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ABSTRACT

JING XU. ESTIMATION AND INFERENCE FOR DYNAMIC INTENSITY
MODELS FOR RECURRENT EVENT DATA WITH APPLICATIONS TO A

MALARIA TRIAL. (Under the direction of DR. YANQING SUN)

Recurrent events are commonly encountered in medical and epidemiological stud-

ies. It is often of interest what and how risk factors influence the occurrence of

events. While many research of recurrent events address both time-independent and

time-dependent effects, there is a possibility that these effects also vary with certain

covariates. In this dissertation, we develop novel estimation and inference procedures

of two intensity models for recurrent event data. Both models allow for the simul-

taneous measurement of time-varying and covariate-varying effects, with covariates

potentially depend on event history.

We firstly consider a class of semiparametric models, the models feature unspecific

time-varying effects, while covariate-varying and event history effects are modeled

parametrically. The models offer much flexibility through the choice of different

link functions and parametric functions. Estimation procedures involve local linear

method and profile log-likelihood method, with asymptotic properties of estimators

explored using martingale theory and empirical processes. Two hypothesis tests have

been developed to assess the parametric functions of the covariate-varying effects,

one being a supremum type test and the other a chi-square type test. Both tests are

based on residual processes.

Secondly, we propose a nonparametric intensity model with frailty. The model

includes unspecified time-varying and covariate-varying effects and we introduce a

frailty term for each individual, following a Gamma distribution, which operates mul-

tiplicatively on the intensity function. Estimation of nonparametric functions and the

parameters governing the Gamma frailty involves using an Expectation-Maximization

(EM) algorithm and local linear estimation techniques. Variance estimators are ob-
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tained through a weighted bootstrap procedure. Simulation studies demonstrate the

satisfactory performance of this method.

Both of the proposed models have been applied to a malaria vaccine efficacy trial

(MAL-094) to assess the efficacy of the RTS,S/AS01E vaccine and examine how the

efficacy varies over the gap time since the most recent infection or vaccination.
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CHAPTER 1: INTRODUCTION

Recurrent events refer to the events that can occur multiple times during a particu-

lar time period. They are often observed in medical studies where patients encounter

events repetitively, such as hospital admissions, cancer recurrences, and infections of

Covid-19 and many others. It is typically of interest to understand what and how

the risk factors would influence the events. Evaluating the effects of risk factors and

analyzing how these effects may change over time help us unravel the underlying

mechanisms of the events.

1.1 Motivating Example - MAL-094 Trial Study

This dissertation is motivated by the complex challenges posed by the MAL-094

malaria vaccine efficacy trial. Malaria is a life-threatening disease with diverse genetic

strains, adults and children can experience multiple malaria infections during their

lifetime.

The MAL-094 trial is conducted by Glaxo SmithKline Biologicals (GSK) and PATH

Malaria Vaccine Initiative, testing the RTS,S/AS01E malaria vaccine. It took place in

Sub-Saharan Africa from 2017 to 2022, randomly divided approximately 1500 children

aged 5 to 17 months from two sites (Agogo in Ghana, and Siaya in Kenya) into five

arms, each arm has around 300 participants. Four arms received vaccine versions

administered at different doses and schedules and one arm served as control group

receiving placebo. Children’s vaccination and infections status over 20 months and

32 months follow-up periods have been recorded. The primary objectives of our work

are to measure the efficacy of the RTS,S/AS01E vaccine and investigate whether and

how prior infections can confer protection against subsequent ones.
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1.2 Literature Review

In this section, we provide an overview of relevant literature concerning the analysis

of recurrent event data.

The most two commonly used approaches to model recurrent events are marginal

methods and conditional methods. Both of them have been intensively studied, in-

cluding statistical modelings and inference procedures.

Marginal methods model the population average behaviors of the recurrent event,

focus on the overall effects and trends, rather than individual characteristics. Wei

et al. (1989) analyzed multivariate failure time data, they used Cox proportional haz-

ard models to model the marginal distribution of each failure time without imposing

any structure of dependence among the failure times for each individual. Pepe and

Cai (1993) proposed two rate functions to model the first infection and recurrent

infection separately, providing likelihood-based estimating equations. Lawless (1997)

proposed a semiparametric procedures to model the mean or rate function of the

counting process, Lin et al. (2000) justified the inference procedure through empirical

process theory and constructed confidence bands for the mean functions.

Rather than modeling the overall population behavior, conditional method can

model the pattern based on event history for each individual. Conditional methods

usually work on counting process, provide a flexible framework by modeling the in-

tensity function of a counting process. The intensity of a counting process is the

instantaneous rate of an event occurring at that time point, given the all the event

and covariate history. Denote Ft as the filtration generated by the counting process

Ni(t) and possible covariate processes up to time t, the intensity function of counting

process Ni(t) is defined as

λi(t) = lim
∆t→0

Pr(∆Ni(t) = 1|Ft)
∆t

,
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where ∆Ni(t) = Ni(t + ∆t−) − Ni(t
−) is the number of events in the time interval

[t, t+ ∆t].

A counting process is deemed to be of the Poisson type if, for non-overlapping time

intervals, the number of events within these intervals is statistically independent.

The recurrent event processes characterized by a constant intensity are referred to as

homogeneous Poisson processes, while those with time-dependent intensity functions

are termed inhomogeneous Poisson processes.

There are extensive work on modeling the intensity of the Poisson-type counting

process. Andersen and Gill (1982) generalized the Cox model, modeling the intensity

function of the recurrent events by the following function

λ(t) = λ0(t) exp {βTX(t)},

where X(t) is a vector of possibly time-dependent covariates, λ0(t) is an unspecified

baseline intensity function and β is a vector of unknown regression parameter.

Zeng and Lin (2006) proposed the following semiparametric transformation models

ΛZ(t) = G
{∫ t

0

Y ∗(s) expβ
TZ(s) dΛ(s)

}
,

where Z(·) is a vector of possibly time-varying covariates, β is a vector of unknown

parameters, Y ∗(·) is the at risk indicator, Λ(·) is an unspecified increasing function.

The transformation function G(·) provide much flexibility of the models and the esti-

mated regression parameters β and cumulative intensity functions Λ(·) are obtained

through non-parametric maximum likelihood method.

Gap time, also know as waiting time, refer to the time between two consecutive

events for a particular subject. It is of natural interest to incorporating the gap times

in the model to help us understand the intra-individual correlation. Prentice et al.

(1981) proposed two classes of stratified proportional intensity function, one model
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incorporated the baseline intensity as a function of time since enrollment, while the

other model included the baseline function as a function of time since the most recent

event. Chang (2004) considered an accelerated failure time (AFT) model, which

assume the individual specific frailty, the covariate effects and the random errors act

additively on the logarithm of gap time. Other works related with gap time includes

Oakes and Cui (1994), Pena et al. (2001), Strawderman (2005) and some others.

In recurrent event models, covariates could be either fixed or time-varying. Marti-

nussen and Scheike (1999) worked on a semiparametric additive model on longitudinal

data, this model permits certain covariate effects to remain constant, while others vary

nonparametrically with time, estimation are conducted by introducing marked point

process and local estimating equations. Cai and Sun (2003) proposed a local linear

method to estimate the time-varying coefficient in Cox regression model; Amorim

et al. (2008) incorporated B splines method in a rates model for recurrent events

to estimate the time-dependent coefficient. Sun et al. (2009) developed a marginal

modeling approach on a multivariate recurrent event model. More local modeling

methods could be referred to Fan and Gijbels (1996).

Another scenario arises where the effects are dependent on time-varying covariates.

For instance, there might be a time delay for a treatment to take effect, or the

impact may diminish after a certain exposure duration. Qi et al. (2017) studied a

generalized semiparametric varying-coefficient model for longitudinal data, which can

model time-independent effects, time-varying effects and covariate-varying effects at

the same time, estimation procedure are based on profile weighted least squares.

Frailty models, also called random effect models, are able to account for unobserved

heterogeneity in a population and induce dependence among the recurrent event times

within subjects by introducing a random variable in the model. Lawless (1987) is an

early work on the frailty models, it incorporated the random effects in the intensity

function λi(t) = λ0(t) exp{αi + X ′iβ}, where αi are independent and identically dis-
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tributed random variables. Gamma frailty is commonly used in frailty models by the

conjugate properties, Nileson et al. (1992) introduced gamma frailty, which act multi-

plicatively on the intensity function, Klein (1992) specified the estimation procedures

based on EM algorithm, Murphy proved the consistency and asymptotic properties

of the gamma frailty model without covariates in Murphy (1994) and Murphy (1995),

Parner (1998) extended the theories to the correlated gamma frailty models with

covariates.

Zeng and Lin (2007) incorporated random effect denoted as b within a class of semi-

parametric transformation models. This extension is a generalization of the transfor-

mation models to multivariate failure times. In a separate work, Zeng et al. (2009)

propose a different class of transformation models that incorporates the gamma frailty

while also allowing the random effects to take the value of 0. There are also some

work incorporated local smoothing methods into frailty frameworks, includes Yu et al.

(2013), Chen et al. (2013), Mazroui et al. (2015) among others.

In this dissertation, we proposed two dynamic intensity models for recurrent event

data, both of which can measure the time-varying and covariate-varying effects si-

multaneously. It is arranged as follows: In chapter 2, we discuss a generalized class of

semiparametric dynamic intensity models, including the estimation procedure, test-

ing the parametric functions, simulation studies and the application to the 20 months

follow-up MAL-094 trial data. In chapter 3, we investigated the nonparametric dy-

namic intensity models with frailty, and apply the models to the 32 months MAL-094

trial data. Chapter 4 concludes the entire work and provides an overview of future

work.



CHAPTER 2: GENERALIZED SEMIPARAMETRIC INTENSITY MODELS FOR

RECURRENT EVENT DATA

2.1 Introduction

In this chapter, we introduce a class of generalized semiparametric intensity models.

Semiparametric models offer several advantages. Firstly, in comparison to nonpara-

metric models, they require less data for fitting. Additionally, if we possess some

background information about the parametric forms, it can aid in enhancing our

understanding of the data.

The proposed models feature unspecific time-varying effects and constant effects,

while the effects that depend on time-varying covariates or event history are mod-

eled parametrically. Section 2.2 describes the models and illustrates their estimation

methods, including the computational algorithm and the selection of kernel functions

and bandwidths. The asymptotic properties of estimators are developed in Section

2.3. Two hypothesis tests based on residual processes are developed in Section 2.4 to

assess the parametric functions of the covariate-varying effects. Simulation studies in

Section 2.5 show that the methods perform well in finite samples. Lastly, in Section

2.6, we apply the models on the 20 months follow-up data from MAL-094 malaria

vaccine trial.

2.2 Model and Estimation

2.2.1 Model Description

Consider a random sample of n subjects, τ is the end of study time. Suppose for

subject i, Tij represents the occurrence time for jth event. If we denote ni as the total

event time for i subject during the study time, we have Ti1 < Ti2 < ... < Tini ≤ τ .
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Xi(t), Zi(t), Wi(t) and Ui(t) serve as subject-specific covariates, all of which could

be time-dependent. Counting process N∗i (t) =
∑ni

j=1 I(Tij ≤ t) is the number of

events taken from ith subject by time t; denote ∆N∗i (t) = N∗i (t + ∆t−) − N∗i (t) as

the number of events occurring in the small time interval [t, t + ∆t). Modeling of

recurrent events can be based on the intensity function of N∗i (t), which is defined

as λi(t) = lim∆t↓0 Pr(∆N∗i (t) = 1|F∗it−)/∆t. λi(t)dt is the instantaneous probability

of an event occurring in [t, t + ∆t), i.e. E(dN∗i (t)|F∗it−) = λi(t)dt, where F∗it− is the

filtration generated by N∗i (t) and the history of covariates for ith subject up to time

t.

Let τi = min {τ, Ci}, where Ci is the non-informative censoring time for sub-

ject i. Events for subject i can only be observed before τi. Yi(t) = I(τi ≥ t) is

the at-risk process, indicates whether subject i is exposed to the event at time t.

Ni(t) = N∗i (t ∧ τi) is the observed counting process, Fit− is the filtration generated

by the observed event history, covariate processes and censoring for subject i, thus

we have E(dNi(t)|Fit−) = Yi(t)λi(t)dt. Censorings are non-informative in the sense

of E{dNi(t)|F∗it−} = E{dNi(t)|Fit−} = Yi(t)λi(t)dt.

We propose the following generalized semiparametric dynamic intensity models:

λi(t) = g−1{αT(t)Xi(t) + βTZi(t) + γT(Ui(t), θ)Wi(t)}, (2.1)

for 0 ≤ t ≤ τ , where α(·) is a p1 dimensional vector, each element is an unspecified

function; β is a p2 dimensional vector of unknown time-independent parameters;

γ(Ui(t), θ) is a p3 dimensional vector, with each element is a parametric function

defined on the range of Ui(·).

g(·) is a known link function and offers a lot of flexibility to the models. The

logarithm link function yields a multiplicative intensity model, whereas choosing the

identity link results in an additive intensity model.
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Setting the first component of Xi(t) equal 1 provides us with the nonparametric

baseline function. Ui(t) can be related with the event or treatment history. For

example, Ui(t) = t − TiNi(t−) stands for the time since the most recent event; if we

denote Vi(t) as the most recent vaccination time, then Ui(t) = t − Vi(t) signifies the

time since the most recent vaccination.

For the sake of clarity in representation, we denote η = (βT, θT)T, ζ(Ui(t), η) =

(βT, γT(Ui(t), θ))
T and Pi(t) = (Zi(t)

T,Wi(t)
T)T, then the intensity function (2.1)

can be written as

λi(t) = g−1{αT(t)Xi(t) + ζT(Ui(t), η)Pi(t)}. (2.2)

2.2.2 Estimation Procedure

Assume α(·) is smooth enough on t ∈ [0, τ ] and its first derivative α̇(t) exists.

