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ABSTRACT

PUJA RATTAN. Isogeometric collocation method for elasticity problems containing
singularities. (Under the direction of DR. HAE-SOO OH)

Isogeometric analysis(IGA), introduced by Hughes, et al. [2,3], is a method which

combines both engineering design obtained by CAD and Finite Element(FE)-analysis

of the design. Prior to manufacturing, it is necessary to design the shape of the

object and then analyze the durability of the design. To design complex structures,

generally NURBS basis functions are used. Isogeometric analysis is effective in the

design-analysis-manufacture loop.

Babus̃ka and Oh [10] introduced mapping techniques called the Method of Auxiliary

Mapping(MAM) to handle singularities that occur in PDEs. However, this method

is unable to follow the framework of IGA. Thus, we are looking for another way to

handle singularity in IGA using collocation method.

For this, we are modifying B-spline basis functions using partition unity functions.

Then the neighborhood of singularity will be enriched by these modified basis func-

tions so that they can capture the singular behavior of the true solution. In this dis-

sertation, this method is tested to one-dimensional problems as well as 2-dimensional

problems. Also, we claim that our method is more effective and economical than

other existing methods in handling problems with singularities because the colloca-

tion method requires less computation than Galerkin method or any other existing

method.

Schwarz alternating method in the framework of IGA-Collocation is also discussed
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in this dissertation. In this method, domain is decomposed into two subdomains and

then the problem is solved by solving subproblems for each subdomain. We start

with some initial guess and iterate until we get a solution of desired accuracy. This

technique has been applied in one- and two-dimensions for overlapping as well as

non-overlapping subdomains. Elasticity problems with singularities were also solved

using this method. Numerical results are presented and compared with the results

obtained by IGA-Galerkin method.
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CHAPTER 1: INTRODUCTION

Isogeometric analysis(IGA), introduced by Hughes, et al. [2,3], is a method which

combines both engineering design obtained by CAD and Finite Element(FE)-analysis

of the design. For any practical problem, it is necessary to design the shape of the

object and then analyze the problem. To design complex curves, generally NURBS

basis functions are used. Isogeometric analysis is effective in the design-analysis-

manufacture loop.

In Chapter 2, we review definitions and terminologies that are needed to understand

this paper. Readers are suggested to read books such as Rogers [8], Piegl and Tiller [9]

for more information. In section 2.2, three types of refinement methods are explained

with examples. Section 2.3 gives the definition of Sobolev space and norm along with

formula of norms which are used to compute error in this dissertation.

In Chapter 3, the basic IGA-Galerkin and IGA-Collocation methods are briefly

explained and compared with an example. In section 3.2, several methods for con-

struction of partition of unity functions are discussed and used to enrich the region

of singularity. Numerical results are shown in section 3.3.Also, the problem with

oscillating singularity was tested in this section.

In Chapter 4, modification of basis functions is introduced so that C0-continuous

functions can be made C1-continuous and then IGA-Collocation method can be

used to solve the problem. In section 4.2, this method is extended to two dimen-
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sions.Section 4.3 explains global basis numbering which is used for assembling local

stiffness matrix for two dimensional problem. In section 4.4, this method is tested for

one as well as two dimensional problems.

In Chapter 5, Schwarz alternating method in the framework of IGA-Collocation

is introduced. In section 5.1, Schwarz alternating method is explained whereas in

section 5.2, parallel Schwarz method is explained. Results of numerical tests done in

one and two dimensions are shown in section 5.3.

In Chapter 6, we explained Schwarz alternating method for two nonoverlapping sub-

domains. Section 6.1 explains this method when Dirichlet-Neumann boundary con-

dition is imposed at interface and Section 6.2 explains this method when Neumann-

Neumann boundary condition is imposed at interface

In Chapter 7, Schwarz alternating iterative technique is explained for elasticity

problem. In section 7.1, we first review definitions and terminologies used in linear

elasticity. In section 7.2, Schwarz alternating method is used to solve coupled elliptic

equations with IGA-Collocation approach. In section 7.3, this method is tested on

non-singular as well as singular problems of elasticity.

Finally, the concluding remarks and future work is discussed in Chapter 8 of this

dissertation.



CHAPTER 2: PRELIMINARIES

2.1 B-Splines and NURBS

In this section, we briefly review definitions and terminologies that are needed to

understand this dissertation. Readers are suggested to read books such as Rogers [8],

Piegl and Tiller [9] for details.

2.1.1 B-Splines

A knot vector U = {u1, u2, u3, ...., um} is a non-decreasing sequence of real num-

bers in the parameter space [0, 1], and the components ui for i = 1, 2, ...,m are called

knots. An open knot vector of order p+ 1 is a knot vector in which the first and

the last knots are repeated p + 1 times. The interior knots can be repeated at most

p times.

u1 = ... = up+1 < up+2 ≤ ... ≤ um−p−1 < um−p = ... = um

There are many ways to define B-spline basis functions. Here it is defined by the

recurrence formula due to Cox-de Boor. The ith B-spline basis functions of order

k = p + 1 corresponding to the knot vector U are piecewise polynomials of degree p

which are denoted by Ni,t(u), is defined as

Ni,1(u) =


1 if ui ≤ u < ui+1

0 otherwise

(1)
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Figure 1: B-Spline functions Ni,3(u), i = 1, 2, ..., 7 of order k = 3 for knot vector
U = {0, 0, 0, 0.3, 0.3, 0.5, 0.6, 1, 1, 1}.

Ni,t(u) =
u− ui

ui+t−1 − ui
Ni,t−1(u) +

ui+t − u
ui+t − ui+1

Ni+1,t−1(u) (2)

where 1 ≤ i ≤ m− 1 and 2 ≤ t ≤ k

B-Spline function possesses the following important properties:

1. Ni,k(u) is non-negative for all i, k and u.

2. Each polynomial Ni,k(u) has local support on [ui, ui+k).

3. On any span [ui, ui+1), at most p+1 basis functions of degree p are non-zero,i.e,

Ni−p,k(u), Ni−p+1,k(u), Ni−p+2,k(u), ..., and Ni,k(u)

4. The sum of all non-zero degree p basis functions on span [ui, ui+1) is 1.

5. B-Spline functions are linearly independent.

6. N1,k(0) = Nm−1,k(1) = 1.

7. If the number of knots is m, the degree of the basis functions is p, then the

number of basis functions is n = m− (p+ 1).
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8. Basis function Ni,k(u) is a composite curve of degree p polynomials with joining

points at knots in [ui, ui+p+1).

9. At a knot of multiplicity k, basis function Ni,k(u) is Cp−k continuous.

A B-spline curve is defined as follows:

C(u) =
m−k∑
i=1

Ni,k(u)Bi, (3)

where Bi are control points that make B-spline functions draw a desired curve.B-spline

functions corresponding to the open knot vector of order k = n+ 1.

U = {0, 0, 0, ..., 0︸ ︷︷ ︸
n+1

, 1, 1, 1, ..., 1︸ ︷︷ ︸
n+1

}

are global polynomials, called Bézier-Bernstein polynomials.The B-spline curve ob-

tained by Bézier polynomials is called Bézier Curve. B-Spline curve possesses the

following important properties:

1. A B-spline curve C(u) is a piecewise curve where each piece is a curve of degree

p.

2. A B-spline curve C(u) satisfies convex hull property, which means that the

curve is contained in the convex hull of its control polyline. If u is in knot span

[ui, ui+1), then C(u) is in the convex hull of control points Bi−p, Bi−p+1, ..., Bi.

3. Changing the position of control point Bi only affects the curve C(u) on interval

[ui, ui+p+1).

4. A B-spline curve C(u) is Cp−k continuous at a knot of multiplicity k.
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(b) B-Spline basis functions

Figure 2: (a) B-Spline curve and control points for open knot vector U =
{0, 0, 0, 0.25, 0.6, 0.8, 0.8, 1, 1, 1}. (b) B-Spline functions corresponding to the B-Spline
curve shown in (a)
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5. If the curve is in a plane (or space) then no straight line (or plane) can intersect a

B-spline curve more than it intersects the curve’s control polyline. This property

is called variation diminishing property for B-spline curves.

6. B-spline curves also holds affine invariance property which means if an affine

transformation is applied to a B-spline curve, the result can be constructed from

the affine images of its control points.

If there are knot vectors U = {u1, u2, u3, ...., um} and V = {v1, v2, v3, ...., vn} in u

and v-direction respectively then a B-Spline surface is defined by

S(u, v) =
m−k∑
i=1

n−k′∑
j=1

Ni,k(u)Mj,k′(v)Bi,j, (4)

where Ni,k(u) and Mj,k′(v) are B-Spline functions of degree p and q respectively.

2.1.2 NURBS

A Non-Uniform Rational Basis(NURBS) function for the sets of weights {wi :

i = 1, ...,m− k} is defined by

Ri,k(u) =
Ni,k(u)wi
W (u)

, W (u) =
m−k∑
s=1

Ns,k(u)ws > 0. (5)

The NURBS basis functions are piecewise rational functions which possess these prop-

erties.

1. Ri,k(u) is non-negative for all i, k and u.

2. Each polynomial Ri,k(u) has local support on [ui, ui+k).

3. On any span [ui, ui+1), at most p + 1 basis functions of degree p are non-zero
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if the weights are non-negative i.e, Ri−p,k(u), Ri−p+1,k(u), Ri−p+2,k(u), ..., and

Ri,k(u)

4. The sum of all non-zero degree p basis functions on span [ui, ui+1) is 1.

5. NURBS basis functions are linearly independent.

6. If the number of knots is m, the degree of the basis functions is p, and the

number of degree p basis functions is n, then m = n+ p+ 1.

7. Rational basis function Ri,k(u) is a composite curve of degree p polynomials

with joining points at knots in [ui, ui+p+1).

8. At a knot of multiplicity k, basis function Ri,k(u) is Cp−k continuous.

9. If wi = c for all i, where c is a non-zero constant, Ri,k(u) = Ni,k(u).

A NURBS curve for weights wi and control points Bi is :

C(u) =
m−k∑
i=1

Ri,k(u)Bi. (6)

NURBS curve possesses the following important properties:

1. A NURBS curve C(u) is a piecewise curve where each piece is a rational curve

of degree p.

2. A NURBS curve C(u) satisfies convex hull property.

3. Changing the position of control point Bi only affects the NURBS curve C(u)

on interval [ui, ui+p+1).
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Figure 3: B-Spline surface and control net

Figure 4: NURBS curve and control points
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4. A NURBS curve C(u) is Cp−k continuous at a knot of multiplicity k.

5. NURBS curves also hold variation diminishing property.

6. NURBS curve do not hold affine invariance property but they do hold projective

invariance property. If the projective transformation is applied to a NURBS

curve, the result can be constructed from the projective images of its control

points.

If there are knot vectors U = {u1, u2, u3, ...., um} and V = {v1, v2, v3, ...., vn} in u

and v-direction respectively then a NURBS surface is defined for the given sets of

weights {wi,j : i = 1, ...,m− k, j = 1, ..., n− k′}

S(u, v) =
m−k∑
i=1

n−k′∑
j=1

Ni,k(u)Mj,k′(v)wi,jBi,j

W (u, v)
, (7)

where Ni,k(u) and Mj,k′(v) are NURBS basis functions of degree p and q respec-

tively.

2.2 Refinement

The B-spline basis can be enriched by three types of refinements. Knot insertion,

degree elevation or degree and continuity elevation. Knot insertion is equivalent to

h-refinement in classical FEM and degree elevation is equivalent to p-refinement in

classical FEM. Degree and continuity elevation does not exist in classical FEM.

