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ABSTRACT

LIPIKA GHOSH. Analysis of Failure Time Data with Missing and Informative Auxiliary
Covariates. (Under the direction of DR. YANQING SUN & DR. JIANCHENG JIANG)

In this dissertation we use Cox’s regression model to fit failure time data with continuous

informative auxiliary variables in the presence of a validation subsample. The work is

motivated by a common problem of missing or mismeasured covariates in survival analysis

as a result of which the relative risk function is not available for all the subjects in the

sample. Here we introduce a two-stage procedure for estimating the parameters in the

model. We first estimate the induced relative risk function with a kernel smoother based

on the validation subsample, and then improve the estimation by utilizing the information

from the non-validation subsample and the auxiliary observations from the primary sample.

Asymptotic normality of the proposed estimator is obtained. The proposed method allows

one to efficiently model the failure time data with informative multivariate auxiliary covariate.

Comparison of the proposed approach with several existing methods is made via simulations.

A real dataset is applied to illustrate the proposed method.
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CHAPTER 1: INTRODUCTION

1.1 Motivation & Background

In epidemiologic studies the researchers often wish to investigate the association between

a particular risk factor or exposure variable with disease. This exposure variable vector may

be hard or expensive to measure whereas an auxiliary variable vector is easy to measure

for all subjects in the study cohort. Statistical methods that take advantage of existing

auxiliary information about an expensive exposure variable are desirable in practice. For

example, in a large scale nutritional study, it would be prohibitively expensive to obtain

the exact dietary intake on each individual. Instead, a self administered quantitative food

questionnaire is conducted on all subjects and a validation set consisting of a subset of the

full study cohort is selected. The individuals in the validation set are asked to provide more

detailed and accurate dietary information. Although the true covariates are missing, there

exist some surrogates or auxiliary measurements which convey information about them and

serve as common proxy measure. How to fully utilize the available auxiliary information

is important for achieving higher statistical efficiency in the estimation of the effect of

the covariates. In this thesis, we study censored failure time regression with a continuous

auxiliary covariate vector.

A variety of authors have contributed their work to this field. Related works include

Prentice (1982), Pepe (1989), Lin and Ying (1993), Hughes (1993), Lipsitz and Ibrahim

(1996), Zhou and Wang (2000), Fan and Wang (2009), Liu, Wu and Zhou(2010)etc. In

particular, Prentice (1982) introduced a partial likelihood estimator based on the induced

relative risk function. This method was further developed by Pepe (1989) using parametric

modelling. Zhou and Pepe (1995) proposed an estimated partial likelihood method for

discrete auxiliary covariates to relax the parametric assumptions on the frequency of events

and the underlying distributions of covariates. This method was extended by Zhou and

Wang (2000) to deal with continuous auxiliary variables, based on the Nadaraya-Watson
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kernel smoother method (Nadaraya, 1964; Watson, 1964). Fan, Wang, Liu (2009) and

Wu, Zhou(2010) used the same approach for multivariate failure time data with auxiliary

covariates. While Zhou’s (2000) approach is useful in certain situations, there are some

restrictions on it. First, the approach is effective only when the auxiliary variable W is of

low dimension so that “curse of dimensionality” in nonparametric smoothing can be avoided.

Secondly, it requires that, conditionally on X, W provides no additional information about

the hazard of failure; that is, all of the effects of W on failure and censoring are mediated

through X, which is somewhat restricted since W may not be a true surrogate and depends

on the failure given X. In addition, the resulting estimators of the parameters are not

efficient if the ratio of validation observations is small, which is mainly due to the fact that

their smoothing method only used the data in the validation set to predict the induced

relative risk function rj for j in the non-validation set. Since the important information

from the observations in the non-validation subsample is not fully utilized, this method

cannot be efficient in certain situations. We here propose a new method to deal with the

problems. The proposed method allows W to be highly dimensional and to be informative

in the sense that, conditional X, it may provide additional information on the hazard of

failure. We first estimate the induced relative risk function with a kernel smoother based

on the validation sample, and then improve the estimation by utilizing the information

on the incomplete observations from the non-validation subsample. In addition, the local

linear smoother (Fan and Gijbels, 1996) is employed to enhance the performance of the

kernel smoother at the boundary regions. The newly proposed method will be expected to

improve the efficiency of the estimators of the parameters in various situations. Asymptotic

normality of the proposed estimators is derived. The results in theory and practice show

that the proposed method is efficient in certain situations even if auxiliary variable W is

not very informative about X.

