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ABSTRACT

JIAN WU. High order H(div) Discontinuous Galerkin methods for MHD equations.
(Under the direction of DR. WEI CAI)

In this dissertation, we continue our investigation of the divergence-free discontinuous

Galerkin method using our H(div) basis, to solve the nonlinear ideal magnetohydrodynam-

ics (MHD) equations. This is a novel approach to ensure the divergence-free condition on

the magnetic field. The idea is to add on each element extra bubble functions from the same

order hierarchical H(div)-conforming basis to reduce the higher order divergence, and then

extra linear edge functions to remove the linear term of divergence. For such hierarchical

bases for the H(div) are either proposed or reviewed in [42]. As a consequence, this method

has a smaller computational cost than the traditional discontinuous Galerkin method with

standard piece-wise polynomial spaces. We formulate the discontinuous Galerkin method

using our H(div)-conforming basis and perform extensive two-dimensional numerical ex-

periments for both smooth solutions and solutions with discontinuities. Our computational

results show that the global divergence is largely reduced, but with a relatively small cost

on the accuracy of the solution spaces.
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CHAPTER 1: INTRODUCTION

Magnetohydrodynamics (MHD) is the study of the magnetic properties of electrically

conducting fluids. Examples of such magneto-fluids include plasmas, liquid metals, and salt

water or electrolytes. The field of MHD was initiated by Hannes Alfvn [2], for which he

received the Nobel Prize in Physics in 1970.

The simplest form of MHD, Ideal MHD, assumes that the fluid has so little resistivity

that it can be treated as a perfect conductor. This is the limit of infinite magnetic Reynolds

number. In ideal MHD, Lenz’s law dictates that the fluid is in a sense tied to the magnetic

field lines. To explain, in ideal MHD a small rope-like volume of fluid surrounding a field

line will continue to lie along a magnetic field line, even as it is twisted and distorted by fluid

flows in the system. This is sometimes referred to as the magnetic field lines being ”frozen”

in the fluid. The connection between magnetic field lines and fluid in ideal MHD fixes the

topology of the magnetic field in the fluidfor example, if a set of magnetic field lines are tied

into a knot, then they will remain so as long as the fluid/plasma has negligible resistivity.

This difficulty in reconnecting magnetic field lines makes it possible to store energy by mov-

ing the fluid or the source of the magnetic field. The energy can then become available if

the conditions for ideal MHD break down, allowing magnetic reconnection that releases the

stored energy from the magnetic field.
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Many physical problems arising in a modeling process can be described by the MHD equa-

tions, the simplest self-constrained model. The fundamental concept behind MHD is that

magnetic fields can induce currents in a moving conductive fluid, which in turn polarizes the

fluid and reciprocally changes the magnetic field itself. The set of equations that describe

MHD are a combination of the Navier-Stokes equations of fluid dynamics and Maxwell’s

equations of electromagnetism. These differential equations must be solved simultaneously,

either analytically or numerically. The equations are highly nonlinear, and analytic solu-

tions are not availble. We will focus on the ideal MHD equations which forms a hyperbolic

conservation law but are constrained as the magnetic field of the system is evolved with the

constraint of zero divergence, namely, ∇ · B = 0. On a analytic level the involution con-

strain is always fulfilled, but numrical experiments indicates that negligence in dealing with

the divergence constraint lead to numerical instabilities and nonphysical solutions. Besides,

solving such a nonlinear system introduces another numerical challenge.

Various attemps have been made to numerically solve the hyperbolic conservation law. Fi-

nite Volume Method (FVM) and Finite Element Method (FEM) are two of the most popular

methods. In this dissertation, we will focus on the Discontinuous Galerkin (DG) Method

which combines the flexibility of FEM and the physical influence of FVM. A completely

discontinuous basis, normally piecewise polynomials ,is used in DG method for the numer-

ical solution and the test functions. Due to the discontinuity, the scheme is more flexible

compared to standard Finite Element methods. The discontinuities at the element inter-

faces allow the design of suitable inter-element boundary treatments, ie. numerical fluxes,

to obtain highly accurate and stable methods in many difficult cases. The allowance of ar-
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bitrary unstructured grids can have its own polynomial degree independent of its neighbors.

Moreover, the DG scheme has a extremely high parallel efficiency, since the local elements

only depend on its immediate neighbors.

The first discontinuous Galerkin method was introduced by Reed hand Hill [7] in 1973, when

neutron transport is studied. Cockburn and Shu [10][11][12][23][6] developed a framework

to solve nonlinear time dependent problems. For temporal integration, explicit, nonlinearly

stable high order Runge-Kutta time discretizations are used. For the DG spatial integration,

exact or approximate Riemann solvers as interface fluxes are applied. Also, total variation

bounded nonlinear limiters are introduced to avoid oscillations near shocks [36].

In terms of numerical influence of the divergence free condition, many attempts have been

made in the literature to satisfy the constraint or at least reduce the negative impact on

the numerical solution. In the following we will review some of the divergence ”cleaning”

techniques in the ocntext of MHD equations.

One way for the divergence correction is by projection, first proposed by Brackbill and

Barnes [7] in 1980. The numerical magnetic field B is projected into a zero divergence vec-

tor space and the projected B is used in the next time step. Since the projection is based

on solving a global Poisson equation, the cheme increases the computational cost a lot.

Another way is Powell’s source term formulation [31][46] in 1994. It is derived from the

physical laws if ∇ · B = 0 is not used. In order to symmetrize the MHD equations, source
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terms proportional to ∇ ·B are added to the equations. The source terms make the system

well behaved but nonconservative.

In 2002 Dedner et. al. [35] introduced thier hyperbolic divergence cleaning technuque which

has serveral advantages over the Powell’s source terms. A generalized Lagrangian multiplier

was introduced to the MHD equations, along with some control parameters. While the Pow-

ell source terms only propagates the divergence with fluid velocity, Dedner’s method allows

the divergence error to be transported to the domain boundaries with certain speed and

damped at the same time.

Powell’s and Dedner’s methods are not able to reduce the divergence to zero, like the pro-

jection method of Brackbill and Barnes does, but these methods are locally and easily to

implement. To ensure an exact zero divergence, the follow approches have been proposed.

Another big class of numerical schemes preserving the divergence of the magnetic fields

are often referred to as ”constrained transport methods”, which was first brought by Yee

[44] in electromagnetics, and then adapted to MHD equations by Brecht et al. [18], Evans

and Hawley [17], Stone and Norman [39], etc. In this approach, a staggered mesh is used,

and a suitably defined discrete approximation to the divergence of the solution can be main-

tained exactly zero. This method has been further developed recently by combining with

the higher order Godunov type schemes by Dai and Woodward [14], Ryu et al. [20], Balsara

and Spicer [5], etc. In [3][4], Balsara developed such divergence-free reconstruction strategy

in an adaptive mesh setting. In [40], Toth compared some of the methods mentioned above
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and introduced the field/flux-interpolated central difference (CD) approaches, in which no

staggered mesh in needed. These shemes are restriced to structured grids and require large

stencils for the spatial discretization.

In [43][26], Li introduces a DG scheme which is locally and preserves the zero divergence of

the magnetic field. This is done by first discretizing the normal components of the magnetic

field along the edges of the elements, followed by a locally divergence free reconstruction in-

side the elements. This method is restricted to cartesian grids, since it uses the information

of the normal components of the elements.

Recently, Li and Shu also introduced in [25] a DG scheme which uses a locally divergence

free basis for the magnetic field, followed the approach in context of Stokes equations and

the stationary Navier-Stokes equations, Baker et al.[21][22]. Li and Shu use the locally

divergence-free piecewise polynomials as the solution space in the discontinuous Garlerkin

method to solve ideal MHD equations. Because the space is smaller, it can save compu-

tational cost when using the locally divergence-free piecewise polynomial space compared

with the standard piecewise polynomial space, while enhancing the accuracy and stability

in many cases. However, since the locally divergence-free piecewise polynomials are used, it

is hard to maintain the divergence free condition on a global basis.

In this dissertation, using on our high order divergence-free H(div)-conforming hierarchical

bases for MHD equations proposed by Cai, et, al.[42], we follow the discontinuous Galerkin

method to solve two dimensional nonlinear ideal MHD equations. The idea of our method
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is that our divergence-free H(div)-conforming hierarchical bases is applied to the magnetic

field B only, which will solve the magnetic filed equation globally. Then divergence clean-

ing treatments are introduced based on the H(div)-conforming hierarchical bases we use to

clean up the divergence of magnetic field, on the global basis. For other variables in the

MHD equations, standard hierarchichal basis function will be used, and it can maintain our

computation at a efficient level. The method can be applied to three dimensional cases with

no essential difficulty, but we will not consider it in this dissertation.

This dissertation is organized as follows. In Chapter 2.1, we describe the ideal MHD equa-

tions along with their involution constraint. In Chapter 2.2, we will derive the discontinuous

scheme for ideal MHD equations. In Chapter 2.3, we will introduce the construction of solv-

ing a two dimensional MHD equations using discontinuous Galerkin method. In Chapter 3,

high order divergence-free H(div)-conforming hierarchical bases are introduced, in both two

dimension and three dimension cases. In Chapter 4, we will introduce our divergence clean-

ing treatment using our high order divergence-free H(div)-conforming hierarchical bases,

in both two dimension and three dimension cases. In Chapter 5, the numerical results are

presented. In Chapter 6, concluding remarks are made. In appendix, the mathematical

derivation of our construction, the examples of basis functions, and other detailed parame-

ters are included. Finally, Chapter 7 is the appendix.



CHAPTER 2: MHD EQUATIONS AND DISCONTINUOUS GALERKIN METHOD

2.1 Ideal MHD Equations

The ideal MHD equations consist of the continuity equation, the Cauchy momentum equa-

tion, Ampere’s Law neglecting displacement current, and a temperature evolution equation.

As with any fluid description to a kinetic system, a closure approximation must be applied

to highest moment of the particle distribution equation. This is often accomplished with

approximations to the heat flux through a condition of adiabaticity or isothermality.

Ideal MHD is only strictly applicable when the plasma is strongly collisional, so that the

time scale of collisions is shorter than the other characteristic times in the system, and the

particle distributions are therefore close to Maxwellian.

The resistivity due to these collisions is small. In particular, the typical magnetic diffu-

sion times over any scale length present in the system must be longer than any time scale

of interest.Interest in length scales much longer than the ion skin depth and Larmor radius

perpendicular to the field, long enough along the field to ignore Landau damping, and time

scales much longer than the ion gyration time (system is smooth and slowly evolving).

Electrically conducting fluid flow in which the electromagnetic forces can be of the same
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order or even greater than the hydrodynamic ones is often modeled by MHD equations. The

ideal MHD equations consist of a set of nonlinear hyperbolic equations,

∂ρ
∂t

+∇ · (ρu) = 0

∂(ρu)
∂t

+∇ ·
(
ρuuT +

(
p+ 1

2
|B|2

)
· I −BBT

)
= 0

∂E
∂t

+∇ ·
((
E + p+ 1

2
|B|2

)
u−B (u ·B)

)
= 0

∂B
∂t

+∇ ·
(
uBT −BuT

)
= 0

(1)

with the additional divergence constraint

∇ ·B = 0 (2)

Here ρ, p, u = (ux, uy, uz), B = (Bx, By, Bz) and E denote the mass density, the hydrody-

namic presure, the velocity field, and the magnetic field, and the total energy, respectively.

The ratio of the specific heats is given by γ and

E =
1

2
ρ|u|2 +

1

2
|B|2 +

p

γ − 1
(3)

This system combines the equations of gas dynamics with Maxwell equations for problems

in which relativistic, viscous, and resistive effects can be neglected; the permeability is set

to be unity. If the initial magnetic filed satisfies the divergence-free condition (2), the exact

solution will automatically satisfy the constraint (2) for all time.
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We rewrite Equation (1) in the conservation form

Ut +∇ · F (U) = 0 (4)

where

U = (ρ, ρux, ρuy, ρuz, Bx, By, Bz, E)T .

F1 (U) =

(
ρux, ρu

2
x + p+

1

2
|B|2 −B2

x, ρuxuy

−BxBy, ρuxuz −BxBz, 0, uxBy − uyBx, uxBz

−uzBx, ux

(
E + p+

1

2
|B|2

)
−Bx (uxBx + uyBy + uzBz)

)T
F2 (U) =

(
ρuy, ρuyux −ByBx, ρu

2
y + p+

1

2
|B|2 −B2

y ,

ρuyuz −ByBz, uyBx − uxBy, 0, uyBz − uzBy,

uy

(
E + p+

1

2
|B|2

)
−By (uxBx + uyBy + uzBz)

)T
2.2 Discontinuous Galerkin Method on MHD Equations

Starting with a triangulation Γh of the domain Ω, with the element being denoted by K,

the edge by e, and the outward unit normal by n = ne,K = (n1, n2), fowlloing the usual

definition of discontinuous Galerkin methods for conservation laws, [], we obtain the RKDG

formulation for (4) Find Uh ∈ Vh , such that for all v ∈ Vh,

∫
K

Uht · vdx +
∑
e∈∂K

∫
e

he,K

(
U
int(K)
h ,U

ext(K)
h ,ne,K

)
· vds−

∫
K

F(Uh) · ∇vdx = 0, ∀K (5)

holds, where Vh is the solution space, which is the same as the test space and given by

Vh = Vk
h =

v : v|K ∈ Pk(K),

v5

v6

 ∈ Hk(div)

 (6)
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with Pk(K) = (P k(K))8, and P k(K) denotes the space of polynomials in K of degree at

most k.

In (5), he,K

(
U
int(K)
h ,U

ext(K)
h ,ne,K

)
is the numerical flux, which is an exact or approximate

Riemann solver, consistent with F(Uh) · ne,K and conservative,

he,K

(
v
int(K)
h ,v

ext(K)
h ,ne,K

)
+ he,K′

(
v
int(K′)
h ,v

ext(K′)
h ,ne,K′

)
= 0, K ∩K ′ = e (7)

where v
int(K)
h ,v

ext(K)
h are the limits of v at the interface e from the interior and exterior of

K, respectively. The one we will use in our numerical examples is the Lax-Friedrichs flux,

he,K(a,b,ne,k) =
1

2
[F (a) · ne,k + F (b) · ne,k − αe,K(b− a)] (8)

where αe,K is an estimate of the largest absolute value of eigenvalues of the Jacobi
∂

∂v
F(v) ·

ne,K in the neighborhood of the edge e.

For discontinuous Galerkin methods applied to nonlinear systems such as (1), nonlinear

limiters are often needed. We use the minmod TVB slope limiter by Shu [36] and Cockburn

et al. [6][11], which has a parameter M related to the magnitude of the second derivatives

of the solution at smooth extrema.