2.2.1 Knot Insertion(h-refinement)

Knot insertion meaning, adding a new knot into the existing knot vector without

changing the shape of the curve. This new knot may or may not be equal to an
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Figure 5: (a)Initial B-Spline basis function with knot vector U =
{0, 0, 0, 1, 1, 1}.(b)B-Spline basis function after knot insertion with knot vector U =
{0, 0, 0,0.3,0.6, 1, 1, 1}.
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existing knot. If it’s equal to an existing knot then the multiplicity of that knot is

increased by one.

If we have a knot vector U = {u1, u2, u3, ...., um} with m knots and {P1, P2, ..., Pn}

n control points. We want to insert a new knot t into the knot vector without

changing the shape of the B-spline curve C(u) then the new knot vector will be

U = {u1 = u1, u2 = u2, ..., us = t, ..., um+1 = um} . Suppose the new knot t lies in the

knot span [us, us+1), the new control points Qi will be given by

Qi = (1− ai)Pi−1 + aiPi, (8)

where ai can be calculated from

ai =


1 if i ≤ s− p

t−ui
ui+p−ui for s− p+ 1 ≤ i ≤ s

0 if i ≥ s+ 1

(9)

2.2.2 Degree Elevation(p-refinement)

In this refinement we increases the degree of a curve without changing the shape

of the curve. To keep the geometry and the parametrization same we also increase

the multiplicity of each knot by 1 if the degree was elevated by 1. This way we can

preserve the discontinuities in the various derivatives already existing in the original

curve. For a surface, one can elevate degree in either the u- or the v- direction or both.

If we have a knot vector {u1 = ... = up+1 < up+2 ≤ ... ≤ um−p−1 < um−p = ... = um}

and n control points {P1, P2, ..., Pn}. We want to increase the degree of the curve by 1

without changing the shape of the B-spline curve C(u) then the new knot vector will
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(b)B-Spline basis function after degree elevation

Figure 6: (a)Initial B-Spline function with knot vector U = {0, 0, 0, 1, 1, 1}.(b)B-
Spline basis function after degree elevation with knot vector U =
{0, 0, 0, 0, 0, 1, 1, 1, 1, 1}.
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be {u1 = ... = up+1 = up+2 < up+3 = up+4 ≤ ... ≤ u2m−3p−4 = u2m−3p−3 < u2m−3p−2 =

... = u2m−2p−2} and the new control points Qi will be given by

Qi =


P1 if i = 1

(p+1−i)Pi+(i)Pi−1

p+1
for 2 ≤ i ≤ p+ 1

Pp+1 if i = p+ 2

(10)

2.2.3 k-refinement

In this refinement we elevate the degree as well as we insert a new knot without

changing the shape of the curve. This has no equivalent refinement in FEA. First we

increase the degree of the curve and also increase the multiplicity of all intermediate

knot values so the continuity of the curve does not change at these specific knots.

Then we insert a new knot. Significant amount of degrees of freedom can be saved

by using this refinement. These processes (Degree elevation and inserting knots) are

not commutative and therefore the order in which these refinements are applied will

change the final basis.

Suppose initial knot vector is U = {0, ..., 0︸ ︷︷ ︸
3

, 0.5, 1, ..., 1︸ ︷︷ ︸
3

} and we want to increase

the degree from p = 2 to p = 4 and also want to insert knot t = 0.6. If first degree

elevation occurs, we get U = {0, ..., 0︸ ︷︷ ︸
5

, 0.5, ..., 0.5︸ ︷︷ ︸
3

, 1, ..., 1︸ ︷︷ ︸
5

}. Initially, the regularity of

the curve was C2−1 at knot 0.5 which remained same(C4−3) after degree elevation.

Now inserting new knot U = {0, ..., 0︸ ︷︷ ︸
5

, 0.5, ..., 0.5︸ ︷︷ ︸
3

, 0.6, 1, ..., 1︸ ︷︷ ︸
5

} gives us total 9 basis

functions.

In case we reverse the order of degree elevation and knot insertion, we get U =
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Figure 7: (a)Initial B-Spline function with knot vector U = {0, 0, 0, 1, 1, 1}.(b)B-
Spline basis function after k-refinement with knot vector U =
{0, 0, 0, 0, 0, 0.3, 0.6, 1, 1, 1, 1, 1}.
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{0, ..., 0︸ ︷︷ ︸
3

, 0.5, 0.6, 1, ..., 1︸ ︷︷ ︸
3

} first by knot insertion and then by increasing the degree from

2 to 4 we have U = {0, ..., 0︸ ︷︷ ︸
5

, 0.5, ..., 0.5︸ ︷︷ ︸
3

, 0.6, ..., 0.6︸ ︷︷ ︸
3

, 1, ..., 1︸ ︷︷ ︸
5

} which gives total 11 basis

functions. This basis is completely different than what we had in the first case. First

case will have less degrees of freedom than the second case.

2.3 Sobolev Space and Norm

In PDEs we look for solutions in Sobolev space. A Sobolev space is a vector space

of functions equipped with a norm that is a combination of Lp-norms of the function

itself and its derivatives up to a given order. The Sobolev space denoted by W k,p(Ω),

is the collection of u defined in Ω such that for every multi-index α = (α1, ..., αd)

with | α |=| α1, ..., αd |≤ k, the weak derivative Dαu exists and belongs to Lp(Ω). On

W k,p(Ω) we shall use the norm

‖ u ‖Wk,p(Ω)= (
∑
|α|≤k

∫
Ω

|Dαu|pdx)
1
p if 1 ≤ p <∞ (11)

For a real number p ≥ 1, the p-norm or Lp-norm of x is defined by

‖x‖p = (|x1|p + |x2|p + · · ·+ |xn|p)
1
p . (12)

The L∞-norm (or maximum norm) is the limit of the Lp-norms for p −→∞. It turns

out that this limit is equivalent to the following definition:

‖x‖∞ = max {|x1|, |x2|, . . . , |xn|} (13)

The L2-norm (or euclidean norm) is given by

‖x‖2 :=

( n∑
i=1

|xi|2
)1/2

. (14)
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2.3.1 Weak solution in Sobolev space

Let an integer k ≥ 0, Ω ⊂ Rd and α = (α1, ..., αd) for u ∈ Hk(Ω), the norm and

the semi-norm, respectively, are defined by

‖ u ‖k,(Ω)= (
∑
|α|≤k

∫
Ω
|Dαu|2dx)

1
2 ,

‖ u ‖k,∞,(Ω)= max|α|≤k{ess.sup | Dαu(x) |: x ∈ Ω};

| u |k,(Ω)= (
∑
|α|=k

∫
Ω
|Dαu|2dx)

1
2 ,

| u |k,∞,(Ω)= max|α|=k{ess.sup | Dαu(x) |: x ∈ Ω}.

(15)

Suppose we are concerned with an elliptic boundary value problem on a domain Ω

with Dirichlet boundary condition g(x, y) along the boundary ∂Ω. Let

W = {w ∈ H1(Ω) : w|∂Ω = g} and V = {w ∈ H1(Ω) : w|∂Ω = 0} (16)

The variational formulation of the Dirichlet boundary value problem can be written

as follows: Find u ∈ W such that

B(u, v) = L(v), for all v ∈ V. (17)

where B is a continuous bilinear form that is V -elliptic ([17]) and L is a linear func-

tional on L2(Ω). The solution to (??) is called a weak solution which is equivalent

to the strong (classical) solution corresponding elliptic PDE whenever u is smooth

enough.The energy norm of the trial function u is defined by

‖u‖eng =

[
1

2
B(u, u)

] 1
2

. (18)

Relative error in energy norm(%) has been calculated for few problems in this disser-
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tation wherever IGA-Galerkin method has been used to solve the problem.

Since the NURBS basis functions do not satisfy the Kronecker delta property, in

this paper we approximate the non-homogeneous Dirichlet boundary condition by the

least squares method as follows: gh ∈ W h such that

∫
∂Ω

|g − gh|2dγ = minimum. (19)

Throughout this dissertation, we measure the percentage relative error | u− u
h

u
| in

the maximum norm(L∞) as well as in the L2 norm defined by:

‖u− uh‖∞,rel(%) =
‖u− uh‖∞
‖u‖∞

× 100, (20)

and

‖u− uh‖L2,rel(%) =
‖u− uh‖L2

‖u‖L2

× 100. (21)



CHAPTER 3: ENRICHED IGA-COLLOCATION

3.1 Isogeometric Analysis(IGA)

Throughout this dissertation, we use Collocation method and Galerkin method

in the framework of IGA for numerical solutions of PDEs. Thus we present basic

Galerkin and Collocation approximation methods.

3.1.1 IGA-Galerkin Method

Consider the following two-dimensional model problem
−∆u = f in Ω,

u = 0 on ∂Ω.

(22)

where f ∈ L2(Ω). Ω is a bounded connected open subset of R2 whose boundary ∂Ω

is Lipschitz continuous.

Using Green’s theorem we obtain the variational form of model problem (??) as

follows

∫∫
Ω

(∇u)T∇vdΩ =

∫∫
Ω

fvdΩ, for all v ∈ H1
0 (Ω). (23)

Suppose Vh is a finite dimensional subspace of H1
0 (Ω). Then the Galerkin approxi-

mation of (??) is to find uh ∈ Vh such that

∫∫
Ω

(∇uh)T∇vdΩ =

∫∫
Ω

fvdΩ, for all v ∈ Vh. (24)
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Suppose the collection {φ1, φ2, ..., φN} is a basis for Vh then since uh ∈ Vh we have

u(x, y) ≈ uh(x, y) =
N∑
i=1

ciφi(x, y), (25)

for some constants {c1, c2, ..., cN}. Substituting (??) into (??) we have the following

linear system for the unknown {c1, c2, ..., cN}:

N∑
j=1

cj

∫∫
Ω

(∇φi)T∇φjdΩ =

∫∫
Ω

fφidΩ, for i = 1, 2, ..., N. (26)

Let, 
∫∫

Ω
(∇φi)T∇φj = aij∫∫

Ω
fφi = bi

(27)

then the corresponding matrix equation for the unknown {c1, c2, ..., cN} is

∫∫
Ω

(∇φ1)T∇φ1

∫∫
Ω

(∇φ1)T∇φ2 . . .
∫∫

Ω
(∇φ1)T∇φN∫∫

Ω
(∇φ2)T∇φ1

∫∫
Ω

(∇φ2)T∇φ2 . . .
∫∫

Ω
(∇φ2)T∇φN

...
... . . .

...∫∫
Ω

(∇φN)T∇φ1

∫∫
Ω

(∇φN)T∇φ2 . . .
∫∫

Ω
(∇φN)T∇φN





c1

c2

...

cN


=



b1

b2

...

bN


(28)

By solving (??) we obtain galerkin approximate solution of (??) given by (??). When

NURBS basis functions are used for galerkin approximation, it is called IGA-Galerkin

method.

3.1.2 IGA-Collocation Method

Suppose the right hand function f(x, y) in (??) is continuous and pi = (xi, yi) is

a point in Ω ⊂ R2. For brevity, we write x = (x, y), xi = (xi, yi).If we use Dirac δ
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function δ(x− xi) as a test function

∫∫
Ω

(−∆u)δ(x− xi) =

∫∫
Ω

fδ(x− xi). (29)

Then from the shifting property of delta function we have,

(−∆u)(xi) = f(xi). (30)

Suppose the basis functions {φ1, φ2, ..., φN} are C1-continuous then by properly choos-

ing N distinct points {p1, p2, ..., pN} in Ω, we obtain a system of linear equation:

−∆(
N∑
i=1

ciφi)(pi) = f(pi) for i = 1, 2, ..., N. (31)

or,

−
N∑
i=1

ci(∆φi)(pi) = f(pi) for i = 1, 2, ..., N. (32)

By solving the system in (??), one can determine the unknown coefficients ci, i =

1, 2, ..., N. This method is called the collocation approximation method.