Denote Nt0 as a neighbourhood of t0, for t ∈ Nt0 , by first order Taylor approximation,

we have

α(t) = α(t0) + α̇(t0)(t− t0) +O((t− t0)2).

The intensity function (2.2) can be approximated by

λ∗i (t, α
∗, η|t0) = g−1{α∗T(t0)X∗i (t|t0) + ζT(Ui(t), η)Pi(t)}, (2.3)

where α∗(t0) = (αT(t0), α̇T(t0))T and X∗i (t|t0) = (XT
i (t), XT

i (t)(t− t0))T.

By Cook and Lawless (2007), for fixed η, the likelihood function for the observed

data can be constructed as follows:

Lα(α, η) =
∏

0≤t≤τ

[{ n∏
i=1

{Yi(t)λi(t)}dNi(t)
}{

1−
n∑
i=1

Yi(t)λi(t)dt
}1−dNi.(t)]

=
{ ∏

0≤t≤τ

n∏
i=1

{Yi(t)λi(t)}dNi(t)
}

exp
{
−

n∑
i=1

∫ τ

0

Yi(t)λi(t)dt
}
,
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where Ni.(t) =
∑n

i Ni(t).

Take logarithm, we obtain the log-likelihood function for observed data:

`α(α, η) =
n∑
i=1

∫ τ

0

{
log{Yi(t)λi(t)}dNi(t)− Yi(t)λi(t)dt

}
(2.4)

Apply local smoothing method and plug in the approximated intensity function

(2.3), the localized log-likelihood can be written as:

`α(α∗; η, t0) =
∑n

i=1

∫ τ

0

Kh(t− t0)
{

log{Yi(t)λ∗i (t, α∗, η|t0)}dNi(t)

− Yi(t)λ∗i (t, α∗, η|t0)dt
}

(2.5)

where Kh(.) = K(./h)/h, K(.) is a kernel function and h is the bandwidth parameter.

Take derivative of (2.5) with respect to α∗(t0), the score function for α∗(t0) for fixed

η can be written as:

Uα(α∗; η, t0) =
n∑
i=1

∫ τ

0

Kh(t− t0)X∗i (t|t0)
{ λ̇∗i (t, α∗, η|t0)

λ∗i (t, α
∗, η|t0)

dNi(t)− Yi(t)λ̇∗i (t, α∗, η|t0)dt
}
.

(2.6)

Set Uα(α∗; η, t0) = 0 and denote the solution as α̃∗(t0, η). Let α̃(t.η) be the first

p1 components of α̃∗(t, η) and λ̃i(t, η) be the corresponding estimated intensity, i.e.,

λ̃i(t, η) = g−1{α̃T(t, η)Xi(t) + ζT(Ui(t), η)Pi(t)}. The profile log-likelihood function

for η can be written as:

`η(η) =
∑n

i=1

∫ t2
t1

{
log{Yi(t)λ̃i(t, η)}dNi(t)− Yi(t)λ̃i(t, η)dt

}
, (2.7)

where t1 and t2 are neighbour points of 0 and τ , we integrate on [t1, t2] ⊂ [0, τ ] to

avoid boundary effects.
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Take derivative of (2.7) with respect to η, we get the profile score function for η,

Uη(η) =
n∑
i=1

∫ t2

t1

{(∂α̃(t, η)

∂η

)T
Xi(t) +

(∂ζ(Ui(t), η)

∂η

)T
Pi(t)

}
[ ˙̃λi(t, η)

λ̃i(t, η)
dNi(t)− Yi(t) ˙̃λi(t, η)dt

]
, (2.8)

where ∂α̃(t.η)
∂η

are the first p1 rows of

∂α̃∗(t, η)

∂η
= −

{∂Uα(α∗; η, t)

∂α∗

}−1∂Uα(α∗; η, t)

∂η

∣∣∣∣∣
α∗=α̃∗(t,η)

, (2.9)

equation (2.9) is derived through taking derivative of Uα(α∗; η, t) = 0 with respect to

η on both sides,

∂Uα(α∗; η, t)

∂α∗
× ∂α∗(t, η)

∂η
+
∂Uα(α∗; η, t)

∂η
= 0,

where

∂Uα(α∗; η, t)

∂α∗
=

n∑
i=1

∫ τ

0

Kh(s− t)X∗i (s|t)X∗Ti (s|t)

{ λ̈∗i (s, α̃∗(s), η|t)λ∗i (s, α̃∗(s), η|t)− [λ̇∗i (s, α̃
∗(s), η|t)]2

[λ∗i (s, α̃
∗(s), η|t)]2

dNi(s)

− Yi(s)λ̈∗i (s, α̃∗(s), η|t)ds
}
,

and

∂Uα∗(α∗; η, t)

∂η
=

n∑
i=1

∫ τ

0

Kh(s− t)X∗i (s|t)PT
i (s)

(∂ζ(η, Ui(s))

∂η

)
{ λ̈∗i (s, α̃∗(s), η|t)λ∗i (s, α̃∗, η|t)− [λ̇∗i (s, α̃

∗(s), η|t)]2

[λ∗i (s, α̃
∗(s), η|t)]2

dNi(s)

− Yi(s)λ̈∗i (s, α̃∗(s), η|t)ds
}
.
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The parameter vector η can be updated by solving the profile estimating equation

U(η) = 0 using Newton-Raphson method, where U(η) is defined in equation (2.8).

Following this procedure, α̃∗(η, t0) and η undergo iterative updates until conver-

gences are reached for both, where the maximum likelihood is achieved.

2.2.3 Computational Algorithm

In this subsection, we summarize the computational algorithm to illustrate the

profile maximum likelihood estimation procedure as we outlined in Section 2.2.2.

1. Generate the grid points over t.

2. Set initial values α̂{0}(t) and η̂{0} for α̂(t) and η̂.

3. Let α̂{k−1}(t) and η̂{k−1} be the estimates of α(t) and η in (k − 1)th iteration.

At each grid point, plug η̂{k−1} into the localized score function (2.6), solve the

equation Uα(α∗; η{k−1}, t0) = 0 and get α̂∗{k}(t) = α̂∗{k}(t, η̂{k−1}); take first p1

components as the estimation of α(t) in kth iteration and denote it as α̂{k}(t);

4. Replace α̃(t, η) with α̂{k}(t) in estimating equation (2.8), solve the equation

using Newton-Raphson method and get η̂{k}, which is the kth iteration estimate

of η.

5. Repeat Step 3 and Step 4, α̂{k}(t) and η̂{k} are updated at each iteration un-

til both of them converge, the estimates α̂(t) and η̂ are α̂{k}(t) and η̂{k} at

convergence.

2.2.4 Selections of Kernel Functions and Bandwidths

The proposed estimation procedure integrates both local smoothing method and

profile maximum log-likelihood estimation method. In this section, we discuss the

selections of the kernel functions and bandwidths when estimate the nonparametric

parameters using local smoothing method. For the kernel function, we choose the
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Epanechnikov kernel function K(x) = 3/4(1− x2)I{|x| ≤ 1}, which has been showed

many desirable properties (Epanechnikov (1969); Fan and Gijbels (1996)).

For the bandwidth selection, we employ Monte Carlo cross-validation method, also

referred to as "leave-group-out" cross-validation (Cai et al. (2023)). This method

helps reduce the randomness associated with data splitting during cross-validation.

Firstly, we bootstrap the original data without replacement, with a fixed propor-

tion. The selected data is treated as the training data for model fitting, while the

unselected data serves as the test data. In each bootstrap, we fit the model with

training data across a range of bandwidth candidates, and record the one that maxi-

mizes the prediction accuracy on the test dataset. We repeat this procedure B times

and take the average of B recorded bandwidths as the selected optimal bandwidth.

We sketch the bandwidth selection procedure as follows:

1. Create a set of candidate bandwidths H;

2. In bth bootstrap iteration, we do the following steps:

2.1. Firstly, we randomly sample from the original dataset without replacement,

utilizing a fixed proportion p. We obtain a dataset with size np (rounded

to the nearest integer), which serves as the training dataset Db
n and the

subjects not selected into Db
n form the test dataset Db

t .

2.2. For each h in H, we use h to fit the model on training dataset Db
n, obtaining

estimates α̂(b,h)(t), β̂(b,h), θ̂(b,h) and the estimated intensity function for

subject i takes as follows:

λ̂
(b,h)
i (t) = g−1

{
α̂(b,h)TXi(t) + β̂(b,h)TZi(t) + γ̂(b,h)T(Ui(t), θ)Wi(t)

}
.

2.3. The prediction accuracy is defined as the estimated log-likelihood on test

dataset, as proposed by Tian et al. (2005). The prediction accuracy in bth
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bootstrap using bandwidth h, denoted as ACC(b)(h), is calculated by

ACC(b)(h) =
∑
i∈Dbt

∫ t2

t1

{
log[λ̂

(b,h)
i (t)]dN b

i (t)− Y
(b)
i (t)λ̂

(b,h)
i (t)dt

}
.

2.4. The recorded bandwidth in bth iteration h∗b is the one that maximizes the

prediction accuracy, i.e. h∗b = argmax
h

ACC(b)(h).

3. Repeat Step 2.1 to Step 2.4 B times, the optimal bandwidth, denoted as h∗opt,

is determined as the average of all the h∗b we got in B repetitions of bootstrap.

2.3 Asymptotic Properties

In this section, we discuss the asymptotic properties of the estimator through, we

introduce the notations which would be used as follows:

Let η0 and α0(t) be the true value of η and α(t), denote the first and second deriva-

tives of α0(t) by α̇0(t) and α̈0(t). Let λi(t) = g−1{αT
0 (t)Xi(t)+ζT(η0, Ui(t))Pi(t)} and

λ̇i(t) = ġ−1{αT
0 (t)Xi(t) + ζT(η0, Ui(t))Pi(t)}. Define e11(t) = E{−Yi(t) λ̇i(t)

2

λi(t)
Xi(t)

⊗2}

and e12(t) = E{−Yi(t) λ̇i(t)
2

λi(t)
Xi(t)P

T
i (t)(∂ζ(η0,Ui(t))

∂η
)}.

Let λ̂i(t) = g−1{α̂T(t)Xi(t) + ζT(η̂, Ui(t))Pi(t)} and ˆ̇λi(t) = ġ−1{α̂T(t)Xi(t) +

ζT(η̂, Ui(t))Pi(t)} and ˆ̈λi(t) = g̈−1{α̂T(t)Xi(t) + ζT(η̂, Ui(t))Pi(t)}. Let Ê11(t) =

1
n

∑n
i=1

∫ τ
0
Yi(s)Kh(s− t){− λ̂i(s)

2

λ̂i(s)
}Xi(s)

⊗2ds and Ê12(t) = 1
n

∑n
i=1

∫ τ
0
Yi(s)Kh(s− t)

{− λ̂i(s)
2

λ̂i(s)
}{Xi(s)P

T
i (s)(∂ζ(η̂,Ui(s))

∂η
)}ds.

Under condition A given in Appendix, we have the following theorems for the

asymptotic properties of the estimators η̂ and α̂(t).

Theorem 1 Under Condition A, η p→ η0, and
√
n(η̂ − η0) converges in distribution

to a mean zero Gaussian random vector with covariance matrix A−1
η ΣηA

−1
η , with

Aη = E
[ ∫ t2

t1

λ̇i(t)
2

λi(t)

{(∂ζ(Ui(t), η0)

∂η

)T
Pi(t)− (e12(t))T(e11(t))−1Xi(t)

}⊗2

dt
]
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and

Ση = E
[ ∫ t2

t1

λ̇i(t)

λi(t)

{(∂ζ(Ui(t), η0)

∂η

)T
Pi(t)− (e12(t))T(e11(t))−1Xi(t)

}
dMi(t)

]⊗2

where 0 < t1 < t2 < τ , ⊗ is the Kronecker product of matrices.

Aη can be estimated by

Âη =
1

n

n∑
i=1

∫ t2

t1

ˆ̇λ2(t)

λ̂i(t)

{(∂ζ(Ui(t), η̂)

∂η

)T
Pi(t)− (Ê12(t))T(Ê11(t))−1Xi(t)

}⊗2

dt

and Ση can be estimated by

Σ̂η =
1

n

n∑
i=1

[ ∫ t2

t1

ˆ̇λi(t)

λ̂i(t)

{(∂ζ(Ui(t), η̂)

∂η

)T
Pi(t)− (Ê12(t))T(Ê11(t))−1Xi(t)

}
{
dNi(t)− Yi(t)λ̂i(t)dt

}]⊗2

Theorem 2 Under Condition A, α̂(t)
P→ α0(t), uniformly in t∈[t1, t2] ⊂ [0, τ ], and

(nh)1/2(α̂(t)− α0(t)− 1

2
µ2h

2α̈0
T(t))

D→ N(0,Σα(t))

where µ2 =
∫ 1

−1
t2K(t)dt.

Σα(t) can be consistently estimated by (Ê11(t))−1Σ̂e(t)(Ê11(t))−1, with

Σ̂e(t) = n−1h

n∑
i=1

[ ∫ τ

0

ˆ̇λi(s)

λ̂i(s)
{dNi(s)− Yi(s)λ̂i(s)}Xi(s)Kh(s− t)

−Ê12(t)Â−1
η

∫ t2

t1

ˆ̇λi(s)

λ̂i(s)
{dNi(s)− Yi(s)λ̂i(s)}{(∂ζ(Ui(s), η̂)

∂η

)T
Pi(s)− (Ê12(s))T(Ê11(s))−1Xi(s)

}]⊗2
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2.4 Testing the Covariate-Varying Effects

In this section, we provide two hypothesis test procedures to test the adequacy of

parametric form γ(Ui(t), θ). To test H0 : γ(u) = γ(u, θ), we consider the following

test process

R(u, η̂) =n−
1
2 (Ir ⊗ Â−1

η )
n∑
i=1

{∫ t2

t1

ˆ̇λi(t)

λ̂i(t)
I{Ui(t) ≤ u} ⊗ Ôi(t){dNi(t)− Yi(t)λ̂i(t)dt}

}
(2.10)

where

Ôi(t) =
(∂ζ(Ui(t), η̂)

∂η

)T
Pi(t)− (Ê12(t))T(Ê11(t))−1Xi(t),

u ∈ Rr is a grid of Ui(t) and r is the dimension of Ui(t), Ir is the r×r identity matrix,

⊗ is the Kronecker product of matrices. The test process is a stratified version of the

score function based on the level of Ui(t) ≤ u.