To construct the minmod TVB slope limiter for triangular elements, we proceed as follows.

We start by making a simple observation. Consider the triangles in Figure 1, where m1

is the mid-point of the edge on the boundary of K0, and bIi denotes the barycenter of the

triangle Ki for i = 0, 1, 2, 3.
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Figure 1: The 2D MINMOD limiter diagram.

Since we have that

m1 − b0 = α1(b1 − b0) + α2(b2 − b0) (9)

for some nonnegative coefficients α1, α2 which depend only on m1 and the geometry, we can

write for any linear function uh

uh(m1)− uh(b0) = α1(uh(b1)− uh(b0)) + α2(uh(b2)− uh(b0)) (10)

and since

uKi =
1

|Ki|

∫
Ki

uh = uh(bi), i = 0, 1, 2, 3, (11)

we have that

ũh(m1, K0) ≡ uh(m1)− uK0 (12)
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and

∆u(m1, K0) ≡ α1(uK1 − uK0) + α2(uK2 − uK0) (13)

Now, we are ready to describe the slope limiting. Let us consider a piecewise linear function

uh, and let mi, i = 1, 2, 3 be the three mid-points of the edges of the triangle K0. We then

can write for (x, y) ∈ K0

uh(x, y) =
3∑
i=1

uh(mi)ψi(x, y) = uK0 +
3∑
i=1

ũh(mi, K0)ψi(x, y) (14)

where ψi, i = 1, 2, 3 are first order basis functions.

To compute ΛΠhuh, we first compute the quantities

∆i = m(ũh(mi, K0), ν∆u(mi, K0)) (15)

where m is the TVB modified minmod function defined as

m(a1, · · · , am) =


a1, for|a1| ≤M∆x2,

m(a1, · · · , am), otherwise

(16)

with the minmod function m defined by

m(a1, · · · , am) =


s mini |ai|, ifs = sign(a1) = · · · = sign(am),

0, otherwise

(17)

The TVB correction is needed to avoid unnecessary limiting near smooth extrema. For an

estimate of the TVB constant M in terms of the second derivatives of the function, see [10].

Usually, the numerical results are sensitive to the choice of limiters. In all calculation in this

dissertation, we take M to be 50.
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Also we take ν = 1.5 in our computation. Then, if
3∑
i=1

∆i = 0, we simply set

ΛΠhuh(x, y) = uK0 +
3∑
i=1

∆iψi(x, y) (18)

If
3∑
i=1

∆i 6= 0, we compute

pos =
3∑
i=1

max(0,∆i), neg =
3∑
i=1

max(0,−∆i) (19)

and set

θ+ = min

(
1,

neg

pos

)
, θ− = min

(
1,

pos

neg

)
(20)

Then, we define

ΛΠhuh(x, y) = uK0 +
3∑
i=1

∆̂iψi(x, y) (21)

where

∆̂i = θ+ max(0,∆i)− θ−max(0,∆i) (22)

It is very easy to see that this slope-limiting operator satisfies the following three properties:

• Accuracy: if piecewise function uh is linear, then ΛΠhuh = uh.

• Conservation of mass: for every element K of the triangulation Γh, we have

∫
K

ΛΠhuh =

∫
K

uh (23)

• Slope limiting: on each element K of the triangulation Γh, the gradient of ΛΠhuh is
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not bigger than that of uh.

2.3 MHD Equations in Two Dimensions

In 2-dimension, we rewrite equation (4) in the form of

∂
∂t



ρ

ρux

ρuy

E

Bx

By



+ ∂
∂x



ρux

ρu2
x + p+ 1

2
|B|2 −B2

x

ρuxuy −BxBy

ux
(
E + p+ 1

2
|B|2

)
−Bx (u ·B)

0

uxBy −Bxuy



+ ∂
∂y



ρuy

ρuxuy −BxBy

ρu2
y + p+ 1

2
|B|2 −B2

y

uy
(
E + p+ 1

2
|B|2

)
−By (u ·B)

uyBx −Byux

0



= 0 (24)

where p = (γ0 − 1)

(
E − 1

2
ρ
(
u2
x + u2

y

)
− 1

2

(
B2
x +B2

y

))
.

In order to apply DG method, set

B =
n∑
i=1

αi
−→
ψ i

ρ =
n∑
i=1

βiφi

ρux =
n∑
i=1

γx,iφi

ρuy =
n∑
i=1

γy,iφi

E =
n∑
i=1

ηiφi

(25)

{ψ}ni is H(div)-conforming basis, and {φ}ni is regular orthonormal hierarchical basis.

H(div)-conforming basis will be discussed in the next chapter. For regular orthonormal

hierarchical basis in 2-D triangles {φ}ni , the following form can be adapted, see [9]:
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• Zeroth-order

φ0,0 =
√

2

• First-order

φ1,0 = 3(x1 − 1)

φ0,1 = 2
√

(3)(x1 + 2x2 − 1)

• Second-order:

φ2,0 =
√

6(1− 8x1 + 10x2
1)

φ0,2 =
√

30(1− 2x1 + x2
1 − 6x2 + 6x1x2 + 6x2

2)

φ1,1 = 3
√

2(x1 + 2x2 − 1)(5x1 − 1)

• Third-oder:

φ3,0 = 2
√

2(15x1 − 45x2
1 + 35x3

1 − 1)

φ0,3 = 2
√

14(3x1 − 3x2
1 + 12x2 + x3

1 − 24x1x2 − 30x2
2 + 20x3

2 + 12x2x
2
1 + 30x1x

2
2 − 1)

φ2,1 = 2
√

6(x1 + 2x2 − 1)(1− 12x1 + 21x2
1)

φ1,2 = 2
√

10(7x1 − 1)(1− 2x1 + x2
1 − 6x2 + 6x1x2 + 6x2

2)

For future simplification, we define mass matrix Mφ, and stiffness matrix Sφ, for basis

{φ}ni

Mφ =

∫
K

φiφjdx, (26)
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and

Sφ =

∫
K

(
uxφi

∂φj
∂x

+ uyφi
∂φj
∂y

)
dx. (27)

This set of northonormal basis functions will make the mass matrix

Mφ = |J | · I, (28)

where |J | is the Jacobian of the mapping from reference triangle to the global triangle.

In order to perform integration on triangles and thier edges, numerical integration will be

applied. We include the details of numerical integration for 1-D and 2-D triangles in the

appendix D.

Now, we can apply Discontinuous Galerkin method to the 2-D MHD equations, and we

obtain:

Mφ · ddt
−→
β T = Sφ ·

−→
β T −

3∑
r=1

(Cavg,ρ − Jρ)

Mφ · ddt
−→γ T

x = Sφ · −→γ T
x + Vρux −

3∑
r=1

(Cavg,ρux − JEρux)

Mφ · ddt
−→γ T

y = Sφ · −→γ T
y + Vρuy −

3∑
r=1

(Cavg,ρuy − JEρuy)

Mφ · ddt
−→η T = Sφ · −→η T + VE −

3∑
r=1

(Cavg,E − JE)

MB · ddt
−→α T = SB · −→α T −

3∑
r=1

(Cavg,B − JB)

(29)

The details of constructing the above matrices are presented in the appendix A.



CHAPTER 3:H(DIV) BASIS FUNCTIONS

3.1 H(div) Basis functions for the triangular element

Any point in the reference triangular element is uniquely located in terms of the local

coordinate system (ξ, η). The vertexes are numbered as v0(0, 0), v1(1, 0), v2(0, 1), in Figure

2. The barycentric coordinates are given as

λ0 := 1− ξ − η

λ1 := ξ

λ2 := η

(30)

Figure 2: Two dimensional reference triangular element

The directed tangent on a generic edge ej = [j1, j2] is similarly defined as in (48) for the
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three dimensional case. In the same manner the edge is also parameterized as in (49). A

generic edge can be uniquely identified with

ej := [j1, j2], j1 = {0, 1}, j1 < j2 ≤ 2, j = j1 + j2 (31)

The two-dimensional vectorial curl operator of a scalar quantity, which is used in our con-

struction, needs a proper definition. We use the one given in the book [15], viz.

curl(u) := ∇× u :=

[
∂u

∂η
,−∂u

∂ξ

]T
(32)

Based upon the newly created shape functions for the three-dimensional H(div)-conforming

tetrahedral elements and using the technique of dimension reduction we construct the basis

for the H(div)-conforming triangular elements in two dimensions. However, it is easy to see

that the two groups for the face functions cannot be appropriately modified for our purpose.

Instead we borrow the idea of Zaglmayr in the dissertation [45], viz, we combine the edge-

based shape functions in [45] with our newly constructed edge-based and bubble interior

functions. In [45] Zaglmayr had applied the so-called scaled integrated Legendre polynomial

in the construction, viz.

Lsn(x, t) := tn−1

∫ x

−t
ln−1

(
ξ

t

)
dξ, n ≥ 2, t ∈ (0, 1], (33)

where ln(x) is the n-th order Legendre polynomial.

• Edge functions Associated with each edge the formulas for these functions are given as

ΦN0

e[k1,k2] = λk2∇× λk1 − λk1∇× λk2 (34)
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for the zeroth order approximation,

ΦN1

e[k1,k2] = λk2∇× λk1 + λk1∇× λk2 (35)

for the first order approximation and

Φj
e[k1,k2] = Lsj−1 (λk2 − λk1) ΦN1

e[k1,k2] + Lsj−2 (λk2 − λk1) ΦN0

e[k1,k2], j ≥ 2 (36)

for higher-order approximations.

• Interior functions The interior functions are further classified into two categories: edge-

based and bubble interior functions. By construction the normal component of each

interior function vanishes on either edge of the reference triangular element, viz.

nej ·Φt = 0, j = 1{1, 2, 3}, (37)

where nej is the unit outward normal vector to edge ej.

Edge-based interior functions

The tangential component of each edge-based function does not vanish on the as-

sociated only edge ek := [k1, k2] but vanishes the other two edges, viz.

τej ·Φt,i
ek:=[k1,k2] = 0, ej 6= ek, (38)

where τej is the directed tangent along the edge ej := [j1, j2]. The following basis
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functions are proposed here as

Φt,i
ek:=[k1,k2] = Ciλk1λk2(1− λk1)iP

0,2
i

(
2λk2

1− λk1
− 1

)
τek

|τek |
(39)

where the function P
(0,2)
i (•) is the classical un-normalized Jacobi polynomial of degree

i with a single variable [29], and the scaling coefficient is given by

Ci =
√

2(i+ 2)(i+ 3)(2i+ 3)(2i+ 5), i = 0, 1, · · · , p− 2 (40)

The following orthonormal property of edge-based interior functions can be proved

〈Φt,m
ek:=[k1,k2],Φ

t,n
ek:=[k1,k2]〉|K2 = δmn, {m,n} = 0, 1, · · · , p− 2. (41)

Interior bubble functions:

The interior bubble funtions vanish on the entire boundary ∂K2 of the reference tri-

angular element. The formulas of these functions are given as

Φt,−→e i
m,n = Cm,nλ0λ1λ2(1− λ0)mP (2,2)

m

(
λ1 − λ2

1− λ0

)
P (2m+5,2)
n (2λ0 − 1)−→e i, i = 1, 2, (42)

where

Cm,n =

√
(m+ 3)(m+ 4)(2m+ 5)(2m+ n+ 6)(2m+ n+ 7)(2m+ 2n+ 8)

(m+ 1)(m+ 2)(n+ 1)(n+ 2)
(43)

and

0 ≤ {m,n}, m+ n ≤ p− 3 (44)
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One can again prove the orthonormal property of the interior bubble functions

〈Φt,−→e i
m1,n1

,Φt,−→e j
m2,n2
〉|K2 = δm1m2δn1n2 , (45)

where

0 ≤ {m1,m2, n1, n2}, m1 + n1,m2 + n2 ≤ p− 3, {i, j} = 1, 2 (46)

The following table shows the decomposition of the space (Pn(K))2 for theH(div)-conforming

triangular element.

Decomposition Dimension

Edge functions 3(n+ 1)

Edge-based interior functions 3(n− 1)

Interior bubble functions (n− 2)(n− 1)

Total (n+ 1)(n+ 2)

3.2 H(div) Basis functions for the tetrahedral element

Our construction are motivated by the work on the construction of H(div)-conforming

hierarchical bases for tetrahedral elements [1]. We construct shape functions for the H(div)-

conforming tetrahedral element on the canonical reference tetrahedral element, as shown

in Figure 3. The shape functions are grouped into several categories based upon their

geometrical entities on the reference tetrahedral element [1]. The basis functions in each

category are constructed so that they are orthonormal on the reference element.

Any point in the tetrahedral element K3 is uniquely located in terms of the local coordinate

system (ξ, η, ζ). The vertexes are numbered as v0(0, 0, 0), v1(1, 0, 0), v2(0, 1, 0), v3(0, 0, 1).
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Figure 3: Three dimensional reference tetrahedral elements

The barycentric coordinates are given as

λ0 := 1− ξ − η − ζ

λ1 := ξ

λ2 := η

λ3 := ζ

(47)

The directed tangent on a generic edge ej = [j1, j2] is defined as

τej := τ [j1,j2] = vj2 − vj1 , j1 < j2. (48)

The edge is parameterized as

γej := λj2 − λj1 , j1 < j2. (49)
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A generic edge can be uniquely identified with

ej := [j1, j2], j1 = 0, 1, 2, j1 < j2 ≤ 3, j = j1 + j2 + sign(j1), (50)

where sing(0) = 0. Each face on the tetrahedral element K3 can be identified by the

associated three vetexes, and is uniquely defined as

fj1 := [j2, j3, j4], 0 ≤ {j1, j2, j3, j4} ≤ 3, j2 ≤ j3 ≤ j4. (51)

The standard bases in Rn are noted as −→e i, i = 1, cdots, n, and n = 1{2, 3}.

• Face functions The face functions are further grouped into two categories: edge based

face functions and face bubble functions.

Edge-based face functions:

These functions are associated with the three edges of a certain face fj1 , and by con-

struction all have non-zero normal components only on the associated face fj1 , viz.

nfjk ·Φfj1 ,i

e[k1,k2] = 0, jk 6= j1, (52)

where nfjk is the unit outward normal vector to face fjk .

The edge-based face functions for higher order have been proposed in [1] as follows:

Φ̃
fj1 ,i

e[k1,k2] = li(γek)λk1∇λk2 ×∇λk3 , i = 0, · · · , p− 1. (53)

For instance, for the face opposite to the vertex v0(0, 0, 0), f0 := [1, 2, 3], the face
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functions related to edge e[1, 2] are given by

Φ̃f0,i
e[1,2] = li(λ3 − λ2)λ1∇λ2 ×∇λ3, i = 0, · · · , p− 1 (54)

However, it can be easily checked that the basis function given in (53) in fact are

not independent for p = 2 (for example, the sum of all the basis on a given face in

fact equals to zero) and thus the proposed basis function is not complete. To remedy

this degeneracy, two types of constructions of new hierarchical high-order independent

edge-based face functions will be presented here.

