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ABSTRACT

SINAE KIM. Partition of Unity Isogeometric Analysis for singularly Perturbed
problems and fourth order differential equations containing singularities. (Under the

direction of DR. HAE-SOO OH)

Our aim in this research is to develop the numerical solutions of singularly per-
turbed convection-diffusion problems and heat equations in a circular domain, and
fourth-order PDEs containing singularities, avoiding fine mesh around the boundary
layer or singular zone. To resolve the oscillations of classical numerical solutions of our
problems, we construct boundary layer elements via boundary layer analysis for the
perturbed problem. We also construct singular functions by the known solution on
the crack domain for the fourth-order equations containing singularities. We modify
the boundary layer elements and singular functions using partition of unity function
with flat-top, which absorb the boundary layer or crack singularities and do not affect
outside the boundary layer zone or singular zone. Using B-spline Isogeometric Finite
element space enriched with the boundary layer elements and singular functions, we
obtain an accurate numerical scheme on the exact geometry, in a circular domain. As
for the perturbed problems, we develop the boundary layer element on the reference
domain through the geometry mapping which can capture the boundary layer sin-
gularity. As for the fourth-order equations containing singularities, since we already
know the singular functions on the physical domain not reference domain, we add
the singular functions directly or introduce the Mapping Method to generate those
singular functions. We obtain an accurate numerical methods in IGA setting, using

partition of unity functions and enrichment functions.
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CHAPTER 1: INTRODUCTION

By Isogeometric Analasis, we can use the design geometry directly for analysis with-
out modifying the geometry for analysis purpose. By using the geometry mapping,
we could approximate the solution on parametric domain for any physical domain.
In Isogeometric Analysis, we use B-spline as the basis functions that allows us to
construct them with any regularity. However, general Isogeometric Analysis does not
give accurate solutions to perturbed problems or fourth-order equations with singu-
larities. Therefore, we enrich Isogeometric Finite Element Space by adding boundary
layer element or singular functions into boundary layer or singular zone using Partion
of Unity with flat-top. We call this approach Partion of Unity Isogeometric Analysis.
(PU-IGA) See [48] and [49]

Most of the numerical methods to solve the singular perturbed problems are based
on domain decomposition or refined meshes near boundary layer in [35], [50], [51],
and [68], etc. In [27], the authors approximated the problem using a quasi-uniform
triangulation and P, finite element space enriched with boundary layer correctors in
a rectangle and circle. In this paper, we similarly derive the boundary layer element
via boundary layer analysis [40] and use that element as enriched function in B-
spline based Isogeometric setting. Without using fine mesh and without modification
of geometry, using boundary layer element which absorbs the singularity behavior,

we aim to approximate the solution. We extend the boundary layer analysis to the



problem on other geometry, an ellipse to develop boundary layer elements.

This Enriched PU-IGA is extended to solve a singularly perturbed parabolic prob-
lems on a circular domain.One can find numerical results for parabolic perturbed
problems in [9], [12], [33], [39] , and [69] etc. The authors utilized mesh refinement
near boundary and mainly focused on the finite difference method in a rectangular
domain. In [29], the author approximates the perturbed parabolic problem on circular
domain using a quasi-uniform triangulation and P; finite element space enriched with
boundary layer correctors constructed near the circular boundary. In this paper, we
aim to approximate the problem using B-spline based Isogeometric Finite Element
Space enriched with boundary layer elements via boundary layer analysis. We avoid
the costly mesh refinements at the boundary using the boundary layer element mod-
ified by the partition of unity with flat-top.

As for perturbed problems, we develop the enrichment function on the reference do-
main which can capture the singularity. While, we consider the fourth-order equation
with singularities whose singular solution is known on a physical domain. For exam-
ple, the solution behavior of crack singularity is well known [23] . In [42], the authors
introduced the mapping technique called the Method of Auxiliary Mapping (MAM)
into conventional p—FEM. In the similar way, we introduce a Mapping Method for
fourth-order equations with singularities to generate the known singular functions
on a physical domain. We construct a geometry mapping that generates singular
functions resembling the singularities.