Test statistics T1 is based on the supreme norm. Define T1 = supu∈4 ‖R(u, η̂)‖,

where ‖·‖ represent the L2 norm in Rr and 4 is a set of grid points in Rr.

Test statistics T2 is based on the chi-square test. Take the grids of Ui(t) as

{u1, ...uK}, K is the number of the grid points. Let L(η̂) be the difference of two

consecutive R(u, η̂),

L(η̂) =



R(u2, η̂)−R(u1, η̂)

R(u3, η̂)−R(u2, η̂)

...

R(uK−1, η̂)−R(uK−2, η̂)

R(uK , η̂)−R(uK−1, η̂)


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define test statistic T2 as the quadratic form of L(η̂):

T2 = LT(η̂){cov(L(η̂), L(η̂))}−1L(η̂),

cov{L((η̂), L(η̂))} is a (K − 1)× (K − 1) block matrix, for 1 ≤ q, s ≤ K − 1, the q, s

th block equals

cov[R(uq+1, η̂)−R(uq, η̂), R(us+1, η̂)−R(us, η̂)]

=cov[R(uq+1, η̂), R(us+1, η̂)]− cov[R(uq+1, η̂), R(us, η̂)]− cov[R(uq, η̂), R(us+1, η̂)]

+ cov[R(uq, η̂), R(us, η̂)]. (2.11)

Since the distribution of T1 is unknown and complicated, we consider using Gaus-

sian multiplier method to approximate its distribution (Lin et al. (1993)). The outline

of this procedure is given in the following:

By first order approximation, we have

R(u, η̂) = R(u, η0) +
∂R(u, η0)

∂η
(η̂ − η0) + op(1), (2.12)

where

R(u, η0) =n−
1
2 (Ir ⊗ A−1

η )
n∑
i=1

{∫ t2

t1

λ̇i(t)

λi(t)
I{Ui(t) ≤ u} ⊗Oi(t)[dNi(t)− Yi(t)λi(t)dt]

}
+ op(1), (2.13)

with

Oi(t) =
(∂ζ(Ui(t), η)

∂η

)T
Pi(t)− (e12(t))T(e11(t))−1Xi(t).
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As shown in Appendix A.1, we have

n
1
2 (η̂ − η0) = A−1

η n−
1
2

n∑
i=1

{∫ t2

t1

λ̇i(t)

λi(t)
Oi(t){dNi(t)− Yi(t)λi(t)dt}

}
+ op(1). (2.14)

The derivative of R(u, η) with respect of η can be shown that

n−
1
2
∂R(u, η)

∂η

p→ −(Ir ⊗ A−1
η )Au, (2.15)

where

Au =E
{∫ t2

t1

[I{Ui(t) ≤ u} ⊗Oi(t)]Oi(t)
T[
λ̈i(t)λi(t)− λ̇2

i (t)

λ2
i (t)

dNi(t)− Yi(t)λ̈i(t)dt]
}
.

Combining equation (2.12)-(2.15), we have

R(u, η̂) = n−
1
2

n∑
i=1

Di(u) + op(1)

where

Di(u) = (Ir ⊗ A−1
η )

∫ t2

t1

λ̇i(t)

λi(t)

{
I{Ui(t) ≤ u} ⊗Oi(t)− AuA−1

η Oi(t)
}{

dNi(t)− Yi(t)λi(t)dt
}
,

from Lin et al. (1993), we know R(u, η̂) converges weakly to a mean zero Gaussian

process R(u), for u ∈ Rr.

Let

D̂i(u) = (Ir ⊗ Â−1
η )

∫ t2

t1

ˆ̇λi(t)

λ̂i(t)

[
I{Ui(t) ≤ u} ⊗ Ôi(t)− ÂuÂ−1

η Ôi(t)
]
{dNi(t)− Yi(t)λ̂i(t)dt}

and φ1, ... ,φn be n independent standard normal random variables, define the Gaus-
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sian multiplier process

R∗(u) = n−1/2

n∑
i=1

D̂i(u)φi. (2.16)

Given the observed data, the distribution of R(u) can be approximated by the con-

struction of R∗(u). We hold the observed data sequence fixed and generate, we say,

500 sets of independent normal random variables, get 500 copies of R∗(u), define

T ∗1 = supu∈4 ‖R∗(u, η̂)‖, then the critical value of T1 can be determined by the per-

centile of the empirical distribution of T ∗1 .

Based on the construction of R∗(u), for 1 ≤ l ≤ m <= K, cov(R(ul, η̂), R(um, η̂))

can be calculated by

cov(R(ul, η̂, R(um, η̂) = cov(R∗(ul), R
∗(um))

= cov
(
n−1/2

n∑
i=1

D̂i(ul)φi, n
−1/2

n∑
j=1

D̂j(um)φj

)
=

1

n

n∑
i=1

n∑
j=1

D̂i(ul)D̂
T
j (um)cov(φi, φj)

=
1

n

n∑
i=1

D̂i(ul)D̂
T
i (um)cov(φi, φi)

=
1

n

n∑
i=1

D̂i(ul)D̂
T
i (um).

Test statistic T2 has asymptotic chi-square distribution. The critical value can be

found based on the chi-square distribution. However, its critical value can also be

approximated using the Gaussian multiplier approach which may perform better in

small sample case.
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Define

L∗(η̂) =



R∗(u2, η̂)−R∗(u1, η̂)

R∗(u3, η̂)−R∗(u2, η̂)

...

R∗(uK−1, η̂)−R ∗ (uK−2, η̂)

R∗(uK , η̂)−R ∗ (uK−1, η̂)


and let

T ∗2 = L∗(η̂)T{cov(L(η̂), L(η̂))}−1L∗(η̂),

the critical value of T2 can be determined by the percentile of the empirical distribu-

tion of T ∗2 .

2.5 Simulation Studies

In this section, we perform comprehensive simulations to assess the performance

of the estimators in finite samples under two distinct link functions: the logarithm

link function and the identity link function. Within the logarithm link function, we

further examine three different scenarios, which are showed in section 2.5.1.

We use the following abbreviations in all the simulation studies hereafter. Bias =

estimate- true value; SSE stands for the sample standard error of the estimates; ESE

stands for the sample mean of the estimated standard errors; CP represents the 95%

empirical coverage probability.

2.5.1 Simulation Studies under Logarithm Link Function

We consider the models with following intensity function

λi(t) = exp{α0(t) + α1(t)Xi + βZi + γ(Ui(t), θ)Wi(t)}, (2.17)

for 0 ≤ t ≤ τ .



20

Scenario 1. γ(Ui(t), θ) is a linear function of Ui(t), with the following settings:

• τ = 4, subjects are censored up to a censoring time Ci ∼ U(3, 8);

• Xi is a uniform random variable on [-1, 1], Zi is generated from truncated

Normal distribution (0, 1, 0.5, 0.2);

• Ui(t) = t−Ti,Ni(t−) stands for the gap time since the most recent event; Wi(t) =

I(Ni(t
−) > 0) indicates whether there is an event occurred just before time t;

• γ(Ui(t), θ) = θ0 + θ1Ui(t); with θ0 = 0.5 and θ1 = 0.5;

• β = 0.1, α0(t) = −0.5− 0.5 log (1 + t), α1(t) = −0.5 sin(1 + 0.4t).

Averagely, 2.7 events are observed per subject during the study time. Table 2.1

presents the estimation results for sample sizes of n = 400, 600, 800, with different

bandwidth h = 0.2, 0.3, 0.4. Table 2.2 presents the sizes under null modelM0 : γ(u) =

0.5 + 0.5u, and the powers under alternative models M11 : γ(u) = 1.5 − 0.4 sin(5u),

M12 : γ(u) = 1.5 − 0.5 sin(5u) and M21 : γ(u) = 1.5 − u + 0.3u2 and M22 : γ(u) =

1.5− u+ 0.4u2. Figure 2.1 shows the estimation results for α0(t) and α1(t).

Table 2.1: Bias, SEE, ESE and CP of β, θ0, θ1 under model (2.17) in Scenario 1,
bandwidth h = 0.2, 0.3 and 0.4.

β = 0.1 θ0 = 0.5 θ1 = 0.5

n Bias SEE ESE CP Bias SEE ESE CP Bias SEE ESE CP

h=0.2

400 0.003 0.159 0.164 0.950 0.003 0.086 0.088 0.954 -0.003 0.064 0.065 0.950

600 -0.002 0.128 0.133 0.956 0.006 0.076 0.072 0.940 -0.006 0.056 0.053 0.936

800 -0.005 0.109 0.115 0.962 -0.001 0.062 0.062 0.948 -0.008 0.043 0.045 0.966

h=0.3

400 -0.009 0.161 0.165 0.946 -0.001 0.087 0.089 0.958 -0.004 0.065 0.065 0.956

600 -0.011 0.130 0.135 0.958 0.003 0.076 0.073 0.934 -0.006 0.057 0.053 0.934

800 -0.014 0.111 0.117 0.958 -0.003 0.063 0.063 0.954 -0.009 0.044 0.046 0.952

h=0.4

400 -0.019 0.161 0.167 0.950 -0.002 0.089 0.090 0.956 -0.004 0.065 0.066 0.964

600 -0.018 0.134 0.136 0.950 0.001 0.076 0.073 0.944 -0.006 0.057 0.054 0.932

800 -0.019 0.111 0.118 0.958 -0.005 0.063 0.063 0.960 -0.009 0.045 0.047 0.958
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Table 2.2: Observed sizes and powers of test statistics T1, T2g and T2c under model
(2.17) in Scenario 1, bandwidth h = 0.3 and 0.4. T1 is based on supremum test, T2g is
based on Gaussian multiplier distribution and T2c is based on chi-square distribution.

n=400 n=600 n=800

Model h T1 T2g T2c T1 T2g T2c T1 T2g T2c

M0 0.3 0.054 0.074 0.062 0.050 0.052 0.054 0.050 0.046 0.046

0.4 0.052 0.076 0.064 0.044 0.050 0.050 0.052 0.048 0.046

M11 0.3 0.234 0.850 0.830 0.518 0.960 0.964 0.800 0.998 0.998

0.4 0.270 0.836 0.834 0.534 0.958 0.960 0.792 0.998 0.998

M12 0.3 0.530 0.974 0.970 0.850 1.000 1.000 0.990 1.000 1.000

0.4 0.532 0.968 0.964 0.878 1.000 1.000 0.982 1.000 1.000

M21 0.3 0.810 0.368 0.366 0.946 0.544 0.546 0.988 0.770 0.774

0.4 0.804 0.372 0.370 0.954 0.544 0.550 0.984 0.758 0.764

M22 0.3 0.964 0.718 0.702 0.998 0.936 0.936 1.000 0.996 0.996

0.4 0.958 0.704 0.704 0.996 0.928 0.926 1.000 0.996 0.992
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Figure 2.1: Bias, SEE, ESE and CP of α0(t) and α1(t) under model (2.17) in Scenario
1 with h = 0.4. The dotted, dashed and solid line represent n = 400, n = 600 and
n = 800, respectively.
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Scenario 2. γ(Ui(t), θ) is multidimensional, we consider model 2.17 under the

following settings:

• τ = 4, subjects are censored up to a censoring time Ci ∼ U(3, 8);

• Xi is a uniform random variable on [-1, 1], Zi is generated from truncated

Normal distribution (0, 1, 0.5, 0.2);

• Ui(t) = t − TiNi(t−) stands for the gap time since last event; Wi = (W1i,W2i)
T

with W1i(t) = I(Ni(t
−) > 0) and W2i(t) = I(Ni(t

−) > 0)Bi(t), where Bi(t) ∼

Ber(0.5);

• γ(Ui(t), θ) = (γ1(Ui(t), θ1), γ2(Ui(t), θ2))T; γ1(Ui(t), θ1) = θ10 + θ11Ui(t) and

γ2(Ui(t), θ2) = θ20 + θ21Ui(t) with θ10 = θ11 = 0.3, θ20 = θ21 = 0.2;

• β = 0.1, α0(t) = −0.5− 0.5 log (1 + t), α1(t) = −0.5 sin(1 + 0.4t).