The collocation method using C1-continuous NURBS basis functions will be called

IGA-Collocation . Even though the collocation method has many advantages over

Galerkin method, the method have not widely been employed because of the com-

plexity of constructions of C1-basis functions.

However, since highly smooth basis functions are used in IGA of numerical solu-

tions of PDEs, the collocation method start to draw attentions. The success of the

collocation method depends on not only constructing C1-continuous basis function,

but the proper choice of collocation points. Commonly used collocation points are
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Greville abscissae of the knot vectors and Gaussian quadrature points.

Greville abscissae- The Greville abscissae ūi for the knot vector U = {u1, u2, u3, ...., um}

can be found by the formula

ūi =
ui+1 + ui+2 + ...+ ui+p

p
, 1 ≤ i ≤ m− k. (33)

For example, the Greville abscissae of a knot vector U = {0, 0, 0, 1

2
, 1, 1, 1} are

ū1 = 0, ū2 =
1

4
, ū3 =

3

4
, ū4 = 1.

Gaussian quadrature points-In numerical analysis, the quadrature rule is an ap-

proximation of the definite integral of a function, usually stated as a weighted sum of

function values at specified points within the domain of integration. For the domain

[−1, 1] the rule is stated as

1∫
−1

f(x)dx ≈
n∑
i=1

wif(xi) (34)

where wi’s,

wi =
2

(1− xi)2[P ′n(xi)]2
(35)

are the weights for Gauss-Legendre quadrature and xi is the i-th root of Legendre

polynomial Pn(x), where by Rodrigue formula, Pn(x) is defined by

Pn(x) =
1

2nn!

dn

dxn
[(x2 − 1)n]. (36)

These quadrature points are another choice for collocation points.
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Figure 8: Mapping F maps Ω̂ = [0, 1] × [0, 1] to physical space is Ω = [(r, θ) : r <
1, 0 < θ < 2π] with crack along the positive x-axis

3.1.3 Mapping Techniques in IGA-Collocation and IGA-Galerkin Methods

In order to show advantage of using IGA-Collocation over IGA-Galerkin , both

methods are applied to the same elliptic boundary value problem with singularity of

type

rλψ(θ), where 0 < λ < 1, and ψ is a smooth function. (37)

The problem discussed here has a singularity of type r
1
2 on a cracked circular domain

of radius 1 and centered at origin.
−∆u = f in Ω = [(r, θ) : r < 1, 0 < θ < 2π]

u = 0 on ∂Ω

(38)

which has the exact solution:

u(r, θ) =
√
r(1− r)

[
sin(

θ

2
) + sin(

3θ

2
)

]
. (39)

Let F be a smooth mapping from the parameter space Ω̂ = [0, 1] × [0, 1] onto the
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Figure 9: Relative error in the max-norm in percentage for cracked domain problem
using IGA-Collocation and IGA-Galerkin methods

physical space Ω = [(r, θ) : r < 1, 0 < θ < 2π] with crack along the positive x-axis,

which is defined as follows:

F : Ω̂→ Ω and F (u, v) = (x(u, v), y(u, v)),

where

F (u, v) =


x(u, v) = v2 cos(2π(1− u))

y(u, v) = v2 sin(2π(1− u)).

(40)

This construction of mapping F generates singular functions. For IGA-Galerkin, the

basis functions should be at least C0-continuous but for IGA-Collocation they have

to be at least C1-continuous basis function. Therefore we started with B-spline basis
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Figure 10: L2-Norm in percentage for cracked domain problem using IGA-Collocation
and IGA-Galerkin methods

Table 1: Comparison of relative error in the maximum norm(%) for IGA-Galerkin
and IGA-Collocation methods for crack singularity problem. (pu, pv) are degrees of
B-spline functions.

(pu, pv) dof IGA-Colloaction IGA-Galerkin
(4, 3) 24 2.132E+00 1.756E-01
(5, 3) 32 2.916E-01 9.824E-03
(6, 3) 40 6.304E-02 1.062E-03
(7, 3) 48 5.360E-03 2.896E-05
(8, 3) 56 9.636E-04 4.976E-06
(9, 3) 64 5.731E-05 2.162E-07
(10, 3) 72 8.824E-06 1.319E-08

functions corresponding to

U = {0, ..., 0︸ ︷︷ ︸
5

, 1
4
, 1

4
, 1

4
, 1

2
, 1

2
, 1

2
, 3

4
, 3

4
, 3

4
, 1, ..., 1︸ ︷︷ ︸

5

}

V = {0, ..., 0︸ ︷︷ ︸
4

, 1, ..., 1︸ ︷︷ ︸
4

}
(41)

in u- direction and v-direction respectively. To improve the isogeometric analysis of

(??) in the angular direction we elevate the degree of B-spline functions with the fixed

mesh size h = 1
4

(the p-refinement).
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Table 2: Comparison of relative error in the L2-norm(%) for IGA-Galerkin and IGA-
Collocation methods for crack singularity problem

(pu, pv) dof IGA-Colloaction IGA-Galerkin
(4, 3) 24 1.314E+00 1.353E-01
(5, 3) 32 1.986E-01 8.378E-03
(6, 3) 40 3.939E-02 8.915E-04
(7, 3) 48 3.513E-03 4.922E-0-5
(8, 3) 56 5.945E-04 3.863E-06
(9, 3) 64 3.677E-05 1.849E-07
(10, 3) 72 5.403E-06 1.147E-08

Table 3: Comparison of computing time(in seconds) for IGA-Galerkin and IGA-
Collocation methods for crack singularity problem

(pu, pv) dof IGA-Colloaction IGA-Galerkin
(4, 3) 24 2.028 24.913
(5, 3) 32 3.042 49.561
(6, 3) 40 4.726 61.448
(7, 3) 48 7.456 142.833
(8, 3) 56 10.311 258.539
(9, 3) 64 12.947 335.385
(10, 3) 72 20.732 635.672

The relative error in the maximum norm(%) for both IGA-Collocation and IGA-

Galerkin are listed in Table ?? and the relative error in the L2-norm(%) for both

methods is listed in Table ??.

Table ?? and Fig. ?? shows the computing time for IGA-Galerkin and IGA-

Collocation methods. We can see that as we elevate degree of basis function, time

taken for IGA-Collocation increases linearly but for IGA-Galerkin it increases almost

quadtratically. Therefore, IGA-Collocation method has advantage over IGA-Galerkin

when we are dealing with large scale problems even though the accuracy of solution

is less than one order of magnitude than the IGA-Galerkin . It saves lot of time and
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Figure 11: Computing time(in seconds) for IGA-Collocation and IGA-Galerkin

money in computation.

3.2 Partition of Unity(PU) Functions

In literature, several methods for constructions of partition of unity(PU) functions

are suggested. In this section, we are going to discuss various types of PU functions

applicable to implement in our method. For this purpose, let us first introduce the

notations and definitions.

Let Ω ⊆ Rd. Form ≥ 0, Cm(Ω) denotes the space of all functions φ with continuous

derivatives upto order m. The support of φ is defined by

supp φ = {x ∈ Ω : φ(x) 6= 0}

A family {Uk : k ∈ D} of open subsets of Rd is said to be a point finite open covering

of Ω ⊆ Rd if there is M such that any x ∈ Ω lies in at most M of the open sets Uk

and Ω ⊆
⋃
k Uk.

For a point finite open covering {Uk : k ∈ D} of a domain Ω, suppose there is a
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Figure 12: The true Solution given by (??)

Figure 13: Numerical solutions obtained by IGA-Collocation with mapping technique

Figure 14: Numerical solutions obtained by IGA-Collocation without mapping tech-
nique
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Figure 15: Absolute error obtained by IGA-Collocation with mapping technique

Figure 16: Absolute error obtained by IGA-Collocation without mapping technique
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Figure 17: One-dimensional non-flat top PU function

family {ψk : k ∈ D} of Lipschitz functions on Ω satisfying the following conditions:

1.For k ∈ D, 0 ≤ ψk(x) ≤ 1, x ∈ Rd.

2. The supp(ψk) ⊆ Uk, for each k ∈ D.

3.
∑

k∈D ψk(x) = 1 for each x ∈ Ω.

Then {ψk : k ∈ D} is called a partition of unity (PU) subordinate to the covering

{Uk : k ∈ D}. The covering sets Uk are called patches. A window(or weight)

function is a non-negative continuous function with compact support and is denoted

by w(x). We consider the following conical window function in this paper: For x ∈ R,

w(x) =


(1− x2)l if | x |≤ 1,

0 if | x |> 1

(42)

where l is a positive integer. Then w(x) is a C l−1 function and it can be con-

structed from a one dimensional weight function as w(x) =
∏d

i=1w(xi), where x =

(x1, x2, ..., xd). Normalized window functions are defined by

wlδ(x) = Aw(
x

δ
) (43)

where A =
(2l + 1)!

22l+1(l!)2δ
is a constant that gives

∫
R
wlδ(x)dx = 1.
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1- Shepard PU shape functions:

Suppose window function is built at every particle xi for each patch wi, i =

1, 2, ..., N . Then the PU functions ϕi(x) associated with particle xi, i = 1, 2, ..., N

is defied by

ϕi(x) =
wi(x− xi)∑
k wk(x− xi)

, for all x ∈ R (44)

2- One-dimensional non-flat top PU functions[6]:

This PU function is constructed by Cn−1 piecewise polynomial ϕn(x) for any

integer n ≥ 1

ϕn(x) =


ϕLn(x) := (1 + x)ngn(x) if x ∈ [−1, 0]

ϕRn(x) := (1− x)ngn(−x) if x ∈ [0, 1]

0 otherwise

(45)

where gn(x) = a0,n + a1,n(−x) + a2,n(−x)2 + ...+ an−1,n(−x)n−1 is a polynomial

of degree n− 1. The coefficients ak,n’s are defined by

ak,n(x) =


1 if k = 0∑k

i=0 ai,n−1 if 0 < k ≤ n− 2

2an−2,n if k = n− 1.

(46)
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Using above recurrence formula we get gn(x) as follows:

g1(x) = 1

g2(x) = 1− 2x

g3(x) = 1− 3x+ 6x2

g4(x) = 1− 4x+ 10x2 − x3

g5(x) = 1− 5x+ 15x2 − 35x3 + 70x4

......

(47)

and so on. Since ϕn(x) depends on both (1 + x)n and gn(x) therefore it’s Cn−1

continuous.

3- One-dimensional convolution flat-top PU functions[6]:

Suppose domain Ω = [a, b] is partitioned uniformly (or non-uniformly) such that

x1 = a− δ < a < x2 < ... < xn < b < xn+1 = b+ δ (48)

Using non-flat PU functions we can construct PU functions with flat top whose

support is [a− δ, b+ δ] with (a+ δ) < b− δ in the following way:

ψ
(δ,n−1)
[a,b] (x) =



ϕLn(x−(a+δ)
2δ

) if x ∈ [a− δ, a+ δ]

1 if x ∈ [a+ δ, b− δ]

ϕRn (x−(b−δ)
2δ

) if x ∈ [b− δ, b+ δ]

0 if x 6∈ [a− δ, b+ δ]

(49)

where ϕLn and ϕRn are defined by (??).

