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Abstract. In this work we consider the Nosé–Hoover equation for a one di-

mensional oscillator

ẋ = −y − xz, ẏ = x, ż = α(x2 − 1).

It models the interaction of a particle with a heat–bath. We contribute to

the understanding of its global dynamics, or more precisely, to the topological

structure of its orbits by studying the integrability problem. We prove that

α = 0 is the only value of the parameter for which the system is integrable,

and in this case we provide an explicit expression for its first integrals.

1. Introduction

The Nosé–Hoover thermostat is a differential method used in molecular dynamics

to keep the temperature around an average. It was first introduced by Nosé [11]

and developed further by Hoover [6]. To be more precise in 1985 Nosé considered a

physical system of M particles, with the momenta p = (p1, . . . , pM ) and coordinates

q = (q1, . . . , qM ) in a fixed volume and a potential energy V (q). He proposed the

following model

q̇i =
pi
ms2

, ṗi = −∂V
∂qi

, ṡ = ps/Q, ṗs =
( M∑
i=1

p2
i

s2m
− gkT

)
/s,

where k is Boltzmann’s constant; T is a temperature; g the number of degrees

of freedom of the physical system; and Q is a parameter (for more details and

generalization see [1]). Subsequently Hoover [6] showed that these equations can

be written in a simpler form by transforming to the scaled momentum p̂i = pi/s

and time scaling t̂ =
∫ t

0
dt/s. Thus, after dropping the hat one ends up with the

following dynamical system, called Nosé–Hoover model

q̇i =
pi
m
, ṗi = −∂V

∂qi
− ξpi, ξ̇ =

1

Q

( M∑
i=1

p2
i

s2m
− gkT

)
.

There is also the associated subsidiary equation for s, namely

ds

dt
= s ξ,
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which is not needed to compute the trajectories of the M interacting particles. Since

then, this model attracted much attention, see for instance [3, 10, 4, 1, 7, 12, 8],

where a number of its mathematical and physical aspects were studied.

In this work we consider the Nosé–Hoover equation in the following form [6]:

(1) ẋ = −y − xz, ẏ = x, ż = α(x2 − 1),

where α = 1/Q is a real parameter and renamed variables are x = p, y = q and

z = ξ. This system is also called Nosé–Hoover equation for a one dimensional

oscillator. A number of the dynamic aspects of system (1) have been analysed.

In [6] Hoover integrates it numerically for α = 1 and α = 10. Later Hamilton [4]

shows numerically a transition to large–scale irregular dynamics for limited range

of α. Periodic orbits for this equation that emerge in bifurcations from heteroclinic

cycles have recently been considered by Swinnerton–Dyer and Wagenknecht [12].

We also note, that system (1) is a particular case of the well–known Hide, Skeldon

and Acheson dynamo model [5].

Here we further contribute to the understanding of the complexity, or more pre-

cisely of the topological structure of the dynamics of system (1) by studying its

integrability. For the three dimensional system of differential equations the exis-

tence of one first integral reduces the complexity of its dynamics and the existence of

two first integrals that are functionally independent solves completely the problem

(at least theoretically) of determining its phase portraits. In general for a given dif-

ferential system it is a difficult problem to determine the existence or non–existence

of first integrals. Thus, for proving our main results we shall use the information

about invariant algebraic surfaces of this system. This is the basis of the so called

Darboux theory of integrability, for more details see Section 2.

We first consider the case in which α = 0. We start with the following result.

Theorem 1. The Nosé–Hoover equation with α = 0 is integrable with the following

first integrals

H1 = z and H2 =


(x+ y) exp

(
y/(x+ y)), if z = 2,

(−2x+ (−z +
√
z2 − 4)y)λ2

(2x+ (z +
√
z2 − 4)y)λ1

, if z 6= 2

where

λ1 =
1

2
(−z −

√
z2 − 4) and λ2 =

1

2
(−z +

√
z2 − 4).

It is straightforward to verify that H1 and H2 in the statement of the theorem

are first integrals of the Nosé–Hoover equation when α = 0. Therefore the proof

of Theorem 1 will be omitted and from now on we consider the case in which

α ∈ R \ {0}.

The following theorem is the main result of this paper.

Theorem 2. The following statements hold for the Nosé–Hoover equation with

α ∈ R \ {0}:
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(a) It does not admit any polynomial first integral;

(b) It does not admit any Darboux polynomial with nonzero cofactor;

(c) Its only exponential factors are ey and ez
2+α(x2+y2) with the cofactors x

and −2αz, respectively;

(d) It does not admit any Darboux first integral.

The paper is organised as follows. In Section 2 we introduce some basic defini-

tions and results related to the Darboux theory of integrability that we shall need

in order to prove one of our main results. In Section 3 we prove Theorem 2.