Averagely, 2.5 events are observed per subject during the study time. Table 2.3

presents the estimation results for sample sizes of n = 400, 600, 800 with h = 0.4 and

0.5. Table 2.4 presents the sizes under null model M0: γ1(Ui(t), θ1) = 0.3 + 0.3Ui(t)

and γ2(Ui(t), θ1) = 0.2 + 0.2Ui(t). Figure 2.2 shows the estimation results for α0(t)

and α1(t).
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Table 2.3: Bias, SEE, ESE and CP of β, θ10, θ11, θ20 and θ21 under model (2.17) in
Scenario 2, bandwidth h = 0.4 and 0.5.

n = 400 n = 600 n = 800

Bias SEE ESE CP Bias SEE ESE CP Bias SEE ESE CP

h=0.4

β -0.010 0.166 0.175 0.960 -0.008 0.142 0.144 0.950 -0.008 0.114 0.124 0.962

θ10 -0.006 0.122 0.118 0.948 -0.001 0.095 0.097 0.946 0.003 0.083 0.084 0.948

θ11 0.000 0.090 0.092 0.948 -0.002 0.077 0.075 0.948 -0.006 0.064 0.065 0.944

θ20 -0.004 0.131 0.129 0.950 0.002 0.106 0.105 0.956 0.001 0.088 0.092 0.956

θ21 0.012 0.126 0.124 0.950 0.000 0.103 0.101 0.950 0.000 0.084 0.088 0.946

h=0.5

β -0.016 0.171 0.177 0.950 -0.014 0.143 0.145 0.954 -0.012 0.116 0.126 0.964

θ10 -0.008 0.124 0.120 0.944 -0.003 0.095 0.098 0.950 0.003 0.084 0.085 0.948

θ11 0.000 0.093 0.093 0.948 -0.002 0.078 0.076 0.948 -0.007 0.065 0.066 0.952

θ20 -0.003 0.132 0.131 0.954 0.002 0.107 0.106 0.960 0.000 0.089 0.093 0.958

θ21 0.011 0.128 0.127 0.950 0.001 0.105 0.103 0.952 0.001 0.086 0.089 0.950

Table 2.4: Observed sizes of test statistics T1, T2g and T2c under model (2.17) in
Scenario 2, bandwidth h=0.4 and 0.5. T1 is based on the supremum test, T2g is based
on Gaussian multiplier distribution and T2c is based on chi-square distribution.

n=400 n=600 n=800

Model h T1 T2g T2c T1 T2g T2c T1 T2g T2c

M0 0.4 0.060 0.084 0.082 0.056 0.062 0.060 0.058 0.050 0.050

0.5 0.062 0.098 0.096 0.062 0.062 0.044 0.044 0.066 0.068
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Figure 2.2: Bias, SEE, ESE and CP of α0(t) and α1(t) under model (2.17) in Scenario
2 with h = 0.5. The dotted, dashed and solid line represent n = 400, n = 600 and
n = 800, respectively.
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Scenario 3. Ui(t) has multiple dimensions and γ(Ui(t), θ) is a nonlinear function of

Ui(t); we consider model 2.17 under following settings:

• τ = 4, subjects are censored up to a censoring time Ci ∼ U(3, 8);

• Xi is a uniform random variable on [-1, 1], Zi is generated from truncated

Normal distribution (0, 1, 0.5, 0.2);

• Ui(t) = (U1i(t), U2i(t)), U1i(t) = t − Ti,Ni(t−) stands for the gap time since

last event, U2i(t) = log(Ni(t
−) + 1) is derived from the current event number;

Wi(t) = I(Ni(t
−) > 0) indicates whether there is an event occurred just before

time t;.

• γ(Ui(t), θ) = log(θ0 + θ1U1i(t))
2 + θ2U2i(t); with θ0 = 0.8, θ1 = 0.5, θ2 = 0.5;

• β = 0.1, α0(t) = −0.5− 0.5 log (1 + t), α1(t) = −0.5 sin(1 + 0.4t).

Averagely, 2.6 events are observed per subject during the study time. Table 2.5

present the estimation results for β, θ0, θ1 and θ2 for sample sizes of n = 400, 600, 800

with different bandwidths. Figure 2.3 presents the estimation results for α0(t) and

α1(t).
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Figure 2.3: Bias, SEE, ESE and CP for α0(t) and α1(t) under model (2.17) in Scenario
3 with h = 0.4. The dotted, dashed and solid line represent n = 400, n = 600 and
n = 800, respectively.
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2.5.2 Simulation Studies under Identity Link Function

In this subsection, we conduct a simulation study when the link function being an

identity link, we consider the models with intensity function as follows:

λi(t) = α0(t) + αT
1 (t)Xi + βZi + γ(Ui(t), θ)Wi(t) (2.18)

for 0 ≤ t ≤ τ . Covariates and parameters are set as follows:

• τ = 4, subjects are censored up to a censoring time Ci ∼ U(3, 8);

• Xi is a uniform random variable on [-1, 1], Zi is generated from truncated

Normal distribution (0, 1, 0.5, 0.2);

• Ui(t) = t−Ti,Ni(t−) stands for the gap time since last event, Wi(t) = I(Ni(t
−) >

0) indicates whether there is an event occurred just before time t;

• γ(Ui(t), θ) = θ0 + θ1Ui(t); with θ0 = 0.2, θ1 = 0.2;

• β = 0.1, α0(t) = 0.6− 0.2 log (1 + t), α1(t) = 0.2 sin(t).

Averagely, 2.5 events are observed per subject during the study time. Table 2.6

presents the estimation results for β, θ0 and θ1 for sample sizes of n = 400, 600, 800

with bandwidth h = 0.7, 0.8, 0.9; Table 2.7 presents the sizes under null model M0 :

γ(u) = 0.2 + 0.2u, and the powers under alternative models M11 : γ(u) = 1.0 −

0.5 sin(5u), M12 : γ(u) = 1.0 − 0.6 sin(5u), M21 : γ(u) = 1.0 − u + 0.5u2 and M22 :

γ(u) = 1.0−u+ 0.6u2. Figure 2.4 presents the estimation results for α0(t) and α1(t).
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Table 2.6: Bias, SEE, ESE and CP of β, θ0, θ1 under model (2.18), with h = 0.7, 0.8
and 0.9.

β = 0.1 θ0 = 0.2 θ1 = 0.2

n Bias SEE ESE CP Bias SEE ESE CP Bias SEE ESE CP

h=0.7

400 0.007 0.118 0.109 0.904 0.002 0.060 0.056 0.938 0.002 0.056 0.055 0.948

600 0.005 0.096 0.090 0.926 0.005 0.046 0.046 0.952 -0.004 0.045 0.045 0.934

800 0.003 0.080 0.078 0.942 0.003 0.040 0.040 0.942 -0.005 0.041 0.039 0.928

h=0.8

400 0.003 0.127 0.110 0.908 0.003 0.066 0.057 0.932 -0.003 0.058 0.056 0.938

600 0.004 0.098 0.091 0.934 0.005 0.047 0.047 0.942 -0.004 0.046 0.046 0.930

800 0.001 0.083 0.079 0.932 0.003 0.040 0.041 0.950 -0.005 0.042 0.040 0.926

h=0.9

400 -0.004 0.149 0.111 0.900 0.003 0.067 0.058 0.932 -0.002 0.059 0.057 0.934

600 0.001 0.099 0.093 0.936 0.005 0.048 0.048 0.946 -0.005 0.047 0.047 0.938

800 0.000 0.087 0.081 0.930 0.003 0.040 0.041 0.954 -0.005 0.043 0.040 0.922

Table 2.7: Observed sizes and powers of test statistics T1, T2g and T2c under model
(2.18), bandwidth h = 0.8 and 0.9. T1 is based on supremum test, T2g is based on
Gaussian multiplier distribution and T2c is based on chi-square distribution.

n=400 n=600 n=800

Model h T1 T2g T2c T1 T2g T2c T1 T2g T2c

M0 0.8 0.052 0.060 0.060 0.042 0.040 0.036 0.038 0.044 0.046

0.9 0.082 0.062 0.060 0.052 0.040 0.040 0.052 0.050 0.048

M11 0.8 0.604 0.650 0.658 0.798 0.916 0.912 0.918 0.980 0.978

0.9 0.604 0.650 0.640 0.788 0.914 0.904 0.920 0.970 0.970

M12 0.8 0.820 0.842 0.840 0.966 0.988 0.988 0.988 1.000 1.000

0.9 0.806 0.826 0.826 0.952 0.984 0.984 0.990 0.998 0.998

M21 0.8 0.472 0.600 0.590 0.790 0.876 0.882 0.972 0.970 0.974

0.9 0.482 0.586 0.578 0.760 0.886 0.878 0.956 0.964 0.962

M22 0.8 0.642 0.698 0.694 0.902 0.948 0.948 0.998 0.992 0.994

0.9 0.642 0.702 0.694 0.882 0.942 0.940 0.988 0.990 0.992
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Figure 2.4: Bias, SEE, ESE and CP for α0(t) and α1(t) under model (2.18) with
h = 0.9. The dotted, dashed and solid line represent n = 400, n = 600 and n = 800,
respectively.
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2.6 Data Application

We apply the proposed method to analyze the 20 months MAL-094 trial data. In

this trial, approximately 1500 children aged 5 to 17 months from two sites (Agogo in

Ghana and Siaya in Kenya) were randomly divided into five arms, four arms received

the RTS,S/AS01E vaccine with different doses and schedules, and one arm serve as a

control arm, receiving the placebo. For all participants, there are records at scheduled

and unscheduled visits for whether they get malaria infections detected molecularly.

For each participant, visits after three consecutive missed scheduled visits and with

no intervening unscheduled visits in-between are defined as censored.

For the 20-months follow up data, there are 3325 molecularly detected malaria

infections (referred to as "infection" hereafter) were observed before censoring among

1464 participants. There are 975 participants have experienced at least one infection,

with the largest number of infections being 25.

Our preliminary analysis indicates that hemoglobin and age of participants have

significant effects on the risk of infection. Figure 2.5 displays histograms of these two

variables.
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Figure 2.5: Histograms of hemoglobin and age for all participants.
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Define Tij as the jth infection time we observed for subject i, and denote ni as the

total event time for ith subject before the end of study or censoring, whichever comes

first, we have Ti1 < Ti2 < ... < Tini . Define Ni(t) =
∑ni

j=1 I(Tij ≤ t) as the observed

number of events taken from ith subject by time t; denote ∆Ni(t) = Ni(t+∆t−)−Ni(t)

as the number of events occurring in the small time interval [t, t+ ∆t). The malaria

infections can be modeled by the intensity function of Ni(t). We combine the four

vaccine arms as treatment group, and the vaccine efficacy is evaluated between the

control and treatment groups.

2.6.1 Modeling Intensity as a Function of Calendar Time and Time Since the

Most Recent Infection
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Figure 2.6: Histograms of gap times between infections for control and treatment
groups in 20 months follow-up data.
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Figure 2.6 is the histogram of gap times between infections for control group and

treatment group. To assess the effectiveness of the RTS,S/AS01E vaccine and explore

how the vaccine effects are influenced by previous infections, as well as the effects of

other risk factors, we consider the following multiplicative temporal intensity model

λi(t) = exp
{
α0(t) + α1(t)Vacci + α2(t)Agogoi + α3(t)Agei(year) + βHemoi

+γ0(t− TiNi(t−))I(Ni(t
−) > 0) + γ1(t− TiNi(t−))I(Ni(t

−) > 0)V acci

}
(2.19)

with γ0(u, θ) = θ0 + θ1u and γ1(u, θ) = θ2 + θ3u, where Vacci is the treatment group

indicator (Vacci= 1 if assigned to one of the four RTS,S/AS01E vaccine arms, 0

if assigned to the control arm), and Agogoi is the study site indicator (1= Agogo,

0 = Siaya), Agei is the age in years at enrollment and Hemoi is the standardized

hemoglobin for ith subject.

Apply the Monte Carlo bootstrap cross-validation method as described in Section

2.2.4 to select the optimal bandwidth. 100 repetitions bootstrap cross-validation yield

an optimal bandwidth of 1.35 months.

Table 2.8 presents the estimation results of parametric parameters β, θ0, θ1, θ2 and

θ3, including their estimates, estimated standard errors and p values under the null

hypotheses H0 : β = 0, H0 : θ0 = 0, H0 : θ1 = 0, H0 : θ2 = 0 and H0 : θ3 = 0.

Table 2.9 shows the test statistics and p values under null hypothesesH0: γ0(u, θ) =

θ0+θ1u and γ1(u, θ) = θ2+θ3u. At the 0.05 significant level, we draw same conclusions

from the supremum and chi-square tests, which is the linearity hypothesis for γ0(u, θ)

and γ1(u, θ) hold.

Figure 2.7 plots the test statistics and the Gaussian multiplier statistics. The gray

lines represent 500 Gaussian multiplier approximations of test statistics under the

null hypothesis H0, while the red line depicts the test statistic obtained after fitting

the model. Observing the plots, we notice that the test statistic for all components
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falls within the gray region. This suggests no departure from the null hypothesis.

Table 2.8: Estimations, estimated standard error and p values of parametric param-
eters under model (2.19), using h = 1.35.

β θ0 θ1 θ2 θ3

EST -0.148 0.814 -0.034 0.128 -0.039

ESE 0.024 0.112 0.018 0.131 0.020

p-value 6.974e−10 3.653e−13 0.059 0.329 0.051

Table 2.9: Test statistics and p values under model (2.19), T1 is the test statistics of
supreme test; T2 is the test statistics of chi-square test; p2g value is based on Gaussian
multiplier distribution and p2c value is based on chi-square distribution.

T1 p1 T2 p2g p2c

4.213 0.453 36.018 0.220 0.208
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Figure 2.7: Test process Ru and Gaussian multiplier process R∗u under model (2.19).
The plots labeled (a) through (e) respectively represent the components β, θ0, θ1, θ2

and θ3.
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Figure 2.8: Estimation results of time-varying effects of covariates under model (2.19).
The solid line represents the point estimate, while the shaded area signifies the 95%
pointwise confidence interval.
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Figure 2.8 presents the estimates and corresponding standard errors of α0(t), α1(t),

α2(t) and α3(t). From the figure, we find that the baseline risk intensity increase

with time. The risk of infection among participants residing in the Agogo site is

lower compared to those residing in Siaya, and this difference becomes increasingly

pronounced over time. The positive estimate of α̂3(t) also suggests that older children

have higher risk of infections.

In the treatment group, participants consistently exhibit a lower infection risk

compared to those in the control group.

Regarding the impact of prior infections, we observe an increase in the risk of sub-

sequent infection within the control group, which gradually decreases over time. The

infection risk associated with the most recent infection is initially higher in treat-

ment group during about the first 3 months but subsequently diminishes, ultimately

becoming lower than that of the control group.

