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Abstract. Fix a collection of polynomial vector fields on ℝ3 with a singularity

at the origin, for every one of which the linear part at the origin has two pure

imaginary and one non-zero eigenvalue. We show that the set of such systems
having a center on the local center manifold at the origin corresponds to a

variety in the space of admissible coefficients. We explicitly compute it for

several families of systems with quadratic higher order terms.

1. Introduction

Suppose an analytic system of differential equations u̇ = f(u) on ℝ3 has an
isolated fixed point at the origin, f(0) = 0, and that the linear part df(0) has one
non-zero and two pure imaginary eigenvalues. We investigate the nature of the
local flow on a neighborhood of 0 on the local center manifold at the origin. In
particular, we wish to distinguish whether the origin is a center or a focus.

The problem of the center has a solution dating back to the work of Lyapunov,
which overcomes the difficulty that the center manifold at an isolated singularity
of a real analytic vector field need not be analytic. Briefly put, there is a center
on the center manifold if and only if there exists an analytic first integral on a
neighborhood of the origin, in which case the local center manifold is analytic. See
Theorem 3.

In this paper we investigate the special case in which the components of f in
u̇ = f(u) are polynomial functions. We will show that, as in the two-dimensional
case, the set of systems with a center corresponds to a variety in the set of admis-
sible coefficients, determined by an explicitly computable collection of polynomials
in the coefficients, called the focus quantities. In actual practice the computation
of the focus quantities themselves and the characterization of the variety that they
determine are challenging problems, in terms of both the computational and the
theoretical work that must be done. Because of the complex eigenvalues and the
relative advantages of working with varieties over ℂ rather than over ℝ, complexi-
fication of the real system is an integral part of our approach.

We carry out the method for two sub-families of family (18) below, the most
general real system whose complexification is (17), the nonlinearities of which are
the complex analogue in this context of the Hoyer system on ℝ3 ([14]).
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2. Background

Suppose U is an open neighborhood of the origin in ℝ3, f : U → ℝ3 is a real ana-
lytic mapping, and that df(0) has one non-zero and two pure imaginary eigenvalues.
By an invertible linear change of coordinates and a possibly negative rescaling of
time the system of differential equations u̇ = f(u) can be written in the form

(1)

u̇ = −v + P (u, v, w) = P̃ (u, v, w)

v̇ = u+Q(u, v, w) = Q̃(u, v, s)

ẇ = −�w +R(u, v, w) = R̃(u, v, w)

where � is a positive real number. We will let X denote the corresponding vector
field

(2) X = P̃ ∂
∂u + Q̃ ∂

∂v + R̃ ∂
∂w

on a neighborhood of the origin.
A local first integral of system (1) is a nonconstant differentiable function Ψ from

a neighborhood of the origin in ℝ3 into ℝ that is constant on trajectories of (1),
equivalently, such that

(3) XΨ = P̃Ψu + Q̃Ψv + R̃Ψw ≡ 0.

A formal first integral for system (1) is a formal power series Ψ in u, v, and w that

is not merely a constant and is such that when P̃ , Q̃, and R̃ are expanded in power
series about the origin, every coefficient in the formal power series in (3) is zero.

When w and ẇ are absent from (1) so that the system is on ℝ2, the singularity
at the origin is either a center (a punctured neighborhood is composed entirely
of periodic orbits) or a focus (every trajectory near the origin spirals towards the
origin, or every trajectory does so in reverse time). The center problem is the
problem of distinguishing between the two cases. It was solved by Poincaré and
Lyapunov in terms of the existence or non-existence of a local first integral. A proof
appears in [17].

Theorem 1 (Poincaré-Lyapunov Center Theorem). The analytic system of differ-
ential equations

(4)
u̇ = −v + P (u, v)

v̇ = u+Q(u, v)

has a center at the origin if and only if it admits a local analytic first integral of
the form Ψ(u, v) = u2 + v2 + ⋅ ⋅ ⋅ . Moreover existence of a formal first integral Ψ
implies existence of a local analytic first integral of the same form.

In the special case that P and Q in (4) are homogeneous quadratic polynomials
the center problem has been solved in explicit terms through the work of many
individuals [1, 2, 8, 9, 11, 12, 18, 19, 20]. We give the version of the solution
presented in [6].