Here, in order to make a PU function have a flat-top, we assume δ ≤ (b−a)
3

.

Actually, ψ
(δ,n−1)
[a,b] (x) is the convolution, χQk(x) ∗ wn−1

δ , of the characteristic
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function χQk(x) and the scaled window function wn−1
δ , defined by (??). Let

Qk = [xk, xk+1] be an interval with | xk+1 − xk |≥ 3δ for k = 1, 2, ..., n then the

characteristic function χQk(x) is defined by

χQk(x) =


1 if x ∈ [xk, xk+1],

0 if x 6∈ [xk, xk+1]

(50)

Since
∑n

k=1 χQk(x) = 1, for all x ∈ Ω except for nodal points which implies∑n
k=1 ψ

(δ,n−1)
k (x) = 1 for all x ∈ Ω.

4- Two-dimensional flat-top PU functions using B-Splines:

Suppose

Ni,k(u), 1 ≤ i ≤ m− k

and

Mj,k′(v), 1 ≤ j ≤ n− k′

are B-spline functions corresponding to open knot vectors

U = {u1, u2, u3, ...., um}

and

V = {v1, v2, v3, ...., vn}

in u-direction and in v-direction respectively. Supports of B-spline functions

Ni,k(u) and Mj,k′(v) are [ui, ui+k) and [vj, vj+k′) respectively. We can construct

PU functions with flat top φi(u) and φj(v) using B-spline functions Ni,k(u) and
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Mj,k′(v) in the following way. Let us consider knot vector

U = {0, ..., 0︸ ︷︷ ︸
4

, 0.35, 0.35, 0.4, 0.4, 0.6, 0.6, 0.65, 0.65, 1, ..., 1︸ ︷︷ ︸
4

}

This knot vector will have twelve cubic B-Spline functions in u−direction with

following support:

Supp(N1,4(u)) = [0, 0.35], Supp(N2,4(u)) = [0, 0.35],

Supp(N3,4(u)) = [0, 0.4], Supp(N4,4(u)) = [0, 0.4],

Supp(N5,4(u)) = [0.35, 0.6], Supp(N6,4(u)) = [0.35, 0.6],

Supp(N7,4(u)) = [0.4, 0.65], Supp(N8,4(u)) = [0.4, 0.65],

Supp(N9,4(u)) = [0.6, 1], Supp(N10,4(u)) = [0.6, 1],

Supp(N11,4(u)) = [0.65, 1], Supp(N12,4(u)) = [0.65, 1]

We will construct φi(u) function using middle section of B-Spline fucntions

φi(u) = N5,4(u) +N6,4(u) +N7,4(u) +N8,4(u) = 1 if x ∈ [0.4, 0.6] (51)

Hence,

φi(u) =



N5,4(u) +N6,4(u) if x ∈ [0.35, 0.4),

1 if x ∈ [0.4, 0.6],

N7,4(u) +N8,4(u) if x ∈ (0.6, 0.65],

0 otherwise.

(52)

Similarly for knot vector V = {0, ..., 0︸ ︷︷ ︸
4

, 0.2, 0.2, 0.3, 0.3, 1, ..., 1︸ ︷︷ ︸
4

} there will be

eight cubic B-Spline functions in v−direction with following support:

Supp(M1,4(u)) = [0, 0.2], Supp(M2,4(u)) = [0, 0.2],
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Supp(M3,4(u)) = [0, 0.3], Supp(M4,4(u)) = [0, 0.3],

Supp(M5,4(u)) = [0.2, 1], Supp(M6,4(u)) = [0.2, 1],

Supp(M7,4(u)) = [0.3, 1], Supp(M8,4(u)) = [0.3, 1].

we will construct φj(v) function using first section of B-Spline functions

φj(v) = M1,4(v) +M2,4(v) +M3,4(v) +M4,4(v) = 1 if x ∈ [0, 0.2] (53)

Hence,

φj(v) =


1 if x ∈ [0, 0.2],

M3,4(v) +M4,4(v) if x ∈ (0.2, 0.3),

0 if x ∈ [0.3, 1].

(54)

We can construct two-dimensional flat top PU function by taking tensor product

of φi(u) and φj(v) functions.

ψi,j(u, v) = φi(u)× φj(v) =
8∑
i=5

4∑
j=1

Ni,4(u)Mj,4(v) (55)

It’s not difficult to see that ψi,j(u, v) is a unit function on the rectangle [0.4, 0.6]×

[0, 0.2] .

3.3 Numerical Results

To show the effectiveness of our method we test enrichment method for nonsingular

as well as for singular problems.
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3.3.1 An elliptic equation with smooth solution

Consider second order boundary value problem containing no singularity.
−u′′(x) = f for x ∈ (0, 1)

u(0) = u(1) = 0

(56)

which has the exact solution:

u(x) = x2(x− 1) (57)

We considered knot vector

U = {0, 0, 0, 0.45, 0.5, 0.55, 1, 1, 1}

for construction of C∞-continuous PU functions with flat top. This knot vector will

generate six quadratic B-Spline functions with following supports:

Supp(N1,3(u)) = [0, 0.45], Supp(N2,3(u)) = [0, 0.5],

Supp(N3,3(u)) = [0, 0.55], Supp(N4,3(u)) = [0.45, 1],

Supp(N5,3(u)) = [0.5, 1], Supp(N6,3(u)) = [0.55, 1].

Let φ1(u) and φ2(u) be C∈-continuous PU function constructed by B-spline func-

tions as follows:

φL1 (u) =


1 if x ∈ [0, 0.45]

N1,3(u) +N2,3(u) +N3,3(u) if x ∈ [0.45, 0.55]

0 x ∈ [0.55, 1]

(58)
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Table 4: The relative errors in the maximum norm in percentage for numerical solu-
tions of one dimensional non-singular problem obtained by enriched IGA-Collocation

Degree of 1st segment Degree of 2nd segment IGA-Collocation
p = 6 p = 3 2.01E-15
p = 6 p = 6 8.43E-16
p = 10 p = 7 1.59E-15

and,

φR2 (u) =


0 if x ∈ [0, 0.45]

N4,3(u) +N5,3(u) +N6,3(u) if x ∈ [0.45, 0.55]

1 x ∈ [0.55, 1].

(59)

These φ1(u) and φ2(u) are flat top PU-functions with non flat-top on [0.45, 0.55]. Let

Bk(ξ) = nCk(1− ξ)n−kξk, k = 0, 1, 2, ...n

be Bernstein polynomials(Bézier functions) of degree n. Let T1 : [0, 1] −→ [0, 0.55]

and T2 : [0, 1] −→ [0.45, 1] be bijective linear mapping. We construct C2-continuous

basis functions on [0, 0.55] and [0.45, 1] as follows:

V1 = {Bk(T
−1
1 (x))× φ1(x)|k = 1, 2, ..., n1} (60)

V2 = {Bk(T
−1
2 (x))× φ2(x)|k = 1, 2, ..., n2}. (61)

We define approximation space V on [0, 1] by

V = span(V1 ∪ V2)

. Relative errors in the maximum norm in percentage with respect to various combi-

nations of p-degree are shown in Table ?? incase where true solution is smooth.
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Table 5: The relative errors in the maximum norm in percentage for numerical solu-
tions of one dimensional problem containing singularity obtained by enriched IGA-
Collocation

Degree of 1st segment Degree of 2nd segment IGA-Collocation
p = 6 p = 3 5.10E-2
p = 6 p = 6 7.93E-3
p = 10 p = 7 1.46E-3

3.3.2 Problem with Monotone Singularity of type xλ

Consider a model second order boundary value problem with singularity,
−u′′(x) = f for x ∈ (0, 1)

u(0) = u(1) = 0

(62)

which has the exact solution:

u(x) = x1.7(x− 1). (63)

This elliptic boundary value problem containing singularity was solved in the same

way problem containing no singularity was solved. Relative errors in the maximum

norm in percentage with respect to various combinations of p-degree are shown in

Table ??.

3.3.3 Problem with Oscillating Singularity

This test problem is on the domain [0,1]
−u′′(x) = f for x ∈ (0, 1)

u(0) = u(1) = 0

(64)
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Figure 19: Relative error in the max-norm(%) for oscillating singularity problem using
IGA-Collocation method

Table 6: The relative errors in the maximum norm in percentage of numerical solu-
tions of one dimensional second order equation with oscillating singularity obtained
by IGA-Collocation

Degree of 1st segment Degree of 2nd segment DOF IGA-Collocation
p = 5 p = 6 29 2.49E-07
p = 5 p = 7 30 9.63E-09
p = 5 p = 8 31 9.91E-10
p = 5 p = 9 32 1.91E-10
p = 5 p = 10 33 7.69E-12

which has the exact solution:

u(x) = x0.65 sin(0.1 log x) (65)

To solve this problem, domain [0,1] was divided into two overlapping subdomains

[0, 0.55] and [0.45, 1]. An enrichment function x0.65 sin(0.1 log x) is introduced in the

singularity part to capture singularity.

Vs1 = {x0.65 sin(0.1 log x)× φL(x)} ∪ V1
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V = span(Vs1 ∪ V2).

Relative errors in the maximum-norm(%) of the problem with oscillating singularity

obtained by IGA-Collocation using enriched functions in V are displayed in Table

??.



CHAPTER 4: MODIFICATION OF BASIS FUNCTIONS

For collocation method the basis functions should have continuous derivatives (i.e,

C1). If a problem is solved element wise like in finite element method then we need

to modify functions at the patch to make them C1 continuous.

4.1 Modification of Bézier Polynomials in One-dimension

If we divide physical domain into several patches and assemble B-spline functions

constructed on each patch in a patchwise manner, then the derivatives of assembled

B-spline functions could be discontinuous along the patch boundaries. So we need to

do some modifications in order to make them continuous [18]. These modified Bézier

functions are linearly independent and their first derivatives are zero at both ends

except for second and second last functions.

By theorem 2.1[18], for 2 ≤ k ≤ n − 1 the first function N1,n+1(u) and the last

function Nn+1,n+1(u) can be altered as shown in Table ?? and these alterations are

called Nodal Alteration. The alterations to the second function N2,n+1(u) and

to the second last function Nn,n+1(u) are called Side Alteration. Applying this

technique to degree 5 Bézier functions and taking s = 2 we will get these modified
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Table 7: Original and Modification of B-Spline Functions

Index of B-spline function Original function Modified function
First function N1,k(u) N1,s(u)(1 + sx)
Second function N2,k(u) −N2,k(u)J(φ)
Second last function Nm−k−1,k(u) Nm−k−1,k(u)J(φ)
Last function Nm−k,k(u) Nm−k,s(u)(1 + s− sx)

Bézier functions. 

N1,6(u) = (1− u)2(1 + 2u),

N2,6(u) = −5u(1− u)4 |J(ϕk(u))| ,

N3,6(u) = 10u2(1− u)3,

N4,6(u) = 10u3(1− u)2,

N5,6(u) = 5u4(1− u) |J(ϕk(u))| ,

N6,6(u) = u2(3− 2u),

(66)

where ϕk(u) is a linear patch mapping from reference domain Ω = [0, 1] to physical

subdomain Ωk = [xk, xk+1] and J(ϕk(u)) is the Jacobian of ϕk(u). This mapping

ϕk(u) : Ω→ Ωk is defined by

ϕk(u) = (xk+1 − xk)u+ xk. (67)

4.2 Two-dimensional Extension of Modification

This modification technique can be extended to two dimensions also.Consider mesh

sizes hi = xi+1−xi and kj = yj+1−yj of [a, b] and [c, d] respectively. Two dimensional

linear patch mapping ϕi,j(u, v) : Ω→ Ωi,j is defined by

ϕi,j(u, v) = {hiu+ xi, kjv + yj} (68)
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Like one dimension case, we will modify Bézier polynomials Ni,k(u) and Mj,k′(v) to

get sets of modified Bézier basis functions in both u and v directions. Tensor product

of these modified functions will give the reference shape functions for two dimension.