In the following sections of Chapter 1 we give a brief introduction of proportional

hazards models and the local polynomial regression method employed in the estimation

procedure. We also give a brief overview of the remaining dissertation.



3

1.2 Proportional Hazard Models and Partial Likelihood

A popular model used in survival analysis that can be used to assess the importance

of various covariates in the survival times of individuals or objects through the hazard

function. In

In survival data we, we need special techniques to explore the relationship between the

survival times of an individual and the explanatory variables. The most frequently used

model was proposed by Cox(1972) and is widely known as the Cox Proportional Hazards

model. Prior to Cox Regression the leading approach to analyze mutivariate survival data

was parametric which requires one to know the nature of the survival distribution. Also we

need to be careful about violation of the model assumptions for some parametric models.

Cox’ regression model has the following advantages over those methods.

(1) Cox regression is distribution free modeling approach.

(2) This model allows us to estimate the regression coefficients without specifying the

baseline hazard function and the estimates only depend on the rank of the event

times, not their numerical values.

(3) Since the model depends on ranks, the coefficients remain unchanged by any monotonic

transformation of the hazard function.

(4) This model permits us to incorporate time varying covariates in survival analysis.

(5) With appropriate specification Cox model can be employed to answer many challenging

research questions.

1.2.1 Formulation of the Cox model

Let z = (z1, z2, ...., zp) be a p × 1 vector of covariates of risk factors and λ(t|z) be the

hazard function which depend on the covariates z. The generalized form of the proportional

hazards model is

λ(t|z) = λ0(t)exp(β1z1 + .....+ βpzp)
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where λ0(t) is the underlying baseline hazard function at time t and β1, β2, ...., βp are the

regression coefficients.

This model is known as a semiparametric model. The nonparametric part is λ0(t) since it

does not require any assumption about the shape of the underlying hazard function. The

parametric part of the model reflects the effect of the predictors, exp(β′z) , which is called

the risk function. Cox’s model is also called the proportional hazards model since it assumes

a constant ratio of hazards over time for any two individuals or units.

1.2.2 Partial Likelihood

The concept of Partial Likelihood was introduced by Cox (1972) for analysis of multiplicative

hazard models. It was subsequently modified by many authors such as Wong(1986)and

Anderson & Gill(1982). Why partial likelihood is used instead of the full likelihood? First,

we are interested in making inference about the regression parameters but not the form of

the baseline hazard; second, the partial likelihood avoids misspecification of the baseline and

hence ... the modeling bias; third, under certain conditions the partial likelihood estimator

is semiparametrically efficient. We will first give brief description of Partial Likelihood.

Consider a sample of N individuals who are followed up in time prospectively. Suppose that

k of these individuals die during the observed period. Also assume that, N-k individuals

are right censored, that is they are still alive at the end of the observation period.

Let t1 ≤ t2 ≤ ... ≤ tk be the ordered failure times for the k individuals who die during the

observation period.

For the individual j(i = 1, 2, ..N), let

tj = observed follow up time

Zj = vector of predictors, and

R(tj) = the risk set at time tj , that is the number of individuals who are alive and at risk

at time tj . The probability that the individual j with covariates zj dies at time tj given that

individuals in R(tj) are at risk and only one individual dies at tj is given by
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Lj =
exp(β′z(j))∑

i∈R(tj) exp(β
′z(i))

The partial likelihood (PL) is then obtained by taking the product of all these probabilities

across all the the individuals in the sample who failed. Therefore, the partial likelihood can

be interpreted as the ratio of the risk for the individual who fails at a specific time with

the risk of all other individuals at the same time. The estimates of the parameters can

be obtained by maximizing the partial likelihood. We note that, the censored observations

contribute information only in the denominator of the partial likelihood. Since each term in

the partial likelihood contributes small information about the parameters β, the goodness

of PL does not depend on the sample size but on the censoring rate. If the number of

censored observations is large, partial likelihood is less informative. Cox’s partial likelihood

method is invalid when there are ties in the dataset. In case of tied dataset, that is multiple

individuals having the same survival time, we can use Breslow’s approximation to partial

likelihood.