Theorem 2 (Quadratic Center Theorem). The system

u̇ = −v − bu2 − (B + 2c)uv − dv2

v̇ = u+ au2 + (A+ 2b)uv + cv2

has a center at the origin if and only if at least one of the following three conditions
is satisfied:
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I. a+ c = b+ d;
II. A(a+ c) = B(b+ d) and aA3 − (3b+A)A2B + (3c+B)AB2 − dB3 = 0;

III. A+ 5b+ 5d = B + 5a+ 5c = ac+ bd+ 2a2 + 2d2 = 0.

It is worth noting that the conditions are polynomial, hence the set of quadratic
systems with a center corresponds to a variety in the six-dimensional space of
coefficients. Each condition yields a component of that variety. The set of solutions
of the system of polynomial equations in Condition III, for example, defines the
variety that corresponds to the set of common zeros of elements of the ideal

⟨A+ 5b+ 5d,B + 5a+ 5c, ac+ bd+ 2a2 + 2d2⟩
in the polynomial ring ℝ[a, b, c, d, A,B]. The center variety likewise exists for all
systems (4) for which P and Q lie in a fixed family of polynomials without constant
or linear terms.

Returning to the three-dimensional analytic system (1), for every r ∈ ℕ there
exists in a sufficiently small neighborhood of the origin a Cr invariant manifold
W c, the local center manifold, that is tangent to the (u, v)-plane at the origin
and which contains all the recurrent behavior of system (1) in a neighborhood of
the origin in ℝ3 ([5, §4.1], [15, §2], [21]). It is not necessarily unique, but the
local flows near the origin on any two Cr+1 center manifolds are Cr conjugate in a
neighborhood of the origin ([4]). This fact justifies our abuse of language in speaking
below of a center on “the” center manifold. The following theorem of Lyapunov
is proved in [3, §13]. Analyticity of W c is a consequence of the analyticity of the
distinguished normalizing transformation that brings the system to its quasi-normal
form. Uniqueness follows from the same fact (as well as from a general theorem,
Theorem 3.2 in [21]).

Theorem 3 (Lyapunov Center Theorem). For system (1) with corresponding vec-
tor field (2), the origin is a center for X∣W c if and only if X admits a real analytic
local first integral of the form Φ(u, v, w) = u2 + v2 + ⋅ ⋅ ⋅ in a neighborhood of the
origin in ℝ3. Moreover when there exists a center the local center manifold W c is
unique and is analytic.

In the next section we show that, as in the two-dimensional case, when the
functions P , Q, and R in (1) are polynomials in some specified family, the set
of systems for which the origin is a center for X∣W c are precisely those whose
coefficients lie in a variety VC in the space of admissible coefficients. We would like
to be able to state and prove a direct analogue of Theorem 2 in the case that P ,
Q, and R are homogeneous quadratic polynomials, but at the moment to do so is
computationally out of reach. In Section 4 we particularize to the family (18) and
find the center variety for two sub-families of that family.

3. The Focus Quantities and the Center Variety

By Theorem 3 existence of a center of X∣W c is equivalent to existence of a
first integral for X, so we can restrict our efforts to investigation of conditions for
existence of an integral Φ, which can be assumed to have no constant term, hence
must have the form Φ(u, v, w) = u2 + v2 + ⋅ ⋅ ⋅ . We further suppose that each of
P , Q, and R is a sum of homogeneous polynomials of degrees between 2 and some
number N , although not all terms need be admissible, as illustrated in the system
(18) that we investigate in Section 4.



4 V. F. EDNERAL, A. MAHDI, V. G. ROMANOVSKI, AND D. S. SHAFER

We begin by introducing the complex variable x = u + iv. Then the first two
equations in (1) are equivalent to a single equation ẋ = ix + X(x, x̄, w), where
X is a sum of homogeneous polynomials of degrees between 2 and N . Adjoining
to this equation its complex conjugate, replacing x̄ everywhere by y, regarding y
as an independent complex variable, and replacing w by z simply as a notational
convenience we obtain the complexification of family (1),

(5)

ẋ = ix+

N∑
p+q+r=2

apqrx
pyqzr

ẏ = −iy +

N∑
p+q+r=2

bpqrx
pyqzr

ż = −�z +

N∑
p+q+r=2

cpqrx
pyqzr,

where bqpr = āpqr and the cpqr are such that
∑N
p+q+r=2 cpqrx

px̄qwr is real for all

x ∈ ℂ, for all w ∈ ℝ. Let ℨ denote the corresponding vector field on ℂ3. Existence
of a first integral Φ(u, v, w) = u2 + v2 + ⋅ ⋅ ⋅ for a system in family (1) is equivalent
to existence of a first integral