– Type One: high-order independent edge-based face functions

In [8], the following orthonormal basis functions are given as

Φ
fj1 ,i

e[k1,k2] = Ciλk3(1− λk1)iP
(3,0)
i

(
2λk2

1− λk1
− 1

)
∇λk1 ×∇λk2
|∇λk1 ×∇λk2 |

, (55)

where

Ci =
√

3(2i+ 4)(2i+ 5), i = 0, 1, · · · , p− 1, (56)

and

k1 = {j2, j3}, k2 = {j3, j4}, k1 < k2, k3 = {j2, j3, j4}\{k1, k2}. (57)

One can prove the orthonormal property of these edge-based face functions

〈Φfj1 ,m

e[k1,k2],Φ
fj1 ,n

e[k1,k2]〉|K3 = δmn, {m,n} = 0, 1, · · · , p− 1, (58)

where δmn is the Kronecker delta. Note that with our new construction, the edge-
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based face functions are all linearly independent, which is also verified by the fact

that in the spectrum of the mass(Gram) matrix, none of the eigenvalues is zero.

– Type Two: high-order independent edge-based face functions

An alternative approach using the idea of recursion from [1] can also be used

to construct independent edge-based face functions as follows.

For p = 1, for each edge we have one face function for this edge as proposed in

[1],

Φ
fj1 ,0

e[k1,k2] = λk1∇λk2 ×∇λk3 , (59)

and for p = 2, one additional new basis function can be constructed as

Φ
fj1 ,1

e[k1,k2] = λk1λk2∇λk3 ×∇λk1 , (60)

which can be shown to satisfy the condition 52, and for p > 3, the basis functions

are given by

Φ̃
fj1 ,i+1

e[k1,k2] ≡ li(γek)Φ̃
fj1 ,1

e[k1,k2] + li−1(γek)Φ̃
fj1 ,0

e[k1,k2]

= li(γek)[λk1λk2∇λk3 ×∇λk1 ] + li−1(γek)[λk1∇λk2 ×∇λk3 ],

i = 1, · · · , p− 2

(61)

It can be shown again numerically that there are exactly p functions that are

independent and only whose normal component is non-zero only on the associated

edge ek.

Face bubble functions:
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The face bubble functions which belong to each specific group are associated with

a particular face fj1 . They vanish on all edges of the reference tetrahedral element K3,

and the normal components of which vanish on other three faces, viz.

nfjk ·Φfj1
m,n = 0, jk 6= j1, (62)

The explicit formula is given as

Φ
fj1
m,n = ι(1−λj2)m(1−λj2−λj3)nP (2n+3,2)

m

(
2λj3

1− λj2
− 1

)
P (0,2)
n

(
2λj4

1− λj2 − λj3
− 1

)
∇λj3 ×∇λj4
|∇λj3 ×∇λj4|

(63)

where

ι = Cn
mλj2λj3λj4 , (64)

where

Cn
m =

√
(2n+ 3)(m+ n+ 3)(m+ 2n+ 4)(m+ 2n+ 5)(m+ 2n+ 7)(m+ 2n+ 8)(m+ 2n+ 9)√

(m+ 1)(m+ 2)

(65)

and

0 ≤ {m,n}, m+ n ≤ p− 3. (66)

By construction the face bubble functions share again the orthonormal property on

the reference tetrahedral element K3:

〈Φfj1
m1,n1 ,Φ

fj1
m2,n2〉|K3 = δm1,m2δn1,n2 (67)

• Interior functions
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The interior functions are classified into three categories: edge-based, face-based and

bubble interior functions. By construction the normal component of each interior

function vanishes on either face of the reference tetrahedral element K3, viz.

nfj ·Φt = 0, j = {0, 1, 2, 3}. (68)

Edge-based interior functions:

The tangential component of each edge-based function does not vanish on the as-

sociated only edge ek := [k1, k2], but vanishes all other five edges, viz.

τ fj ·Φt,i
e[k1,k2] = 0, ej 6= ek, (69)

where τ fj is the directed tangent along the edge ej := [j1, j2]. The shape functions are

given as

Φt,i
e[k1,k2] = Ciλk1λk2(1− λk1)iP

(1,2)
i

(
2λk2

1− λk1
− 1

)
τek

|τek |
, (70)

where

Ci = (i+ 3)

√
(2i+ 4)(2i+ 5)(2i+ 7)

i+ 1
, i = 0, 1, · · · , p− 2. (71)

Again one can prove the orthonormal property of edge-based interior functions:

〈Φt,m
e[k1,k2],Φ

t,n
e[k1,k2]〉|K3 = δmn, {m,n} = 0, 1, · · · , p− 2. (72)

Face-based interior functions:
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These functions which are associated with a particular face fj1 have non-zero tan-

gential components on their associated face only, and have no contribution to be the

tangential components on all other three faces, viz.

nfjk ×Φ
t,fj1
m,n = 0, jk 6= j1, (73)

Further each face-based interior function vanishes on all the egdges of the tetrahedral

element K3, viz.

τek ·Φt,fj1
m,n = 0. (74)

The formulas of these functions are given as

Φ
t,f1j1
m,n = ι(1− λj2)m(1− λj2 − λj3)nP

(2n+3,2)
m

(
2λj3

1− λj2
− 1

)
P 0,2
n

(
2λj4

1− λj2 − λj3
− 1

)
τ [j2,j3]

|τ [j2,j3]|
,

Φ
t,f2j1
m,n = ι(1− λj2)m(1− λj2 − λj3)nP

(2n+3,2)
m

(
2λj3

1− λj2
− 1

)
P 0,2
n

(
2λj4

1− λj2 − λj3
− 1

)
τ [j2,j4]

|τ [j2,j4]|
,

(75)

where ι is given in (64) and 0 ≤ {m,n}, m + n ≤ p − 3. The face based interior

functions enjoy the orthonormal property on the reference tetrahedral element K3:

〈Φ
t,f ij1
m1,n1 ,Φ

t,f ij1
m2,n2〉|K3 = δm1m2δn1n2 ,

i = {1, 2}, 0 ≤ {m1,m2, n1, n2}, m1 + n1,m2 + n2 ≤ p− 3.

(76)

Interior bubble functions:

The interior bubble functions vanish on the entire boundary ∂K3 of the reference
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tetrahedral element K3. The formulas of these functions are given as

Φt,−→e i
l,m,n = χP

(2m+2n+8,2)
l (2λ1−1)P (2n+5,2)

m

(
2λ2

1− λ1

− 1

)
P (2,2)
n

(
2λ3

1− λ1 − λ2

− 1

)
−→e i, i = 1, 2, 3,

(77)

where

χ = Cl,m,nλ0λ1λ2λ3(1− λ1)m(1− λ1 − λ2)n (78)

where

Cl,m,n = C1
l,m,nC

2
l,m,n, (79)

where

C1
l,m,n =

√
(l + 2m+ 2n+ 9)(l + 2m+ 2n+ 10)(l + 2m+ 2n+ 11)(m+ 2n+ 6)

(l + 1)(m+ 1)(n+ 1)

C2
l,m,n =

√
(m+ 2n+ 7)(m+ 2n+ 8)(n+ 3)(n+ 4)(2n+ 5)

(l + 2)(m+ 2)(n+ 2)

(80)

and

0 ≤ {l,m, n}, l +m+ n ≤ p− 4. (81)

Again, one can show the orthonormal property of the interior bubble functions

〈Φt,−→e i
l1,m1,n1

,Φ
t,−→e j
l2,m2,n2

〉|K3 = δl1,l2δm1,m2δn1,n2 , (82)

where

0 ≤ {l1, l2,m1,m2, n1, n2}, l1 +m1 + n1, l2 +m2 + n2 ≤ p− 4, {i, j} = 1, 2, 3. (83)

In the following table we summarize the decomposition of the space (Pn(K))3 for the H(div)-

conforming tetrahedral element.
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Decomposition Dimension

Edge-based face functions 12n

Face bubble functions 2(n− 2)(n− 1)

Edge-based interior functions 6(n− 1)

Face-based interior functions 4(n− 2)(n− 1)

Interior bubble functions (n− 3)(n− 2)(n− 1)/2

Total (n+ 1)(n+ 2)(n+ 3)/2



CHAPTER 4: GLOBAL DIVERGENCE-FREE TREATMENT

4.1 Treatment on 2-D Triangle Mesh

In solving the MHD equations, the divergence free condition needs to be satisfied. How-

ever, the time evolution from a fulling discretized DG finite element method will render the

divergence of B to be non-zero. There are many ways to remove the non-zero divergence in

the magnetic field such as the projection method through Helmholtz decomposition. In this

dissertation, we will use the interior functions in the H(div) basis set to correct the non-zero

divergence element by element. Due to the vanishing property of the normal components of

the interior basis functions, such a local correction will still keep the corrected finite element

solution in H(div) in the whole domain.

First, we will talk about 2-dimensional case. The H(div) basis functions can be expressed

as

H(div) =

u =

 u1

u2

 , [u · n]|Γ = 0

 ∈ P2
n(K), (84)

where n is the outer unit normal vector on the interface Γ of the triangle, and P2
n(K) denotes

the space of polynomials in K of degree at most n. There are (n+ 1)(n+ 2) number of basis

functions of degree at most n.
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For example, on edge e12, for edge-based interior function ψt,i
[k1,k2], we have

ψt,i
[k1,k2] · ni = 0 (85)

for i = 1, 2, but it has non-zero tangential components on its associated edge only

ψt,i
[k1,k2] · n0 6= 0 (86)

For interior bubble functions, such asψt,−→e i
m,n = λ1λ2λ0

−→e i, i = 1, 2, it vanishes on the entire

boundary of the reference triangle.

For future convenience, we define a collection of bubble functions which is consisted of

edge-based interior functions and interior bubble functions.

Σint =
{
ψbi
}nb
i=1

(87)

where nb = 3(n− 1) + (n− 2)(n− 1).

In solving the 2-D equation

∂B

∂t
+∇ ·

(
uBT −BuT

)
= 0 (88)

The magnetic field B ∈ H(div), but ∇B 6= 0.

The ability of using only the interior functions to reduce the non-divergence error in the

following lemma.
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Lemma 0.1. The span of the divergence of the bubble functions of order n, is equivalent

to the span of the polynomial space n − 1 excluding the constant term. That is, ∇ · Σint =

Pn−1(K)\{1} = {1}⊥.

Proof. We will prove the result by subspace inclusion argument. First, we will show ∇Σint ⊂

{1}⊥.

For ∀b ∈ Σn, we have

∫
K

divbdx =

∫
K

1 · divbdx =

∫
∂K

b · nds = 0, (89)

due to the fact the normal component of interior function vanishes on the edge of the element

K.

Thus, ∇Σint ⊂ {1}⊥ On the other hand, we will show ∇Σint ⊃ {1}⊥ by showing that

(∇Σint ⊃ {1})⊥ ⊂ {1}, instead.

Let v ∈ (∇Σint ⊃ {1})⊥ ⊂ Pp−1(K), then we have

∫
K

v · ∇bidx = 0, (90)

for ∀bi ∈ Σint.

After integration by parts, we get

∫
∂K

bi · n · vds−
∫
K

∇v · bidx = 0 (91)
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Since
∫
∂K

bi · n · vds = 0 by the design of the bi’s, then

∫
K

∇v · bidx = 0, (92)

for ∀bi ∈ Σint.

We can see ∇ · v ∈ P2
n−2(K).

Let t01, t02 be the tangential vectors of the two edges sharing the common vertex v0. We

can see easily that the following vector functions are also interior functions(with zero normal

components on all faces),

λ0λ1g1t01, λ0λ1g2t02 ∈ Σint (93)

where the scalar functions gi, i = 1, 2 are polynomials of degree (p− 2).

Next we construct two bi-orthogonal vectors s1, s2, with respect to t01, t02 with the fol-

lowing property

sj · t0i = δij. (94)

Now that we can express the vector field ∇ · v using the basis vector s1, s2 as follows

∇ · v = g01s1 + g02s2, (95)

where g01,g02,∈ Pn−2(K).
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Pick b = g01λ0λ1t01, and b ∈ Σint, since

t01 ⊥ e01,

λ0 = 0 on e12,

λ1 = 0 on e02.

(96)

Plug ∇v and b into equation (92), we can get

∫
K

∇v · bdx = 0 (97)

∫
K

(g01s1 + g02s2) · (g01λ0λ1t01) = 0 (98)∫
K

λ0λ1g
2
01 · s1t01dx = 0 (99)

The integration equals to zero, only when g01 = 0. By the same argument, g02 = 0.

Thus, ∇v = 0. That is, v = constant.

Thus, (∇Σint ⊃ {1})⊥ ⊂ {1} is proved.

4.2 Treatment on 3-D Tetrahedron Mesh

In 3-dimensional case, the H(div) basis functions can be expressed as

H(div) =


u =


u1

u2

u3

 , [u · n]|Γ = 0


∈ P3

n(K), (100)

where n is the outer unit normal vector on face Γ of the tetrahedron, and P3
n(K) denotes

the space of polynomials in K of degree at most n. There are
(n+ 1)(n+ 2)(n+ 3)

2
number

of basis functions of degree at most n.
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For example, on face f0, for face-based interior function ψt,f0
m,n, we have

ψt,f0
m,n · ni = 0 (101)

for i = 1, 2, 3, but it has non-zero tangential components on its associated face only

ψt,f0
m,n · n0 6= 0 (102)

For edge-based interior functions, such as ψt,i
[k1,k2] = λ1∇λ2 ×∇λ3 on edge e12, its tangential

component does not vanish on the associated only edge e12, but vanishes all other five edges.

For future convenience, we define a collection of bubble functions which is consisted of

edge-based interior functions, face-based interior functions and interior bubble functions.

Σint =
{
ψbi
}nb
i=1

(103)

where nb = 6(n− 1) + 4(n− 2)(n− 1) +
(n− 3)(n− 2)(n− 1)

2
.

In solving the 3-D equation

∂B

∂t
+∇ ·

(
uBT −BuT

)
= 0 (104)

The magnetic field B ∈ H(div), but ∇B 6= 0.

Our goal is to make ∇ ·B∗ = 0. To achieve it, we need to prove a theorem.

Lemma 0.2. The span of the divergence of the bubble functions of order n, is equivalent
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to the span of the polynomial space n − 1 excluding the constant term. That is, ∇ · Σint =

Pn−1(K)\{1} = {1}⊥.

Proof. We will prove the result by subspace inclusion argument. First, we will show ∇Σn ⊂

{1}⊥.