1.2.3 Time Dependent Covariates

A time-dependent covariate in a Cox model is a predictor whose values may vary with

time. The cox model can be extended to include the time-dependent covariates. In this

work Xi(t), Zi(t) and Wi(t) (Refer to section 1.1) are time dependent, i.e, at time t, the

measurements are Xi(t), Zi(t) and Wi(t) respectively. For simplicity sometimes Xi, Zi and

Wi are used instead of Xi(t), Zi(t) and Wi(t).

1.3 Overview

The rest of this dissertation is organized as follows. In Chapter 2 we introduce a new

estimation approach to predict the induced relative risk for individuals in the non-validation

subsample based on the local linear smoother. In Chapter 3 we establish asymptotic

properties of the proposed estimators of the parameters. In Chapter 4 we conduct simulations

to compare the performance of different estimating methods. Chapter 5 we apply the

proposed method to analyze a real dataset. In chapter 6 we summarize the dissertation and

discuss future research work in this area.



CHAPTER 2: ESTIMATED PARTIAL LIKELIHOOD WITH A LOCAL SMOOTHER
FOR COX MODEL

Motivated by the idea of the partial likelihood approach in Zhou & Pepe (1995) and

Zhou Wang (2000) we introduce a new approach to estimate the induced relative risk

function for an individual in the non-validation set.

2.1 Notations

To facilitate exposition, we here employ the notations in Zhou and Wang (2000).

Suppose that there are n independent individuals in a study cohort. Let {Xi(t), Zi(t)}

denote the covariate vectors for the ith subject at time t (i = 1, · · · , n). Assume that

Xi(·) is observed only in the validation subsample which is chosen at the baseline under the

ignorable missing mechanism condition (Rubin, 1976). Let Zi(·) be the remaining covariate

vector that is always observed and W (·) the informative auxiliary variables for X(·). Let ηi

be an indicator variable with ηi = 1 if the ith individual is in the validation set and 0 if in the

non-validation set. Put V = {i : ηi = 1} and V̄ = {i : ηi = 0}. We assume that individuals

in the validation subsample are randomly selected and hence representative. Then observed

data for the ith subject is {Si, δi, Zi(·),Wi(·), Xi(·)}, if ηi = 1 and {Si, δi, Zi(·),Wi(·)}, if

ηi = 0, where Si is the observed event time for the ith subject which is the minimum of

the potential failure time Ti and the censoring time Ci and δi is the indicator of failure.

Now,we consider the following conditional hazard function of failure time

λ{t;Xi(t), Zi(t)} ≡ lim
∆t↓0

[
1

∆t
Pr{t ≤ Ti < t+ ∆t|Ti ≥ t,Xi(t), Zi(t)}

]
= λ0(t) exp{β′1Xi(t) + β′2Zi(t)}, (2.1)

where λ0(·) ≥ 0 is unspecified and is called the base-line hazard and β′0 = (β′1, β
′
2)′ is the

relative risk parameter vector to be estimated.

Model (2.1) can be fitted using the partial likelihood estimation based on the validation



7

set V which leads to the complete-case partial likelihood estimator (see Cox, 1972). The

resulting estimator is consistent, but it neglects the important information on the auxiliary

W . For individuals in V , the relative risk functions are

exp{β′1Xi(t) + β′2Zi(t)}.

For subjects in V̄ , the true variate X is not observed, but the relative risk functions can be

imputated by estimators of

exp{β′2Zi(t)}E[exp{β′1Xi(t)}|Ti ≥ t, Zi(t)].