To assess the quantity of protection against re-infection, we define vaccine efficacy

as the percentage decrease in infection intensity among vaccinated individuals in

comparison to those who are not vaccinated. Under model (2.19), the vaccine efficacy

at time t equals

VE(t) = 1− λi(t|Vacci = 1)

λi(t|Vacci = 0)
= 1− exp

{
α1(t) + γ1(t− TNi(t−))I(Ni(t

−) > 0)
}
.

When there are no prior infections, we have the vaccine efficacy against the first

infection is represented by VE(t) = 1− exp{α1(t)}. When prior infections exist, i.e.

I(Ni(t
−) > 0) = 1, the vaccine efficacy for subsequent infections, including the second

and beyond, is given by VE(t) = 1 − exp{α1(t) + γ1(t − TNi(t−))}. Figure 2.9 shows

the estimated vaccine efficacy against both first infection and reinfections.
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Figure 2.9: The estimated vaccine efficacy against the first infection (a) and re-
infection (b) under model (2.19)
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The vaccine efficacy for both the first infection and subsequent reinfections exhibits

temporal variation. Strong efficacy effects are evident particularly within the first 5

months. However, after approximately 7 and 12 months, fluctuations occur, which

could be partly attributed to the timing of vaccinations, as depicted in Figure 2.10.
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Figure 2.10: The frequency of vaccinations in treatment group over time since enroll-
ment.

2.6.2 Modeling Intensity as a Function of Calendar Time and Time Since the

Most Recent Vaccination

In this subsection, we model the effects of vaccinations parametrically and aim to

investigate how these effects fluctuate over time since the last vaccination. Figure

2.11 shows the histogram of the gap times since last vaccinations when infections

occur, distinguishing between control and treatment groups.



41

0.00

0.05

0.10

0.15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time since last vaccination (months)

D
en

si
ty

(a) Histogram of gap times since last vaccination for control group

0.0

0.1

0.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time since last vaccination (months)

de
ns

ity

(b) Histogram of gap times since last vaccination for treatment group

Figure 2.11: Histograms of gap time since last vaccination for control and treatment
groups when infections occur in 20 months follow-up data.

Besides the definition of infection times and counting process of infections at the

beginning of this section, we also need to define the vaccination times. Define T Vik

as the kth vaccination time for subject i, and denote vi as the total vaccine doses

for i subject before the end of study or censoring, whichever comes first, we have

T Vi1 < T Vi2 < ... < T Vivi , we define counting process for the vaccination as Vi(t) =∑vi
k=1 I(T Vik ≤ t).
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We model the intensity function of infections with two time scales as follows:

λi(t) = exp
{
α0(t) + α1(t)Agogoi + α2(t)Agei(year) + βHemoi

+ γ(t− T ViVi(t−))I(Vi(t
−) > 0)Vacci

}
, (2.20)

where γ(Ui(t), θ) = θ0+θ1U1i(t). Vacci is the treatment group indicator, Agogoi is the

study site indicator (1= Agogo, 0 = Siaya), Agei is the age in months at enrollment

and Hemoi is the standardized hemoglobin for ith subject.

Based on 100 repetitions of bootstrap as we discussed in Section 2.2.2, we use the

selected bandwidth 1.42 months to fit model (2.20). Table 2.10 presents the estimation

results of parametric parameters β, θ0 and θ1, including their estimates, estimated

standard errors and p values under the null hypotheses H0 : β = 0, H0 : θ0 = 0 and

H0 : θ1 = 0. Table 2.11 shows the test statistics and p values under null hypotheses

H0: γ(u, θ) = θ0 + θ1u. At 0.05 significant level, both supremum and chi-square tests

indicate acceptance of the linear hypothesise of γ(u, θ). Figure 2.12 are plots of test

statistics and Gaussian multiplier statistics, the plots indicate that the test statistic

for all components falls within the gray region. This suggests no departure from the

null hypotheses.

Table 2.10: Estimations, estimated standard errors and p values of parametric pa-
rameters under model (2.20), using h = 1.42.

β θ0 θ1

EST -0.195 -0.639 0.024

ESE 0.030 0.078 0.007

p value 8.032e−11 2.220e−16 6.068e−4
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Table 2.11: Test statistics and p values under model (2.20), T1 is the test statistics of
supreme test; T2 is the test statistics of chi-square test; p2g value is based on Gaussian
multiplier distribution and p2c value is based on chi-square distribution.

T1 p1-value T2 p2g-value p2c-value

2.128 0.158 21.469 0.112 0.123
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Figure 2.12: Test process R(u) and Gaussian multiplier process R(u)∗ under model
(2.20). The plots labeled (a) through (c) respectively represent the components β, θ0

and θ1.
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Figure 2.13: Estimation results of time-varying effects of covariates under model
(2.20). The solid line represents the point estimate, while the shaded area signifies
the 95% pointwise confidence interval.
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From Figure 2.13, we get similar conclusions as we do in model (2.20). Firstly, as

time passes, the baseline risk of infection rises. In comparing participants from the

two study sites, the risk of infection is lower in Agogo. Older children are at a higher

risk of infection, while those with higher levels of hemoglobin tend to have a relatively

lower risk of infection.

The vaccine efficacy at time t can be defined as

VE(t) = 1− λi(t|Vacci = 1)

λi(t|Vacci = 0)
= 1− exp

{
γ(t− TiVi(t−))I(Vi(t

−) > 0)
}
,

which can be demonstrated as the following plot. Basically, we can observe that as

the time since last vaccination increases, the vaccine efficacy decrease.
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Figure 2.14: Estimated vaccine efficacy over time since last vaccination under model
(2.20), the solid line represents the point estimate, while the shaded area signifies the
95% pointwise confidence interval.



CHAPTER 3: NONPARAMETRIC DYNAMIC INTENSITY MODELS WITH

FRAILTY FOR RECURRENT EVENT DATA

3.1 Method and Estimation

3.1.1 Model Description

Suppose there is a random sample of n subjects, τ is the end of study time. Tij,

i = 1, 2...n, j = 1, 2, ..., ni are event times for subject i, where ni is the total event

number for subject i, we have Ti1 < Ti2 < ... < Tini ≤ τ . Xi(t) Ui(t) and Zi(t)

are possible time-dependent covariates for subject i, and Ui(t) could be derived from

event history. Let counting process N∗i (t) =
∑ni

j=1 I(Ti,j ≤ t) be the number of events

taken from ith subject by time t, where I(·) is the indicator function. ∆N∗i (t) =

N∗i (t + ∆t−) − N∗i (t) denotes the number of events occurring in the time interval

[t, t + ∆t). Let F∗it be the filtration generated by N∗i (t) and all covariates history

up to time t for subject i, then the intensity of counting process N∗i (t) is defined as

λfi (t) = lim∆t↓0 Pr(∆N∗i (t) = 1|F∗it−)/∆t.

Let Ci be the censoring time, define τi = min {τ, Ci} as the end of follow-up

time or censoring time whichever comes first, the events for subject i can only

be observed before τi. Yi(t) = I(τi ≥ t) is the at-risk process. For subject i,

Ni(t) = N∗i (t ∧ τi) is the counting process for observed events; Fit = F∗it ∨ Ci is the

filtration of observed events, covariates history up to time t and censoring. Censoring

is assumed to be non-informative in the sense that E(dNi(t)|Ft−) = E(dNi(t)|F∗t−) =

Yi(t)λi(t)dt, where F∗t = ∨ni F∗it and Ft = ∨ni Fit. The observed data consists of

D =
{
Ni(t), Yi(t), Xi(t), Zi(t), Ui(t), t ∈ [0, Ci]

}
, (i = 1, ..., n).

The nonparametric dynamic intensity models incorporating frailty are proposed as
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follows:

λfi (t) = ξi exp{αT(t)Xi(t) + γT(Ui(t))Zi(t)}, (3.1)

for 0 ≤ t ≤ τ , where α(·) and γ(·) are p1 and p2 dimensional vectors of unspecified

functions.

ξi is a frailty, also termed as a random effect, which is independent with both

the subjects’ covariates and stochastic processes. ξi are independent and identically

distributed, following Gamma(θ, θ), with probability density function

f(ξ) =
θθξθ−1e−θξ

Γ(θ)
,

for ξ > 0, θ > 0, where Γ(θ) is the Gamma function. Here, the two parameters of

Gamma distribution are constrained to be identical in order to achieve scaling such

that the resulting distribution has mean 1 and variance of 1
θ
to avoid identifiability

problem. Here, the identifiability problem refers that if we multiply ξi and divide the

whole exponential term by the same constant, ξi maintains its gamma distribution,

but with a new scale parameter (Nileson et al. (1992)).

The possibly time-dependent covariate Ui(t) offer flexibility in capturing the tem-

poral patterns on an additional time scale. Ui(t) could be derived from event or

treatment history, enables the intensity function to change with these history. For

example, by setting Ui(t) = t− Ti,Ni(t−) and Zi(t) = Wi(t)I(Ni(t
−) > 0), Ui(t) stands

the time since most recent event, there is an indicator I(Ni(t
−) > 0) multiplying on

Wi(t) because the gap time Ui(t) is only meaningful after the subject has experienced

at least one event. By setting Ui(t) = t− Vi(t) and Zi(t) = I(t > Vi(t)), where Vi(t)

represents the time of vaccination or intervention, model (3.1) captures the alteration

intensity following the vaccination or intervention.

The frailty term ξi, operating multiplicatively on the intensity function, seeks to
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model unobserved heterogeneity among the subjects and induce the dependence struc-

ture among recurrent events with subjects. When ξi is greater than 1, it indicates

that the subject is more likely to experience an event; conversely, when ξi is less than

1, it signifies that the subject is less likely to have an event.

3.1.2 Nonparametric Maximum Likelihood Estimation

For ease of representation, we denote λi(t) = exp{α(t)TXi(t) + γT(Ui(t))Zi(t)},

then the intensity function can be written as

λfi (t) = ξiλi(t) = ξi exp{αT(t)Xi(t) + γT(Ui(t))Zi(t)}.

By Cook and Lawless (2007), for given ξi, the likelihood function takes the form

Ln(α(·), γ(·), θ) =
∏

0≤t≤τ

[{ n∏
i=1

{Yi(t)ξiλi(t)}dNi(t)
}{
{1−

n∑
i

Yi(t)ξiλi(t)dt}1−dNi·(t)
}]

=
{ ∏

0≤t≤τ

n∏
i=1

{Yi(t)ξiλi(t)}dNi(t)
}

exp
{
−

n∑
i=1

ξi

∫ τ

0

Yi(t)λi(t)dt
}
,

(3.2)

where Ni.(t) =
∑n

i Ni(t).

Integrate over ξi and get the observed likelihood function

n∏
i=1

[ ∫ ∞
0

{ ∏
0≤t≤τ

{Yi(t)ξiλi(t)}dNi(t)
}

exp
{
− ξi

∫ τ

0

Yi(t)λi(t)dt
}
f(ξi)dξi

]
=

n∏
i=1

[{ ∏
0≤t≤τ

{Yi(t)λi(t)}dNi(t)
} θθ

Γ(θ)

∫ ∞
0

ξ
θ+Ni(τ)−1
i exp

{
− ξi{θ +

∫ τ

0

Yi(t)λi(t)dt}
}
dξi

]
=

n∏
i=1

[{ ∏
0≤t≤τ

{Yi(t)λi(t)}dNi(t)
} θθ

Γ(θ)

Γ{θ +Ni(τ)}
{θ +

∫ τ
0
Yi(t)λi(t)dt}θ+Ni(τ)

]
,
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take logarithm, the log-likelihood function for observed data is obtained by

log l◦n(α(·), γ(·), θ) =
n∑
i=1

[ ∫ τ

0

log {Yi(t)λi(t)}dNi(t) + θ log θ − log Γ(θ) + log Γ{θ +Ni(τ)}

− {θ +Ni(τ)} log
{
θ +

∫ τ

0

Yi(t)λi(t)dt
}]
. (3.3)

We use local linear smoothing method to estimate the nonparametric estimators

α(·) and γ(·). Assume that Xi(t) and Zi(t) do not have common covariates, and

assume α(t) and γ(u) are smooth enough and their first derivatives exist. We do

Taylor expansions for α(t) and γ(u) at Nt0 and Nu0, the neighbourhoods of t0 and

u0, getting

α(t) = α(t0) + α̇(t0)(t− t0) +O((t− t0)2)

and

γ(u) = γ(u0) + γ̇(u0)(u− u0) +O((u− u0)2).

Denote λf∗i (t, ϑ∗|t0, u0) as the approximated intensity function localized at (t0, u0),

we have

λf∗i (t, ϑ∗|t0, u0) = ξi exp{ϑ∗T (t0, u0)X̃i
∗
(t|t0, u0)} (3.4)

where

ϑ∗(t0, u0) = (αT(t0), α̇T(t0), γT(u0), γ̇T(u0))T
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and

X̃i
∗
(t|t0, u0) = (XT

i (t), XT
i (t)(t− t0), ZT

i (t), ZT
i (t)(Ui(t)− u0))T.

Define

λ∗i (t, ϑ
∗|t0, u0) = exp{ϑ∗T (t0, u0)X̃∗i (t|t0, u0)}, (3.5)

equation (3.4) can be written as

λf∗i (t, ϑ∗|t0, u0) = ξiλ
∗
i (t, ϑ

∗|t0, u0).

We employ the Expectation-Maximization (EM) algorithm to achieve maximum

likelihood estimators. During this process, we treat ξi as a latent variable, obtaining

its conditional expectation in E-step, and maximizing conditional expectation of the

complete log-likelihood in M-step.

E Step. From Nileson et al. (1992), we know that given the observed data and

current estimate α̂(t), γ̂(u) and θ̂, ξi is conditional Gamma distributed and follows

Gamma(θ̂ +Ni(τ), θ̂ +
∫ τ

0
Yi(t)λ̂i(t)dt), where λ̂i(t) take the form:

λ̂i(t) = exp{α̂T(t)Xi(t) + γ̂T(Ui(t))Zi(t)}. (3.6)

Denote Ê(·|D) as the conditional expectation given the observed data, we have

closed forms of Ê(ξi|D) and Ê(log ξi|D).