This paper is organized as follows. In Chaper 2, we review definitions, terminologies

and properties of Isogeometric Analysis, B-splines and Partition of Unity. We also



3

briefly review Boundary Layer Analysis. In Chapter 3, we obtain error estimates and
propose construction of basis functions of PU-IGA. In Chapter 4, we solve perturbed
convection-diffusion problem on a circular domain. We define PU-IGA finite element
space which incorporates the boundary layer elements. We present the results of
numerical simulations. In Chapter 5, we solve 1D perturbed parabolic problem on
a circular domain in PU-IGA enriched by the boundary layer elements. We present
error estimates and numerical results. In Chapter 6, we solve fourth-order equations
containing singularities in PU-IGA enriched by singular functions directly or PU-IGA
with a mapping to generates singular functions. We compare the numerical results

with general IGA. The conclusion follows.



CHAPTER 2: PRELIMINARIES

2.1  Isogeometric Analysis

Isogeometric analysis seeks to unify the fields of CAD(Computer-aided design)
and FEA (Finite element Analysis). Analysis-suitable models are not automatically
created or readily meshed from CAD geometry. There are many time consuming,
preparatory steps involved. To break down the barriers between engineering design
and analysis, Isogeometric Analysis focus on only one geometric model(CAD repre-
sentation), which can be utilized directly as an analysis model. We follow notations

and definitions in the books [16], [55] and [56].
NURBS-based isogeometric analysis

There are many computational geometry technologies that could serve as a basis
for isogeometric analysis. The reason for selecting NURBS as our basis is compelling:
It is the most widely used computational geometry technology, the industry standard,
in engineering design.

The major strengths of NURBS are that they convenient for free-form surface mod-
eling, can exactly represent all conic sections, and therefore circles, cylinders, spheres,
ellipsoids, etc., and that there exit many efficient and numerically stable algorithms to
generate NURBS objects. They also possess useful mathematics properties, such as

the ability to be refined through knot insertion, C?~!-continuity of pth-order NURBS,
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Figure 1: Schematic illustration of NURBS object for a one-patch surface model
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and the variation diminishing and convex hull properties.
NURBS Objects

In NURBS, the basis functions are usually not interpolatory. There are two notions
of meshes, the control mesh and the physical mesh. The control points define the
Control Mesh, and the control mesh interpolates the control points. The control
mesh does not conform to the actual geometry. The control mesh may be severely
distorted and even inverted to an extent, while at the same time for sufficiently smooth
NURBS, the physical geometry may still remain valid.

The Physical mesh is a decomposition of the actual geometry. There are two notions
of elements in the physical mesh, the patch and the knot span. The patch may be
thought of as a macro-element or subdomain. Each patch has two representations,
one in a parameter space and one in physical space.

Each patch can be decomposed into knot spans. Knot spans are bounded by
knots. These define element domains where basis functions are smooth. Across
knots, basis functions will be CP~™ where p is the degree of the polynomial and m is
the multiplicity of the knot. Knot span may be thought of as micro-elements because
they are the smallest entities we deal with. They also have representations in both a
parameter space and physical space.

We have an Index space of a patch. It uniquely identifies each knot and discrimi-
nates among knots.A schematic illustration of the ideas is presented in Figure 2.1 for

a NURBS surface in R? from[16].



2.2 B-splines and NURBS

NURBS are built from B-splines and so a discussion of B-splines is a natural starting
point. The B-spline parameter space is local to patches rather than elements. That
is, the B-spline mapping takes a patch of multiple elements in the parameter space
into the physical space, as seen in Figure 1. Each element in the physical space is the
image of a corresponding element in the parameter space, but the mapping itself is

global to the whole patch.
Knot vectors

A Knot vector in one dimension is a non-decreasing set of coordinates in the param-
eter space, written = = {&, &, ..., &npi1} , where & € R is the i knot, i is the knot
index, 1 = 1,2,...,n + p+ 1, p is the polynomial order, and n is the number of basis
functions used to construct the B-spline curve. The knots partition the parameter
space into elements. In the case of B-splines, the functions are piecewise polynomials
where the different pieces join along knot lines. In this way the functions are C'*°
within an element.

Knot vectors may be uniform if the knots are equally space in the parameter space.
If they are unequally space, the knot vector is mon-uniform. Knot values may be
repeated, that is, more than one knot may take on the same value. The multiplicities
of knot values have important implications for the continuity of the basis function
across knots.