For ∀b ∈ Σint, we have

∫
K

divbdx =

∫
K

1 · divbdx =

∫
∂K

b · nds = 0, (105)

due to the fact the normal component of interior function vanishes on the edge of the element

K.

Thus, ∇Σint ⊂ {1}⊥ On the other hand, we will show ∇Σint ⊃ {1}⊥ by showing that

(∇Σint ⊃ {1})⊥ ⊂ {1}, instead.

Let v ∈ (∇Σn ⊃ {1})⊥ ⊂ Pp−1(K), then we have

∫
K

v · ∇bidx = 0, (106)

for ∀bi ∈ Σint.

After integration by parts, we get

∫
∂K

bi · n · vds−
∫
K

∇v · bidx = 0 (107)
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Since
∫
∂K

bi · n · vds = 0 by the design of the bi’s, then

∫
K

∇v · bidx = 0, (108)

for ∀bi ∈ Σint.

We can see ∇ · v ∈ P3
n−2(K).

Let t01, t02, t02 be the tangential vectors of the three edges sharing the common vertex v0.

We can see easily that the following vector functions are also interior functions(with zero

normal components on all faces),

λ0λ1g1t01, λ0λ1g2t02, λ0λ1g2t03 ∈ Σint (109)

where the scalar functions gi, i = 1, 2, 3 are polynomials of degree (p− 2).

Next we construct two bi-orthogonal vectors s1, s2, s3, with respect to t01, t02, t03 with the

following property

sj · t0i = δij. (110)

Now that we can express the vector field ∇ · v using the basis vector s1, s2, s3 as follows

∇ · v = g01s1 + g02s2 + g03s3, (111)

where g01,g02,g03 ∈ Pn−2(K).
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Pick b = g01λ0λ1t01, and b ∈ Σint, since

t01 ⊥ f2, f3,

λ0 = 0 on f0,

λ1 = 0 on f1.

(112)

Plug ∇v and b into equation (106), we can get

∫
K

∇v · bdx = 0 (113)

∫
K

(g01s1 + g02s2 + g03s3) · (g01λ0λ1t01) = 0 (114)∫
K

λ0λ1g
2
01 · s1t01dx = 0 (115)

The integration equals to zero, only when g01 = 0. By the same argument, g02 = 0, g03 = 0.

Thus, ∇v = 0. That is, v = constant.

Thus, (∇Σint ⊃ {1})⊥ ⊂ {1} is proved.

4.3 Algorithm of cleaning the divergence of magnetic field

Next, we propose the following algorighm to remove the non-divergence in the numerical

solution for the magnetic field B in the numerical solution for the magnetic field on a triangle.

• Step 1 (local correction) Element-wise normal removal of high order terms in DivB.

Due to Lemma 1, we can use the interior function in Σint to remove higher order terms

in DivB, the remaining component in DivB will be a constant on each element. We
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proceed to find a vector function

Φ =

ni∑
i=1

αiΦi ∈ Σn (116)

such that

B1 = B + Φ, (117)

div(B + Φ) = c (118)

where div(B + Φ) ∈ div(Σn)⊥, which gives the following linear system

ni∑
i=1

αi

∫
K

divΦi · divΦjdx = −
∫
K

divB · divΦjdx (119)

where 1 ≤ j ≤ ni. αi’s can be solved in least square measure.

• Step 2 (global correction) Remove the constant term in DivB1 in the whole domain.

Due to the result of Lemma 1, we will have a residual constant term left in the corrected

magnetic field DivB1, which can only be removed by a global correction with the first

order H(div) basis defined in Chapter 3. We proceed as follows by finding a function

Ψ ∈ H(div,Ω) using the first order H(div) basis functions

Ψ =

N1∑
i=1

βiΦi (120)

such that

B∗ = B1 + Ψ (121)∫
Ω

divB∗ · divΦjdx = 0, for1 ≤ j ≤ N1, (122)
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resulting into the following linear system for the coefficient {βi}N1
i=1,

ni∑
i=1

βi

∫
K

divΦi · divΦjdx = −
∫
K

divB1 · divΦjdx. (123)



CHAPTER 5: NUMERICAL EXAMPLES

5.1 Basis Check

In order to check the convergence rate of our H(div)-conforming basis functions, we de-

sign this example to fully test the properties.

Assume Bh =
n∑
i=1

αiψi, and Bh = B0. n is the number of basis functions. Use Discontin-

uous Galerkin method, we obtain

∫
K

Bh · ψjdx =

∫
K

B0 · ψjdx (124)

and plug Bh in it, one can obtain

n∑
i=1

αi

∫
K

ψi · ψjdx =

∫
K

B0 · ψjdx (125)

Write it in the form of matrices:

Mk · α = bk (126)

where Mk =
∫
K
ψi · ψjdx and bk =

∫
K

B0 · ψjdx.

α can be solved from the above equation, in the domain [0, 10] × [0, 10], and the domain

is discretized by triangular elements in Figure 4. K is one of the triangular elements in the

mesh.
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Figure 4: An example triangular mesh on a square domain

The novelty of our method is that when patching Mk and bk together, the edge functions of

the common edge on two neighboring elements will have the same coefficient αi, to ensure the

continuity on normal component. This can be shown numerically the normal component of

the edge functions only depend on the two vertices of the edge AB, see Figure 5. Therefore,

the edge functions of the same order p on the the common edge AB of two neighboring

elements K1 and K2 have the same magnitude on the normal direction. By ensure the edge

functions share the same coefficient on neighboring elements, the continuity of the normal

direction across the interface can be well preserved.

Aggregate the Mk and bk, ensuring the edge functions of each edge are shared, and thus

the corresponding entries are overlapped in M and b, with

M =
N∑
i=1

Mk, b =
N∑
i=1

bk (127)

where N is the number of elements in the domain.
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Figure 5: An example of patching two triangular elements

Let

B0 =

sin(x+ y)

cos(x+ y)

 (128)

and we check the error of the numerical solution Bh and exact solution B0,

ε = ||Bh −B0||2 (129)

Theoretically, for basis function of order p, as the length of the element edge decreases by

half, the numerical error will go down by a rate of 2p+1, which is also called as convergence

rate. In Table 1, The numerical result shows that for basis function of order p, the numerical

convergence rate is close to our theoretical rate.

Moreover, Figure 6, as a better illustration of Table 1, shows that the error goes down only

as the mesh is finer, but also as the order of basis functions increases. Therefore, our H(div)

basis functions enjoy a good convergence property while ensuing the normal components are
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Mesh p = 0 p = 1 p = 2 p = 3 p = 4
Error Rate Error Rate Error Rate Error Rate Error Rate

2 3.0E-00 - 1.0E-00 - 1.2E-00 - 1.0E-00 - 7.0E-01 -
8 1.0E-00 3.0 6.9E-01 1.4 4.6E-01 2.6 1.2E-01 8.3 4.5E-02 15.6
34 5.7E-01 1.8 4.0E-01 1.7 7.1E-02 6.8 1.9E-02 6.3 2.6E-03 17.3
142 2.3E-01 2.5 7.7E-02 5.2 8.1E-03 8.7 7.4E-04 25.7 6.5E-05 40

average - 2.4 - 2.8 - 6.0 - 13.4 - 24.3
theoretical - 2 - 4 - 8 - 16 - 32

Table 1: Numerical error and convergence rate of using H(div) basis functions of different
order, compared to the theretical convergence rate

continuous across the interface of the triangular elements.
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Figure 6: Numerical error of using H(div) basis functions of different order

5.2 Example with Smooth Solution

This two dimensional vortex problem was originally suggest by Shu [37] in the hydrody-

namical system, and was adapted to the MHD equations by Balsara [4]. The solution is a

smooth vortex stably convected with the velocity field and the magnetic field. The unper-

turbed magnetohydrodynaimic flow with (ρ, ux, uy, Bx, By, p) = (1, 1, 1, 0, 0, 1) is initialized
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on the computational domain [−10, 10] × [−10, 10] with γ = 5/3. The vortex is introduced

through the fluctuation in the velocity and magnetic fields given by

(∂ux, ∂uy) =
η

2π
∇× exp{0.5(1− r2)} (130)

(∂Bx, ∂By) =
ξ

2π
∇× exp{0.5(1− r2)} (131)

where r2 = x2 + y2, and the dynamical balance is obtained through the perturbation on

pressure by

∂p = (ξ2(1− r2)− η2)
1

8π2
exp(1− r2) (132)

In our computation, we set η = 1, ξ = 1. Periodical boundary conditions are used. The

exact solution is just the one obtained from the initial configuration propagating with speed

(1, 1), or mathematically given by Up(x, y, t) = Up
0(x− t, y − t).

We choose our H(div)-conforming basis function for magnetic filed B, and third order

regular orthonormal hierarchical basis for other components. As our major task is to test

the property of H(div)-conforming basis, we will keep the regular orthonormal hierarchical

basis, and focus on the impact of H(div)-conforming basis of different orders.

Table 2 shows the L2 errors and accuracy for all the components of MHD equations

at t = 0. The L2 errors are computed within the domain [−10, 10] × [−10, 10]. We can

see the third order regular orthonormal hierarchical basis obtain third order accuracy. That

H(div)-conforming basis of order p obtain p-th order accuracy when p = 2, 3. When p = 4, 5,

the convergence rate definitely improves, but is a little short to the p-th order convergence,
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which was limited by the third order regular orthonormal hierarchical basis that we use.

Nevertheless, our results shows again that ourH(div)-conforming basis enjoys a well-behaved

convergence property, and it can work very well with other type of basis functions, such as

regular orthonormal hierarchical basis. The convergence rates are proportionally adjusted

to the size of the elements, so that they are comparable to the theoretical values.

ρ u E B
Mesh Error Order Error Order Error Order Error Order

p = 3 p = 2
2 5.55E-16 5.39E-02 1.33E-03 3.16E-02
14 4.84E-16 - 8.00E-03 3.85 2.70E-04 2.81 1.40E-02 1.29
44 4.29E-16 - 1.05E-03 9.70 1.35E-03 0.25 3.35E-03 5.32
106 4.64E-16 - 2.05E-04 8.50 1.98E-04 11.32 1.12E-03 4.97

p = 3 p = 3
2 5.55E-16 5.39E-02 1.33E-03 5.39E-02
14 4.84E-16 - 8.00E-03 3.85 2.70E-04 2.81 8.92E-03 3.45
44 4.29E-16 - 1.05E-03 9.70 1.35E-03 0.25 1.24E-03 9.16
106 4.64E-16 - 2.05E-04 8.50 1.98E-04 11.32 2.35E-04 8.76

p = 3 p = 4
2 5.55E-16 5.39E-02 1.33E-03 9.37E-02
14 4.84E-16 - 8.00E-03 3.85 2.70E-04 2.81 6.00E-03 8.92
44 4.29E-16 - 1.05E-03 9.70 1.35E-03 0.25 9.78E-04 7.81
106 4.64E-16 - 2.05E-04 8.50 1.98E-04 11.32 1.59E-04 10.21

p = 3 p = 5
2 5.55E-16 5.39E-02 1.33E-03 1.23E-01
14 4.84E-16 - 8.00E-03 3.85 2.70E-04 2.81 4.10E-03 17.14
44 4.29E-16 - 1.05E-03 9.70 1.35E-03 0.25 1.92E-04 27.18
106 4.64E-16 - 2.05E-04 8.50 1.98E-04 11.32 2.69E-05 11.85

Table 2: L2 errors of all the components and the convergence rate with smooth solution at
time t = 0

Figure 7 shows clearly the above relation at t = 0. As we increase the granularity of the

mesh, the L2 error of the magnetic field B will decay, for p = 2, 3, 4, 5, respectively. As we

increase the order of H(div)-conforming basis, the numerical solution will converge to the



48

exact solution. For other components, using third order regular orthonormal hierarchical

basis, as the mesh is more granule, the error typically gets smaller.
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(a) Magnetic field B using H(div) basis functions
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Figure 7: Numerical error of different components using on different size of meshes at t = 0
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Table 3 shows the L2 errors and accuracy for all the components of MHD equations

at t = 1.0, using third order Runge-Kutta temporal scheme. The spatial L2 error is still

calculated over the domain [−10, 10]×[−10, 10]. As the error from the temporal discretization

kicks in, the convergence rate of H(div)-conforming basis at t = 1.0 can no longer obtain

p-th order accuracy. However, there is still a trend for the numerical solution converging to

the exact solution as higher order of H(div)-conforming basis is used or the mesh gets finer.

The errors are contained well by our third order Runge-Kutta time scheme. The third order

regular orthonormal hierarchical basis shows a similar behavior as H(div)-conforming basis.

Again, the convergence rates are proportionally adjusted to the size of the elements, so that

they are comparable to the theoretical values.

Agian, Figure 8 shows a clear illustration of the above relation at t = 1.0. As we increase

the granularity of the mesh, the L2 error of the magnetic field B will decay, for p = 2, 3, 4, 5,

respectively. As we increase the order ofH(div)-conforming basis, the numerical solution will

converge to the exact solution. For other components, using third order regular orthonormal

hierarchical basis, as the mesh is more granule, the error typically gets smaller. The error

of ρ is not shown at t = 0 since it is a constant at t = 0, and only presents machine error.

At time t = 1.0, the effect of the temporal error brings the error of rho in sight, but it goes

down by more granule mesh.
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ρ u E B
Mesh Error Order Error Order Error Order Error Order

p = 3 p = 2
2 1.69E-06 1.32E-01 3.60E-03 1.30E-01
14 2.46E-03 0.00 4.97E-03 15.18 5.76E-03 0.36 3.54E-03 20.98
44 1.59E-03 1.97 3.34E-03 1.89 5.89E-03 1.24 3.60E-03 1.25
106 8.96E-04 2.95 1.26E-03 4.40 2.81E-03 3.48 2.58E-03 2.32

p = 3 p = 3
2 2.30E-06 1.32E-01 3.60E-03 1.20E-01
14 2.25E-03 0.00 4.96E-03 15.21 5.89E-3 0.35 4.86E-03 14.11
44 1.44E-03 1.99 3.26E-03 1.94 5.58E-03 1.34 2.28E-03 2.71
106 7.21E-04 3.32 1.22E-03 4.44 2.43E-03 3.81 8.86E-04 4.27

p = 3 p = 4
2 4.35E-06 1.32E-01 3.60E-03 1.10E-01
14 2.30E-03 0.00 4.97E-03 15.18 5.98E-03 0.34 1.44E-03 43.65
44 1.38E-03 2012 3.29E-03 1.92 5.54E-03 1.37 9.78E-04 1.87
106 7.28E-04 3.15 1.21E-03 4.51 2.45E-03 3.75 5.11E-04 3.18

p = 3 p = 5
2 5.98E-06 1.32E-01 3.60E-03 9.65E-02
14 2.41E-03 0.00 4.96E-03 15.21 6.15E-03 0.33 2.34E-03 23.57
44 1.37E-03 2.24 3.28E-03 1.92 5.55E-03 1.41 7.70E-04 3.87
106 7.31E-03 3.11 1.23E-03 4.43 2.45E-03 3.76 7.19E-04 1.78

Table 3: L2 errors of all the components and the convergence rate with smooth solution at
time t = 1.0

Now we will show the results after we apply the divergence cleaning technique described

in Chapter 4. After the magnetic filed Bh is numerically solved from the MHD equations,

we will apply our divergence cleaning technique as a post process. To clean the divergence

of the magnetic field, we follow two steps. First step to use the bubble function to eliminate

the higher order terms in ∇ · Bh; then the second step is to use the edge functions from

order p = 0 to eliminate the constant term. Although, we find that the divergence of the

edge function of order 0 are linear dependent, it may not completely eliminate the remaining

constant term of the divergence. Our numerical experiment below shows that our two-step

divergence cleaning technique can largely reduce the divergence of magnetic field to a very
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Figure 8: Numerical error of different components using on different size of meshes at t = 1.0

low level.