Ê(ξi|D) =
θ +Ni(τ)

θ +
∫ τ

0
Yi(t)λ̂i(t))dt

(3.7)
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and

Ê(log ξi|D) =
Γ′(θ +Ni(τ))

Γ(θ +Ni(τ))
− log

{
θ +

∫ τ

0

Yi(t)λ̂i(t))dt
}

(3.8)

M-step. We maximize the conditional expectation of localized complete log-

likelihood with respect to D:

E[l(ϑ∗|t0, u0)] =
n∑
i=1

∫ τ

0
Kh(t− t0)Kb(Ui(t)− u0)

[{
Ê(log ξi|D)

+ log{Yi(t)λ∗i (t, ϑ∗|t0, u0)}
}
dNi(t)− Yi(t)Ê(ξi|D)λ∗i (t, ϑ

∗|t0, u0)dt
]

+
n∑
i=1

Ê{log f(ξi)|D} (3.9)

where Kh(.) = K1(./h)/h, Kb(.) = K2(./b)/b, K1(.), K2(.) are kernel functions, h and b are

bandwidths, λ∗i (t, ϑ
∗|t0, u0) has been defined in (3.5).

Equation (3.9) can be written as E[l(ϑ∗, θ|t0, u0)] = L1(ϑ∗|t0, u0) + L2(θ), with

L1(ϑ∗|t0, u0) =

n∑
i=1

∫ τ

0
Kh(t− t0)Kb(Ui(t)− u0)

[{
Ê(log ξi|D)+

log{Yi(t)λ∗i (t, ϑ∗|t0, u0)}
}
dNi(t)− Yi(t)Ê(ξi|D)λ∗i (t, ϑ

∗|t0, u0)dt
]
, (3.10)

and

L2(θ) =
n∑
i

Ê(log f(ξi)|D)

= nθ log θ − n log Γ(θ) + (θ − 1)
n∑
i=1

Ê(log ξi|D)− θ
n∑
i=1

Ê(ξi|D). (3.11)

Since L1(ϑ∗|t0, u0) only contains ϑ∗ and L2(θ) only contains θ, we can maximize each of

them individually. Ê(ξi|D) and Ê(log ξi|D) can be calculated in the E-step based on the

observed data and estimates at previous iteration.
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For L1(ϑ∗|t0, u0), we take derivative with respect to ϑ∗, get the local score function

U(ϑ∗|t0, u0) =
n∑
i=1

∫ τ

0
Kh(t− t0)Kb(Ui(t)− u0)

{
dNi(t)

− Yi(t)Ê(ξi|D)λ∗i (t, ϑ
∗|t0, u0)dt

}
X̃∗i (t|t0, u0), (3.12)

setting U(ϑ∗|t0, u0) = 0, the bivariate estimate ϑ̂∗(t0, u0) can be obtained through Newton-

Rapson method.

Let α̂(t0, u0) be the first p1 elements and γ̂(t0, u0) be the 2p1 + 1 to 2p1 + p2 elements of

ϑ̂∗(t0, u0), aggregate them along each direction to get α̂(t0) and γ̂(u0):

α̂(t0) = n−1
n∑

1=1

α̂(t0, Ui(t0)) (3.13)

and

γ̂(u0) = n−1
u0

∑
tu0∈Vu0

γ̂(tu0 , u0) (3.14)

where Vu0 =
⋃n
i=1 U

−1
i (u0), U−1

i (u0) = {t : Ui(t) = u0}, and nu0 = |Vu0 | is the cardinality

of Vu0 .

For L2(θ), we take derivative with respect to θ and set it to zero, getting

log(θ)− Γ′(θ)

Γ(θ)
+

1

n

n∑
i=1

Ê(log ξi|D)− 1

n

n∑
i=1

Ê(ξi|D) + 1 = 0, (3.15)

θ̂ is obtained by solving equation (3.15).

This process iterates between E-step and M-step until convergence, yielding the estimates

α̂(t), γ̂(u) and θ̂.

3.1.3 Computational Algorithm

In this section, we elaborate on the algorithm for the estimation procedure:

1. Generate the grid points over t and u.

2. Set initial values α̂{0}(t), γ̂{0}(u) and θ̂{0}.
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3. Let α̂{k−1}(t), γ̂{k−1}(u) and θ̂{k−1} be the estimates of α(t), γ(u) and θ in (k −

1)th iteration. At kth iteration, update the conditional expectation Ê{k}(ξi|D) and

Ê{k}(log ξi|D), by plugging α̂{k−1}(t), γ̂{k−1}(u) and θ̂{k−1} in equation (3.7) and

(3.8), more specifically,

Ê{k}(ξi) =
θ̂{k−1} +Ni(τ)

θ̂{k−1} +
∫ τ

0 Yi(t)λi{t, α̂{k−1}(t), γ̂{k−1}(ui(t))}dt

and

Ê{k}(log ξi) =
Γ′(θ̂{k−1} +Ni(τ))

Γ(θ̂{k−1} +Ni(τ))
− log

{
θ̂{k−1} +

∫ τ

0
Yi(t)λi{t, α̂{k−1}(t), γ̂{k−1}(ui(t))}dt

}

where

λi{t, α̂{k−1}(t), γ̂{k−1}(ui(t))} = exp{α̂{k−1}T(t)Xi(t) + γ̂{k−1}T(Ui(t))Zi(t)}.

4. Update α̂{k}(t), γ̂{k}(u) by solving U(ϑ∗|t0, u0) = 0, where U(ϑ∗|t0, u0) takes the form

of (3.12) with Ê(ξi|D) replaced by Ê{k}(ξi|D), then we take corresponding elements

and aggregate through equation (3.13) and (3.14). Update θ̂{k} by solving equation

(3.15).

5. Repeat Step 3 and Step 4 iteratively until converge, estimates α̂(t), γ̂(u) and θ̂ are

α̂{k}(t), γ̂{k}(u) and θ̂{k} at convergence.

3.1.4 Adaptive Estimation Algorithm

In previous algorithm, we have an implicit assumption Xi(t) 6= Zi(t), but if certain

covariates are shared between Xi(t) and Zi(t), α(t) and γ(u) may not be distinguishable in

a local area of using the local linear estimation method. For example, we consider model

λfi (t) = ξi exp{α(t) + γ(Ui(t))I(Ni(t
−) > 0)}, which is model (3.1) with Xi(t) = 1, Ui(t) =

t− tNi(t−) and Zi(t) = I(Ni(t
−) > 0). If we consider a neighborhood that all subjects have

experienced events, i.e. P (Ni(t
−) > 0) = 1 for t ∈ Nh(t0)) = (t0 − h, t0 + h), α(t) and

γ(u) will have the identifiable problems. In this scenario, we develop an adaptive estimation
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algorithm. At an early time stage, there must have some subjects that have not experienced

events yet, we find a maximum of this time point t∗, to ensure when t ∈ Nh(t∗) = (t∗−h, t∗+

h), 0 < P (Ni(t
−) = 0) < 1 and P (Ui(t) ∈ Nb(u0)) > 0, where Nb(u0)) = (u0 − b, u0 + b) is

one bandwidth neighborhood of u0. For (t0, u0) ∈ ∆ = {0 ≤ u ≤ t ≤ t∗}, where t∗ ≤ h+ b,

α(t0) and γ(u0) can be locally identified since X̃∗i (t|t0, u0) is full rank now. For later times

t > t∗, we use integration method to estimate α(t), and then get estimate γ(u) separately.

The overall estimation procedure follows a similar outline as sketched in Section 3.1.3,

with the primary difference occurring when we update α̂(t) and γ̂(u) in M-step of each

iteration, instead of solving equation U(ϑ∗|t0, u0) = 0 using double kernel method, we need

to the following procedure to estimate α(t) and γ(u) separately.

1. For (t0, u0) ∈ ∆ = {0 ≤ u ≤ t ≤ t∗}, where t∗ ≤ h + b, we can estimate ϑ∗(t0, u0)

by solving U(ϑ∗|t0, u0) = 0 as we described in equation (3.12), then do aggregation

by α̂(t0) = n−1
∑n

i=1 α̂(t0, Ui(t0)) and ˆ̇α(t0) = n−1
∑n

i=1
ˆ̇α(t0, Ui(t0)) to get α̂(t0) and

ˆ̇α(t0);

2. Suppose α̂(tl0) and ˆ̇α(tl0) are the last points we can estimate by Step 1, consider

the recursive formula α̂(tl+1) = α̂(tl) + ∆t ˆ̇α(tl), it hep us to get α̂(tl0+1) = α̂(tl0) +

∆t ˆ̇α(tl0). For l = l0 + 1, l0 + 2, and so on, the recursive formula is used to estimate

α(tl+1) with the current estimate α̂(tl) and by estimating α̇(t) at the grid points tl

using the following profile procedure with the plugged-in α̂(tl).

3. For t0 = tl and u0 be one of the grid points in U , we firstly separate α(t0) from

ϑ∗(t0, u0) in notations. Let ϑ∗(t0, u0) = (αT(t0), ϑ∗∗T(t0, u0))T where ϑ∗∗(t0, u0) =

(α̇T(t0), γT(u0), γ̇T(u0))T; let X̃i
∗
(t|t0, u0) = (XT

i (t), X̃i
∗∗T(t|t0, u0))T, whereX̃i

∗∗
(t|t0, u0) =

(XT
i (t)(t − t0), ZT

i (t), ZT
i (t)(Ui(t) − u0))T. Then the localized intensity can be writ-

ten as λf∗i (t) = ξi exp{αT(t)Xi(t) + ϑ∗∗T(t0, u0)X̃i
∗∗

(t|t0, u0)}, and the conditional
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complete log-likelihood that contains α(t0) and ϑ∗∗(t0, u0) can be expressed as

L1(α, ϑ∗∗|t0, u0) =
n∑
i=1

∫ τ

0
Kh(t− t0)Kb(Ui(t)− u0)

[{
Ê(log ξi|D)+

log{Yi(t)λ∗∗i (t, α, ϑ∗∗|t0, u0)}
}
dNi(t)− Yi(t)Ê(ξi|D)λ∗∗i (t, α, ϑ∗∗|t0, u0)dt

]
,

(3.16)

plug α̂(t0) for α(t0) in L1(α, ϑ∗∗|t0, u0), we maximize the likelihood with respect to

ϑ∗∗(t0, u0) and get ϑ̂∗∗(t0, u0) = (ˆ̇αT(t0), γ̂T(u0), ˆ̇γT(u0))T for all grid points u0. Ag-

gregate them and get ˆ̇α(t0) = n−1
∑n

i=1
ˆ̇α(t0, Ui(t0)). Then, obtain γ̂(u0) by aggre-

gating all γ̂T(t0, u0) through equation (3.14).

4. Repeat Step 2 and Step 3 one point after another until estimate all the points.

3.2 Variance Estimator

In this session, we employed the weighted bootstrap procedure (Ma and R.Kosorok (2005))

to get the variance estimators of α(t), γ(u) and θ. Let {ω1, ω2, ...ωn} be n independent

realization of random variable Ω, which following exponential distribution with mean 1.

{ω1, ω2, ...ωn} are independent with the observed data D.

We aim to get the weighted bootstrap estimators through maximizing the weighted log-

likelihood function of the observed data

log l◦ωn (α(·), γ(·), θ) =
n∑
i=1

ωi

[ ∫ τ

0
log(Yi(t)λi(t))dNi(t) + θ log θ − log Γ(θ) + log Γ{θ +Ni(τ)}

− {θ +Ni(τ)} log
{
θ +

∫ τ

0
Yi(t)λi(t)dt

}]
. (3.17)

To achieve the maximum weighted log-likelihood, we still implement the EM algorithm.

The weighted version of conditional localized complete log-likelihood takes the form

Eω[l(ϑ∗, θ|t0, u0)] = Lω1 (ϑ∗|t0, u0) + Lω2 (θ),
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where

Lω1 (ϑ∗|t0, u0) =
n∑
i=1

ωi

∫ τ

0
Kh(t− t0)Kb(Ui(t)− u0)

[{
Ê(log ξi|D)+

log{Yi(t)λ∗i (t, ϑ∗|t0, u0)}
}
dNi(t)− Yi(t)Ê(ξi|D)λ∗i (t, ϑ

∗|t0, u0)dt
]
,

(3.18)

and

Lω2 (θ) =
n∑
i=1

ωiθ log θ −
n∑
i=1

ωi log Γ(θ) + (θ − 1)
n∑
i=1

ωiÊ(log ξi|D)− θ
n∑
i=1

ωiÊ(ξi|D).

The estimation procedures follow the same approach as outlined in Section 3.1.2, but in

a weighted version. In bth bootstrap, we generate a set of bootstrap weights {ω1, ω2, ...ωn},

where ωi
iid∼ Exp(1), then use the revised EM algorithm to get the weighted estimators

α̂{b}(t), γ̂{b}(u) and θ̂{b}. Suppose we undertake 100 repetitions of weighted bootstrap,

resulting in 100 weighted estimators, the sample variance of these weighted estimators are

the estimated variance of α̂(t), γ̂(u) and θ̂.

3.3 Simulation Studies

In this section, we perform simulations to demonstrate the effectiveness of the proposed

methods. Section 3.3.1 focuses on the double kernel estimation method, and Section 3.3.2

delves into the adaptive method. All the variance estimators are obtained through weighted

bootstrap that we illustrated in Section 3.2.

3.3.1 Simulations Using Double Kernel Algorithm

We consider the following intensity model

λfi (t) = ξi exp{α0(t) + α1(t)Xi + γ(Ui(t))I(Ni(t
−) > 0)Wi}, (3.19)

t ∈ [0, τ ], with the following settings,

• τ = 4, For each subject i, we generate censoring time Ci
iid∼ U(3, 8), the study time
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for each subject is the minimum of Ci and τ .