(6) Ψ(x, y, z) = xy +
∑

j+k+ℓ=3

vjkℓx
jykzℓ

for the corresponding system in family (5).
We first characterize existence of a formal first integral in terms of a normal

form of systems in family (5). By normal form we mean the system after a formal
change of variables x = x1 + h(x1) that eliminates all nonresonant terms, where
the term xpyqzr in the mth equation in (5) is nonresonant if there is no solution
(p, q, r) ∈ ℕ3

0 (ℕ0 = {0, 1, 2, . . .}) with p+ q + r ≥ 2 to the equation

((p, , q, r), �)− �m = −�+ (p− q)i− �m = 0,

where (�1, �2, �3) = (i,−i,−�). (See for example [3] and [17] for a full discussion
of normal forms.) Thus any normal form of a system in family (5) has the form

(7)

ẋ1 = ix1 + x1X(x1y1)

ẏ1 = −iy1 + y1Y (x1y1)

ż1 = −�z1 + z1Z(x1y1).

Except for the last theorem in this section we will not assume that (5) arises
as the complexification of a real system, hence the coefficients in (5) and (7) are
unrestricted.

The only if part of the following theorem, when existence of an analytic integral
is hypothesized, appears with practically the same proof in §6 of [3]. The remainder
can also be drawn from various parts of [3]. For convenience of the reader we present
the proof.

Theorem 4. A system of the form (5) admits a formal first integral of the form
(6) if and only if the functions X and Y in any normal form (7) satisfy X+Y ≡ 0.
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Proof. Suppose system (5) has a formal first integral of the form Ψ(x, y) = xy+ ⋅ ⋅ ⋅ .
If x = H(x1) is the normalizing transformation that converts (5) into a normal form
(7), then F = Ψ ∘H is a formal first integral for the normal form, hence

(8)

ix1
∂F

∂x1
(x1, y1, z1)− iy1

∂F

∂y1
(x1, y1, z1)− �z1

∂F

∂z1
(x1, y1, z1)

= −x1
∂F

∂x1
(x1, y1, z1)X(x1y1)−y1

∂F

∂y1
(x1, y1, z1)Y (x1y1)

−z1
∂F

∂z1
(x1, y1, z1)Z(x1y1) .

Since H has the form x = x1+h(x1), writing � = (�1, �2, �3) and ∣�∣ = �1+�2+�3,
F (x1, y1, z1) has the form

(9) F (x1, y1, z1) =
∑
�
∣�∣≥2

F (�)x�1
1 y�2

1 z�3
1 = x1y1 + ⋅ ⋅ ⋅ .

Equation (8) then reads

(10)

∑
�
∣�∣≥2

(�1i− �2i−��3)F (�)x�1
1 y�2

1 z�3
1

=−

⎡⎣ ∑
�,∣�∣≥2

�1F
(�)x�1

1 y�2
1 z�3

1

⎤⎦⎡⎣ ∞∑
j=1

X(j+1,j,0)(x1y1)j

⎤⎦
−

⎡⎣ ∑
�,∣�∣≥2

�2F
(�)x�1

1 y�2
1 z�3

1

⎤⎦⎡⎣ ∞∑
j=1

Y (j,j+1,0)(x1y1)j

⎤⎦
−

⎡⎣ ∑
�,∣�∣≥2

�3F
(�)x�1

1 y�2
1 z�3

1

⎤⎦⎡⎣ ∞∑
j=1

Z(j,j,1)(x1y1)j

⎤⎦ .

Using (9) for the basis step and using (10) and the fact that −��3 + (�1 − �2)i
is nonzero if ∣�∣ is odd and holds only for � = (�1, �1, 0) if ∣�∣ is even for the
inductive step, by mathematical induction we have that F (x1, y1, z1) is a function
of x1y1 alone. Writing F (x1, y1, z1) = f(x1y1),

x1
∂F

∂x1
(x1, y1, z1) = x1y1f

′(x1y1) and y1
∂F

∂y1
(x1, y1, z1) = x1y1f

′(x1y1)

so that, letting � = x1y1, (8) becomes

0 ≡ �f ′(�)(X(�) + Y (�)) .