2. Preliminary results

During recent years the interest in the study of integrability of differential equa-

tions has attracted much attention. Darboux theory of integrability plays a central

role in the integrability of the polynomial differential models. It gives a suffi-

cient condition for the integrability inside the family of Darboux functions. More

precisely, the significance of this method is that we can compute Darboux first in-

tegrals by knowing a sufficient number of algebraic invariant surfaces (the so-called

Darboux polynomials) and of the so-called exponential factors. We would like to

highlight that it works for real or complex polynomial ordinary differential equa-

tions. The study of complex invariant algebraic curves is necessary for obtaining

all the real first integrals of a real polynomial differential equation, for more details

see [9].

We associate to system (1) the following vector field

(2) X = (−y − xz) ∂
∂x

+ x
∂

∂y
+ α(x2 − 1)

∂

∂z
.

Let U ⊂ R3 be an open subset. We say that the non–constant function H : U → R
is a first integral of the polynomial vector field (2) associated to system (1), if

H(x(t), y(t), z(t)) = constant for all values of t for which the solution (x(t), y(t), z(t))

of X is defined on U . Clearly H is a first integral of X on U if and only if XH = 0

on U . When H is a polynomial we say that H is a polynomial first integral.

Let h = h(x, y, z) ∈ C[x, y, z] be a non–constant polynomial. We say that h = 0

is an invariant algebraic surface of the vector field X in (2) if it satisfies Xh = Kh,

for some polynomial K = K(x, y, z) ∈ C[x, y, z], called the cofactor of h. Note that

K has degree at most 1. The polynomial h is called a Darboux polynomial, and

we also say that K is the cofactor of the Darboux polynomial h. We note that a

Darboux polynomial with a zero cofactor is a polynomial first integral.

Let g, h ∈ C[x, y, z] be coprime. We say that a non–constant function E = eg/h

is an exponential factor of the vector field X given in (2) if it satisfies XE = LE,

for some polynomial L = L(x, y, z) ∈ C[x, y, z], called the cofactor of E and having

degree at most 1. Note that this relation is equivalent to

(3) (−y − xz)∂(g/h)

∂x
+ x

∂(g/h)

∂y
+ α(x2 − 1)

∂(g/h)

∂z
= L.
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For a geometrical and algebraic meaning of the exponential factors see [2].

A first integral G of system (1) is called of Darboux type if it is of the form

(4) G = fλ1
1 · · · fλp

p Eµ1

1 · · ·Eµq
q ,

where f1, . . . , fp are Darboux polynomials, E1, . . . , Eq are exponential factors and

λj , µk ∈ C for j = 1, . . . , p, k = 1, . . . , q. For more information on the Darboux

theory of integrability see, for instance, [9] and the references therein.

For a proof of the next proposition see [2].

Proposition 3. The following statements hold:

(a) If E = eg/h is an exponential factor for the polynomial system (1) and h is

not a constant polynomial, then h = 0 is an invariant algebraic curve.

(b) Eventually eg can be an exponential factor, coming from the multiplicity of

the infinite invariant straight line.

3. Proof of Theorem 2

We separate the proof of Theorem 2 into different propositions.

Proposition 4. System (1) with α ∈ R \ {0} does not admit a polynomial first

integral.

Proof. Let h be a polynomial first integral of system (1). Then it satisfies

(5) (−y − xz)∂h
∂x

+ x
∂h

∂y
+ α(x2 − 1)

∂h

∂z
= 0.

Without loss of generality we can write

(6) h =

n∑
j=1

hj(x, y, z),

where each hj = hj(x, y, z) is a homogeneous polynomial of degree j and we assume

that hn 6= 0.

Computing the terms of degree n+ 1 in (5) we get

(7) −xz ∂hn
∂x

+ αx2 ∂hn
∂z

= 0.

Solving this differential equation we obtain hn = hn[(αx2 + z2)/2]. Since hn 6= 0 is

a homogeneous polynomial of degree n ≥ 1, we conclude that n must be even and

hn = αn(αx2 + z2)n/2.

Computing the terms of degree n in (5) we get

(8) −y ∂hn
∂x

+ x
∂hn
∂y
− xz ∂hn−1

∂x
+ αx2 ∂hn−1

∂z
= 0.

Solving it with respect to hn−1 we obtain

hn−1 = ±αnnα1/2y(αx2 + z2)n/2−1 arctan
α1/2x

|z|
+ cn−1[(αx2 + z2)/2],
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where cn−1 is a homogeneous polynomial of the variable α(x2 + z2)/2. Since hn−1

is a homogeneous polynomial of degree n− 1 we conclude that

±αnnα1/2y(αx2 + z2)n/2−1 = 0.

Thus, since α 6= 0, we get that αn = 0 and consequently hn = 0, which is a

contradiction with our assumption. This concludes the proof of the proposition. �

Proposition 5. System (1) with α ∈ R \ {0} does not admit any Darboux polyno-

mial with nonzero cofactor.

Proof. Let h be an irreducible Darboux polynomial of system (1) with nonzero

cofactor K, where K = α0 + α1x+ α2y + α3z, with αi ∈ C for i = 0, 1, 2, 3 not all

zero.