If we denote altered Bézier polynomials by Ñi,k(u) and M̃j,k′(v) and take degree

4 polynomials in both directions then the tensor product will give us 25 reference

shape functions.

Nodal Alterations:


Ñ1,5(u)× M̃1,5(v) Ñ1,5(u)× M̃5,5(v)

Ñ5,5(u)× M̃1,5(v) Ñ5,5(u)× M̃5,5(v)

(69)

Side Alterations:



Ñ1,5(u)× M̃2,5(v) Ñ1,5(u)×M3,5(v) Ñ1,5(u)×M4,5(v)

Ñ2,5(u)× M̃1,5(v) N3,5(u)× M̃1,5(v) N4,5(u)× M̃1,5(v)

Ñ5,5(u)× M̃2,5(v) Ñ5,5(u)×M3,5(v) Ñ5,5(u)×M4,5(v)

Ñ2,5(u)× M̃5,5(v) N3,5(u)× M̃5,5(v) N4,5(u)× M̃5,5(v)

(70)

Inside Alterations:


Ñ2,5(u)× M̃2,5(v) Ñ2,5(u)×M3,5(v) Ñ2,5(u)×M4,5(v)

N3,5(u)× M̃2,5(v) N3,5(u)×M3,5(v) N3,5(u)×M4,5(v)

N4,5(u)× M̃2,5(v) N4,5(u)×M3,5(v) N4,5(u)×M4,5(v)

(71)

4.3 Global Basis Numbering Used for Assembling Local Stiffness Matrices

When the modified Bézier polynomials of degree 4 is applied to elliptic PDE on a

rectangular domain consisted of nine rectangular patches, numbering of global basis

functions constructed by push-forwards of the 25 modified Bézier polynomials onto

nine patches are as follows[7b]:
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13© 97 96 95 14© 95 109 108 15© 108 117 116 16©

98 103 104 105 94 105 112 113 107 113 120 121 115

99 100 101 102 93 102 110 111 106 111 118 119 114

69 74 75 76 65 76 83 84 78 84 91 92 86

9© 68 67 66 10© 66 80 79 11© 79 88 87 12©

69 74 75 76 65 76 83 84 78 84 91 92 86

70 71 72 73 64 73 81 82 77 82 89 90 85

26 35 36 37 22 37 49 50 42 50 62 63 55

5© 25 24 23 6© 23 44 43 7© 43 57 56 8©

26 35 36 37 22 37 49 50 42 50 62 63 55

27 32 33 34 21 34 47 48 41 48 60 61 54

28 29 30 31 20 31 45 46 40 46 58 59 53

1© 17 18 19 2© 19 38 39 3© 39 51 52 4©

(72)

Here k© represents the nodal basis function corresponding to the kth node.

Local numbering for the 25 shape functions listed in (??), (??), (??), are as follows:

4© 13 12 11 3©

14 23 24 25 10

15 20 21 22 9

16 17 18 19 8

1© 5 6 7 2©

(73)

Here the shape functions listed in (??), (??), (??), respectively, is assigned the fol-
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lowing local numbers:

(Nodal)

 4 3

1 2

 , (Side)



14 15 16

11 12 13

8 9 10

5 6 7


, (Internal)


23 24 25

20 21 22

17 18 19

 .

4.4 Numerical Results

In this section we discuss few one and two dimensional problems, where modified

B-spline basis functions were used.

4.4.1 One-dimensional Non-singular Problem

The first test problem is on the domain [0,1]
−u′′(x) = f for x ∈ (0, 1)

u(0) = u(1) = 0

(74)

which has the exact solution:

u(x) = x2(x− 1) (75)

This problem was numerically solved using the IGA-Collocation method. The basis

functions were altered as discussed at the beginning of this chapter. The knot vectors

were chosen as U = {0, ..., 0︸ ︷︷ ︸
7

, 1, ..., 1︸ ︷︷ ︸
7

} to get Bézier functions of degree 6. We used

Gauss points for collocation.

Physical domain [0,1] was first divided into 4 unequal mesh size to solve this prob-

lem using collocation method. The relative error in the max-norm in percentage was
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Table 8: Comparison of FEM-Galerkin and FEM-Collocation methods for one dimen-
sional non-singular problem

Degree FEM-Galerkin FEM-Collocation
p = 6 9.36E-16 1.87E-15
p = 7 9.36E-16 5.24E-15
p = 8 1.49E-15 1.87E-15
p = 9 9.36E-16 4.21E-15
p = 10 1.12E-15 8.43E-16

approximately 10−15 which is almost true solution. We also compared this result

with FEM-Galerkin method. The comparison between FEM-Collocation and FEM-

Galerkin for different degrees of basis functions are shown in Table ??. Increasing

degree of Bézier polynomials will not make much difference so we can use less degrees

of freedom(DOF) to get the same result.

4.4.2 One-dimensional Problem with Monotone Singularity of type xλ

Consider a model poisson equation,
−u′′(x) = f for x ∈ (0, 1)

u(0) = u(1) = 0

(76)

which has the exact solution:

u(x) = x1.7(x− 1). (77)

Like non singular problem, in this problem also physical domain [0,1] was first divided

into 4 unequal mesh size. The relative error in the max-norm in percentage for IGA-

Collocation and IGA-Galerkin for different degrees of basis functions are shown in

Table ??.
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Table 9: Comparison of IGA-Galerkin and IGA-Collocation method for one dimen-
sional singular problem

Degree DOF FEM-Galerkin FEM-Collocation
p = 6 22 4.28E-05 3.32E-04

p = 7 26 2.49E-05 2.20E-04

p = 8 30 1.56E-05 1.24E-04

p = 9 34 1.05E-05 6.33E-05

p = 10 38 7.41E-06 4.21E-05

Table 10: Comparison of FEM-Galerkin and FEM-Collocation for two dimensional
problem

Method degree ‖u− uh‖∞,rel(%) ‖u− uh‖L2,rel(%) ‖u− uh‖eng,rel(%)

IGA-Galerkin p = 4 1.44E-15 6.06E-14 1.74E-06
IGA-Collocation p = 4 5.76E-13 1.21E-12 N/A

4.4.3 Two-dimensional Non-singular Problem

This test problem is on the domain Ω = [0,
3

2
]× [0,

3

2
]

−∆u = f in Ω

u = 0 on ∂Ω

(78)

which has the exact solution:

u(x, y) = x2y2(x− 3

2
)(y − 3

2
) (79)

To solve this 2-D problem, the physical domain was partitioned into 3 equal sized

mesh in both directions resulting in 9 rectangular grid. The B-spline functions were

modified in both u and v directions. We chose p = 4 for this problem. There were

total 25 altered basis functions in each grid. We first created the local stiffness matrix

then followed the numbering technique mentioned in previous section to create the

global stiffness matrix.
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We solved this problem with both FEM-Galerkin and FEM-Collocation method

and the error estimate is shown in Table ??. In FEM-Collocation method everything

was calculated in the reference domain. Computation of higher order derivatives were

done in the following way:

Consider a mapping Φ : Ω̂→ Ω from reference space to physical space.

f̂ = f ◦ Φ, where f(u, v) = (x, y).

By chain rule,

∂f̂

∂u
=
∂f

∂x

∂x

∂u
+
∂f

∂y

∂y

∂u
,

∂f̂

∂v
=
∂f

∂x

∂x

∂v
+
∂f

∂y

∂y

∂v

. Hence,

(∇xyf) ◦ Φ = J(Φ)−1∇uv(f ◦ Φ) (80)

where J11 =
∂x

∂u
; J12 =

∂y

∂u
; J21 =

∂x

∂v
; J22 =

∂y

∂v
. For second derivative,

(∇xyfx) ◦ Φ = J(Φ)−1∇uv(fx ◦ Φ), (∇xyfy) ◦ Φ = J(Φ)−1∇uv(fy ◦ Φ). (81)

Therefore,

fxx ◦ Φ = J(Φ)−1∂((J11)−1f̂u + (J12)−1f̂v)

∂u
,

fxy ◦ Φ = J(Φ)−1∂((J11)−1f̂u + (J12)−1f̂v)

∂v
,

fyx ◦ Φ = J(Φ)−1∂((J21)−1f̂u + (J22)−1f̂v)

∂u
,

fyy ◦ Φ = J(Φ)−1∂((J21)−1f̂u + (J22)−1f̂v)

∂v

. Since inverse mapping Φ−1 : Ω→ Ω̂
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f = f̂ ◦ Φ−1,

(∂xxf) ◦ Φ = (J11)−1 ∂

∂u
{(J11)−1 ∂

∂u
f̂ + (J12)−1 ∂

∂v
f̂}+ (J12)−1 ∂

∂v
{(J11)−1 ∂

∂u
f̂ + (J12)−1 ∂

∂v
f̂},

(∂yyf) ◦ Φ = (J21)−1 ∂

∂u
{(J21)−1 ∂

∂u
f̂ + (J22)−1 ∂

∂v
f̂}+ (J22)−1 ∂

∂v
{(J21)−1 ∂

∂u
f̂ + (J22)−1 ∂

∂v
f̂},

(∂xyf) ◦ Φ = (J21)−1 ∂

∂u
{(J11)−1 ∂

∂u
f̂ + (J12)−1 ∂

∂v
f̂}+ (J22)−1 ∂

∂v
{(J11)−1 ∂

∂u
f̂ + (J12)−1 ∂

∂v
f̂},

(∂yxf) ◦ Φ = (J11)−1 ∂

∂u
{(J21)−1 ∂

∂u
f̂ + (J22)−1 ∂

∂v
f̂}+ (J12)−1 ∂

∂v
{(J21)−1 ∂

∂u
f̂ + (J22)−1 ∂

∂v
f̂},

∆xyf ◦ Φ = ∆xy(f̂ ◦ Φ−1) ◦ Φ = (∂xxf) ◦ Φ + (∂yyf) ◦ Φ

4.4.4 Two-dimensional Problem with Singularity

This test problem is the Poisson equation on the semi-circular domain of radius 1
2

and centered at origin. 
−∆u = f in Ω

u = 0 on ∂Ω

(82)

which has the exact solution:

u(r, θ) =
√
r(

1

2
− r) sin θ. (83)

To map parameter space to physical space we used smooth non-NURBS mapping

F : Ω̂→ Ω and F (u, v) = (x(u, v), y(u, v)) where

F (u, v) =


x(u, v) = (v2)

2
cos(π(1− u))

y(u, v) = (v2)
2

sin(π(1− u)).

(84)

The degree of the Bézier functions in v direction was fixed to 3 whereas the degree

in u direction was elevated. We used modified Bézier polynomial as basis functions.
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Figure 20: Relative error in the max-norm (%) of numerical solutions obtained by
IGA-Collocation
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Table 11: Error estimate for IGA-Collocation method for two-dimensional problem
on a semicircular domain with singularity.