But because F is a formal first integral it is not a constant, so we immediately
obtain X(�) + Y (�) ≡ 0.

Conversely, if X + Y ≡ 0 then Ψ̂(x1, y1, z1) = x1y1 is a first integral of (7).
Since the coordinate transformation x = x1 + h(x1) has an inverse of the form

x1 = x + ĥ(x), system (5) therefore admits a formal first integral of the form
Ψ(x, y, z) = xy + ⋅ ⋅ ⋅ . □

Theorem 5. Fix a system (1) in which the functions P , Q, and R are real analytic
on a neighborhood of the origin. The following statements are equivalent.
1. The origin is a center for X∣W c, W c the local center manifold at the origin.



6 V. F. EDNERAL, A. MAHDI, V. G. ROMANOVSKI, AND D. S. SHAFER

2. System (1) admits a formal first integral.
3. System (1) admits a local analytic first integral.

Proof. The equivalence of the first and third statements is Theorem 3. The third
statement implies the second. If the second statement holds, then by Theorem 4 the
functions X and Y in any normal form (7) of the complexification (5) of (1) satisfy
X + Y ≡ 0. In such a case Ψ(x1, y1, z1) = x1y1 is an analytic first integral of (7).
But in §5 of [3] it is shown that for family (1) the condition X+Y ≡ 0 implies that
the distinguished normalizing transformation x = x1 + h(x1) that transforms (5)
into (7) is real analytic, since it doubles as a normal form on an invariant surface.
Since the normalizing transformation has an analytic local inverse, the analytic
integral Ψ yields an analytic integral Φ(u, v, w) = u2 + v2 + ⋅ ⋅ ⋅ of (1). □

We now investigate the existence of a first integral Ψ for a system in family (5)
by computing the coefficients of ℨΨ and equating them to zero. When Ψ has the
form (6) the coefficient gk1k2k3 of xk1yk2zk3 in ℨΨ is

(11)

(−�k3+(k1 − k2)i)vk1k2k3

+ ak1,k2−1,k3 + bk1−1,k2,k3

+

min{k3,N}∑
r=0

⎡⎢⎢⎣ k1+k2+r−1∑
j+k=3+r−k3
j≥1,k≥0

j ak1−j+1,k2−k,r vj,k,k3−r

⎤⎥⎥⎦

+

min{k3,N}∑
r=0

⎡⎢⎢⎣ k1+k2+r−1∑
j+k=3+r−k3
j≥0,k≥1

k bk1−j,k2−k+1,r vj,k,k3−r

⎤⎥⎥⎦

+

min{k3,N}∑
r=0

⎡⎢⎢⎣ k1+k2+r−2∑
j+k=2+r−k3
j≥0,k≥0

(k3 − r + 1) ck1−j,k2−k,r vj,k,k3−r+1

⎤⎥⎥⎦ .
The maximum of the sum of the subscripts on v��
 in the sums is k1 + k2 + k3− 1.
Thus except when (k1, k2, k3) = (K,K, 0) for K ∈ ℕ, the equation gk1k2k3 = 0
can be solved uniquely for vk1k2k3 in terms of the known quantities v��
 with
� + � + 
 < k1 + k2 + k3. A formal first integral Ψ thus exists if gkk0 = 0 for
all k ∈ ℕ. An obstruction to the existence of the formal series Ψ occurs when the
coefficient gKK0 is nonzero. This coefficient is the Kth focus quantity,

(12)

gKK0 =

2K−1∑
j+k=2
j≥0,k≥0

[j aK−j+1,K−k,0 + k bK−j,K−k+1,0] vj,k,0

+

2K−2∑
j+k=2
j≥0,k≥0

cK−j,K−k,0 vj,k,1,

where we have incorporated the summands in the second line in (11) into the sums
by making the natural assignments v110 = 1 and v��
 = 0 for � + � + 
 = 2 but
(�, �, 
) ∕= (1, 1, 0).
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Remark 6. The focus quantity gKK0 is obviously a polynomial in the coefficients
a��
 , b��
 , c��
 of (5), but contains � in the denominator of its coefficients. A
similar sequence of such quantities could be found based on Theorem 4 by zeroing
coefficients of X + Y . Indeed, computations presented in Section 4 were double-
checked in this fashion.