Then h satisfies

(9) (−y − xz)∂h
∂x

+ x
∂h

∂y
+ α(x2 − 1)

∂h

∂z
= (α0 + α1x+ α2y + α3z)h.

It is easy to see by direct computations that h has degree greater or equal to two

since system (1) has no Darboux polynomials of degree one with nonzero cofactor.

Thus we decompose h as a sum of homogeneous polynomials similarly as in (6),

where n ≥ 2 and hn 6= 0.

Computing the terms of degree n+ 1 in (9) we get

−xz ∂hn
∂x

+ αx2 ∂hn
∂z

= (α1x+ α2y + α3z)hn.

Solving this linear differential equation we obtain

hn=exp

[
α−1/2α1 arctan

xα1/2

|z|
+
yα2[log(α2xyA)−log(2A2+2|z|A)]

A

]
x−α3wn(v),

where A =
√
αx2 + z2 and wn(v) is a function of the variable v = (αx2 + z2)/2.

Since hn is a homogeneous polynomial of degree n and α 6= 0, we conclude that

α1 = α2 = 0 and α3 = −m, where m is a nonnegative integer. Thus

(10) hn = cnx
m(αx2 + z2)p,

where p and m are nonnegative integers such that m + 2p = n and cn ∈ C \ {0}
(since hn 6= 0).

Computing the terms of degree n in (9) we get

(11) −y ∂hn
∂x

+ x
∂hn
∂y
− xz ∂hn−1

∂x
+ αx2 ∂hn−1

∂z
= α0hn −mzhn−1.

Substituting (10) into equation (11) and solving it with respect to hn−1 we obtain

hn−1 = cnx
mA2p−2

[
α0A log[2A(A+|z|)]+α0A log

α0xA
3

2
− 2pyα1/2 arctan

xα1/2

|z|

]
+ cnmx

m−1yA2p−2|z|+ xmwn−1(v),

where wn−1(v) is a function of the variable v = (αx2 + z2)/2. Since α 6= 0, cn 6= 0

and hn−1 is a homogeneous polynomial of degree n−1, we get the conditions p = 0,
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α0 = 0, m− 1 ≥ 0 and 2p− 2 ≥ 0 which are clearly incompatible. This concludes

the proof of the proposition. �

Proposition 6. The only exponential factors of system (1) with α ∈ R \ {0} are

ey and ez
2+α(x2+y2) with the cofactors x and −2αz, respectively.

Proof. It follows from Proposition 3 that we can write E = eg and g satisfies

(12) (−y − xz)∂g
∂x

+ x
∂g

∂y
+ α(x2 − 1)

∂g

∂z
= (α0 + α1x+ α2y + α3z),

where αi ∈ C, for i = 0, 1, 2, 3 are not all zero.

We first prove that g is a polynomial of degree two. We proceed by contradiction.

Assume that g is polynomial of degree n ≥ 3. We write it as a sum of its homoge-

neous parts as in equation (6) with hj replaced by gj . Without loss of generality

we can assume that gn 6= 0. Then since the right–hand side of equation (12) has

degree at most one, computing the terms of degree n+ 1 in equation (12) we get

−xz ∂gn
∂x

+ αx2 ∂gn
∂z

= 0,

which is equation (7) replacing hn by gn. Then the arguments used in the proof

of Proposition 4 imply that n must be even and gn must be of the form gn =

αn(αx2 + z2)n/2 with αn ∈ C \ {0}.

Now computing the terms of degree n ≥ 3 in (12) and taking into account that

the right–hand side of (12) has degree one, we get equation

−y ∂gn
∂x

+ x
∂gn
∂y
− xz ∂gn−1

∂x
+ αx2 ∂gn−1

∂z
= 0,

which is equation (8) with hn replaced by gn and hn−1 replaced by gn−1. The

arguments used in the proof of Proposition 4 imply that gn = 0. Then we have

that gn = 0 for n ≥ 3, and thus, g is a polynomial of degree at most two satisfying

(12). Solving now (12) we get that g can be either y with cofactor x or z2+α(x2+y2)

with cofactor −2αz and the proposition follows. �

3.1. Proof of Theorem 2. Statements (a), (b) and (c) in the theorem follow

directly from Propositions 4, 5 and 6, respectively. In what follows we prove the

statement (d) by contradiction. Assume that G is a first integral of Darboux type.

Then in view of its definition in (4) and taking into account Propositions 4, 5 and

6, G must be of the form

G = eµ1x+µ2[z2+α(x2+y2)], with µ1, µ2 ∈ C.

Since G is a first integral it must satisfy XG = 0, that is,

XG = (−y − xz)∂G
∂x

+ x
∂G

∂y
+ α(x2 − 1)

∂G

∂z

= (µ1x− 2µ2αz)G = 0.

Hence,

µ1x− 2µ2αz = 0,
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and since α 6= 0, this implies µ1 = µ2 = 0. Then G = constant, in contradiction

with the fact that G was a first integral. This concludes the proof of the theorem.
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