A knot vector is said to be open if its first and last knot values appear p + 1

times. Open knot vectors are the standard in the CAD literature. In one dimension,
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basis functions formed from open knot vectors are interpolatory at the ends of the

parameter space.

Basis functions

With a knot vector, the B-spline basis functions are defined recursively starting

with piecewise constants(p = 0):

I if §<E< &
Nio =

)

0 otherwise

For p =1,2,3, ..., they are defined by

N (€) = %N@p_l@ T ﬁmw_m

(2)

This is referred to as the Cox-de Boor recursion formula|Cox, 1971; de Boor, 1972].

The results of applying (1) and (2) to a uniform vector are presented in Figure 2

There are several important features of B-spline basis functions.

Partition of unity, that is,

Nonnegative, that is,

Ni, >0, Ve

,p =

e p—m continuous derivatives of p'* order functions across boundary (across the

knot), where m is the multiplicity of the knot value

p+ 1 span (support) of p' order B-spline functions
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Figure 2: Basis functions of order 0, 1, and 2 for uniform knot vector = =
{0,1,2,3,4, ...} [16]
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e Any given function shares support with 2p + 1 functions including itself.

B-spline geometries

Given n basis functions, N;,,% = 1,2,...,n and corresponding control points B; €
R i =1,2,...,n (vector-valued coefficients), a piecewise-polynomial B-spline curve

is given by

Given a control net B; ;,i = 1,2,...,n,7 = 1,2, ...,m, polynomial order p and ¢, and
knot vectors = = {&1,&, ..., Enipr1 )y and S = {n1, M2, ..., Mmtqgt1}, @ tensor product

B-spline surface is defined by

SEm =D Nipl&)M;4(n)Bi,
i=1 j=1
where N; ,(§) and M; ,(n) are univariate B-spline basis functions of order p and ¢, cor-
responding to knot vectors = and S, respectively. Given a control lattice {B; ji},1 =
1,2,...,n,5 = 1,2 ...m,k = 1,2,...,1, polynomial orders p,q, and r, and knot vec-
tors = = {517627”"6!14-}04—1}’ S = {77177727"-:77m+q+1}7 and R = {C1,C2, -, Qyrr1},
B-spline solid is defined by

SENO =D Nipl&)M;g(n)Lir($) Biji

l
i=1 j=1 k=1

B-spline geometries have following properties:

e Affine covariance, the ability to apply an affine transformation to a curve by

applying it directly to the control points

e A curve will have at least as many continuous derivatives across an element
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boundary boundary as its basis functions have across the corresponding knot

value.

e Moving a single control point can affect the geometry of no more than p + 1

elements of the curve.

e B-spline curve is completely contained within the convex hull defined by its

control points.

e As the polynomial order increases, the curve become smoother and the effect

of each individual control point is diminished.

e B-spline curves also possess a variation diminishing property.(no variation di-

minishing property for surface)

Non-Uniform Rational B-Splines

Non-Uniform Rational B-Splines (NURBS) has the ability to exactly represent a
wide array of objects that cannot be exactly represented by B-splines (polynomials).

Define weighting function

W) = Nip(&)w;
i=1
where w; is the i weight. NURBS basis is given by

D _ Ni,p(ﬁ)wi . Ni,p(f)wi
RO="We ~so8, 0w

which is clearly a piecewise rational function. A NURBS curve is defined by

0@=Z$@&
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This form is identical to that for B-splines.
Rational surfaces and solids are defined analogously in terms of the rational basis

functions

Nz,p(@MJ (U)wi,j
Dict 2y Nip ()M (w5

Ry &) =

Nip(E)Mjg(1) Ly (Qwi i
Z?:l 2;;1 Zi&:l N%,p(g)Mj}q(n)Lk,r(Ow%J,ff

These rational basis functions bear much in common with their polynomial B-splines