The focus quantities g110 and g220 are uniquely determined, but the remain-
ing ones depend on the choices made for vKK0, K ∈ ℕ, K ≥ 2. Once such an
assignment is made Ψ is determined and satisfies

(13) ℨΨ(x, y, z) = g110 xy + g220 (xy)2 + g330 (xy)3 + ⋅ ⋅ ⋅ .

Vanishing of all the focus quantities is sufficient for existence of the formal first
integral. We show that it is necessary by proving that if for one choice of the vKK0

at least one focus quantity is non-zero, then the same is true for every other choice
of the vKK0. To shorten the notation we let (a, b, c) stand for the coefficient string

(a200, . . . , a00N , b200, . . . , b00N , c200, . . . , c00N ).

Theorem 7. Let Ψ be a formal series of the form (6) and let g110, g220, . . . be
polynomials in (a, b, c) that satisfy (13) with respect to the system (5). Then system
(5) with (a, b, c) = (a∗, b∗, c∗) admits a formal first integral of the form (6) if and
only if gkk0(a∗, b∗, c∗) = 0 for all k ∈ ℕ.

Proof. If for admissible (a∗, b∗, c∗), gkk0(a∗, b∗, c∗) = 0 for all k ∈ ℕ then Ψ is a
formal first integral for the corresponding family in (5).

For the converse, suppose that, contrary to what we wish to prove, there exists
a formal first integral of (5) when (a, b, c) = (a∗, b∗, c∗) but that for some K ∈ ℕ,
K ≥ 2, gkk0(a∗, b∗, c∗) = 0 for 1 ≤ k ≤ K − 1 but gKK0(a∗, b∗, c∗) ∕= 0. Because
there exists a formal first integral of the form (6) by Theorem 4 the functions X
and Y in (7) satisfy

(14) X + Y ≡ 0.

On the other hand, if x = H(x1) is the normalizing transformation that produced
(7), then in the new variables (13) becomes, writing F = Ψ ∘H,

(15)

[
ix1 + x1X(x1y1)

] ∂F
∂x1

(x1, y1, z1)

+
[
−iy1 + y1Y (x1y1)

] ∂F
∂y1

(x1, y1, z1) +
[
−�z1 + z1Z(x1y1)

] ∂F
∂z1

(x1, y1, z1)

= gKK0(a∗, b∗, c∗)[x1 + ℎ1(x1, y1, z1)]K [y1 + ℎ2(x1, y1, z1)]K + ⋅ ⋅ ⋅
= gKK0(a∗, b∗, c∗)xK1 y

K
1 + ⋅ ⋅ ⋅ .

If we subtract x1XFx1
+ y1Y Fy1 + z1ZFz1 from each side of (15) then we obtain

(10) with the right hand side of (15) added to its right hand side. The induction
argument following (10) obviously applies out to order 2K − 1, and applies to
order 2K as well because the terms of order 2K on the right hand side of (15) are
gKK0(a∗, b∗, c∗)xK1 y

K
1 . Therefore

F (x1, y1, z1) = x1y1 + f2 (x1y1)2 + ⋅ ⋅ ⋅+ fK (x1y1)K + U(x1, y1, z1)

= f(x1y1) + U(x1, y1, z1)
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where U(x1, y1, z1) begins with terms of order at least 2K + 1. Thus

x1
∂F

∂x1
= x1y1f

′(x1y1) + �(x1, y1, z1) and y1
∂F

∂y1
= x1y1f

′(x1y1) + �(x1, y1, z1)

where �(x1, y1, z1) and �(x1, y1, z1) begin with terms of order at least 2K+ 1. The
left-hand side of (15) is thus

i[�(x1,y1, z1)− �(x1, y1, z1)]

+ (X(x1y1) + Y (x1y1))x1y1 f
′(x1y1)

+X(x1y1)�(x1, y1, z1) + Y (x1y1)�(x1, y1, z1) + [−�z1 + z1]
∂F

∂z1
(x1, y1, z1) .

Hence if we subtract

i[�(x1,y1, z1)− �(x1, y1, z1)]

+X(x1y1)�(x1, y1, z1) + Y (x1y1)�(x1, y1, z1) + [−�z1 + z1]
∂F

∂z1
(x1, y1, z1) ,

which begins with terms of order at least 2K + 1, from each side of (15) we obtain

(16) (X(x1y1) + Y (x1y1))x1y1 f
′(x1y1) = gKK0(a∗, b∗, c∗)(x1y1)K + ⋅ ⋅ ⋅ .