Table 4, Table 5, Table 6 and Table 7 show the L2 error and the divergence of
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the magnetic field B before and after each cleaning step, at time t = 0 and t = 1.0, for

H(div)-conforming basis of order p = 2, 3, 4, 5. The error and divergence are computed

on over the domain [−10, 10] × [−10, 10] with diferent sizes of mesh. The results show

that at time t = 0 without sacrificing too much accuracy of the solution of magnetic field

Bh, the divergence can be significantly reduced by fifth or sixth orders. At time t = 1.0,

this divergence cleaning technique also works well with the time scheme, and have a similar

effect in reducing divergence. We notice that in some cases, the divergence can be completely

eliminated (to machine error), but in some cases it can only be largely reduced. The effect is

caused by the following reason. Since the edge functions are shared on common edges when

patching the triangular elements together, the actual number edge functions of order 0 in

the global scope is less than the needed freedom of the equation(the number of triangular

elements), which makes our equation system (123) under-determined. At t = 0, when all

the components start with nicely defined polynomials or other special functions, we might

have the luck to completely eliminate all the constant divergence with fewer edge functions

of order 0. However, we will not going to have the same luck when the temporal error kicks

in and the linear combination of the numerical solutions get more complicated.
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p = 2 t = 0 t = 1.0
Mesh ∆Bh ∇Bh ∆Bh ∇Bh

2 original 3.16E-02 1.11E-16 1.30E-01 2.05E-09
step 1 2.14E-01 4.39E-17 1.22E-01 3.77E-10
step 2 2.14E-01 4.26E-18 1.22E-01 3.77E-10

14 original 1.40E-02 4.24E-04 3.54E-03 6.28E-04
step 1 1.70E-02 5.36E-04 4.41E-03 7.10E-04
step 2 1.92E-02 2.45E-18 1.94E-02 3.06E-07

44 original 3.35E-03 6.74E-04 3.60E-03 1.89E-03
step 1 3.86E-03 5.36E-04 6.31E-03 1.60E-03
step 2 6.14E-03 2.08E-06 1.52E-02 7.55E-06

106 original 1.12E-03 3.85E-04 2.58E-03 1.85E-03
step 1 2.01E-03 2.72E-04 4.43E-03 1.26E-03
step 2 5.80E-03 6.04E-09 5.80E-02 4.38E-07

Table 4: Error of magnetic field B and divergence of magnetic field at t = 0 and t = 1.0,
using H(div) basis of order 2

p = 3 t = 0 t = 1.0
Mesh ∆Bh ∇Bh ∆Bh ∇Bh

2 original 5.39E-02 3.88E-16 1.20E-01 3.35E-05
step 1 5.51E-01 8.20E-17 1.93E-01 1.02E-05
step 2 5.51E-01 7.37E-18 1.93E-01 3.68E-06

14 original 8.92E-03 5.50E-04 4.86E-03 1.16E-03
step 1 1.46E-02 8.10E-05 1.85E-01 6.11E-04
step 2 1.47E-02 3.79E-18 1.95E-01 5.29E-07

44 original 1.24E-03 4.93E-04 2.28E-03 1.55E-03
step 1 3.26E-03 3.50E-04 7.89E-03 1.17E-03
step 2 5.41E-03 1.55E-06 1.29E-02 2.75E-06

106 original 2.35E-04 3.03E-04 8.86E-04 8.90E-04
step 1 7.14E-04 1.25E-04 4.06E-03 8.34E-04
step 2 3.30E-03 3.90E-10 1.36E-02 7.58E-08

Table 5: Error of magnetic field B and divergence of magnetic field at t = 0 and t = 1.0,
using H(div) basis of order 3

Table 8 and Table 9 show the error and accuracy for the divergence-cleaned magnetic

field B∗, at t = 0 and t = 1.0, respectively. We can see that the magnetic field after

correction B∗ at t = 0 typically has a better convergence rate than that of t = 1.0. Although

in either of the case, the convergence rate is short of the theoretical value, the error of the
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p = 4 t = 0 t = 1.0
Mesh ∆Bh ∇Bh ∆Bh ∇Bh

2 original 9.37E-02 1.96E-15 1.10E-01 6.86E-04
step 1 2.11E-01 3.25E-17 5.53E-02 1.85E-05
step 2 2.11E-01 1.19E-17 5.53E-02 1.85E-05

14 original 6.00E-03 4.04E-04 1.44E-03 1.76E-03
step 1 2.61E-02 5.85E-04 2.54E-02 7.16E-04
step 2 2.76E-02 1.60E-17 3.08E-02 1.26E-06

44 original 9.78E-04 3.38E-04 9.78E-04 1.66E-03
step 1 1.11E-02 1.99E-04 9.73E-03 5.99E-04
step 2 1.23E-02 2.19E-07 1.05E-02 4.91E-07

106 original 1.59E-04 5.19E-05 5.11E-04 1.03E-03
step 1 8.71E-04 5.27E-05 6.07E-03 6.04E-04
step 2 1.46E-03 4.54E-11 1.45E-02 2.13E-08

Table 6: Error of magnetic field B and divergence of magnetic field at t = 0 and t = 1.0,
using H(div) basis of order 4

p = 5 t = 0 t = 1.0
Mesh ∆Bh ∇Bh ∆Bh ∇Bh

2 original 1.23E-01 1.39E-15 9.65E-02 4.86E-04
step 1 2.94E-01 5.46E-17 7.78E-02 1.61E-05
step 2 2.94E-01 5.46E-17 7.78E-02 1.45E-05

14 original 4.10E-03 2.94E-04 2.34E-03 7.21E-04
step 1 1.60E-01 1.87E-04 1.71E-01 4.34E-04
step 2 1.63E-01 1.10E-17 1.72E-01 7.56E-09

44 original 1.92E-04 1.75E-04 7.70E-04 6.90E-04
step 1 1.31E-02 7.42E-05 8.20E-02 5.56E-04
step 2 1.41E-02 4.53E-08 8.68E-02 6.55E-07

106 original 2.69E-05 5.21E-05 7.19E-04 1.46E-03
step 1 2.78E-03 1.59E-05 2.47E-02 7.61E-04
step 2 2.99E-03 4.59E-11 4.44E-02 1.76E-08

Table 7: Error of magnetic field B and divergence of magnetic field at t = 0 and t = 1.0,
using H(div) basis of order 5

magnetic field before and after each correction step decays as the mesh is further refined,

as better shown in the left columns of Figure 9 and Figure 10. On the other hand, in

the right columns of Figure 9 and Figure 10, the divergence of the magnetic field before

and after each correction step also decays with a finer mesh. More importantly, after the
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second-step correction, the divergence goes down to the unnoticeable level compared to the

divergence before the correction steps. It shows that our global divergence cleaning technique

is extremely efficient when working with spatial and temporal discretization schemes.

t = 0 p = 2 p = 3 p = 4 p = 5
Mesh ∆Bh order ∆Bh order ∆Bh order ∆Bh order

2 2.14E-01 5.51E-01 2.11E-01 2.94E-01
14 1.92E-02 6.37 1.47E-02 21.42 2.76E-02 4.37 1.63E-01 1.03
44 6.14E-03 3.98 5.41E-03 3.46 1.23E-02 2.86 1.41E-02 14.71
106 5.80E-03 1.76 3.30E-03 2.72 1.46E-03 13.99 2.99E-03 7.80

Table 8: Error of magnetic field B after divergence cleaning at t = 0 and its convergence
rate for different orders of basis

t = 1.0 p = 2 p = 3 p = 4 p = 5
Mesh ∆Bh order ∆Bh order ∆Bh order ∆Bh order

2 1.22E-01 1.93E-01 5.53E-02 7.78E-02
14 1.94E-02 3.59 1.95E-01 0.57 3.08E-02 1.03 1.72E-01 0.26
44 1.52E-02 1.62 1.29E-02 19.24 1.05E-02 3.73 8.68E-02 2.52
106 5.80E-02 0.44 1.36E-02 1.57 1.45E-02 1.20 4.44E-02 3.25

Table 9: Error of magnetic field B after divergence cleaning at t = 1.0 and its convergence
rate for different orders of basis
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Figure 11 shows the error and log error of magnetic field B before and after each divergence

cleaning step from time t = 0 to t = 2.0. Figure 12 shows the divergence and log divergence

of the magnetic field B before and after each divergence cleaning step from time t = 0 to

t = 2.0. This is calculated over the domain [0, 10] × [0, 10] with a mesh of 106 triangular

elements, using third order H(div)-conforming basis and third order regular orthonormal

hierarchical basis. As we can see in Figure 12, without any correction, the divergence can

accumulate and grow very quickly. After two-step cleaning process, the global divergence is

mostly eliminated compared to the initial divergence, and stays low as time evolves. On the

other hand, the numerical solution of magnetic field B has a relative large error after the

corrections. Particularly, the first step of the divergence cleaning, i.e., eliminating the high

order terms of the divergence, will lead to a bigger error margin in the solution itself. The

second step of the divergence cleaning has little impact on the solution itself, but largely

eliminated the divergence. However, in spite of introducing extra errors of the numerical

solution itself for the divergence cleaning, the numerical solution still stays close enough

with the uncorrected one. It shows again that, as a post process, our divergence cleaning

technique greatly serves our purpose, and can also work well with the spatial and temporal

discretization schemes.
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Figure 9: Numerical error(left column) and divergence(right column) of magnetic field B on
different size of meshes, using H(div) basis at t = 0
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Figure 10: Numerical error(left column) and divergence(right column) of magnetic field B
on different size of meshes, using H(div) basis at t = 1.0
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(a) Numerical error of magnetic field B

(b) Log of numerical error of magnetic field B

Figure 11: Numerical error of magnetic field B from t = 0 to t = 2.0 for 2-D smooth solution.
Solid line is original, dash-dot line is B after first step correction, dash line is B after second
step correction.
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(a) Divergence of magnetic field B

(b) Log of Divergence of magnetic field B

Figure 12: Divergence of magnetic field B from t = 0 to t = 2.0 for 2-D smooth solution.
Solid line is original, dash-dot line is B after first step correction, dash line is B after second
step correction.
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5.3 Orszag-Tang Vortex Example

We will talk about the development of the Orszag-Tang vortex example, see [30], which

is a widely used test example in the literature because of the complex interaction between

several shocks generated as the whole system evolves. Starting from a smooth state, after

the transition period, the system will go to turbulence. The initial setup is

Up = (γ2,− sin y, sinx, 0,− sin y, sin 2x, 0, γ) (133)

with γ = 5/3, and the computational domain is [0, 2π] × [0, 2π] with periodic boundary

conditions.

The time development of density is shown in Figure 13. This is calculated over the

domain [0, 10]× [0, 10] with a mesh of 106 triangular elements, using second order H(div)-

conforming basis and first order regular orthonormal hierarchical basis. The figures show

that the solution is quite smooth at the early stage. At t = 2, shocks have already appeared.

At later times, for example, at t = 3, 4, the shocks interact each other and the structure gets

quite complicated.

During the computation, the minmod TVB shlope limiter is applied to the components

that will develop shocks, which can enhance the stability of the method and eliminate pos-

sible spurious oscillations in the approximate solution. The limiter is only designed for the

first order basis, but for higher order basis, the limiter can still delay the blowing up. For

example, with M = 4.0, on a mesh of 44 triangular elements, computation with third order

H(div)-conforming basis and first order regular orthonomal hierarchical basis could reach
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(a) t = 0.5 (b) t = 2.0

(c) t = 3.0 (d) t = 4.0

Figure 13: The development of ρ on a mesh of 106 triangular elements.

t = 20.0. This stability is highly dependent on the choice of M . Li [25] also pointed out that

the choice of limiters also has a big impact on the numerical stability.

Figure 14a shows the divergence of the magnetic field B before and after each divergence

cleaning step from t = 0 to t = 2.0, and Figure 14b shows the log of the divergence. This

is calculated on a mesh of 106 triangular elements, using second order H(div)-conforming

basis and first order regular orthonormal hierarchical basis. These two figures show that

without any correction, the divergence RKDG solutions can quickly accumulate and grow,

which will eventually lead to non-physical solutions. By applying our proposed divergence

corrections, as a post process, the numerical divergence can be significantly eliminated, and

maintained stably at a low level, even over the time evolution. Therefore, our divergence

cleaning technique is effective.
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(a) Divergence of magnetic field B

(b) Log of Divergence of magnetic field B

Figure 14: Divergence of magnetic field B from t = 0 to t = 2.0 for 2-D Orszag-Tang vortex
problem. Solid line is original, dash-dot line is B after first step correction, dash line is B
after second step correction.



CHAPTER 6: CONCLUDE REMARKS

Discontinuous Galerkin method using H(div)-conforming basis seems to be very effective

for solving the MHD equations. It can reduce the computational cost, and increase the

flexibility, by providing the choice of different order of basis for magnetic field and the rest

of the components. More importantly, the divergence cleaning techniques developed based

on the H(div)-conforming basis can greatly eliminate the divergence of the magnetic field

on the global scope, while maintaining the solution itself stable with small sacrifice on the

accuracy.

This method can be extend to three dimensional cases without essential difficulty.