Ry (Em, Q) =

such as the continuity of the functions, their support, a partition of unity, and point-

wise nonnegativity, and convex hull property.
2.3  Refinement

There are many ways in which the basis may be enriched while leaving the under-
lying geometry and its parameterization intact. We have control over the element

size and the order of the basis and the continuity of the basis.
Knot insertion

The first mechanism by which one can enrich the basis is knot insertion. Knots
may be inserted without changing a curve geometrically or parametrically. Given
a knot vector = = {&, &, ..., nipr1}, We have an extended knot vector = = {& =
&, &, ...,§n+m+p+1 = &utpr1}s such that = C Z. The new n + m basis functions are
formed by applying the cox-de Boor recursion formula and the new n + m control

points are formed from linear combinations of the original control points by

B=TrB
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where

70 1 &€&, &)

0 otherwise

Tq+1 o £i+q - f] Tq + 5j+q+1 - €i+q Tq .
- q a.
v Si+va—& 7 Ergr1 — &1 VY

for ¢q=0,1,2,....,p—1

This process may be repeated to enrich the solution space by adding more basis
functions of the same order while leaving the curve unchanged. Insertion of new knot
values clearly has similarities with the classical h-refinement strategy in finite element
analysis as it splits existing elements into new ones. However, it differs in the number
of new functions that are created, as well as in the continuity of the basis across the
newly created element boundaries. To perfectly replicate h-refinement, one would
need to insert each of the new knot values p times so that the functions will be C°

across the new boundary. See Figure 3.
Order elevation

The second mechanism by which one can enrich the basis is order elevation. This
process involves raising the polynomial order of the basis functions used to represent
the geometry. The basis has p —m,; continuous derivatives across element boundaries.
When p is increased, m; must also be increased if we are to preserve the discontinuities
in the various derivatives already existing in the original curve. During order eleva-
tion, the multiplicity of each knot value is increased by one, but no new knot values
are added. As with knot insertion, neither the geometry nor the parameterization are

changed. The process is as followings.

e replicate existing knots until their multiplicity is equal to the polynomial order
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e clevate the order of the polynomial on each of individual segments

e excess knots are removed to combine the segments into one, order-elevated,

B-spline curve.

Order elevation clearly has much in common with the classical p-refinement strategy
in finite element analysis as it increases the polynomial order of the basis. The major
difference is that p-refinement always begins with a basis that is C° everywhere, while
order elevation is compatible with any combination of continuities that exist in the

unrefined B-spline mesh. See Figure 4.
k-refinement

We can insert new knot values with multiplicities equal to one to define new ele-
ments across whose boundaries functions will be CP~!. We can also repeat existing
knot values to lower the continuity of the basis across existing element boundaries.
This makes knot insertion a more flexible process than simple h-refinement, Similarly,
we have a more flexible higher-order refinement as well.

K-refinement procedure is that we elevate the order of the orginal, coarsest curve
to ¢ degree, and then insert the unique knot value £&. The basis would have ¢ — 1
continuous derivatives at €. There is no analogous practice in standard finite element
analysis. See Figure 5.

In summary, Pure k-refinement keeps h fixed but increases the continuity along
with the polynomial order. Pure p-refinement increases the polynomial order while
the basis remains C°. Inserting new knot values with a multiplicity of p results in

classical h-refinement, whereby new elements are introduced that have C° boundaries.
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A multitude of refinement options can be obtained beyond simple h, p, k-refinement

by knot insertion and order elevation.
2.4  Partition of Unity

A family {Uy : open subsets of RY | k € D} is said to be a point finite open
covering of Q0 C R® if there is M such that any x € Q lies in at most M of the open
sets Uy, and Q C |J Uy.

kED

For a point finite open covering {Uy, | k € D} of a domain, suppose there is a family

of Lipschitz functions {¢x | k£ € D} on Q satisfying the following conditions:
e ForkeD, 0<¢p(x)<1, x€R?
e The support of ¢; is contained in Uy, for each k € D
® > iep Or(x) =1 for each z € Q

Then {¢x | k € D} is called a partition of unity (PU) subordinate to the covering
{Uy | k € D}. The covering sets {Uy} are called patches.

A weight function, or window function, is a non-negative continuous function with
compact support and is denoted by w(z). Consider the following conical window

function: For x € R,

1—2?), o[ <1

0, lz| > 1

where [ is an integer. w(z) is z C'~! function. In R? the weight function w(z) can

be constructed from a one dimensional weight function as w(x) = [, w(z;), where
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x = (x1,...,24). We use the normalized window function defined by

X

) PR RS

l
ws(x) = Aw( = Q(I)%s

>

where A is the constant such that [, w§(x)dz = 1; refer to [24].