By (14) the left hand side of (16) is identically zero, whereas the right hand side is
not, a contradiction. □

Theorem 7 clearly implies the following result.

Theorem 8. Let Ψ and gkk0 be as in Theorem 7 and suppose there exists another
function Ψ′ of the form (6) and polynomials g′110(a, b, c), g′220(a, b, c), . . . that satisfy
(13) with respect to the family (5). Then VC = V ′C , where VC is the variety de-
termined by the ideal ⟨g110, g220, . . . ⟩ and V ′C is the variety determined by the ideal
⟨g′110, g

′
220, . . . ⟩.

The previous four theorems were derived without any restrictions on the coef-
ficients in (5). When (5) is the complexification of a real system (1) then a real
variety is obtained by applying the restrictions on (a, b, c) listed after (5). Since
by Theorem 5 existence of a formal integral is equivalent to existence of a local
analytic integral, the following theorem is an immediate corollary of Theorem 8.

Theorem 9. Let (1) be a family of polynomial differential equations on ℝ3. For
any system in the family let X be the corresponding vector field (2) and let W c be
a local center manifold through the origin. Then there exists a variety VC in the
space of admissible coefficients such that the origin is a center for X∣W c if and only
if the coefficients of the components of X lie in VC .

4. Center Conditions for Quadratic Families

As stated earlier, we would like to be able to reproduce Theorem 2 in the context
of family (1), finding necessary and sufficient conditions for existence of a center
at the origin on any center manifold, but insurmountable computational difficulties
quickly arise when trying to work in such generality.

For a fixed choice of � in (1) the center variety VC is determined by the ideal
⟨gkk0 : k ∈ ℕ⟩ of focus quantities, which by the Hilbert Basis Theorem is finitely
generated. The first difficulty in using the focus quantities to find VC is that they
can quickly become enormous, containing hundreds and hundreds of terms. In
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the case at hand just a few computations show that � must be assigned a specific
numerical value in order for progress to be possible. For simplicity we fix � = 1.
Even then computing more than five or six focus quantities becomes infeasible
without further restriction.

The next difficulty is that once focus quantities are known, their vanishing gives
only necessary conditions for existence of a center, since we do not know how many
focus quantities suffice to generate the full ideal ⟨gkk0 : k ∈ ℕ⟩. In practical terms
we use the special purpose computational commutative algebra program Singular
([7, 10]) to decompose the radical of ⟨gkk0 : k ∈ ℕ⟩, which actually determines VC
(over ℂ), into an intersection of prime ideals, to which correspond the irreducible
components of VC . Generators of these prime ideals give finite sets of conditions
which, if they can be proved to be sufficient for existence a center on W c, either
directly or by proving existence of a local first integral of (1) of the form u2 +
v2 + ⋅ ⋅ ⋅ and appealing to Theorem 5, are then a collection of conditions that
together characterize existence of a center on W c. This stage of the computations,
using Singular to perform the decomposition, also dictates restrictions on the
coefficients in (1).

Among all systems of the form (1) with quadratic nonlinearities, one somewhat
natural initial restriction is to look for systems which when complexified yield a
system of the form

(17)

ẋ = ix+ a12xy + a13xz + a23yz

ẏ = −iy + b12xy + b13xz + b23yz

ż = −z + c12xy + c13xz + c23yz .

The requirement that (17) arise as the complexification of a real system then im-
poses the following constraints:

b12 = ā12, b13 = ā23, b23 = ā13, c23 = c̄13, c12 ∈ ℝ.
We write

a12 = u1 + iv1, a23 = u2 + iv2, a13 = u3 + iv3, c13 = u4 + iv4.

It is not difficult to show that the most general real system of the form (1) whose
complexification has the form (17) has the form

(18)

u̇ = −v + au2 + av2 + cuw + dvw

v̇ = u+ bu2 + bv2 + euw + fvw

ẇ = −w + Su2 + Sv2 + Tuw + Uvw ,

and that

(19)
a = u1, b = v1, c = u3 + u2, d = v2 − v3, e = v3 + v2, f = u3 − u2

S = c12, T = 2u4, U = −2v4.

The first nontrivial focus quantity for the full family (17) is

g220 = 2c12u3 = S(c+ f).