CHAPTER 7: APPENDIX

7.1 Finite element construction of 2-D MHD equation

First, for equation of ρ, the DG formulation is

∫
K

∂ρ

∂t
φjdx =

∫
K

ρ−→u · ∇φjdx−
∫
∂K

F ∗(ρ) · φjds (134)

For each term, we can rewrite them as

∫
K

∂ρ

∂t
φjdx =

∂

∂t

∫
K

n∑
i=1

βiφiφjdx

=
∂

∂t

n∑
i=1

βi
∫
K
φiφjdx

= Mφ ·
d

dt

−→
β ⊥

(135)

∫
K
ρ−→u · ∇φjdx =

∫
K
ρ

(
ux ·

∂φj
∂x

+ uy ·
∂φj
∂y

)
d−→x

=
n∑
i=1

βi
∫
K

(
uxφi

∂φj
∂x

+ uyφi
∂φj
∂y

)
d−→x

= Sφ ·
−→
β ⊥

(136)

After applying Lax-Friedrichs flux, the flux term becomes

∫
∂K
F ∗(ρ) · φjds =

1

2

∫
∂K

(F (ρint) · −→n + F (ρext) · −→n − C(ρext − ρint)) · φjds

=
1

2

3∑
r=1

∫
∂Γr

(F (ρint) · −→n + F (ρext) · −→n − C(ρext − ρint)) · φjds
(137)

where Γr is the edges of the triangle element.
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On each edge, the flux term can be further expressed as

1

2

∫
∂Γr

(F (ρint) · −→n + F (ρext) · −→n ) · φjds

=
1

2

∫
∂Γr

(ρint−→u int · −→n + ρext−→u ext · −→n ) · φjds

= Cavg,ρ

(138)

1

2
C
∫
∂Γr

(ρext − ρint)) · φjds = Jρ (139)

The corresponding boundary condition is applied in the above flux term, which the edges

lies on the boundary.

Second, for equation of −→u , the DG formulation is

∫
K

∂ρ−→u
∂t

−→
φ jdx =

∫
K

(
ρ−→u−→u T +

(
p+

1

2
|
−→
B |2
)
· I −

−→
B
−→
B T

)
· ∇
−→
φ jdx−

∫
∂K

F ∗(ρ−→u ) ·
−→
φ jds

(140)

For the first component ux, we can rewrite each term as

∫
K

∂ρ−→u x

∂t

−→
φ jdx =

∂

∂t

∫
K

n∑
i=1

γx,iφiφjdx

=
∂

∂t

n∑
i=1

γx,i
∫
K
φiφjdx

= Mφ ·
d

dt
−→γx⊥

(141)
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∫
K

ρux−→u +

(
p+

1

2
|
−→
B |2
)
·

1

0

−Bx

−→
B

 · ∇φjdx
=
∫
K

{(
ρuxux +

(
p+

1

2
|
−→
B |2
)
−BxBx

)
· ∂φj
∂x

+ (ρuxuy −BxBy) ·
∂φi
∂y

}
dx

=
∫
K

{(
n∑
i=1

γx,iφiux +

(
p+

1

2
|
−→
B |2
)
−BxBx

)
· ∂φj
∂x

+

(
n∑
i=1

γx,iφiuy −BxBy

)
· ∂φi
∂y

}
dx

=
n∑
i=1

γx,i
∫
K

(
φiux ·

∂φj
∂x

+ φiuy ·
∂φj
∂y

)
dx+

∫
K

{(
p+ 1

2
|
−→
B |2 −Bx −Bx

)
· ∂φj
∂x
−BxBy ·

∂φj
∂y

}
dx

= Sφ · −→γ T
x + Vρux

(142)

After applying Lax-Friedrichs flux, the flux term becomes

∫
∂K
F ∗(ρux) · φjds

=
1

2

∫
∂K
{(F ((ρux)

int) · −→n + F ((ρux)
ext) · −→n − C((ρux)

ext − (ρux)
int)) · φj} ds

=
1

2

3∑
r=1

∫
∂Γr
{(F ((ρux)

int) · −→n + F ((ρux)
ext) · −→n − C((ρux)

ext − (ρux)
int)) · φj} ds

(143)

where Γr is the edges of the triangle element.

On each edge, the flux term can be further expressed as

1

2

∫
∂Γr

(F ((ρux)
int) · −→n + F ((ρ, ux)

ext) · −→n ) · φjds

=
1

2

∫
∂Γr


(ρux)

int−→u int +
(
pint + 1

2
|
−→
B int|2

)
·

1

0

−Bint
x

−→
B int

 · −→n

+

(ρux)
ext−→u ext +

(
pext + 1

2
|
−→
B ext|2

)
·

1

0

−Bext
x

−→
B ext

 · −→n
 · φjds

= Cavg,ρux

(144)

1

2
C

∫
∂Γr

(
(ρux)

ext − (ρux)
int)
)
· φjds = Jρux (145)
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The corresponding boundary condition is applied in the above flux term, which the edges

lies on the boundary.

In the same manner, the second component of −→u , uy is calculated as follows.

∫
K

∂ρ−→u y

∂t

−→
φ jdx =

∂

∂t

∫
K

n∑
i=1

γy,iφiφjdx

=
∂

∂t

n∑
i=1

γy,i
∫
K
φiφjdx

= Mφ ·
d

dt
−→γy⊥

(146)

∫
K

ρuy−→u +

(
p+

1

2
|
−→
B |2
)
·

0

1

−By
−→
B

 · ∇φjdx
=
∫
K

{
(ρuyux −ByBx) ·

∂φi
∂x

+

(
ρuyuy +

(
p+

1

2
|
−→
B |2
)
−ByBy

)
· ∂φj
∂y

}
dx

=
∫
K

{(
n∑
i=1

γy,iφiux −ByBx

)
· ∂φi
∂x

+

(
n∑
i=1

γy,iφiuy +

(
p+

1

2
|
−→
B |2
)
−ByBy

)
· ∂φj
∂y

}
dx

=
n∑
i=1

γy,i
∫
K

(
φiux ·

∂φj
∂x

+ φiuy ·
∂φj
∂y

)
dx+

∫
K

{(
p+ 1

2
|
−→
B |2 −By −By

)
· ∂φj
∂x
−ByBx ·

∂φj
∂x

}
dx

= Sφ · −→γ T
y + Vρuy

(147)

After applying Lax-Friedrichs flux, the flux term becomes

∫
∂K
F ∗(ρuy) · φjds

=
1

2

∫
∂K

(F ((ρuy)
int) · −→n + F ((ρuy)

ext) · −→n − C((ρuy)
ext − (ρuy)

int)) · φjds

=
1

2

3∑
r=1

∫
∂Γr

(F ((ρuy)
int) · −→n + F ((ρuy)

ext) · −→n − C((ρuy)
ext − (ρuy)

int)) · φjds

(148)

where Γr is the edges of the triangle element.
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On each edge, the flux term can be further expressed as

1

2

∫
∂Γr

(F ((ρuy)
int) · −→n + F ((ρ, uy)

ext) · −→n ) · φjds

=
1

2

∫
∂Γr


(ρuy)

int−→u int +
(
pint + 1

2
|
−→
B int|2

)
·

0

1

−Bint
y

−→
B int

 · −→n

+

(ρuy)
ext−→u ext +

(
pext + 1

2
|
−→
B ext|2

)
·

0

1

−Bext
y

−→
B ext

 · −→n
 · φjds

= Cavg,ρuy

(149)

1

2
C

∫
∂Γr

(
(ρuy)

ext − (ρuy)
int)
)
· φjds = Jρuy (150)

The corresponding boundary condition is applied in the above flux term, which the edges

lies on the boundary.

Third, for equation of E, the DG formulation is

∫
K

∂E

∂t
·φjdx =

∫
K

((
E + p+

1

2
|
−→
B |2
)
· −→u −

−→
B (−→u −

−→
B )

)
·∇φjdx−

∫
∂K

F ∗(E)·φjds (151)

For each term, we can rewrite into

∫
K

∂E

∂t

−→
φ jdx =

∂E

∂t

∫
K

n∑
i=1

ηiφiφjdx

=
∂E

∂t

n∑
i=1

ηi
∫
K
φiφjdx

= Mφ ·
d

dt
−→η T

(152)
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∫
K

((
E + p+

1

2
|
−→
B |2
)
· −→u −

−→
B (−→u −

−→
B )

)
· ∇
−→
φ jdx

=
∫
K

{((
E + p+

1

2
|
−→
B |2
)
ux −Bx(

−→u −
−→
B )

)
· ∂φj
∂x

+

((
E + p+

1

2
|
−→
B |2
)
uy −By(

−→u −
−→
B )

)
· ∂φj
∂y

}
dx

=
∫
K

{((
n∑
i=1

ηjφi + p+
1

2
|
−→
B |2
)
ux −Bx(

−→u −
−→
B )

)
· ∂φj
∂x

+

((
n∑
i=1

ηjφi + p+
1

2
|
−→
B |2
)
uy −By(

−→u −
−→
B )

)
· ∂φj
∂y

}
dx

=
n∑
i=1

ηj
∫
K

(
uxφi ·

∂φj
∂x

+ uyφi ·
∂φj
∂y

)
dx

+
∫
K

{((
p+ 1

2
|
−→
B |2
)
ux −Bx(

−→u −
−→
B )
)
· ∂φj
∂x

+
((
p+ 1

2
|
−→
B |2
)
uy −By(

−→u −
−→
B )
)
· ∂φj
∂y

}
dx

= Sφ · −→η T + VE

(153)

After applying Lax-Friedrichs flux, the flux term becomes

∫
∂K
F ∗(E) · φjds

=
1

2

∫
∂K

(F (Eint) · −→n + F (Eext) · −→n − C(Eext − Eint)) · φjds

=
1

2

3∑
r=1

∫
∂Γr

(F (Eint) · −→n + F (Eext) · −→n − C(Eext − Eint)) · φjds

(154)

where Γr is the edges of the triangle element.

On each edge, the flux term can be further expressed as

1

2

∫
∂Γr

(F (Eint) · −→n + F (Eext) · −→n ) · φjds

=
1

2

∫
∂Γr

{((
Eint + pint + 1

2
|
−→
B int|2

)
· −→u int −

−→
B int(−→u int ·

−→
B int)

)
· −→n

+
((
Eext + pext + 1

2
|
−→
B ext|2

)
· −→u ext −

−→
B ext(−→u ext ·

−→
B ext)

)
· −→n
}
· φjds

= Cavg,E

(155)

1

2
C

∫
∂Γr

(
Eext − Eint)

)
· φjds = JE (156)
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The corresponding boundary condition is applied in the above flux term, which the edges

lies on the boundary.

Fianlly, for equation of
−→
B , the DG formulation is

∫
K

∂
−→
B

∂t
·
−→
ψ jdx =

∫
K

(−→
B · −→u T −−→u ·

−→
B T
)
· ∇
−→
ψ jdx−

∫
∂K

F ∗ ·
−→
ψ jds (157)

For each term, we can rewrite into

∫
K

∂
−→
B

∂t

−→
ψ jdx = ∂E

∂t

∫
K

n∑
i=1

αi
−→
ψ i

−→
ψ jdx

=
∂E

∂t

n∑
i=1

αi
∫
K

−→
ψ i

−→
ψ jdx

= Mψ ·
d

dt
−→α T

(158)

∫
K

(−→
B · −→u T −−→u ·

−→
B T
)
· ∇
−→
ψ jdx

=
∫
K

{
(
−→
Bux −−→u Bx) ·

∂
−→
ψ j

∂x
+ (
−→
Buy −−→u By) ·

∂
−→
ψ j

∂y

}
dx

=
∫
K

{(∑n
i=1 αi

−→
ψ iux −

n∑
i=1

αiψi,x
−→u
)
· ∂
−→
ψ j

∂x
+

(∑n
i=1 αi

−→
ψ iuy −

n∑
i=1

αiψi,y
−→u
)
· ∂
−→
ψ j

∂y

}
dx

=
n∑
i=1

αi
∫
K

{
(
−→
ψ iux − ψi,x−→u ) · ∂

−→
ψ j

∂x
+ (
−→
ψ iuy − ψi, y−→u ) · ∂

−→
ψ j

∂y

}
dx

= SB · −→α T

(159)

After applying Lax-Friedrichs flux, the flux term becomes

∫
∂K
F ∗ ·
−→
ψ jds

=
1

2

∫
∂K

(−→
F (
−→
B int) · −→n +

−→
F (
−→
B ext) · −→n − C(

−→
B ext −

−→
B int)

)
·
−→
ψ jds

=
1

2

3∑
r=1

∫
γr

(−→
F (
−→
B int) · −→n +

−→
F (
−→
B ext) · −→n − C(

−→
B ext −

−→
B int)

)
·
−→
ψ jds

(160)
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where Γr is the edges of the triangle element.

On each edge, the flux term can be further expressed as

1

2

∫
∂Γr

(−→
F (
−→
B int) · −→n +

−→
F (
−→
B ext) · −→n

)
·
−→
ψ jds

=
1

2

∫
∂Γr

{(−→
B intuintx −−→u intBint

x +
−→
B extuextx −−→u extBext

x

)
· nx ·

−→
ψ j

+
(−→
B intuinty −−→u intBint

y +
−→
B extuexty −−→u extBext

y

)
· ny ·

−→
ψ j

}
ds

= Cavg,B

(161)

1

2
C

∫
∂Γr

(−→
B ext −

−→
B int)

)
·
−→
ψ jds = JB (162)

The corresponding boundary condition is applied in the above flux term, which the edges

lies on the boundary.

MHD Equations in time space

Next, we construction our equations with all the matrices above

Mφ · ddt
−→
β T = Sφ ·

−→
β T −

3∑
r=1

(Cavg,ρ − Jρ)

Mφ · ddt
−→γ T

x = Sφ · −→γ T
x + Vρux −

3∑
r=1

(Cavg,ρux − JEρux)

Mφ · ddt
−→γ T

y = Sφ · −→γ T
y + Vρuy −

3∑
r=1

(Cavg,ρuy − JEρuy)

Mφ · ddt
−→η T = Sφ · −→η T + VE −

3∑
r=1

(Cavg,E − JE)

MB · ddt
−→α T = SB · −→α T −

3∑
r=1

(Cavg,B − JB)

(163)

• Forward Euler scheme
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Euler method is a first-order numerical procedure for solving ordinary differential equa-

tions (ODEs) with a given initial value. It is the most basic explicit method for nu-

merical integration of ordinary differential equations and is the simplest Runge-Kutta

method. Euler method has error of order O(h).

−→
β T (N+1) =

−→
β T (N) + ∆h ·M−1

φ ·
{
S

(N)
φ ·

−→
β T (N) −

3∑
r=1

(C
(N)
avg,ρ − J (N)

ρ )

}
−→γ T (N+1)

x = −→γ T (N)
x + ∆h ·M−1

φ ·
{
S

(N)
φ · −→γ T (N)

x + V
(N)
ρux −

3∑
r=1

(C
(N)
avg,ρux − J

(N)
ρux )

}
−→γ T (N+1)

y = −→γ T (N)
y + ∆h ·M−1

φ ·
{
S

(N)
φ · −→γ T (N)

y + V
(N)
ρuy −

3∑
r=1

(C
(N)
avg,ρuy − J

(N)
ρuy )

}
−→η T (N+1) = −→η T (N) + ∆h ·M−1

φ ·
{
S

(N)
φ · −→η T (N) + V

(N)
E −

3∑
r=1

(C
(N)
avg,E − J

(N)
E )

}
−→α T (N+1) = −→α T (N) + ∆h ·M−1

B ·
{
S

(N)
B · −→α T (N) −

3∑
r=1

(C
(N)
avg,B − J

(N)
B )

}
(164)

where ∆h is the size of each time step.