(pu, pv) ‖u− uh‖∞,rel(%) ‖u− uh‖L2,rel(%)

(6,3) 3.63E-05 3.08E-05
(7,3) 6.02E-06 4.26E-06
(8,3) 2.88E-08 1.75E-08
(9,3) 3.54E-09 2.45E-09
(10,3) 1.45E-11 8.64E-12

The relative error estimate is displayed in Table ?? and the graphs of relative error in

the maximum norm(%) and L2-norm(%) are shown in Fig. ??and ?? respectively.



CHAPTER 5: SCHWARZ ALTERNATING METHOD IN THE FRAMEWORK
OF IGA-COLLOCATION

Schwarz alternating method was introduced by H. A. Schwarz[19] in 1870. A mod-

ification of this method is known as parallel Schwarz method. In Schwarz alternating

method, the domain is divided into two overlapping subdomains and the iterative

procedure starts by taking one initial guess for the boundary of first subproblem.

This method involves solving the boundary value problem on each of the two subdo-

mains in turn, taking always the last values of the approximate solution as the next

boundary conditions. It is important to note that in Schwarz alternating method,

the solution of the first problem is required before the second problem can be solved.

In parallel Schwarz method, the domain is divided into two overlapping subdomains

and the iterative procedure starts by taking initial guesses on each subdomain. In

this case the subproblem can be solved independently in each subdomain.

5.1 Schwarz Alternating Method

The classical Schwarz alternating method in the framework of IGA-Collocation is

explained in this section. Consider the Poisson problem
−∆u = f in Ω,

u = 0 on ∂Ω,

(85)

on a bounded Lipschitz region Ω with homogeneous(zero) boundary condition on

boundary ∂Ω. This domain is divided into two subdomains Ω1 and Ω2 with artificial
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Figure 22: Overlapping subdomains with artificial boundaries

boundaries Γ1 and Γ2 respectively,as shown in Fig.??. Define φi(x, y) and φj(x, y)

basis functions for subdomains Ω1 and Ω2 respectively. Assume,

u1(x, y) ≈ uh(x, y) =
N∑
i=1

ciφi(x, y), (86)

u2(x, y) ≈ vh(x, y) =
M∑
j=1

cjφj(x, y) (87)

In IGA-Collocation method, φi(x, y) and φj(x, y) are NURBS basis functions.

This subdivision gives us two subproblems to solve using IGA-Collocation method[22].
−∆un+1

1 = f for Ω1

un+1
1 = 0 on ∂Ω1 \ Γ1

un+1
1 = un2 on Γ1

(88)
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−∆un+1

2 = f for Ω2

un+1
2 = 0 on ∂Ω2 \ Γ2

un+1
2 = un+1

1 on Γ2

(89)

where n denotes the number of iterations. To start the iterative process, subproblem(??)

is first solve for n = 0 with some initial guess u0
2 = g(x, y) on artificial boundary Γ1.

We will keep solving this problem by iterating steps (??) and (??) while updating

un+1
1 (x, y) and un+1

2 (x, y) by most updated values of u2(x, y) and u1(x, y) respectively.

The iterations are performed until certain convergence conditions are met. Through-

out this dissertation we consider the relative error in the maximum norm(%) as the

termination condition. Least squares method is used to determine unknowns ci’s and

cj’s along artificial boundaries Γ1 and Γ2.

5.2 The Parallel Schwarz Method

Pierre-Louis Lions[20] proposed parallel Schwarz method by doing small but essen-

tial modification in Schwarz alternating method which made the problem perfect for

parallel computing. Lions modified subproblems (??)-(??) in the following way:
−∆un+1

1 = f for Ω1

un+1
1 = 0 on ∂Ω1 \ Γ1

un+1
1 = un2 on Γ1

(90)


−∆un+1

2 = f for Ω2

un+1
2 = 0 on ∂Ω2 \ Γ2

un+1
2 = un1 on Γ2

(91)
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To start this parallel process, subproblems (??)-(??) are solved together for n = 0

step with two initial guesses u0
2 = g(x, y) and u0

1 = h(x, y) on artificial boundaries Γ1

and Γ2 respectively.

5.3 One-dimensional Problems

Several problems were tested in one-dimensional cases to see the efficiency of itera-

tive method in IGA-Collocation. We test performance of Schwarz alternating method

with respect to the following three combinations:

[I] IGA-Galerkin on Ω1 and IGA-Galerkin on Ω2

[II] IGA-Galerkin on Ω1 and IGA-Collocation on Ω2

[III] IGA-Collocation on Ω1 and IGA-Collocation on Ω2

One-dimension equation with singularity was also tested by Schwarz alternating

method together with mapping techniques.

5.3.1 One-dimensional Problems Whose Solutions are Smooth

Consider the one dimension Poisson equation
−u′′(x) = f in Ω

u(x) = 0 on ∂Ω

(92)

which has smooth solution:

u(x) = x2 − x3 (93)

Problem (??) is solved with respect to various sizes of the overlapping subdomains

with initial guess 0 on artificial boundary Γ1. Relative errors in the maximum
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Figure 23: Relative error in the maximum norm(%) of numerical solutions of second
order equation with smooth solution u(x) = x2 − x3

Table 12: Various overlapping sizes, number of iterations, ratio of relative errors and
slope of line of convergence for problem(??).

Overlapping Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Iterations 51 26 17 13 10 8 6 5 3

(err2/err1) 0.66 0.44 0.29 0.17 0.11 0.05 0.03 0.01 0.002

λ ≈ log (err2/err1)

N2 −N1

-0.42 -0.82 -1.24 -1.77 -2.21 -2.99 -3.51 -4.61 -6.21

norm(%) versus the sizes of overlapping subdomains is depicted in Fig. ??. Table ??

shows that the larger overlapping subdomains are, the less number of iterations are.

The location of artificial boundaries did not matter for the rate of convergence

when the solution is smooth. If the size of the overlapping region was increased then

the solution acquired in the first step was very close to true solution so it required

less number of iterations and thus had smaller convergence rate as shown in Table

??.

Since relative errors versus number of iterations in semi-log scale are straight lines

for various sizes of overlapping subdomains, we expect the following lemma.
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Figure 24: Ratio of relative errors in the maximum norm(%) versus sizes of overlap-
ping subdomains for problem (??)

Lemma- Let N be the number of iterations in the alternating method and ‖err‖∞

be the relative errors in the maximum norm. Then we expect

‖err‖∞ ≤ eλN , (94)

where λ is the slope of lines in Table ??.

Therefore,

log ‖Err1‖∞ ≤ λN1,

log ‖Err2‖∞ ≤ λN2,

log ‖Err2

Err1

‖∞ ≈ λ(N2 −N1)

λ ≈
log ‖Err2

Err1

‖∞

(N2 −N1)

where N is the number of iteration. If we plot ratio of relative errors versus the sizes of

overlapping subdomains from Table ?? in xy-axis then the convergence profile makes
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Table 13: CPU time comparison for IGA-Galerkin-Galerkin, IGA-Galerkin-
Collocation and IGA-Collocation-Collocation iterative methods

Iterative Method CPU time(in seconds)
IGA-Galerkin and IGA-Galerkin 15.864

IGA-Galerkin and IGA-Collocation 7.175

IGA-Collocation and IGA-Collocation 0.6069

a quartic curve which is given by:

y = ax4 + bx3 + cx2 + dx+ e (95)

where

a = 1.63353,

b = −4.87451,

c = 6.05185,

d = −3.78608,

e = 0.990304.

We also solved the same problem w.r.to three combinations IGA-Galerkin-Galerkin,

IGA-Galerkin-Collocation and IGA-Collocation-Collocation with B-spline basis func-

tions corresponding to following open knot vector.

U = {0, ..., 0︸ ︷︷ ︸
10

, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, ..., 1︸ ︷︷ ︸
10

}

Now the domain [0, 1] is subdivided into two overlapping subdomains [0, 0.6] and [0.4,

1]. All three methods gave same results and required 26 number of iterations to reach

solution of accuracy 6.1E-08 but the time taken for IGA-Collocation-Collocation was

much less compared with other two combinations. In other words, IGA-Collocation-



59

Collocation is the most cost efficient method. CPU time taken for all three methods

is listed in Table ??.

5.3.2 One-dimensional Problem with Monotone Singularity

We test the iterative method to the following equation:
−u′′(x) = f for x ∈ (0, 1),

u(0) = u(1) = 0,

(96)

which has the exact solution

u(x) = xα − x (97)

containing a monotone singularity with intensity α = 0.65. To solve this problem,

domain [0,1] was subdivided into overlapping subdomains Ω1 = [0, 3
5
] and Ω2 = [2

5
, 1]

with artificial boundaries Γ1 = 3
5

and Γ2 = 2
5
. To apply Schwarz alternating method,

the initial guess on artificial boundary Γ1 was chosen as 0. IGA -Galerkin method

was used to solve subproblem (??) and IGA -Collocation method was used to solve

subproblem (??).

Problem(??) was solved in two different ways.

1- With using mapping techniques to solve subproblem(??) on subdomain Ω1

2- Without using mapping techniques to solve subproblem(??) on subdomain Ω1

For Ω1 the subdomain of Ω which contains the singularity of u, the auxiliary map-

ping[16] ϕβ : Ω̂1 −→ Ω1 is defined by:

ϕβ(ξ) = (ξ)β, (98)
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Table 14: Comparing relative error in the maximum norm(%) for u(x) = xα − x,
when the intensity of singularity is α = 0.65

p-degree DOF without mapping with mapping
p = 5 21 0.085 0.003

p = 6 25 0.041 0.0009

p = 7 29 0.014 0.0007

p = 8 33 0.006 0.00056

p = 9 37 0.004 0.00054

p = 10 41 0.003 0.000064

Figure 25: Relative error in the maximum norm(%) of numerical solutions of one-
dimensional second order equation with nonregular solution u(x) = xα− x, when the
intensity of singularity is α = 0.65

where ξ denotes the coordinate of the points in the transformed domain Ω̂1. Here β is

called the mapping size of the auxiliary mapping. In this problem for u(x) = xα−x,

where α = 0.65. u ◦ ϕβ = (ξ)αβ is much smoother than xα. In particular, if β = 1/α,

then u◦ϕβ is smooth. Integrals in bilinear form were computed as discussed in remark-

2.1 of [16]. Table ?? shows relative errors in the maximum norm(%) with respect to

these methods. We kept the degree of B-spline basis functions in subdomain Ω2 fixed

while degree of B-spline basis functions in subdomain Ω1 is elevated.
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Figure 26: Rectangular subdomains Ω1 = [0, b]× [0, 3
2
] and Ω2 = [a, 1]× [0, 3

2
]

5.4 Two-dimensional Problems

Now we test IGA-Collocation iterative method to two-dimensional problems with

smooth as well as singular solutions.

5.4.1 The Poisson Equation on a Rectangular Domain

Model problem is elliptic boundary value problem on the rectangle Ω = [0,
3

2
]×[0,

3

2
]

−∆u = f for Ω

u = 0 on ∂Ω

(99)

which has the exact solution:

u(x, y) = x2y2(x− 3

2
)(y − 3

2
). (100)

Mapping F1 and F2 are smooth linear mappings which maps parameter space Ω̂ =

[0, 1]× [0, 1] onto physical spaces Ω1 = [0, b]× [0, 3
2
] and Ω2 = [a, 1]× [0, 3

2
] respectively,

where a and b are the locations of artificial boundaries on the x−axis.
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F1 : Ω̂→ Ω1 and F1(u, v) = (x(u, v), y(u, v)) is defined by

F1(u, v) =


x(u, v) = bu

y(u, v) = 3
2
v.