Then under the independent censoring assumption (Prentice, 1982), the induced relative

risk for an individual i can be written as

ri(β, t) = ηi exp{β′1Xi(t) + β′2Zi(t)}

+(1− ηi) exp{β′2Zi(t)E[exp{β′1Xi(t)}|Si ≥ t, Zi(t)]. (2.2)

Then the partial likelihood function for the β is

PL(β) =
n∏
i=1

{ ri(β, Si)∑
j∈R(Si)

rj(β, Si)

}δi
. (2.3)

In order to estimate the parameters β based on the above partial likelihood, one needs an

imputation value for the conditional expectation E[exp{β′1Xi(t)}|Si ≥ t, Zi(t)]. Different

imputation approaches generally yield different estimation of β. Zhou and Wang (2000)

employed an imputation method for the relative risk functions for subjects in V̄ , where the

relative risk functions are imputated by nonparametric estimators of

exp{β′2Zi(t)}E[exp{β′1Xi(t)}|Si ≥ t, Zi(t),Wi(t)]. (2.4)

under the assumption that W is not informative, that is, all of the effects of W on failure
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and censoring are mediated through X, so that

λ{t;Xi(t), Zi(t),Wi(t)} ≡ lim
∆t↓0

[ 1

∆t
Pr{t ≤ Ti < t+ ∆t|Ti ≥ t,Xi(t), Zi(t),Wi(t)}

]
= lim

∆t↓0

[ 1

∆t
Pr{t ≤ Ti < t+ ∆t|Ti ≥ t,Xi(t), Zi(t)}

]
= λ0(t) exp{β′1Xi(t) + β′2Zi(t)}

≡ λ{t;Xi(t), Zi(t)},

Zhou and Wang (2000) derived the consistency and asymptotic normality of the estimator.

However, if W is informative, their method will generally be biased. In addition, this

method directly used information in the auxiliary covariate W and estimated the conditional

expectation (2.4). So it may encounter the so-called “curse of dimensionality” if W is of

higher dimension. For the present study, the information in W will be used in a new way.

2.2 Local Linear Regression

We employ the kernel regression approach for estimating the relative risk function

for the subjects with missing covariate measurements. Here, we give a brief description

of the local linear regression. Local linear regression is a popular modeling procedure in

nonparametric regression. Fan and Gijbels(1996) illustrated the techniques and theoretical

properties in their literature. The local linear smoother possesses some advantages over the

Nadaraya Watson (1964) method employed in Zhou & Wang (2000).

1. Local linear estimator has less bias while it does not increase the variance.

2. Local linear smoothing is very adaptable and can be applied for for different types of

data design.

3. Local linear smoothing has the advantage that it adapts automatically to the boundary

effects, and so no boundary modifications are needed.

Consider the bivariate data (X1, Y1), (X2, Y2), ...., (Xn, Yn) which form an independent and

identically distributed sample from the population (X,Y). We want to estimate the regression

function m(x0) = E(Y |X = x0) and its derivative m′(x0). The data is generated from the
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model

Yi = m(Xi) + εi 1 ≤ i ≤ n,

where, {εi}n1 denote zero mean random variables with variance σ2.

Suppose that 2nd derivative at x0 exists. We then approximate the unknown regression

function m(x) locally by a linear equation. Using Taylor’s expansion in the neighborhood

of x0 we have,

m(x) ≈ m′(x0) + (x− x0)m′(x0).

The above polynomial is locally fitted by a weighted least squares problem:

Minimize
n∑
i=1

{Yi − β0 − β1(Xi − x0)}2Kh(Xi − x0)

over βj , j=0,1, where h is a smoothing parameter controlling the size of the local neighborhood

and Kh(.) = K(./h)/h. Here K is a symmetric kernel function which assigns weight to each

data point. We denote by β̂j , j = 0, 1 , the solution of the above weighted least squares

problem. From the Taylor’s expansion we can see that m̂ν(x0) = ν!β̂ν is an estimator of

m(ν)(x0) (ν = 0, 1). The estimator m̂0(x) is termed as a local linear regression smoother or

a local linear fit. This estimator can be explicitly expressed as

m̂0(x) =

∑n
i=1wiYi∑n
i=1wi

,

wi = Kh(Xi − x)Sn,2 − (Xi − x)Sn,1,

where, Sn,j =
∑n

i=1Kh(Xi−x)(Xi−x)j . For convenience we work with the matrix notation

below.

Let X be the design matrix of the given least squares problem. Then,

X =


1 (X1 − x0)

...
...

1 (Xn − x0).


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Also, let Y =


Y1

...