Partition of Unity functions with flat-top

We first review one dimensional partition of unity with flat-top; refer to [43].

19

For any positive integer n, C™~! piecewise polynomial basic PU functions were

constructed as follows: For integers n > 1, we define a piecewise polynomial function

by

L(z)=(1+42)"g(x), x€[-1,0]

In
G5 (1) = {6 (a) = (1 = 2)'gu(—a), = €[0,1
0. 2] > 1

\

(n) (n) (n)

where g,(x) = ay”’ +ay"’(—x) + a;n)(—x)Q + ooy +a,”’(—x)"! whose coefficients are

inductively constructed by the following recursion formula:

2(a'™,), k=n—1

i ) is depicted in Fig. 6 for various regularities.

The ¢ has the following properties; refer to [24]
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o (@) + ogP(x —1) =1, Vr €0,1] (5)
Hence {¢%"(z — j) | j € Z} is a partition of unity on R.

e ") is a C"! function

We can construct C"~! PU function with flat-top whose support is [a — §, b + §] with

a+ 3 < b—§ by the basic PU function ¢{*.

(
gn(%?a)), r€la—4,a+ ]
Goet) r€la+d,b—0]
w[a:b] (z) =

R0y e [b—d,b+ 0

0, x ¢ a—06,b+ ]

\

In order to make a PU function a flat-top, we assume 6 < b’T" See the figure 7.

This flat-top PU function 1/}{5’;3_1) is the convolution of the characteristic function
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flat-top

N

a5 =
Figure 7: PU with flat-top Q,D[(j:g]_l)(x)
X[a,y) and the scaled window function wj by (2.11), that is,
Yo = Xjap (2) * i ()
By the first property of PU function ¢2?,
o (O +op (-1 =1, €€[0,1]

If ¢ : [—0,0] — [0, 1] is defined by

then we have
o (9(@) + 0y (p(z) = 1) =1, €€ [-4,]
Construction of partition of unity functions with flat-top

The PU function with flat-top (6) can be constructed by either convolution or

B-spline functions as follows:

e PU functions constructed by convolutions The PU function with flat-
top (6) can be constructed by convolution, w[(fjgfl)(a:) = Xap) (@) * w§(z), the

convolution of the characteristic function x(,4 and the scaled window function



22

wy defined by (3). The characteristic function is defined by

1 ifz € a,b],
X[a,b]<x> =
0 ifx¢a,b.

e PU functions constructed by B-splines Using the partition of unity prop-
erty of the B-splines,
the PU function (6) can also be constructed by B-spline functions.
1. For C'-continuous piecewise polynomial PU functions with flat-top, let

Nia(z),i=1,...,12 be B-splines of degree 3 that correspond to the open

knot vector:

{0,..,0,@—5,@—(5,a+(5,a+5,b—5,b—5,b+5,b+(5,1,..,1}

A polynomial Ps(z) of degree 3 defined on [a — d, a + 4] is uniquely deter-

mined by four constraints:

Pya—0)=0, Pyla+d)=1

d d
%Pg,(a—&:%Pg(a—l-(;):O

L (93—(&+5)

5 (T55 ) satisfies the four constraints and also N5 4(x)+ N 4(z) satisfies

the four constraints. Therefore, we have

— )
;(%) = Nsa(x) + Ng4(x), for x € [a — 0,a + 4].