• Xi
iid∼ Ber(0.5), Wi

iid∼ U(0, 1), Ui(t) = t−TiNi(t−) stands for the time since last event.

• α0(t) = 1− log (1 + 0.2 log (1 + t)), α1(t) = −0.5 + 0.1t and γ(u) = − 0.3
1+u ;

• random effect ξi
iid∼ Gamma(θ, θ),

Under these settings, the average event numbers per subject is approximately 7. A smaller

θ in gamma distribution implies a larger variability of the ξi. In this subsection, we simulate

on three scenarios: θ = 1, θ = 2, and θ = 5.

Table 3.1 summarizes the estimation results for parameter θ, and Figure 3.1, 3.2 and 3.3

illustrate the estimation results for the nonparameters α0(t), α1(t) and γ(u).

Table 3.1: Bias, ESE, SEE and CP of θ under model (3.19) for θ = 1, 2, 5 when n=
800, 1000, 1200, bandwidths are taken as h = b = 0.9, h = b = 0.5 and h = b = 0.3
for θ = 1, θ = 2, and θ = 5, respectively.

θ n Bias SEE ESE CP

1 800 0.005 0.067 0.072 0.968

1000 0.008 0.063 0.064 0.940

1200 0.008 0.057 0.058 0.956

2 800 0.001 0.223 0.225 0.962

1000 0.003 0.204 0.200 0.948

1200 0.011 0.165 0.178 0.964

5 800 -0.192 1.106 1.105 0.946

1000 -0.111 0.968 1.007 0.952

1200 -0.142 0.901 0.930 0.950
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Figure 3.1: Bias, SEE, ESE and CP of α0(t), α1(t) and γ(u) under model (3.19) for
θ = 1 with h = b = 0.9. The dotted, dashed and solid lines represent n = 800,
n = 1000 and n = 1200, respectively.
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Figure 3.2: Bias, SEE, ESE and CP of α0(t), α1(t) and γ(u) under model (3.19) for
θ = 2 with h = b = 0.5. The dotted, dashed and solid lines represent n = 800,
n = 1000 and n = 1200, respectively.



60

0 1 2 3 4−
0.

2
0.

0
0.

2

t

B
ia

s

α̂0(t)
n=800
n=1000
n=1200

(a)

0 1 2 3 4−
0.

2
0.

0
0.

2

t

B
ia

s

α̂1(t)

(b)

0.0 0.5 1.0 1.5−
0.

2
0.

0
0.

2

u

B
ia

s

γ̂(u)

(c)

0 1 2 3 40.
00

0.
15

0.
30

t

S
E

E

(d)

0 1 2 3 40.
00

0.
15

0.
30

t

S
E

E
(e)

0.0 0.5 1.0 1.50.
00

0.
15

0.
30

u

S
E

E

(f)

0 1 2 3 40.
00

0.
15

0.
30

t

E
S

E

(g)

0 1 2 3 40.
00

0.
15

0.
30

t

E
S

E

(h)

0.0 0.5 1.0 1.50.
00

0.
15

0.
30

u

E
S

E

(i)

0 1 2 3 40.
70

0.
85

1.
00

t

C
P

(j)

0 1 2 3 40.
70

0.
85

1.
00

t

C
P

(k)

0.0 0.5 1.0 1.50.
70

0.
85

1.
00

u

C
P

(l)

Figure 3.3: Bias, SEE, ESE and CP of α0(t), α1(t) and γ(u) under model (3.19) for
θ = 5 with h = b = 0.3. The dotted, dashed and solid lines represent n = 800,
n = 1000 and n = 1200, respectively.
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Table 3.2 Figure 3.4 compares the estimation results using different bandwidths for θ = 2

and n = 800. We can observe that all three pairs of bandwidths work well, the one with

larger bandwidths (h = b = 0.5) have smaller biases, sample and estimated standard errors

for both θ, α0(t), α1(t) and γ(u). In practice, we can use the Monte Carlo cross validation

method we described in Section 2.2 to choose the optimal bandwidth as well, h and b are

not necessarily required to be the same.

Table 3.2: Bias, ESE, SEE and CP of θ under model (3.19) for θ = 2 and n = 800,
with bandwidths h = b = 0.3, h = b = 0.4 and h = b = 0.5.

[h, b] Bias SEE ESE CP

[0.3, 0.3] -0.108 0.395 0.370 0.940

[0.4, 0.4] -0.034 0.279 0.280 0.942

[0.5, 0.5] 0.001 0.225 0.223 0.962
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Figure 3.4: Bias, ESE, SEE and CP of α0(t), α1(t) and γ(u) under model (3.19)
for θ = 2 and n = 800. The dotted, dashed and solid lines represent h = b = 0.3,
h = b = 0.4 and h = b = 0.5, respectively.
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3.3.2 Simulations Using Adaptive Algorithm

In this section, we conduct simulations using adaptive algorithm described in Section

3.1.4.

We generate data from the following intensity model

λfi (t) = ξi exp{α0(t) + γ(Ui(t))I(Ni(t
− > 0)}, (3.20)

t ∈ [0, τ ], with the following settings:

• Study time is on [0, τ ], with τ = 4. For each subject i, we generate censoring time

Ci
iid∼ U(3, 8), the study time for each individual is the minimum of Ci and τ ;

• Ui(t) = t− TiNi(t−) represents the time since the most recent event;

• α0(t) = 2− log (1 + 0.2 log (1 + t)) and γ(u) = − 1−u
exp( 1−u)2

;

• random effect ξi
iid∼ Gamma(θ, θ) with θ = 2;

As we discussed in Section 3.1.4, it may be challenging to identify α(t) and γ(u) in certain

local regions. It is necessary to employ the adaptive method to estimate the parameters,

all variance estimators come from 100 repetitions of weighted bootstrap as we outlined in

section 3.2.

Table 3.3 shows the estimation results for θ and Figure 3.5 shows the estimation results

for α0(t) and γ(u).

Table 3.3: Bias, ESE, SEE and CP of θ under model (3.20) for θ = 2 when n =
800, 1000, 1200, bandwidths h = b = 0.3.

n Bias SEE ESE CP

800 -0.035 0.162 0.167 0.944

1000 -0.039 0.148 0.148 0.932

1200 -0.037 0.135 0.136 0.942
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Figure 3.5: Bias, ESE, SEE and CP of α0(t), α1(t) and γ(u) under model (3.20) for
θ = 2, bandwidths h = b = 0.3. The dotted, dashed and solid lines represent n = 800,
n = 1000 and n = 1200, respectively.

3.4 Data Application

In this section, we apply the proposed nonparametric frailty model to the 32 months

follow-up MAL-094 malaria vaccine trial data. Censoring is defined as: for each participant,

visits after three consecutive missed scheduled visits and with no intervening unscheduled

visits in-between are defined as censored. During the 32 months study time, 4633 malaria in-

fections were observed before censored among 1461 participants. There are 1065 participants

have experienced at least one infection with the largest infection number being 34.

We define the observed infection time and counting process the same way as we do in

Section 2.6. Define Tij as the jth infection time we observed for subject i, and denote ni
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as the total event time for i subject before the end of study or censoring, whichever comes

first, we have Ti1 < Ti2 < ... < Tini . Define Ni(t) =
∑ni

j=1 I(Tij ≤ t) as the observed number

of events taken from ith subject by time t; denote ∆Ni(t) = Ni(t + ∆t−) − Ni(t) as the

number of events occurring in the small time interval [t, t+ ∆t). The malaria infections are

modeled by the conditional intensity function of Ni(t). We combine the four vaccine arms

as the the treatment group, and the vaccine efficacy is evaluated between the control group

(arm) and treatment group.

To explore the effects of the RTS,S/AS01E vaccine over time and their relations with prior

infections, as well as to assess heterogeneity among participants, we consider the following

multiplicative dynamic intensity model with frailty

λi(t) = ξi exp
{
α0(t) + α1(t)Vacci + α2(t)Agogoi + α3(t)Agei

+γ0(t− TiNi(t−))I(Ni(t
−) > 0) + γ1(t− TiNi(t−))I(Ni(t

−) > 0)V acci

}
(3.21)

where α0(t), α1(t), α2(t) and α3(t), γ0(u) and γ1(u) are unspecified functions, ξi follows

Gamma(θ, θ) with unknown parameter θ. Vacci is the treatment group indicator (Vacci= 1

if assigned to one of the four RTS,S/AS01E vaccine arms, 0 if assigned to the control arm),

and Agogoi is the study site indicator (1= Agogo, 0 = Siaya) and Agei is the age in years

at enrollment. The model is fitted on u ∈ [0, 8], where is about 90th percentile of the gap

times between infections.

Figure 3.6 presents the estimation results of the nonparametric parameters. We can

see the baseline has slightly increasing trend. The participants living in Agogo have a

lower risk while the older children tend to have a larger infection risk. Regarding the

comparison between treatment and control groups, individuals in the treatment groups show

a lower infection risk during the initial 7 months. However, this difference diminishes after 7

months. Following previous infections, the risk increases for the control group, maintaining

a relatively consistent increase over time. For the treatment group, the risk is lower than

the participants in control group.

The estimate of θ is 1.863, with estimated standard error we got in 100 times bootstraps is
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0.511. The estimated θ indicates there is a spectrum of frailty among individuals. For each

participant, we have the conditional expectation E(ξi) at convergence. E(ξi) > 1 indicates

the individual is more susceptible to the malaria infections while E(ξi) < 1 indicates the

individual is relatively less likely to get infected, given all covariates are the same. When

predicting the infection intensity for a particular individual, along with the covariates, we

should also take this susceptibility or resistance into consideration.
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Figure 3.6: Estimation results of time-varying effects of covariates under model (3.21).
The solid line represents the point estimate, while the shaded area signifies the 95%
pointwise confidence interval.



CHAPTER 4: CONCLUSIONS AND FUTURE WORK

In conclusion, we propose two dynamic intensity models for recurrent event data, our

simulation and application results demonstrate their effectiveness. The proposed models

have the potential to address numerous clinical challenges, particular those involving the

time-varying and covariate-varying effects, as well as the underlying structure of recurrent

events is of interest.

In chapter 2, we developed a class of semiparametric intensity models, which are quite

flexible through the choices of different link functions and covariates functions. We con-

ducted simulations under logarithm link function and identity link function, and in the 20

months follow-up MAL-094 malaria data application, we fit the model with the logarithm

link function under two scenarios, one models the intensity function with calendar time and

time since last infection, the other models the intensity function with calendar time and

time since last vaccination.

The semiparametric models could more robust if we consider the Box-Cox transformations

G(x) = {(1 + x)ρ − 1}/ρ(ρ ≥ 0) as discussed in Zeng and Lin (2006), different value of ρ

yield different link functions, with ρ = 0 corresponding to G(x) = log(1 + x) and ρ = 1

corresponding to identity link function G(x) = x. We can select the value of ρ based on

likelihood through Akaike (1985) information criterion (AIC) model selection method.

An additional extension of the semiparametric intensity models involves incorporating

random effects. This enables us to parametrically assess covariate-varying effects and con-

currently evaluate population homogeneity. We have conducted simulations on incorporating

the Gamma frailty into the intensity function with a logarithm link function, the simulation

results suggest the feasibility of this approach.

The nonparametric frailty models in Chapter 3 help us gain deeper insights into the un-

derlying factors and vaccine efficacy of the MAL-094 malarial trial data. In future research,



68

we would like to develop hypothesis tests to assess the statistical significance of frailty mod-

els. These tests will help determine whether frailty is a significant factor, ensuring that

accurate conclusions are drawn.

In malarial endemic areas, individuals may be exposed to diverse parasite genotypes.

We also intend to propose a multivariate frailty model in the future to explore correlations

between multiple types of events. This research aims to illuminate the impact of prior

infections with specific parasite genotypes on the likelihood of subsequent infection with a

different genotype.
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APPENDIX A: PROOF OF THEOREMS IN CHAPTER 2

In this section, we approve Theorem 2.1 and Theorem 2.2 in Chapter 2. The following

regularity conditions are assumed through proving.

Condition A.