Yn

 and β̂ =


β̂0

...

β̂p


Further, let W be the n× n diagonal matrix of weights .i.e.

W = diag{Kh(Xi − x0)}.

The weighted least squares problem can then be written as

minβ(Y−Xβ)TW(Y−Xβ)

with β = (β0, β1)T .

The solution vector can be obtained by

β̂ = (XTWX)−1XTWY.

2.3 Proposed Method

Throughout this dissertation, we assume that model (2.1) holds. In this section, we

propose a new estimated partial likelihood approach to estimate the model parameters in

(2.1).

2.3.1 Estimation of the Relative Risk

Denote γi(β, t) = exp{β′1Xi(t) + β′2Zi(t)}, and

φi(β, t) = exp{β′2Zi(t)E[exp{β′1Xi(t)}|Si ≥ t, Zi(t)].

Then,

ri(β, t) = ηiγi(β, t) + (1− ηi)φi(β, t).

Put ζi(β1, t) = exp(β′1Xi(t)) and νj(β1, t) = E[ζj(β1, t)|Sj ≥ t, Zj(t)]. Since the validation

subsample is representative, we can estimate based on the local linear kernel regression
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which leads to the following estimators of νj(β1, t) for j ∈ V̄ :

ν̂j(β1, t) =
∑
i∈V

ωi(t, Zj(t);h)ζi(β1, t), (2.5)

where h is the bandwidth,

ωi(t, Zj(t);h) =
{s2 − (Zi(t)− Zj(t))s1}I[Si≥t]Kh(Zi(t)− Zj(t))∑
i∈V {s2 − (Zi(t)− Zj(t))s1}I[Si≥t]Kh(Zi(t)− Zj(t))

and sk =
∑

i∈V (Zi(t)− Zj(t))k(I[Si≥t]Kh(Zi(t)− Zj(t))

with Kh(·) = h−dK(·/h) for a d-variate kernel function K(·) (d is the dimension of Z).

Here, ωi(t, Zj(t);h) is known as the effective kernel ( Fan & Gijbels 1995). In Zhou and Wang

(2000), the Nadaraya Watson (1964) estimator was used for the nonparametric smoothing

in the estimation of E[γi(β, t)|Si ≥ t, Zi(t),Wi(t)], where “curse of dimensionality” can

happen if W is of high dimension. The estimator is given by,

ν̂j(β1, t) =
∑
i∈V

ω̃i(t, Zj(t);h)ζi(β1, t), (2.6)

where h is the bandwidth and

ω̃i(t, Zj(t);h) = I[Si≥t]Kh(Zi(t)− Zj(t))/
∑
i∈V

I[Si≥t]Kh(Zi(t)− Zj(t))

with Kh(·) = h−dK(·/h) for a d-variate kernel function K(·) (d is the dimension of Z).

Note that the above estimation method uses only the complete observations in V and

neglects the important information on incomplete observations in V̄ . It follows that this

approach can not be expected to be efficient in certain situations. Also note that even for

one dimensional Z and W , the method in Zhou and Wang (2000) requires a two-dimensional

smoother while the new method needs only one-dimensional smoother. To have a performance

comparable with that of one-dimensional nonparametric smoother using M1 = 50 data

points, for a 2-dimensional nonparameteric smoother, we need about M = M1.2
1 = 109

data points. Hence the loss of efficiency due to highly dimensional smoothing is large and

increasing exponentially fast (see page 317 of Fan and Yao, 2003).
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2.3.2 Improved Estimation of the Relative Risk Function and the Estimated Partial Likelihood

Recall that, W is an auxiliary variable for X and is hence correlated with X. Let

ξi(α, t) = exp(α′Wi(t)), where α is a parameter vector to be chosen. Considering the

conditional expectation of ψi(α, t) = E[ξi(α, t)|Si ≥ t, Zi(t)], ψi(α, t) can also be estimated

by local linear smoothing based on the data in V :

ψ̂j(β1, t) =
∑
i∈V

ωi(t, Zj(t);h)ξi(β1, t), (2.7)

In the above, the weight function , ωi(t, Zj(t);h), kernel Kh(.), bandwidth h and sk

have the same interpretation as in (2.5).