• 3rd order Runge-Kutta scheme

RungeKutta methods are a family of implicit and explicit iterative methods, which

includes the well-known routine called the Euler Methods, used in temporal discretiza-
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tion for the approximate solutions of ordinary differential equations.

−→
β T (N+1) =

−→
β T (N) +

1

6
∆h · (Kβ

1 + 4Kβ
2 +Kβ

3 )

−→γ T (N+1)
x = −→γ T (N)

x +
1

6
∆h · (Kγx

1 + 4Kγx
2 +Kγx

3 )

−→γ T (N+1)
y = −→γ T (N)

y +
1

6
∆h · (Kγy

1 + 4K
γy
2 +K

γy
3 )

−→η T (N+1) = −→η T (N) +
1

6
∆h · (Kη

1 + 4Kη
2 +Kη

3 )

−→α T (N+1) = −→α T (N) +
1

6
∆h · (Kα

1 + 4Kα
2 +Kα

3 )

(165)

where

Kβ
1 = M−1

φ ·
{
S

(N)
φ ·

−→
β T (N) −

3∑
r=1

(C
(N)
avg,ρ − J (N)

ρ )

}
Kβ

2 = M−1
φ ·

{
S

(N)
φ ·

(−→
β T (N) +

∆hKβ
1

2

)
−

3∑
r=1

(C
(N)
avg,ρ − J (N)

ρ )

}
Kβ

3 = M−1
φ ·

{
S

(N)
φ ·

(−→
β T (N) −∆hKβ

1 + 2∆hKβ
2

)
−

3∑
r=1

(C
(N)
avg,ρ − J (N)

ρ )

} (166)

and

Kγx
1 = M−1

φ ·
{
S

(N)
φ · −→γ T (N)

x + V
(N)
ρux −

3∑
r=1

(C
(N)
avg,ρux − J

(N)
ρux )

}
Kγx

2 = M−1
φ ·

{
S

(N)
φ ·

(−→γ T (N)
x +

∆hKγx
1

2

)
+ V

(N)
ρux −

3∑
r=1

(C
(N)
avg,ρux − J

(N)
ρux )

}
Kγx

3 = M−1
φ ·

{
S

(N)
φ ·

(−→γ T (N)
x −∆hKγx

1 + 2∆hKγx
2

)
+ V

(N)
ρux −

3∑
r=1

(C
(N)
avg,ρux − J

(N)
ρux )

}
(167)

and

K
γy
1 = M−1

φ ·
{
S

(N)
φ · −→γ T (N)

y + V
(N)
ρuy −

3∑
r=1

(C
(N)
avg,ρuy − J

(N)
ρuy )

}
K
γy
2 = M−1

φ ·
{
S

(N)
φ ·

(−→γ T (N)
y +

∆hK
γy
1

2

)
+ V

(N)
ρuy −

3∑
r=1

(C
(N)
avg,ρuy − J

(N)
ρuy )

}
K
γy
3 = M−1

φ ·
{
S

(N)
φ ·

(−→γ T (N)
y −∆hK

γy
1 + 2∆hK

γy
2

)
+ V

(N)
ρuy −

3∑
r=1

(C
(N)
avg,ρuy − J

(N)
ρuy )

}
(168)
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and

Kη
1 = M−1

φ ·
{
S

(N)
φ · −→η T (N) + V

(N)
E −

3∑
r=1

(C
(N)
avg,E − J

(N)
E )

}
Kη

2 = M−1
φ ·

{
S

(N)
φ ·

(−→
etaT (N) +

∆hKη
1

2

)
+ V

(N)
E −

3∑
r=1

(C
(N)
avg,E − J

(N)
E )

}
Kη

3 = M−1
φ ·

{
S

(N)
φ ·

(−→η T (N) −∆hKη
1 + 2∆hKη

2

)
+ V

(N)
E −

3∑
r=1

(C
(N)
avg,E − J

(N)
E )

}
(169)

and

Kα
1 = M−1

B ·
{
S

(N)
B · −→α T (N) −

3∑
r=1

(C
(N)
avg,B − J

(N)
B )

}
Kα

2 = M−1
B ·

{
S

(N)
B ·

(−→α T (N) +
∆hKα

1

2

)
−

3∑
r=1

(C
(N)
avg,B − J

(N)
B )

}
Kα

3 = M−1
B ·

{
S

(N)
B ·

(−→α T (N) −∆hKα
1 + 2∆hKα

2

)
−

3∑
r=1

(C
(N)
avg,B − J

(N)
B )

} (170)

7.2 The list of 2-D H(div) basis functions

For the convenience of implementation, we list the H(div) basis function of 2-Dimensional

triangles, up to order 5.

H(div) basis functions for 2-Dimension triangles

• Zeroth order

Edge functions

ψ0
e[0,1] =

 x

y − 1

 , ψ0
e[0,2] =

x− 1

y

 , ψ0
e[1,2] =

x
y

 , (171)

• First order
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Figure 15: Graph of ψ0
e[1,2]

Edge functions

ψ1
e[0,1] =

 −x

2x+ y − 1

 , ψ1
e[0,2] =

x+ 2y − 1

−y

 , ψ1
e[1,2] =

 x

−y

 (172)
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Figure 16: Graph of ψ1
e[1,2]

• Second order
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Edge functions

ψ2
e[0,1] =

 −2x2 − xy

4x2 + y2 + 4xy − 4x− 3y + 2

 ,

ψ2
e[0,2] =

−x2 − 4y2 − 4xy + 3x+ 4y − 2

2y2 + xy

 ,

ψ2
e[1,2] =

−x2 + xy − x

−y2 + xy − y



(173)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−2

−1.5

−1

−0.5

0

(a) x component

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−2

−1.5

−1

−0.5

0

(b) y conponent

Figure 17: Graph of ψ2
e[1,2]
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Interior functions

ψt,2
e[0,1] =

x(1− x− y)

0

 ,

ψt,2
e[0,2] =

 0

y(1− x− y)

 ,

ψt,2
e[1,2] =

 xy

−xy



(174)
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Figure 18: Graph of ψt,2
e[1,2]

• Third order
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Edge functions

ψ3
e[0,1] =

 −6x3 − 6x2y − 3

2
xy2 + 4x2 + 2xy

12x3 +
3

2
y3 + 18x2y + 9xy2 − 18x2 − 11

2
y2 − 20xy + 10x+ 6y − 2

 ,

ψ3
e[0,2] =

−
3

2
x3 − 12y3 − 9x2y − 18xy2 +

11

2
x2 + 18y2 + 20xy − 6x− 10y + 2

6y3 +
3

2
x2y + 6xy2 − 4y2 − 2xy

 ,

ψ3
e[1,2] =


3

2
x3 − 3x2y +

3

2
xy2 − y2 − xy − 1

2
x

−dfrac32y3 − 3

2
xy2 + 3x2y + x2 + xy +

1

2
y


(175)
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Figure 19: Graph of ψ3
e[1,2]
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Interior functions

ψt,3
e[0,1] =

−x(x+ y − 1)(2x+ y − 1)

0

 ,

ψt,3
e[0,2] =

 0

−y(x+ y − 1)(x+ 2y − 1)

 ,

ψt,3
e[1,2] =

−xy(x− y)

xy(x− y)



(176)
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Figure 20: Graph of ψt,3
e[1,2]

Bubble functions

ψt,−→e1
0,0 =

xy(1− x− y)

0

 ,

ψt,−→e2
0,0 =

 0

xy(1− x− y


(177)
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• Fourth order

Edge functions

ψ4
e[0,1] =

 −(
5

2
(2x+ y − 1)3 +

3

2
(2x+ y − 1)2 − 3x− 3

2
y + 1)x

(−3x+
3

2
− 3

2
y +

5

2
(2x+ y − 1)3)(2x+ y − 1) + (−1

2
+

3

2
(2x+ y − 1))(1− y)

 ,

ψ4
e[0,2] =

(−3y +
3

2
− 3

2
x+

5

2
(x+ 2y − 1)3)(−x− 2y + 1) + (−1

2
+

3

2
(x+ 2y − 1)2)(x− 1)

(
5

2
(x+ 2y − 1)3 +

3

2
(x+ 2y − 1)2 − 3

2
x− 3y + 1)y

 ,

ψ4
e[1,2] =

 (
5

2
(y − x)3 − 3

2
(y − x)2 +

3

2
x− 3

2
y +

1

2
)x

(−5

2
(y − x)3 − 3

2
(y − x)2 − 3

2
x+

3

2
y +

1

2
)y


(178)
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Interior functions

ψt,4
e[0,1] =

x(1− x− y)(−3x+
3

2
− 3

2
y +

5

2
(2x+ y − 1)3)

0

 ,

ψt,4
e[0,2] =

 0

y(1− x− y)(−3y +
3

2
− 3

2
x+

5

2
(x+ 2y − 1)3)

 ,

ψt,4
e[1,2] =

 xy(−3

2
y +

3

2
x+

5

2
(y − x)3)

−xy(−3

2
y +

3

2
x+

5

2
(y − x)3)



(179)
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Figure 23: Graph of ψt,4
e[1,2]

Bubble functions

ψt,−→e1
1,0 =

(1− x− y)xy(y − x)

0

 ,

ψt,−→e2
1,0 =

 0

(1− x− y)xy(y − x)



ψt,−→e1
0,1 =

(1− x− y)xy(1− 2x− y)

0

 ,

ψt,−→e2
0,1 =

 0

(1− x− y)xy(1− 2x− y)



(180)

• Fifth order
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Figure 24: Graph of bubble functions, x component

Edge functions

ψ5
e[0,1] =

 −(
35

8
(2x+ y − 1)4 +

5

2
(2x+ y − 1)3 − 15

4
(2x+ y − 1)2 − 3x− 3

2
y +

15

8
)x

(
3

8
− 15

4
(2x+ y − 1)2 +

35

8
(2x+ y − 1)4)(2x+ y − 1) + (−3x+

3

2
− 3

2
y +

5

2
(2x+ y − 1)3)(1− y)

 ,

ψ5
e[0,2] =

(
3

8
− 15

4
(x+ 2y − 1)2 +

35

8
(x+ 2y − 1)4)(x+ 2y − 1) + (−3y +

3

2
− 3

2
x+

5

2
(x+ 2y − 1)3)(x− 1)

(
35

8
(x+ 2y − 1)4 5

2
(x+ 2y − 1)3 − 15

4
(x+ 2y − 1)2 − 3

2
x− 3y +

15

8
)y

 ,

ψ5
e[1,2] =

 (
35

8
(y − x)4 − 5

2
(y − x)3 − 15

4
(y − x)2 − 3

2
x+

3

2
y +

3

8
)x

(−35

8
(y − x)4 − 5

2
(y − x)3 +

15

4
(y − x)2 − 3

2
x+

3

2
y − 3

8
)y
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Figure 25: Graph of ψ5
e[1,2]

Interior functions

ψt,5
e[0,1] =

x(1− x− y)(
3

8
− 15

4
)(2x+ Y − 1)2 +

35

8
(2x+ y − 1)4

0

 ,

ψt,5
e[0,2] =

 0

y(1− x− y)(
3

8
− 15

4
(x+ 2y − 1)2 +

35

8
(x+ 2y − 1)4)

 ,

ψt,5
e[1,2] =

 xy(
3

8
− 15

4
(y − x)2 +

35

8
(y − x)4)

−xy(
3

8
− 15

4
(y − x)2 +

35

8
(y − x)4)



(182)
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Figure 26: Graph of ψt,5
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Figure 27: Graph of bubble functions, x component
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Bubble functions

ψt,−→e1
2,0 =

xy(1− x− y)(−1

2
+

3

2
(y − x)2)

0

 ,

ψt,−→e2
2,0 =

 0

xy(1− x− y)(−1

2
+

3

2
(y − x)2)

 ,

ψt,−→e1
0,2 =

xy(1− x− y)(−1

2
+

3

2
(1− 2x− 2y)2)

0

 ,

ψt,−→e2
0,2 =

 0

xy(1− x− y)(−1

2
+

3

2
(1− 2x− 2y)2)

 ,

ψt,−→e1
1,1 =

xy(1− x− y)(−1

2
+ (y − x)(1− 2x− 2y))

0

 ,

ψt,−→e2
1,1 =

 0

xy(1− x− y)(−1

2
+ (y − x)(1− 2x− 2y))
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7.3 Barycentric coordinates

In the context of a triangle, barycentric coordinates are also known as area coordinates or

areal coordinates, because the coordinates of P with respect to triangle ABC are equivalent

to the (signed) ratios of the areas of PBC, PCA and PAB to the area of the reference
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triangle ABC. Areal and trilinear coordinates are used for similar purposes in geometry.

Figure 28: An example of patching two triangular elements

Barycentric or areal coordinates are extremely useful in engineering applications involving

triangular subdomains. These make analytic integrals often easier to evaluate, and Gaussian

quadrature tables are often presented in terms of area coordinates.

Conversion between barycentric and Cartesian coordinates

Given a point r in a triangle’s plane one can obtain the barycentrick coordinates λ1, λ2 and

λ3 from the Cartesian coordinates (x, y) or vice versa.

We can write the Cartesian coordinates of the point r in terms of the Cartesian compo-

nents of the triangle vertices r1, r2, r3, where ri = (xi, yi) and in terms of the barycentric

coordinates of r as

x = λ1x1 + λ2x2 + λ3x3

y = λ1y1 + λ2y2 + λ3y3

(184)
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where λ1 + λ2 + λ3 = 1. That is, the Cartesian coordinates of any point are a weighted

average of the Cartesian coordinates of the triangle’s vertices, with the weights being the

point’s barycentric coordinates summing to unity.