(1) Censoring times are non-informative for the model in the sense of

E{dNi(t)|Xi(t), Zi(t), Ui(t), Ci ≥ t} = E{dNi(t)|Xi(t), Zi(t), Ui(t)};

(2) The inverse function of the link function g−1(·) is twice differentiable;

(3) The processes Xi(t), Zi(t), Ui(t) and λi(t), 0 ≤ t ≤ τ , are left-continuous, bounded

and their total variations are bounded by a constant;

(4) The kernel function K(·) is symmetric with compact support on [−1, 1] and Lipschitz

continuous; Bandwidths h � b; h→ 0; nh2 →∞ and nh5 is bounded;

(5) α0(t), e11(t) and e12(t) are twice differentiable on t ∈ [0, τ ], (e11(t))−1 is bounded over

0 ≤ t ≤ τ ;

(6) The matrices Aη and Ση are positive definite;

(6) The density fU (t, u) is twice continuously differentiable with respect to u and satisfies

inft∈[0,τ ],u∈U fU (t, u) > 0.
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A.1 Proof of Theorem 2.1

We consider the left side of profile estimating equation (6),

1

n
Uη(η)

=
1

n

n∑
i=1

∫ t2

t1

{ ˙̃
λi(t, η)

λ̃i(t, η)
dNi(t)− Yi(t) ˙̃

λi(t, η)dt
}{(∂α̃(t, η)

∂η

)T
Xi(t) +

(∂ζ(Ui(t), η)

∂η

)T
Pi(t)

}
=

1

n

n∑
i=1

∫ t2

t1

˙̃
λi(t, η)

λ̃i(t, η)

{
dNi(t)− Yi(t)λ̃i(t, η)dt

}{(∂α̃(t, η)

∂η

)T
Xi(t) +

(∂ζ(Ui(t), η)

∂η

)T
Pi(t)

}
p→E

∫ t2

t1

˙̃
λi(t, η)

λ̃i(t, η)

{
dNi(t)− Yi(t)λ̃i(t, η)dt

}{(∂ζ(Ui(t), η)

∂η

)T
Pi(t)

− e12(t, Ui(t))
Te11(t, Ui(t))

−1Xi(t)
}

=E

∫ t2

t1

˙̃
λi(t, η)

λ̃i(t, η)

{
λi(t)dt− Yi(t)λ̃i(t, η)dt

}{(∂ζ(Ui(t), η)

∂η

)T
Pi(t)

− e12(t, Ui(t))
Te11(t, Ui(t))

−1Xi(t)
}

=u(η)

Consider the derivative of Uη(η) with respect to η at η0, we have

− 1

n

∂Uη(η)

∂η

∣∣∣∣
η=η0

=− 1

n

n∑
i=1

∫ t2

t1

{ ¨̃
λi(t, η0)λ̃i(t, η0)− [

˙̃
λi(t, η0)]2

[λ̃i(t, η0)]2
dNi(t)− Yi(t)¨̃

λi(t, η0)dt
}

[(∂α̃(t, η0)

∂η

)T
Xi(t) +

(∂ζ(Ui(t), η0)

∂η

)T
Pi(t)

]⊗2

− 1

n

n∑
i=1

∫ t2

t1

[
˙̃
λi(t, η0)

λ̃i(t, η0)
dNi(t)− Yi(t) ˙̃

λi(t, η0)dt]
[(∂2α̃(t, η0)

∂η2

)T
Xi(t) +

(∂ζ(Ui(t), η0)

∂η2

)T
Pi(t)

]
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The second term converges to zero as n goes to infinity, and the first term

− 1

n

n∑
i=1

∫ t2

t1

{ ¨̃
λi(t, η0)λ̃i(t, η0)− [

˙̃
λi(t, η0)]2

[λ̃i(t, η0)]2
dNi(t)− Yi(t)¨̃

λi(t, η0)dt
}

×
[(∂α̃(t, η0)

∂η

)T
Xi(t) +

(∂ζ(Ui(t), η0)

∂η

)T
Pi(t)

]⊗2

p→ −E
∫ t2

t1

{ ¨̃
λi(t, η0)λ̃i(t, η0)− [

˙̃
λi(t, η0)]2

[λ̃i(t, η0)]2
dNi(t)

− Yi(t)¨̃
λi(t, η0)dt

}[(∂ζ(Ui(t), η0)

∂η

)T
Pi(t)− e12(t, Ui(t))

Te11(t, Ui(t))
−1Xi(t)

]⊗2

= E

∫ t2

t1

Yi(t)
λ̇i(t)

2

λi(t)

[(∂ζ(Ui(t), η0)

∂η

)T
Pi(t)− e12(t, Ui(t))

Te11(t, Ui(t))
−1Xi(t)

]⊗2
dt

≡ Aη (A.1)

Since Aη is positive definite, η0 is the unique root of u(η) = 0 in a neighborhood of η0. By

theorem 5.9 of Vaart (1998), we have

η̂
p→ η0

For asymptotic normality of η̂, we start with Taylor expansion,

Uη(η̂) = Uη(η0) +
∂Uη(η)

∂η

∣∣∣∣
η=η0

(η̂ − η0) +Op(||η̂ − η0||2)

we know Uη(η̂) = 0, so we have

η̂ − η0 = −

(
∂Uη(η)

∂η

∣∣∣∣
η=η0

)−1

Uη(η0)

√
n(η̂ − η0) = −

(
1

n

∂Uη(η)

∂η

∣∣∣∣
η=η0

)−1
1√
n
Uη(η0) (A.2)
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then consider

1√
n
Uη(η0) =

1√
n

n∑
i=1

∫ t2

t1

{ ˙̃
λi(t, η0)

λ̃i(t, η0)
dNi(t)− Yi(t) ˙̃

λi(t, η0)dt
}

×
{(∂α̃(t, η0)

∂η

)T
Xi(t) +

(∂ζ(η0, Ui(t))

∂η

)T
Pi(t)

}
=

1√
n

n∑
i=1

∫ t2

t1

˙̃
λi(t, η0)

λ̃i(t, η0)

{
dNi(t)− Yi(t)g−1{αT

0 (t)Xi(t) + ζT(Ui(t), η0)Pi(t)}dt

+ Yi(t)g
−1{αT

0 (t)Xi(t) + ζT(Ui(t), η0)Pi(t)}dt− Yi(t)g−1{α̃(t, η0)Xi(t) + ζ(Ui(t), η0)TPi(t)}dt
}

×
{(∂α̃(t, η0)

∂η

)T
Xi(t) +

(∂ζ(Ui(t), η0)

∂η

)T
Pi(t)

}
(A.3)

By Lemma 1 in Lin et al. (2001), the last two terms equal

1√
n

n∑
i=1

∫ t2

t1

Yi(t)ġ
−1{αT

0 (t)Xi(t) + ζT(Ui(t), η0)Pi(t)}[αT
0 (t)− α̃T(t, η0)]Xi(t)

×
{(∂α̃(t, η0)

∂η

)T
Xi(t) +

(∂ζ(Ui(t), η0)

∂η

)T
Pi(t)

}
= op(1)

so

1√
n
Uη(η0) =

1√
n

n∑
i=1

∫ t2

t1

˙̃
λi(t, η0)

λ̃i(t, η0)

{(∂α̃(t, η0)

∂η

)T
Xi(t) +

(∂ζ(Ui(t), η0)

∂η

)T
Pi(t)

}
dMi(t) + op(1)

=
1√
n

n∑
i=1

∫ t2

t1

˙̃
λi(t, η0)

λ̃i(t, η0)

{(∂ζ(η0, Ui(t))

∂η

)T
Pi(t)− (e12(t))T(e11(t))−1Xi(t)

}
dMi(t)

+ op(1) (A.4)

By martingale central limit theorem, 1√
n
Uη(η0) ∼ N(0,Ση), where

Ση = E
{∫ t2

t1

λ̇i(t, η0)

λi(t, η0)

[(∂ζ(Ui(t), η0)

∂η

)T
Pi(t)− e12(t)T(e11(t))−1Xi(t)

]
dMi(t)

}⊗2
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By slustky theorem and combine with − 1
n
∂Uη(η)
∂η

∣∣∣∣
η=η0

p→ Aη,

√
n(η̂ − η0)

p→ N(0, A−1
η ΣηA

−1
η )

Ση can be estimated by

Σ̂η =
1

n

n∑
i=1

[ ∫ t2

t1

ˆ̇
λi(t)

λ̂i(t)

{(∂ζ(Ui(t), η̂)

∂η

)T
Pi(t)− Ê12(t)TÊ11(t)−1Xi(t)

}{
dNi(t)− Yi(t)λ̂i(t)dt

}]⊗2

where 0 < t1 < t2 < τ . Aη can be estimated by

Âη =
1

n

n∑
i=1

∫ t2

t1

ˆ̇
λ2(t)

λ̂i(t)

{(∂ζ(Ui(t), η̂)

∂η

)T
Pi(t)− Ê12(t)TÊ11(t)−1Xi(t)

}⊗2
dt

A.2 Proof of Theorem 2.2

Now, we derive the asymptotic property for α̂(t) = α̃(t, η̂),

(nh)1/2[α̂(t)− α0(t)− 1

2
µ2h

2α̈0
T(t)]

=(nh)1/2[α̃(t, η̂)− α̃(t, η0) + α̃(t, η0)− α0(t)− 1

2
µ2h

2α̈0
T(t)] (A.5)

By the mean value theorem,

(nh)1/2[α̃(t, η̂)− α̃(t, η0)] = (nh)1/2∂α̃(t, ηm)

∂η
(η̂ − η0) (A.6)

where ηm is on the segment between η0 and η̂, and ∂α̃(t,ηm)
∂η

p→ −e−1
11 (t)e12(t). So combining

equation (A.2) with equation (A.5)(A.6), we can continue writing the first two terms of
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equation (A.5) as

(nh)1/2[α̃(t, η̂)− α̃(t, η0)] = (nh)1/2∂α̃(t, ηm)

∂η
(η̂ − η0)

= h1/2e−1
11 (t)e12(t)A−1

η0

1√
n
Uη(η0) + op(h1/2)

= h1/2e−1
11 (t)e12(t)A−1

η0

1√
n

n∑
i=1

∫ t2

t1

˙̃
λi(s, η0)

λ̃i(s, η0)

{(∂ζ(Ui(s)), η0

∂η

)T
Pi(s)

− (e12(s))T(e11(s))−1Xi(s)
}
dMi(s) + op(h1/2) (A.7)

Then, we consider the last three terms of (A.5), for given t, we know α̃(t, η0) is the first p1

elements of α̃∗(t, η0), which is solved from equation (2.6) when η = η0.

From equation (2.6),

Uα∗(α∗, η0, t) =
n∑
i=1

∫ τ

0

λ̇∗i (s, α
∗, η0|t)

λ∗i (s, α
∗, η0|t)

{
dNi(s)− Yi(s)λ∗i (s, α∗, η|t)ds

}
X∗i (s|t)Kh(s− t)

By Taylor expansion, we have

Uα∗(α̃∗(t, η0), η0, t) = Uα∗(α∗0(t), η0, t) +
∂Uα∗

∂α∗

∣∣∣∣
α∗=α∗

0(t)

(
α̃∗(t, η0)− α∗0(t)

)

Since Uα∗(α̃∗(t, η0), η0, t) = 0, we have

α̃∗(t, η0)− α∗0(t) = −

(
∂Uα∗

∂α∗

∣∣∣∣
α∗=α∗

0(t)

)−1

Uα∗(α∗0(t), η0, t)

Since α̃(t, η0)− α0(t) is the first p1 components of α̃∗(t, η0)− α∗0(t), we have

α̃(t, η0)− α0(t) =− (ne11(t))−1
n∑
i=1

∫ τ

0

λ̇∗i (s, α
∗
0(s), η0|t)

λ∗i (s, α
∗
0(s), η0|t)

{
dNi(s)− Yi(s)λ∗i (s, α∗0(s), η0|t)ds

}
Xi(s)Kh(s− t)

=− (ne11(t))−1
n∑
i=1

∫ τ

0

λ̇∗i (s, α
∗
0(s), η0|t)

λ∗i (s, α
∗
0(s), η0|t)

{
dNi(s)− Yi(s)λi(s)ds+ Yi(s)λi(s)ds

− Yi(s)λ∗i (s, α∗0(s), η0|t)ds
}
Xi(s)Kh(s− t)
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Note that

λi(s) = g−1{α0(s)Xi(s) + ζ(η0, Ui(s))Pi(s)}

and

λ∗i (s, α
∗
0(s), η0|t) = g−1{α∗0(t)X∗i (s|t) + ζ(η0, Ui(s))}

The last two terms can be written as

λi(s)− λ∗i (s, α∗0(s), η0|t)

=ġ−1{α∗T0 (t)X∗i (s|t) + ζT(η0, Ui(s))Pi(s)}(α0(s)Xi(s)− α∗0(t)X∗i (s|t))

=ġ−1{α∗T0 (t)X∗i (s|t) + ζT(η0, Ui(s))Pi(s)}[
1

2
α̈0(t)(s− t)2Xi(s)]

=λ̇i(s, α
∗
0(s), η0|t)[

1

2
α̈0(t)(s− t)2Xi(s)]

By the definition of e11(t),

−n−1
n∑
i=1

∫ τ

0
Kh(s− t) λ̇i(s, α

∗
0(s), η0|t)2

λi(s, α∗0(s), η0|t)
Xi(s)

⊗2ds
P→ e11(t)

Let dMi(s) = dNi(s)− Yi(s)λi(s)ds, we have

(nh)1/2[α̃(t, η0)− α0(t)− 1

2
µ2h

2α̈0(t)]

=− n−1/2h1/2e11(t)−1
n∑
i=1

∫ τ

0

λ̇∗(s, α∗0(s), η0|t)
λ∗(s, α∗0(s), η0|t)

Xi(s)Kh(s− t)dMi(s) (A.8)
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where µ2 =
∫ 1
−1 t

2K(t)dt.

Combine equation (A.7) and (A.8),

(nh)1/2[α̂(t)− α0(t)− 1

2
µ2h

2α̈0
T(t)]

=(nh)1/2[α̃(t, η̂)− α̃(t, η0) + α̃(t, η0)− α0(t)− 1

2
µ2h

2α̈0
T(t)]

=(n−1h)1/2e−1
11 (t)

[
e12(t)A−1

η0

n∑
i=1

∫ t2

t1

˙̃
λi(s, η0)

λ̃i(s, η0)

{(∂ζ(Ui(s), η0)

∂η

)T
Pi(s)

− (e12(s))T(e11(s))−1Xi(s)
}
dMi(s)−

n∑
i=1

∫ τ

0

λ̇∗(s, α∗0, η0|t)
λ∗(s, α∗0, η0|t)

Xi(s)Kh(s− t)dMi(s)

]

By CLT for martingale, we have

(nh)1/2[α̂(t)− α0(t)− 1

2
µ2h

2α̈0
T(t)]

D→ N(0,Σα)

Σα(t) can be estimated byÊ11(t)−1Σ̂e(t)Ê11(t)−1, with

Σ̂e(t) = n−1h

n∑
i=1

[ ∫ τ

0

ˆ̇
λi(s)

λ̂i(s)
{dNi(s)− Yi(s)λ̂i(s)}Xi(s)Kh(s− t)

−Ê12(t)Â−1
η

∫ t2

t1

ˆ̇
λi(s)

λ̂i(s)
{dNi(s)− Yi(s)λ̂i(s)}

{(∂ζ(Ui(s), η̂)

∂η

)T
Pi(s)− Ê12(s)TÊ11(s)−1Xi(s)

}]⊗2
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