Proposition 2.1. Suppose that the conditions in section (3.5) holds. Given (Sj ≥ t, Zj(t)),
√
nhd[(ν̂j(β1, t)− νj(β1, t)), (ψ̂j(α, t)−ψj(α, t))] is jointly asymptotically normal with mean

zero and covariance matrix

Σ = v0(K)p−1(Zj)

 σ2
1(Zj , t) ρ∗α(Zj , t)σ1(Zj , t)σ2(Zj , t)

ρ∗α(Zj , t)σ1(Zj , t)σ2(Zj , t) σ2
2(Zj , t)

 ,
where v0(K) =

∫
K2(u)du, σ2

1(Zj , t) = V ar[ζj |Sj ≥ t, Zj ], σ
2
2(Zj , t) = V ar[ξj |Sj ≥ t, Zj ],

ρ∗α(Zj , t) is the conditional correlation coefficient between ζj and ξj given (Sj ≥ t, Zj), and

p(·) is the density function of Z.

By the distribution theory for multivariate normal variates, the conditional distribution

of
√
nhd[ν̂j(β1, t)− νj(β1, t)] given

√
nhd[ψ̂j(α, t)− ψj(α, t)] is asymptotically normal with

mean

ρ∗α(Zj , t)
σ1(Zj , t)

σ2(Zj , t)

√
nhd[ψ̂j(α, t)− ψj(α, t)].

The conditional mean can then be estimated by substituting consistent estimators based

on the validation sample for ρ∗α(Zj , t), σ1(Zj , t) and σ2(Zj , t), and replacing ψj(α, t) with

the primary sample based estimator

ψ̄j(β1, t) =
∑

i∈V ∪V̄

ω̄i(t, Zj(t);h)ξi(β1, t), (2.8)
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where h is the bandwidth and

ω̄i(t, Zj(t);h) =
{s̄2 − (Zi(t)− Zj(t))s̄1}I[Si≥t]Kh(Zi(t)− Zj(t))∑

i∈V ∪V̄ {s̄2 − (Zi(t)− Zj(t))s̄1}I[Si≥t]Kh(Zi(t)− Zj(t))

and s̄k =
∑

i∈V ∪V̄ (Zi(t)− Zj(t))k(I[Si≥t]Kh(Zi(t)− Zj(t))

with Kh(·) = h−dK(·/h) for a d-variate kernel function K(·) (d is the dimension of Z).

Here, ω̄i(t, Zj(t);h) is also known as the effective kernel. By equating
√
nhd[ν̂j(β1, t) −

νj(β1, t)] with its estimated conditional mean and solving for νj(β1, t), we obtain an improved

estimate ν̄j(β1, t):

ν̄j(β1, t) = ν̂j(β1, t)− ρ̂∗α(Zj , t)
σ̂1(Zj , t)

σ̂2(Zj , t)
[ψ̂j(α, t)− ψ̄j(α, t)]. (2.9)

The updated estimator ν̄j depends on α which is related to the efficiency of the

estimator.

Proposition 2.2. Assume that the conditions in section (3.5) holds. Given (Sj ≥ t, Zj(t)),

√
nhd[ν̄j(β1, t)− νj(β1, t)]

D−→ N (0,Ω),

where Ω(Zj , t) = σ2
1(Zj , t)[1− (1− ρ)ρ∗2α (Zj , t)]v0(K)p−1(Zj).

When ρ∗α = 0, the estimator ν̄j is asymptotically equivalent to ν̂j , which corresponds

to the kernel regression estimator based on only the validation set V .

By Propositions 2.1 and 2.2, ν̄j is more efficient than ν̂j . The proposed estimator is

consistent for any α. However, its limiting covariance matrix depends on the choices of

α. We chose the optimum value αopt by minimizing the trace of the covariance matrix

of the EPL estimator with ˆbetaEPL substituted by the initial estimator obtained from

complete-cox regression which uses the data available only on the validation set. In particular,

β̂EPL(αopt) is guaranteed to be more efficient than the complete-case estimator β̂EPL(0). In

this study αopt is estimated by minimizing the trace of the covariance matrix of β̂EPL.