To find the reverse transformation, from Cartesian coordinates to barycentric coordinates,

it satisfies this linear transformation

T · λ = r− r3 (185)

where

T =

x1 − x3 x2 − x3

y1 − y3 y2 − y3

 (186)

Now the matrix T is invertible. Thus, we can rearrange the above equation to getλ1

λ2

 = T−1(r− r3) (187)

Explicitly, the formulae for the barycentric coordinates of point r in terms of its Cartesian

coordinates (x, y) and in terms of the Cartesian coordinates of the triangle’s vertices are:

λ1 =
(y2 − y3)(x− x3) + (x3 − x2)(y − y3)

det(J)
=

(y2 − y3)(x− x3) + (x3 − x2)(y − y3)

(y2 − y3)(x1 − x3) + (x3 − x2)(y1 − y3)

λ2 =
(y3 − y1)(x− x3) + (x1 − x3)(y − y3)

det(J)
=

(y3 − y1)(x− x3) + (x1 − x3)(y − y3)

(y2 − y3)(x1 − x3) + (x3 − x2)(y1 − y3)

λ3 = 1− λ1 − λ2

(188)
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7.4 Numerical integration and numerical quadrature

• Gaussian quadrature for general triangle elements K:

First of all, on the reference triangular element TSt, the Gaussian quadrature rules [16]

are in the form ∫ ∫
Tst

g(ξ, η)dξdη ≈ 1

2

Ng∑
i=1

ωig(ξi, ηi) (189)

where Ng is the number of quadrature points, (ξi, ηi) are quadrature points located

inside the reference triangular element and ωi are weights (normalized with respect to

the triangle area).

Let K be a triangular element with straight boundary lines and vertices (xi, yi), i =

1, 2, 3 arranged in the counter-clockwise order:

We would like to evaluate

I =

∫ ∫
K

F (x, y)dxdy, (190)

The idea is to first transform the triangular element K to the standard triangular ele-

ment Tst and then apply the Gaussian quadrature for Tst.

The mapping can be achieved conveniently by using the nodal shape functions as

follows:

x = P (ξ, η) =
3∑
i=1

xiNi(ξ, η) = x1N1(ξ, η) + x2N2(ξ, η) + x3N3(ξ, η),

x = Q(ξ, η) =
3∑
i=1

yiNi(ξ, η) = y1N1(ξ, η) + y2N2(ξ, η) + y3N3(ξ, η),

(191)
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Then we have

∫ ∫
K

F (x, y)dxdy =

∫ ∫
Tst

F (P (ξ, η), Q(ξ, η))|J(ξ, η)|dξdη (192)

where J(ξ, η) is the Jacobian of the transformation, namely,

J(ξ, η) =

∣∣∣∣∂(x, y)

∂(ξ, η)

∣∣∣∣ =

∣∣∣∣∣∣∣∣
∂x

∂ξ

∂y

∂ξ
∂x

∂η

∂y

∂η

∣∣∣∣∣∣∣∣ = 2T (193)

Here T represents the area of the triangle K, which is generalized in (), and can be

evaluated here in Tst by

K =
|x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)|

2
(194)

Therefore, we have

∫ ∫
K

F (x, y)dxdy = 2K

∫ ∫
Tst

F (P (ξ, η), Q(ξ, η))dξdη (195)

Applying the Gaussian quadrature of degree N for the standard triangular element

yields ∫ ∫
K

F (x, y)dxdy ≈ K

Ng∑
i=1

ωiF (P (ξi, ηi), Q(ξi, ηi)) (196)

• Legendre-Gauss quadrature for 1-D integration:

Legendre-Gauss quadrature integral approximation tries to solve the following function

∫ b

a

f(x)dx =
∞∑
i=1

ωif(xi) ≈
n∑
i=1

ωif(xi) (197)

by picking approximate values for n, ωi and xi. While only defined for interval [−1, 1],

this is actually a universal function, because we can convert the limits of integration
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for any interval [a, b] to the Legendre-Gauss interval [−1, 1]:

∫
∂K

φ(x, y)ds =
1

2
dr ·

Nr∑
i=1

φ(x(ξi, ηi), y(ξi, ηi))wi (198)

where (ξi, ηi) are the Gaussian quadrature points on reference triangle, and wi are the

weights. dr is the length of the integrated edge, and Nr are the number of quadrature

points on the edge.

Here we include some of the weights and abscissae tables for both 1-D and 2-D triangular

elements that are used for our computation.

• 1-D Gaussian quadrature

i weight-ωi abscissa-xi

n=2

1 1.0000000000000000 -0.5773502691896257

2 1.0000000000000000 0.5773502691896257

n=3

1 0.8888888888888888 0.0000000000000000

2 0.5555555555555556 -0.7745966692414834

3 0.5555555555555556 0.7745966692414834

n=4

1 0.6521451548625461 -0.3399810435848563

2 0.6521451548625461 0.3399810435848563

3 0.3478548451374538 -0.8611363115940526
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4 0.3478548451374538 0.8611363115940526

n=5

1 0.5688888888888889 0.0000000000000000

2 0.4786286704993665 -0.5384693101056831

3 0.4786286704993665 0.5384693101056831

4 0.2369268850561891 -0.9061798459386640

5 0.2369268850561891 0.9061798459386640

n=6

1 0.3607615730481386 0.6612093864662645

2 0.3607615730481386 -0.6612093864662645

3 0.4679139345726910 -0.2386191860831969

4 0.4679139345726910 0.2386191860831969

5 0.1713244923791704 -0.9324695142031521

6 0.1713244923791704 0.9324695142031521

n=7

1 0.4179591836734694 0.0000000000000000

2 0.3818300505051189 0.4058451513773972

3 0.3818300505051189 -0.4058451513773972

4 0.2797053914892766 -0.7415311855993945

5 0.2797053914892766 0.7415311855993945

6 0.1294849661688697 -0.9491079123427585

7 0.1294849661688697 0.9491079123427585
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n=8

1 0.3626837833783620 -0.1834346424956498

2 0.3626837833783620 0.1834346424956498

3 0.3137066458778873 -0.5255324099163290

4 0.3137066458778873 0.5255324099163290

5 0.2223810344533745 -0.7966664774136267

6 0.2223810344533745 0.7966664774136267

7 0.1012285362903763 -0.9602898564975363

8 0.1012285362903763 0.9602898564975363

n=9

1 0.3302393550012598 0.0000000000000000

2 0.1806481606948574 -0.8360311073266358

3 0.1806481606948574 0.8360311073266358

4 0.0812743883615744 -0.9681602395076261

5 0.0812743883615744 0.9681602395076261

6 0.3123470770400029 -0.3242534234038089

7 0.3123470770400029 0.3242534234038089

8 0.2606106964029354 -0.6133714327005904

9 0.2606106964029354 0.6133714327005904

n=10

1 0.2955242247147529 -0.1488743389816312

2 0.2955242247147529 0.1488743389816312
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3 0.2692667193099963 -0.4333953941292472

4 0.2692667193099963 0.4333953941292472

5 0.2190863625159820 -0.6794095682990244

6 0.2190863625159820 0.6794095682990244

7 0.1494513491505806 -0.8650633666889845

8 0.1494513491505806 0.8650633666889845

9 0.0666713443086881 -0.9739065285171717

10 0.0666713443086881 0.9739065285171717

Table 10: 1-D Gaussian quadrature

• 2-D Gaussian quadrature for triangle elements

i x y ωi

n=1

1 0.33333333333333 0.33333333333333 0.33333333333333

n=2

1 0.16666666666667 0.16666666666667 0.33333333333333

2 0.16666666666667 0.16666666666667 0.33333333333333

3 0.16666666666667 0.16666666666667 0.33333333333333

n=3
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1 0.33333333333333 0.33333333333333 -0.56250000000000

2 0.20000000000000 0.20000000000000 0.52083333333333

3 0.20000000000000 0.60000000000000 0.52083333333333

4 0.60000000000000 0.20000000000000 0.52083333333333

n=4

1 0.44594849091597 0.44594849091597 0.22338158967801

2 0.44594849091597 0.10810301816807 0.22338158967801

3 0.10810301816807 0.44594849091597 0.22338158967801

4 0.09157621350977 0.09157621350977 0.10995174365532

5 0.09157621350977 0.81684757298046 0.10995174365532

6 0.81684757298046 0.09157621350977 0.10995174365532

n=5

1 0.33333333333333 0.33333333333333 0.22500000000000

2 0.47014206410511 0.47014206410511 0.13239415278851

3 0.47014206410511 0.05971587178977 0.13239415278851

4 0.05971587178977 0.47014206410511 0.13239415278851

5 0.10128650732346 0.10128650732346 0.12593918054483

6 0.10128650732346 0.79742698535309 0.12593918054483

7 0.79742698535309 0.10128650732346 0.12593918054483

n=6

1 0.24928674517091 0.24928674517091 0.11678627572638

2 0.24928674517091 0.50142650965818 0.11678627572638
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3 0.50142650965818 0.24928674517091 0.11678627572638

4 0.06308901449150 0.06308901449150 0.05084490637021

5 0.06308901449150 0.87382197101700 0.05084490637021

6 0.87382197101700 0.06308901449150 0.05084490637021

7 0.31035245103378 0.63650249912140 0.08285107561837

8 0.63650249912140 0.05314504984482 0.08285107561837

9 0.05314504984482 0.31035245103378 0.08285107561837

10 0.63650249912140 0.31035245103378 0.08285107561837

11 0.31035245103378 0.05314504984482 0.08285107561837

12 0.05314504984482 0.63650249912140 0.08285107561837

n=7

1 0.33333333333333 0.33333333333333 -0.14957004446768

2 0.26034596607904 0.26034596607904 0.17561525743321

3 0.26034596607904 0.47930806784192 0.17561525743321

4 0.47930806784192 0.26034596607904 0.17561525743321

5 0.06513010290222 0.06513010290222 0.05334723560884

6 0.06513010290222 0.86973979419557 0.05334723560884

7 0.86973979419557 0.06513010290222 0.05334723560884

8 0.31286549600487 0.63844418856981 0.07711376089026

9 0.63844418856981 0.04869031542532 0.07711376089026

10 0.04869031542532 0.31286549600487 0.07711376089026

11 0.63844418856981 0.31286549600487 0.07711376089026
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12 0.31286549600487 0.04869031542532 0.07711376089026

13 0.04869031542532 0.63844418856981 0.07711376089026

n=8

1 0.33333333333333 0.33333333333333 0.14431560767779

2 0.45929258829272 0.45929258829272 0.09509163426728

3 0.45929258829272 0.08141482341455 0.09509163426728

4 0.08141482341455 0.45929258829272 0.09509163426728

5 0.17056930775176 0.17056930775176 0.10321737053472

6 0.17056930775176 0.65886138449648 0.10321737053472

7 0.65886138449648 0.17056930775176 0.10321737053472

8 0.05054722831703 0.05054722831703 0.03245849762320

9 0.05054722831703 0.89890554336594 0.03245849762320

10 0.89890554336594 0.05054722831703 0.03245849762320

11 0.26311282963464 0.72849239295540 0.02723031417443

12 0.72849239295540 0.00839477740996 0.02723031417443

13 0.00839477740996 0.26311282963464 0.02723031417443

14 0.72849239295540 0.26311282963464 0.02723031417443

15 0.26311282963464 0.00839477740996 0.02723031417443

16 0.00839477740996 0.72849239295540 0.02723031417443

n=16

1 0.33333333333333 0.33333333333333 0.14431560767779

2 0.08141482341455 0.45929258829272 0.09509163426729
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3 0.45929258829272 0.45929258829272 0.09509163426729

4 0.45929258829272 0.08141482341455 0.09509163426729

5 0.65886138449648 0.17056930775176 0.10321737053472

6 0.17056930775176 0.17056930775176 0.10321737053472

7 0.17056930775176 0.65886138449648 0.10321737053472

8 0.89890554336594 0.05054722831703 0.03245849762320

9 0.05054722831703 0.05054722831703 0.03245849762320

10 0.05054722831703 0.89890554336594 0.03245849762320

11 0.00839477740996 0.26311282963464 0.02723031417444

12 0.26311282963464 0.72849239295540 0.02723031417444

13 0.72849239295540 0.00839477740996 0.02723031417444

14 0.26311282963464 0.00839477740996 0.02723031417444

15 0.72849239295540 0.26311282963464 0.02723031417444

16 0.00839477740996 0.72849239295540 0.02723031417444

n=19

1 0.33333333333333 0.33333333333333 0.097135796282799

2 0.02063496160253 0.48968251919874 0.031334700227139

3 0.48968251919874 0.48968251919874 0.031334700227139

4 0.48968251919874 0.02063496160253 0.031334700227139

5 0.12582081701413 0.43708959149294 0.077827541004774

6 0.43708959149294 0.43708959149294 0.077827541004774

7 0.43708959149294 0.12582081701413 0.077827541004774
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8 0.62359292876193 0.18820353561903 0.079647738927210

9 0.18820353561903 0.18820353561903 0.079647738927210

10 0.18820353561903 0.62359292876193 0.079647738927210

11 0.91054097321109 0.04472951339445 0.025577675658698

12 0.04472951339445 0.04472951339445 0.025577675658698

13 0.04472951339445 0.91054097321109 0.025577675658698

14 0.03683841205474 0.22196298916077 0.043283539377289

15 0.22196298916077 0.74119859878450 0.043283539377289

16 0.74119859878450 0.03683841205474 0.043283539377289

17 0.22196298916077 0.03683841205474 0.043283539377289

18 0.74119859878450 0.22196298916077 0.043283539377289

19 0.03683841205474 0.74119859878450 0.043283539377289

n=25

1 0.33333333333333 0.33333333333333 0.09081799038275

2 0.02884473323269 0.48557763338366 0.03672595775647

3 0.48557763338366 0.48557763338366 0.03672595775647

4 0.48557763338366 0.02884473323269 0.03672595775647

5 0.78103684902993 0.10948157548504 0.04532105943553

6 0.10948157548504 0.10948157548504 0.04532105943553

7 0.10948157548504 0.78103684902993 0.04532105943553

8 0.14170721941488 0.30793983876412 0.07275791684542

9 0.30793983876412 0.55035294182100 0.07275791684542
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10 0.55035294182100 0.14170721941488 0.07275791684542

11 0.30793983876412 0.14170721941488 0.07275791684542

12 0.55035294182100 0.30793983876412 0.07275791684542

13 0.14170721941480 0.55035294182100 0.07275791684542

14 0.02500353476269 0.24667256063990 0.02832724253106

15 0.24667256063990 0.72832390459741 0.02832724253106

16 0.72832390459741 0.02500353476269 0.02832724253106

17 0.24667256063990 0.02500353476269 0.02832724253106

18 0.72832390459741 0.24667256063990 0.02832724253106

19 0.02500353476269 0.72832390459741 0.02832724253106

20 0.00954081540030 0.06680325101220 0.00942166696373

21 0.06680325101220 0.92365593358750 0.00942166696373

22 0.92365593358750 0.00954081540100 0.00942166696373

23 0.06680325101220 0.00954081540030 0.00942166696373

24 0.92365593358750 0.06680325101220 0.00942166696373

25 0.00954081540030 0.92365593358750 0.00942166696373

Table 11: 2-D Gaussian quadrature for triangular elements
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