Similarly, we have

R(x—(b—d)

(5 ) = Nra(@) + Nya(w), for o € [b—06,b+0].
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Using the partition of unity property of B-splines, we have

N574<ZL‘) -+ N@A(l’) + N774<ZL') + N874(£L') = 1, for x € [CL + 5, b— (5]

. For C2-continuous piecewise polynomial PU functions with flat-top, let
Nig(x),i =1,...,18, be B-splines of degree 5 corresponding to the open

knot vector,

/. N\

{0,..,0,@—6,..,@—6,a+6,..,a—|—5,b—5,..,b—é,b+5,..,b+6,1,..,1}.
— \ ~ v —~ ~ /N —~ ~——

6 3 3 3 3 6

A polynomial Ps(x) of degree 5 defined on [a — 0, a + 4] is uniquely deter-

mined by six constraints: three at a —  and three at a + 9,

Ps(a—0)=0, Ps(a+0)=1

d d
%Pg,(a—é): %Pg,(a—l—d) :0
d? d?
—dx2P5(a —9) = —dx2P5(a +9)=0

53(%) satisfies the six constraints and N7 ¢(z)+ Nsg(z)+ Ngg(x) also

satisfies the six constraints. Therefore, we have

cbﬁg(%cjﬁa)) = Nzg(x) + Ngg(x) + Nog(x), for z € [a — 0, a + 0]

Similarly, we have

R(x_(b_é)

g3 2 ) = N1076(I> -+ NH,G(ZE) + N1276, for x € [b - 5, b+ (5]

Moreover, we have

N776(ZL‘)—|—N876($)+N976([L')+N1076(1')—|—N1176(I‘)—{—leﬁ = 1, for x € [a+5, b—é]
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3. In general, for each n, the C"!-continuous piecewise polynomial PU func-
tion with flat-top can be constructed by the B-splines of degree 2n — 1,

Nion(x),i=1,...,6n, corresponding to the open knot vector:

{0,..,0,@—(5,..,a—5,a+6,..,a+5,b—6,..,b—5,b—|—5,..,b+5,1,..,1}.
N /< o / ~ 7 ~~ T N’

vV vV
n n n n 2n

2n

We have
> het Nongkon () if xe€la—4d,a+/]

2n .

" Nopipon(z) =1 if x€a+0,b— 1]
S k=1 1Von+k,2 ,
Uiy @) = )
> it Naprion () if zeb—26,b+0

0 if x&la—0,b+/]

\

Since the two functions ¢ and ¢} defined by (4), satisfy the following relation:

B +ok(€—1)=1, for £€0,1],

if ¢ : [—0,0] — [0, 1] is defined by

p(x) = (z +0)/(29),

then we have

2 (o) + o (p(x) —1) =1, for z € [-6,6].

The gradient of the PU function with flat-top w[(i’afl) is bounded as follows:

Here the upper bounds C' for various degrees of ¢

2 o) | < o (8)

() are computed in Table 1 from
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Table 1: The upper bound of the gradient of the unscaled piecewise polynomial PU
function ¢ of (4) for various degrees.

degree | n=2|n=3|n=5|n=7\n=10|n=15|n=20|n=230
C 1.5 1.88 | 2.46 | 2.93 3.52 4.33 5.01 6.15

2.5 Boundary Layer Analysis

We follow the definitions and terminologies of [40]. Equations arising from mathe-
matical models usually cannot be solved in exact form. Therefore, we often resort to
approximation and numerical methods. Foremost among approximation techniques
are perturbation methods. Perturbation methods lead to an approximate solution, to
a problem when the model equations have terms that are small.

To fix the idea, consider a differential equation

F(z,y,y,y",¢) =0 (9)

where, x is the independent variable and y is the dependent variable. The appear-
ance of a small parameter € is shown explicitly, ¢ < 1. (9) is called the perturbed

problem. A perturbation series is a power series in € of the form

Yo(z) + eyr () + Eya()...

The basis of the reqular perturbation method is to assume a solution of the differential
equation of this form, where the functions g, y1, yo... are found by substitution into
the differential equation. The first few terms of such a series form an approximate

solution, called a perturbation solution; usually no more than two or three terms are
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taken. Generally, the method will be successful if the approximation is uniform.
The term gy in perturbation series is called the leading order term. The terms
€Y1, €2Ys, ... are regarded as higher-order correction terms that are expected to be

small. If the method is successful, yy will be the solution of the unperturbed problem

F(z,y,v,y",0) =0

in which € is set to zero. A naive regular perturbation expansion does not always
produce an approximate solution. There are several indicators that often suggest its

failure.

e When the small parameter multiplies the highest derivative in the problem.

e When setting the small parameter equal to zero changes the character of the
problem, as in the case of a partial differential equation changing type, or an
algeb