The proposed estimation method was similarly used in Chen and Chen (2000) for

estimating parameters in a parametric regression model. Our estimation can be regarded
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as an extension of their estimation approach in nonparametric regression. In addition, we

do not need a working model to specify the regression relation between the surrogate and

the covariate, and hence there is no risk of mispecification of the working model.

We propose to estimate the reduced relative risk ri(β, t) by

r̂i(β, t) = ηiγi(β, t) + (1− ηi)φ̄i(β, t), (2.10)

where φ̄i(β, t) = ν̄i(β1, t) exp{β′2Zi(t)}. Then the parameters β can be estimated by maximizing

the following estimated partial likelihood function:

EPL(β) =
n∏
i=1

{
r̂i(β, Si)∑

j∈R(Si)
r̂j(β, Si)

}δi
, (2.11)

where R(Si) is the risk set at time Si. We denote β̂EPL = arg maxβ EPL(β).

For an extreme case with W = Z, the ψ̂j equals ψ̄j , which leads to ν̄j = ν̂j and that the

resulting estimator β̂EPL is the same as that in Zhou and Wang (2000). In above estimation

of the reduced relative risk, we used an improved estimator φj(β, t) for j ∈ V̄ . The “curse of

dimensionality ” problem in Zhou & Wang (2000) can be avoided for a highly dimensional

W . Our approach would be useful in cases where the number of variables in Z which are

correlated with the missing covariate X is low, whereas the exposure variables of interest

and their auxiliary variables may be of high dimension.



CHAPTER 3: ASYMPTOTIC RESULTS

3.1 Counting Process Formulation of the Cox Model

In this section we will develop the counting process formulation for Cox’s type of

model. We are going to use the framework developed in Anderson and Gill(1982) and

the basic theory from Fleming and Harrington (1991). For simplicity, we assume the time

interval to be finite. We take the time interval as [0,1] without loss of generality. To prove

the asymptotic properties, we consider a sequence of models. A multivariate counting

process with n components is a non-decreasing integer valued stochastic process which can

be expressed as

N (n) = {N (n)
i (t) : 0 ≤ t <∞ ; i = 1, 2, ..., n} .

Here, N
(n)
i is the number of observed events in the life of the ith subject (i = 1, 2, ..., n)

in the nth model ( n=1,2,...) over the time interval [0,1]. For simplicity we shall drop the

subscript n in the following sections.

It is assumed that Ni(0) = 0 for all i and the jump size is +1. This process may count

the number of events in the nth individual that happened upto time t. If it is the death of

the individual then Ni(t) ∈ {0, 1}. Ni(t) is right continuous and no two components of N

jump at the same time. So there will be atmost one jump for each subject in the study.

In our model we consider the nondecreasing family {Ft : t ∈ [0, 1]} of sub σ-algebra on the

probability space {Ω,F ,P}. Ft is known as the filtration which is history of everything that

happens upto time t. We shall use the results for counting processses and local martingales

with respect to the filtration given above. Counting process is associated with a cumulative

intensity process Λ whose components are given by

Λi(t) = Λi(t+ dt)− Λi(t)

= P (Ni(t+ dt)−Ni(t) = 1|Ft−),
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where, Ft− represents everything that has happened upto just before t. This history includes

paths of Ni(.) and also other information about the predictor variables and censoring etc.

A martingale with respect to a filtration Ft is a right-continuous stochastic process M(t)

with left-hand limits such that, in addition to some technical conditions:

(1) M(t) is adapted to history,

(2) E|M(t)| <∞ for all t, and

(3) M(t) possesses the key martingale property E(M(t)|Fs) = M(s) for all s ≤ t.

Following Anderson and Gill (1982), our model can be generalized as

Λi(t+ dt)− Λi(t) = λi(t)dt

= Y i(t)λ0(t)r∗i (t)}dt, (3.1)

where

r∗i (β, t) = ηi exp{β′1Xi(t) + β′2Zi(t)}

+(1− ηi) exp{β′2Zi(t)E[exp{β′1Xi(t)}|Si ≥ t, Zi(t),Wi(t)], (3.2)

Yi(t) = 1, if the ith individual is under observation just before time t and 0 otherwise. Yi(.)

is known as the ”at-risk” indicator process and λ0(t) is the baseline hazard function. We

assume that the covariate processes X(t) and Z(t) are predictable and locally bounded.