We will not list additional focus quantities, since g330 has 37 terms, g440 about
200, and g550 about 800. They are posted on the website of the fourth author
(http://www.math.uncc.edu/∼dsshafer).

Proposition 10. A system of the form (18) for which S = 0 has a center on the
local center manifold at the origin.
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Proof. If S = 0 then the local center manifold W c is the invariant (u, v)-plane. By
Theorem 2 the origin is a center for X∣W c. □

Based on the Proposition and the form of g220 we continue on the assumption
that S ∕= 0 and u3 = c + f = 0. By rescaling the coordinate w by 1/S we may
also assume that S = 1. However, to make further progress (in particular, in order
for Singular to be able to perform the necessary decomposition) we must impose
additional restrictions. We will do this in two separate ways, first by requiring that
u1 = v1 = 0 (equivalent to a = b = 0) and second by requiring that u2 = v2 = 0
(equivalent to c− f = d+ e = 0).

Theorem 11. A system of the form (18) for which a = b = c+ f = 0 and S = 1
has a center on the local center manifold at the origin if and only if at least one of
the following two sets of conditions holds:
1. 8c+ T 2 − U2 = 4(e− d)− T 2 − U2 = 2(e+ d) + TU = 0;
2. c = d+ e = 0.

Proof. For systems of the form (18) for which a = b = c + f = 0 and S = 1 a
computation with minAssGTZ of Singular ([7, 10]) shows the minimal associ-
ated prime ideals of the primary ideals in a primary decomposition of the ideal
⟨g110, . . . , g550⟩ to be
1. I1 = ⟨v2

4 − v3 − u2, u4v4 − v2, u
2
4 + v2

4 − 2v3, v2u4 − v3v4 + u2v4,
v3u4 + u2u4 − v2v4, v

2
3 − u2

2 − v2
2⟩

2. I3 = ⟨u2, v2⟩
3. I2 = ⟨u2

4 + v2
4 , v2u4 + u2v4, u2u4 − v2v4, u

2
2 + v2

2⟩
A necessary condition for a center is that all the generators in at least one of these
ideals vanish. Clearly the third set of conditions is a special case of the second, and
simplifying the first set of conditions we reduce to

1′. ⟨2u2 + u2
4 − v2

4 , 2v3 − u2
4 − v2

4 , v2 − u4v4⟩
2′. ⟨u2, v2⟩

Using (19) we obtain the two sets of conditions in the theorem as necessary for
existence of a center on W c. We must show sufficiency.

Suppose condition (1) of the theorem holds. Applying the corresponding ex-
pressions in (1′) in (19) and letting � = u4 + v4 and � = u4 − v4 system (18)
is

(20)

u̇ = −v − 1
2��uw −

1
2�

2vw

v̇ = u+ 1
2�

2uw + 1
2��vw

ẇ = −w + u2 + v2 + (�+ �)uw + (� − �)vw .

A search for invariant algebraic surfaces led to the discovery that W c is given by
the equation u2 + v2 + �uw + �vw − w = 0. (The cofactor is �u+ �v − 1; see for
example [17, §3.6].) Solving for w and inserting into the first two equations in (20)
we obtain that, in local coordinates near the origin on W c, [�u+ �v − 1]X∣W c is

(21)
u̇ = v − (�u+ �v)v − 1

2�(�u+ �v)(u2 + v2)

v̇ = −u+ (�u+ �v)u+ 1
2�(�u+ �v)(u2 + v2) .

The form of the system suggests a symmetry with respect to the radial line orthog-
onal to �u+ �v = 0. Under the rotation

u = ( �Δ )u′ − ( �Δ )v′, v = ( �Δ )u′ + ( �Δ )v′ (Δ =
√
�2 + �2 )
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system (21) becomes

u̇′ = v′ −Δu′v′, v̇′ = −u′ + Δu′2 + Δ2

2 u
′(u′2 + v′2)

which is invariant under the involution (u′, v′, t) → (u′,−v′,−t), hence is time-
reversible, and so the origin is a center.

When the second condition of the theorem holds system (18) reduces to

u̇ = −v + dvw

v̇ = u− duw
ẇ = −w + u2 + v2 + Tuw + Uvw .