(101)

F2 : Ω̂→ Ω2 and F2(u, v) = (x(u, v), y(u, v)) is defined by

F2(u, v) =


x(u, v) = (1.5− a)u+ a

y(u, v) = 3
2
v.

(102)

We first solved the below subproblem using IGA-Collocation method in subdomain

Ω1 with initial guess u0
2(x, y) = g(x, y) = 0
−∆un+1

1 = f for Ω1

un+1
1 (x, y) = 0 on ∂Ω1 \ Γ1

un+1
1 (x, y) = un2 (x, y) on Γ1

(103)

and then we solved the below subproblem for subdomain Ω2 and kept iterating both

steps until we acquired the solution of desired accuracy.
−∆un+1

2 = f for Ω2

un+1
2 (x, y) = 0 on ∂Ω2 \ Γ2

un+1
2 (x, y) = un+1

1 (x, y) on Γ2

(104)

This problem was also solved for different overlapping regions. Like in one-dimension,

the number of iterations required to get the solution of accuracy ‖ err ‖∞≤ 10−12

were dependent upon the size of the overlapping region but not on the location of

artificial boundaries. The iterative solver was stopped when the solution reached the

desired accuracy of ‖ err ‖∞≤ 10−12 or if it has gone through 50 iterations, whichever
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Figure 27: Relative error in the maximum norm(%) for u(x) = x2y2(x − 3
2
)(y − 3

2
)

using iterative collocation method

Table 15: Size of overlapping region and number of iterations required to get solution
of accuracy 10−12

Overlapping Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Iterations 50 33 18 14 13 9 9 8 7

comes first. The result is displayed in Table ?? and the relative error in the maximum

norm in (%) for different overlapping sizes are shown in Fig. ??.

5.4.2 Two-dimensional Elliptic Equations Containing Singularities

The problem discussed here has crack singularity of type r1/2 on a circular domain

of radius 2 and centered at origin. This circular domain was decomposed into a circle

Ω1 = [(r, θ) : r < 1, 0 < θ < 2π] and a annulus Ω2 = [(r, θ) : 0.5 < r < 2, 0 < θ < 2π].

Consider the following Poisson equation:
−∆u = f in Ω

u = 0 on ∂Ω

(105)
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Figure 28: Circular subdomain Ω1 = [(r, θ) : r ≤ 1, 0 < θ < 2π] and annular
subdomain Ω2 = [(r, θ) : 0.5 ≤ r ≤ 2, 0 < θ < 2π].

which has the exact solution:

u(r, θ) =
√
r(1− r)[sin(

θ

2
) + sin(

3θ

2
)]. (106)

Smooth mapping F1 maps reference domain Ω onto physical subdomain Ω1,

F1 : Ω̂ = [0, 1]× [0, 1] −→ Ω1 = {(x, y) : 0 ≤ x2 + y2 ≤ r2
1}

F1(u, v) =


x(u, v) = v2 cos(2π(1− u))

y(u, v) = v2 sin(2π(1− u)).

(107)

Mapping F2 maps reference domain Ω onto physical subdomain Ω2,

F2 : Ω̂ = [0, 1]× [0, 1] −→ Ω2 = {(x, y) : r2
2 ≤ x2 + y2 ≤ 2}
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F2(u, v) =


x(u, v) = 1

2
(1− v) cos(2π(1− u)) + 2v cos(2π(1− u))

y(u, v) = 1
2
(1− v) sin(2π(1− u)) + 2v sin(2π(1− u)).

(108)

where r1 is radius of singular subdomain and r2 is radius of inner circle of regular

subdomain. Accuracy of solution depends on choice of r1 and r2. Since this is the

problem with crack singularity of type r
1
2 , initial guess is chosen u(r, θ) =

√
r sin(θ/2)

along artificial boundary Γ1 of subdomain Ω1
−∆un+1

1 = f in Ω1

un+1
1 = un2 on Γ1

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω.

(109)

and the above problem was solved with IGA-Collocation. Once the solution for this

step was found then the problem was solved for subdomain Ω2.
−∆un+1

2 = f in Ω2

un+1
2 = un+1

1 on Γ2

un+1
2 = 0 ∂Ω2 ∩ ∂Ω.

(110)

Unlike, non-singular problem the number of iterations required to reach the solution

of desired accuracy is dependent upon the choice of radius [r2, r1] as well as the size

of the overlapping domain. If r1, the radius of circular subdomain with singularity is

very small then it takes more iterations to converge. Relative errors in the maximum

norm (%) is displayed in Fig. ??.
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Figure 29: Relative error in the maximum norm(%) for u(r, θ) =
√
r(1− r)[sin(

θ

2
) +

sin(
3θ

2
)] using iterative IGA-Collocation method



CHAPTER 6: ALTERNATING METHOD FOR TWO NON-OVERLAPPING
SUBDOMAINS

Previous chapter explained alternating method in the framework of IGA-Collocation

when domain was subdivided into two overlapping subdomains. Now we shall see how

to impose the same method when domain is subdivided into two non-overlapping

subdomains. In non-overlapping methods, the subdomains intersect only on their

interface.

Consider the Poisson problem
−∆u = f in Ω,

u = 0 on ∂Ω,

(111)

on a bounded Lipschitz region Ω with homogeneous boundary condition on boundary

∂Ω. Domain Ω is divided into two non-overlapping subdomains Ω1 and Ω2 with com-

mon internal boundary Γ. Like in overlapping subdomain problem this problem will

also be solved by solving two subproblems. These subproblems will be explained by

two different methods. In each method the boundary condition on internal boundary

is imposed in two different ways as explained in[21].

1. The Dirichlet-Neumann method

2. The Neumann-Neumann method
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6.1 The Dirichlet-Neumann Method

In this method for given initial guess λ0, problem(??) will be solved by solving

these two subproblems for each k ≥ 0:
−∆uk+1

1 = f in Ω1,

uk+1
1 = 0 on ∂Ω1 ∩ ∂Ω,

uk+1
1 = λk on Γ.

(112)


−∆uk+1

2 = f in Ω2,

uk+1
2 = 0 on ∂Ω2 ∩ ∂Ω,

∂uk+1
2

∂n
=
∂uk+1

1

∂n
on Γ.

(113)

with

λk+1 := θuk+1
2|Γ + (1− θ)λk, (114)

where θ, 0 ≤ θ ≤ 1 is a positive accelerated parameter.

Similar alternating procedure can be obtained if we change subproblems in this

way 
−∆uk+1

1 = f in Ω1,

uk+1
1 = 0 on ∂Ω1 ∩ ∂Ω,

uk+1
1 = uk2 on Γ.

(115)



69
−∆uk+1

2 = f in Ω2,

uk+1
2 = 0 on ∂Ω2 ∩ ∂Ω,

∂uk+1
2

∂n
= µk on Γ.

(116)

with

µk+1 := θ
∂uk+1

1

∂n
+ (1− θ)µk. (117)

6.2 The Neumann-Neumann Method

In this case, for eack k ≥ 0 we need to solve:
−∆uk+1

i = f in Ωi,

uk+1
i = 0 on ∂Ωi ∩ ∂Ω,

uk+1
i = λk on Γ,

(118)

and then solve 
−∆vk+1

i = 0 in Ωi,

vk+1
i = 0 on ∂Ωi ∩ ∂Ω,

∂vk+1
i

∂n
=
∂uk+1

1

∂n
− ∂uk+1

2

∂n
on Γ,

(119)

for i = 1, 2, with

λk+1 := λk − θ{a1v
k+1
1|Γ − a2v

k+1
2|Γ }. (120)

As before, θ is a positive accelerated parameter, a1 and a2 are two positive averaging

coefficients,where λ0 is initial guess.



70

Figure 30: (a) Division by a vertical interface(b) Division by a slanted interface

6.3 Numerical Examples

We tested to two-dimensional elliptic equation on a rectangular domain problem

by decomposing the physical domain into two non-overlapping subdomains in two

different ways:

• Division by a vertical interface

• Division by a slanted interface

as shown in Fig. ??. In this dissertation, the Dirichlet-Neumann subproblems(??)-

(??) are used to solve elliptic boundary value problems for non-overlapping subdo-

mains.
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6.3.1 Vertical Interface in a Rectangular Domain

Consider two-dimensional elliptic boundary value problem with vertical subdivision

of domain Ω = [−1, 1]× [0, 1]
−∆u = f for Ω

u = 0 on ∂Ω

(121)

which has the exact solution:

u(x, y) = ex(1− x2)(y − y2). (122)

To solve problem (??) we will divide the domain Ω = [−1, 1] × [0, 1] into two non-

overlapping subdomains Ω1 = [−1, 0] × [0, 1] and Ω2 = [0, 1] × [0, 1] with common

interface at a = 0. For this vertical subdivision, two linear mappings, F1 and F2 are

used to map parameter domain onto subdomains Ω1 and Ω2 with common internal

boundary Γ at a = 0.

F1 : Ω̂→ Ω1 and F1(u, v) = (x(u, v), y(u, v)) is defined by

F1(u, v) =


x(u, v) = (a+ 1)u− 1

y(u, v) = v.

(123)

F2 : Ω̂→ Ω2 and F2(u, v) = (x(u, v), y(u, v)) is defined by

F2(u, v) =


x(u, v) = (1− a)u+ a

y(u, v) = v.

(124)

In order to solve problem(??) we solved subproblems(??) and (??) by assuming initial

guess λ0 = 0.5. For the subdomain Ω2, we need separate equations for collocation
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Figure 31: Nonoverlapping domain decomposition method for different values of

points that lie on the interface Γ. No additional equations are needed for collocation

points that lie on homogeneous boundary. For points pi that lie inside the domain

we will use equation

(−∆u)(pi) = f(pi). (125)

where as for the points that satisfy Neumann boundary condition in subdomain Ω2

we used equation

∂uk+1
2

∂n
(pi) =

∂uk+1
1

∂n
(pi). (126)

Non-overlapping alternating method is tested w.r.t various relaxation parameter

θ. The results are shown in Table ??. It required only 10 number of iterations for

θ = 0.5 where as for θ = 0.4 and for θ = 0.6 it required more number of iterations

to converge. Therefore the optimal value of θ is considered to be θ = 0.5 for this

problem with subdivision at x = 0.
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Table 16: Comparison of relative error in the maximum norm in(%) for nonoverlap-
ping domain problem for different θ values

Iteration θ = 0.4 θ = 0.5 θ = 0.6
1 3.192E+01 1.94E+00 3.192E+01

2 6.38E+00 1.32E-01 6.38E+00

3 1.27E+00 8.20E-03 1.27E+00

4 2.55E-01 5.09E-04 2.55E-01

5 5.11E-02 3.16E-05 5.11E-02

6 1.02E-02 1.96E-06 1.02E-02

7 2.04E-03 1.22E-07 2.04E-03

8 4.09E-04 7.52E-09 6.60E-04

9 8.17E-05 4.93E-10 2.14E-04

10 1.63E-05 5.26E-11 6.52E-05

11 3.27E-06 - 1.92E-05

12 6.54E-07 - 5.54E-06

13 1.31E-07 - 1.57E-06

14 2.61E-08 - 4.43E-07

15 5.23E-09 - 1.24E-07

16 1.05E-09 - 3.44E-08

17 2.25E-10 - 9.55E-09

18 8.62E-11 - 2.61E-09

19 - - 7.51E-10

20 - - 1.80E-10

21 - - 8.98E-11

6.3.2 Slanted Interface in a Rectangular Domain

We tested the below problem with slanted subdivision at interface on the domain

Ω = [−1, 1]× [0, 1] 
−∆u = f for Ω

u = 0 on ∂Ω

(127)

which has the exact solution:

u(x, y) = x3(1− x2)(y − y2) (128)
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Figure 32: Relative error in the maximum norm(%) for problem with slanted nonover-
lapping subdomains

For this subdivision nonlinear mappings F1 and F2 were used to map the reference

domain Ω̂ = [0, 1]× [0, 1] to physical subdomains Ω1 and Ω2 respectively.

