore, we have

nIn(t,0) = n Iyt 0) + oy(1).
Let
Qnp(t,0o) = E{Dy, A(Owi(t)Yi(00) Dy (1)}

By the law of the large numbers, we have

n" Iy (t,00) = Qy(t,0).

Proof of (4.58)

By the theory of Robins, Rotnizky and Zhao (1994), we have the fact that 7(¢) is consistent estima-

tor of 19(t). By the missing at random assumption, n=* [ 37" %}T i (1) (

—9i(00)) Va, dt

has mean zero. Then, by the central limit theorem and Lemma A.1, we have

n? / Z{a" ”O’Z“t Tus(B)(1 — (600)) Ve d = O,(1).
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It follows by Slutsky’s theorem that

nt / Z (29002007 (1 1(80) Ve ) — mol0)}

0
- (i) / Z (TR0 461 — i) Vi
— 0,(1) x 0,(1)
= o0p(1). (A.13)

Proof of (4.59)

With similar argument in the proof of (4.58), we have

%/ Z ag ’Vg;ozwt »(t)(l—wi(%)){W} dt = 0,(1)

_ 9g( 70721,15
[ Z 8 Z T s (0)(1 = wilo0)

Il

Q
S
-

=
=

and also have the fact that 4 is consistent estimator of 7.

By the taylor expansion of g(7, Z;,t) around the true value 7o, we have

s Z (0B y o 0)(1 = 00 {93, 20 ) — g0, 200}

_ f%/ Z (2 ’Vg’wz“t (t)(lm(ao)){W(&voHop(n%)} dt

_ ot 39 707Zz,t ' o 99(v0, Zi, t)
=~ xat [ Z 020 ) 1/11(90)){ - }dt

CORL / S (T 00— )
= 0p(1) x Op(1) 4+ 0,(1)

= o0p(1)

O

Proof of (4.66)



With similar argument in the proof of (4.59), we have

09("0, Zi, t)

—ne ZVT w; (t)(1 — i (60))4 90

}=0p(1).

It follows that

n

—nz ZVT wi(8)(1 = 13(00)) {9(%, Zi,t) — g(70, Zi 1)}

= —n észwz 1—1/%'(90)){WW—’YO)—F%(H_;)}

= (=) xn" 2ZVTU)7, wz(eo)){T}+OP(1)

= 0p(1) X Op(1) +0p(1)

= o,(1).

Proof of (4.67)

With similar argument to (4.58), it can be proven to be equal to o,(1).
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(A.14)

(A.15)