A first integral is F (u, v, w) = u2 + v2. □

As stated before the second subfamily of family (18) we study arises from the
reduction u2 = v2 = 0, equivalent to c − f = d + e = 0. Recall that in view of
Proposition 10 we have reduced without loss of generality to the situation S = 1
and c+ f = 0, so that in fact c = f = 0 in this case.

Theorem 12. A system of the form (18) for which d+ e = c = f = 0 and S = 1
has a center on the local center manifold at the origin if and only if at least one of
the following three sets of conditions holds:
1. a = b = 0;
2. T − 2a = U − 2b = 0.
3. d = e = 0.

Proof. For systems of the form (18) for which d + e = c = f = 0 and S = 1 a
computation with minAssGTZ of Singular ([7, 10]) shows the minimal associ-
ated prime ideals of the primary ideals in a primary decomposition of the ideal
⟨g110, . . . , g550⟩ to be
1. ⟨v1, u1⟩
2. ⟨v1 + v4, u1 − u4⟩
3. ⟨v3⟩
4. ⟨u2

4 + v2
4 , v1u4 + u1v4, u1u4 − v1v4, u

2
1 + v2

1⟩
The fourth set of conditions is a special case of the first. Using (19) we obtain

the three sets of conditions in the theorem as necessary for existence of a center on
W c. We must show sufficiency.

When the first condition of the theorem holds system (18) reduces to

u̇ = −v + dvw

v̇ = u− dvw
ẇ = −w + u2 + v2 + Tuw + Uvw ,

A first integral is F (u, v, w) = u2 + v2.
When the second condition of the theorem holds system (18) reduces to

u̇ = −v + au2 + av2 + dvw

v̇ = u+ bu2 + bv2 − duw
ẇ = −w + u2 + v2 + 2auw + 2bvw ,
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The local center manifold W c is u2 + v2 − w = 0 (with cofactor −1 + 2au + 2bv).
On it the system is

u̇ = −v + (a+ dv)(u2 + v2)

v̇ = u+ (b− du)(u2 + v2) .

Under the rotation

u = ( aΔ )u′ − ( bΔ )v′, v = ( bΔ )u′ + ( aΔ )v′ (Δ =
√
a2 + b2 )

the system becomes

u̇′ = −v′ + (Δ + dv′)(u′2 + v′2), v̇′ = u′ − du′(u′2 + v′2)

which is invariant under the involution (u′, v′, t) → (−u′, v′,−t), hence is time-
reversible, and so the origin is a center.

When the third condition of the theorem holds system (18) reduces to

(22)

u̇ = −v + au2 + av2

v̇ = u+ bu2 + bv2

ẇ = −w + u2 + v2 + Tuw + Uvw .

By Theorem 2 a planar quadratic system of the form

u̇ = −v + au2 + av2, v̇ = u+ bu2 + bv2

has a center at the origin, hence by Theorem 1 admits a local analytic first integral
of the form Ψ(u, v) = u2 + v2 + ⋅ ⋅ ⋅ . Then F (u, v, w) = Ψ(u, v) is a local analytic
first integral for (22). □

References

[1] Bautin, N. N. Du nombre de cycles limites naissant en cas de variation des coefficients d’un

état d’équilibre du type foyer ou centre. Dokl. Akad. Nauk SSSR 24 (1939) 669–672.
[2] Belyustina, L. N. On conditions for existence of a center. Prikl. Mat. i Mek. 18 (1954) 511

(Russian).

[3] Bibikov, Y. N. Local Theory of Nonlinear Analytic Ordinary Differential Equations. Lecture
Notes in Mathematics, Vol. 702. New York: Springer-Verlag, 1979.

[4] Burchard, A., B. Deng, and K. Lu. Smooth conjugacy of center manifolds. Proc. Roy. Soc. Ed-

inburgh Sect. A 120 (1992) 61–77.
[5] Chicone, C. Ordinary Differential Equations with Applications. New York: Springer-Verlag,

1999.

[6] Coppel, W. A. A survey of quadratic systems. J. Differential Equations 2 (1966) 293–304.
[7] Decker,W., G. Pfister, and H. A. Schönemann. Singular 2.0 library for computing the pri-

mary decomposition and radical of ideals primdec.lib, 2001.
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et Appl. 1 (1885), no. 4, 167–244; Oeuvres de Henri Poincaré, vol. I, pp. 95–114 Paris:
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cesta 160, SI-2000 Maribor, Slovenia