F1(u, v) = (0, 0)L1(u, v) + (
1

2
, 0)L2(u, v) + (−1

2
, 1)L3(u, v) + (0, 1)L4(u, v) (129)

F2(u, v) = (
1

2
, 0)L1(u, v) + (1, 0)L2(u, v) + (1, 1)L3(u, v) + (−1

2
, 1)L4(u, v). (130)

where,

L1(u, v) = (1− u)(1− v), L2(u, v) = u(1− v),

L3(u, v) = uv, L4(u, v) = (1− u)v

(131)

Like vertical division problem, we solved this problem by solving subproblems(??) and

(??) in the framework of IGA-Collocation and by assuming initial guess λ0 = 0.5.

Non-overlapping alternating method with slanted subdivision is tested w.r.t various

relaxation parameter θ. The results are shown in Fig.??. Like in vertical division

case, θ = 0.5 was the optimal value and it took 44 iterations to get the solution with
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accuracy 10−11.



CHAPTER 7: ALTERNATING METHOD IN IGA COLLOCATION FOR
ELASTICITY PROBLEMS

In the previous chapter, alternating method using IGA-Collocation was introduced

for one and two dimensional elliptic boundary value problems. in this chapter, this

method is extended to linear elasticity and presented how to use the same method

when coupled elliptic equations are involved in the problem.

7.1 Preliminaries

In this section, we briefly introduce the notation, terminologies and definitions

involved in linear elasticity. For any displacement vector {u} = {u1(x, y), u2(x, y)}T ,

the stress field is defined by {σ} = {σx, σy, τxy}T and the strain field is defined by

{ε} = {εx, εy, γxy}T .σx and σy are normal stress and τxy is shear stress. Similarly,

εx and εy are normal strain and γxy is shear strain. The relation between strain-

displacement and stress-strain is given by

{ε} = [D]{u}, {σ} = [E]{ε}, (132)

where [D] is the differential operator matrix and [E] is the material stiffness matrix

given by 3 × 3 symmetric positive definite matrix of material constants. Matrix [D]
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is given by

[D] =


∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x

 (133)

Generally there are two types of problems that are involved in linear elasticity,

plain stress and plain strain. Plane stress is defined to be a state of stress in which

normal stress σz and shear stresses τxz and τyz are assumed to be zero.Plane strain

is defined to be a state of strain in which normal strain εz and shear strains γxz and

γyz are assumed to be zero.

Material that have identical values of property in all directions are called Isotropic

materials. These materials have two components, Young’s modulus(E) and Poisson’s

ration(ν). The range of Poisson’s ratio is 0 ≤ ν ≤ 0.5. The material stiffness matrix

[E] for an isotropic elastic body is as follows:

[E] =
E

1− ν2


1 ν 0

ν 1 0

0 0 1−ν
2

 for plane stress, (134)

[E] =


ζ + 2µ ζ 0

ζ ζ + 2µ 0

0 0 µ

 for plane strain, (135)



78

where

µ =
E

2(1 + ν)
, ζ =

νE

(1 + ν)(1− 2ν)
(136)

The equilibrium equation of elasticity are

[D]T{σ}(x, y) + {f}(x, y) = 0, (x, y) ∈ Ω, (137)

where {f} = {f1(x, y), f2(x, y)}T is the vector of internal sources representing the

body force per unit area.This equilibrium equation can be written in terms of dis-

placement in the following way,

{σ} = [E]{ε},

{σ} = [E][D]{u},

{σ} =
E

1− ν2


1 ν 0

ν 1 0

0 0 1−ν
2




∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x


u1(x, y)

u2(x, y)

 .

The Navier equations for plane stress are

E

1− ν2
[
∂2u1

∂x2
+

(1 + ν)

2

∂2u2

∂x∂y
+

(1− ν)

2

∂2u1

∂y2
] + f1(x, y) = 0 (138)

E

1− ν2
[
(1− ν)

2

∂2u2

∂y2
+

(1 + ν)

2

∂2u1

∂x∂y
+
∂2u2

∂y2
] + f2(x, y) = 0 (139)

Similarly, the Navier equations for plane strain are

(ζ + 2µ)
∂2u1

∂x2
+ (ζ + µ)

∂2u2

∂x∂y
+ µ

∂2u1

∂y2
+ f1(x, y) = 0 (140)
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µ
∂2u2

∂y2
+ (ζ + µ)

∂2u1

∂x∂y
+ (ζ + 2µ)

∂2u2

∂y2
+ f2(x, y) = 0 (141)

Three dimensional elasticity problems are complex to solve, thus we reduce the dimen-

sion in different ways such as planar, axisymmetric, shell, plate beam and bar models.

Here we have assumed uz = 0. Therefore in plane stress we have σz = τyz = τzx = 0

and in the case of plane strain we have εz = γyz = γzx = 0.

7.2 Alternating Method for Elasticity Problems

To solve Navier’s equation either in plane stress or plane strain case, the compo-

nents of the displacement vector are written in terms of basis functions, φi(x, y), i =

1, ..., N,

{u(x, y)} =


u1(x, y) =

∑N
i=1 ciφi(x, y),

u2(x, y) =
∑N

i=1 ci+Nφi(x, y)

(142)

where ci(i = 1, 2, ..., 2N) are called the amplitudes of the basis functions and φi(x, y) =

(Nr(u) ×Ms(v)) ◦ G−1, is the tensor product of B-spline basis functions Nr(u) and

Ms(v) in the u- and v-direction respectively and G : [0, 1]× [0, 1] −→ Ω is a geometric

map. Collocation points pi = G(ui, vi) are chosen using the tensor-product of Greville

abscissae defined in chapter 3. Collocation equations for (??) are given by

[D]T{σ}(pi) + {f}(pi) = 0, for collocation points pi, i = 1, 2, ..., N. (143)

We divide a domain into overlapping subdomains and solve (??) in each subdomain

and at every step keep updating the solution at interior boundaries like it was done

in previous chapters.
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7.3 Numerical Examples

This alternating method is tested for both singular and nonsingular problems in

two dimensions. Non-singular problem was tested on a rectangular domain where as

singular problem was tested on a wedge shaped domain with singularity of intensity

λ = 0.5. Plane stress Navier’s equations is used for nonsingular case and plane strain

Navier’s equations is used for singular case.

7.3.1 Non-singular Two-dimensional Problem on Rectangular Domain

This problem is tested on domain Ω = [0, 1] × [0, 1] and the isotropic material is

assumed to have material constant E = 1000 and ν = 0.3.
[D]T{σ}(x, y) + {f}(x, y) = 0, (x, y)εΩ

u1(x, y) = 0, u2(x, y) = 0, on ∂Ω.

(144)

which has the exact solution:

u(x, y) =


u1(x, y) = x(1− x)y3(1− y),

u2(x, y) = y(1− y)x3(1− x)

(145)

On the reference domain Ω̂, we started with 9 basis functions of degree 5 in ξ-

direction and 4 basis functions of degree 3 in η-direction which gave us total 36 basis

functions by taking their tensor products. For collocation points, Greville absciaase

were used in both directions which gave us 36 collocation points by tensor product.

Since there are two components in the equation so 2(36) = 72 collocation points

are needed to solve this problem. Therefore these 36 points were used for both

components. The size of the stiffness matrix was 72× 72.



81

Figure 33: Relative error in the maximum norm in(%) for different overlapping do-
main sizes for nonsingular elasticity problem

The alternating scheme is repeated for two different overlapping domains with

various sizes of overlapping regions. Like in one elliptic boundary value problem, the

number of iterations required is dependent upon the size of the overlapping area. Fig.

?? shows that larger the overlapping area, it requires lesser number of iterations.

7.3.2 Two-dimensional Singular Problem on Wedge Shaped Domain

This problem was solved on wedge shaped domain Ω = {(r, θ) : r < 2,−α ≤ θ ≤

α}, 0 ≤ α ≤ 90◦ for plane strain case, where α is the wedge angle and the body force

was neglected here. The isotropic material was assumed to have material constant

E = 1000 and ν = 0.3.

[D]T{σ}(x, y) + {f}(x, y) = 0, (x, y)εΩ, (146)
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which has the exact solution in the form:

u(x, y) =


u1(x, y) = ur cos θ − uθ sin θ,

u2(x, y) = ur cos θ + uθ sin θ,

(147)

where

ur(r, θ) = rλ

2G
{−(λ+ 1)f(θ)

uθ(r, θ) = rλ

2G
{−f ′(θ),

(148)

and f(θ) = sin(λ + 1)θ, λ = 90◦

α
− 1. Here we have imposed non-homogeneous

Dirichlet boundary condition along the entire boundary and zero boundary condition

at origin for displacement vector.

It’s not difficult to show that

∂2u1

∂x2
= −λ(1 + λ)(λ− 1)

2G
rλ−2 sin(λ− 2)θ, (149)

∂2u1

∂xy
= −λ(1 + λ)(λ− 1)

2G
rλ−2 cos(λ− 2)θ, (150)

∂2u1

∂y2
= +

λ(1 + λ)(λ− 1)

2G
rλ−2 sin(λ− 2)θ, (151)

∂2u2

∂x2
= −λ(1 + λ)(λ− 1)

2G
rλ−2 cos(λ− 2)θ, (152)

∂2u2

∂xy
= −λ(1 + λ)(λ− 1)

2G
rλ−2 sin(λ− 2)θ, (153)

∂2u2

∂y2
= +

λ(1 + λ)(λ− 1)

2G
rλ−2 cos(λ− 2)θ (154)

which satisfies equation(??) if body force vector {f} = 0. Mapping F1 maps param-

eter space Ω̂ = [0, 1] × [0, 1] to wedge subdomain Ω1 = {(r, θ) : r < 1,−α ≤ θ ≤ α}

and F2 maps it to subdomain Ω2 = {(r, θ) : 0.5 < r < 2,−α ≤ θ ≤ α} , here wedge

angle was taken as α = 60◦.



CHAPTER 8: CONCLUDING REMARKS AND FUTURE WORK

We have applied modified B-spline basis functions to IGA-Collocation method in

both one-dimensional non-singular as well as singular problems and got almost true

solutions. Also this approach was tested to two-dimensional non-singular as well

as singular problems. In the future research work those methods proposed in this

dissertation will be extended to solve elliptic PDEs on non-convex domains like L-

shaped, cracked domain and polygonal domain.

Similarly, Schwarz alternating method in the framework of IGA-Collocation will

also be extended to solve elliptic PDEs on non-convex domains like L-shaped,cracked

domain and polygonal domain. So far this method was applied in elasticity for plane

stress and plane strain cases. In future, it will be tested for shell, plate problems as

well.

Even though the test problems that were tested in this dissertation contained one

singularity, we expect that the method can easily be applied to problems with multiple

singularities. Schwarz alternating IGA-Collocation method can be extended to deal

with oscillating singularities of the type rλ cos(ε log r), 0 < λ, ε < 1.

Direct solvers were used to solve problems with Schwarz alternating method in the

frame work of IGA-Collocation. In future iterative solvers will also be tested. We will

also extend IGA-Collocation approach to general domain decomposition method.
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