Since X(t) and Z(t) are taken to be adapted and left continuous with right hand limits,

these assumptions hold true as illustrated in Fleming and Harrington(1991). Therefore by

considering the counting process N and associated intensity process λ, we can define the

process Mi(t) by

Mi(t) = Ni(t)−
∫ t

0
λi(u)du, i = 1, 2, ..., n, t ∈ [0, 1]. (3.3)

Then Mi(t) are local martingales on the time interval [0,1]. Then local martingales are local

square integrable martingales since the intensity process λ(.) is locally bounded. Following
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the theory and discussions in Fleming and Harrington (1991) , the predictable variation

process of M(t) is given by

< Mi,Mi > =

∫ t

0
λi(u)du (3.4)

and < Mi,Mj >= 0 when i 6= j.

The last equation implies Mi and Mj are orthogonal for i 6= j.

To prove the asymptotic properties of our estimator we use the the following theorem on

local martingales.

Theorem 3.1. If Hi is a local bounded and Ft−−predictable process, then
∑n

i=1

∫
HidMiis

a local square integrable Martingale, and the predictable covariance process is given by

n∑
i=1

<

∫
HidMi,

∫
HidMi >=

n∑
i=1

<

∫
H2
i d < Mi,Mi > .

For the proof of the above , see Theorem 2.4.3 (Page 70) in Fleming and Harrington

(1991).

Using the new notation we write down the logarithm of the partial likelihood function using

the information upto time t as

L(β, t) =

n∑
i=1

∫ t

0
log{ri(u)}dNi(u)−

∫ t

0
log{

n∑
i=1

Yi(u)ri(u)}dN̄(u), (3.5)

where N̄ =
∑n

i=1Ni. For the individuals in the non-validation set the induced relative risk

function r(β, t) is unknown. In section (2.2) we proposed an imputation method for the this

function based on the kernel smoothing approach and then estimated the parameter vector

β = (β′1, β
′
2)′ from the partial likelihood function given in (2.10). Therefore to obtain the

proposed estimator β̂EPL we need to find the solution of the estimating equation

∂

∂β
L(β, t) = 0.

To obtain the above, we substitute r(β, t) by r̂(β, t) given in (2.9). Then the vector of



18

derivatives of the logarithm of partial likelihood function with respect to β can be expressed

as

Û(β, t) =
n∑
i=1

∫ t

0

r̂
(1)
i (u)

r̂i(u)
dNi(u)−

∫ t

0

∑n
i=1 Yi(u)r̂

(1)
i (u)∑n

i=1 Yi(u)r̂i(u)
N̄(u)

=

n∑
i=1

∫ t

0
∆(r̂i(u)dNi(u), (3.6)

where, r̂
(1)
i (u) = ∂

∂β r̂i(u) and

∆(r̂i(u) =
r̂

(1)
i (u)

r̂i(u)
−
∑n

i=1 Yi(u)r̂
(1)
i (u)∑n

i=1 Yi(u)r̂i(u)
.

Using the Doob Meyer decomposition, from (3.1) and (3.3) we rewrite the estimating

equation as

Û(β, t) =

n∑
i=1

∫ t

0
∆(r̂i(u)dMi(u) +

n∑
i=1

∫ t

0
∆(r̂i(u)r̂∗i (u)λ0(u)du. (3.7)

Also,with the estimator of β0, β̂EPL, from the estimating score equation given above,

the cumulative hazard Λ0(t) =
∫ t

0 λ0(w) dw can be consistently estimated as

Λ̂0(t) =

∫ t

0
[

n∑
i=1

Yi(u)r∗i (β̂EPL, u)]−1
n∑
i=1

dNi(u). (3.8)

3.2 Notations

In this section we will define some notations which will be used in the proofs. All the

limits are taken as n → ∞ unless otherwise stated. This implies numbers of subjects in

the validation set and non-validation set, both, nv → ∞ and (n − nv) → ∞. Let d be

the dimension of Zi, nv be the subsample size of the validation set, ρ ∈ (0, 1] be the limit

of ratio of validation observations, limn→∞ nv/n. For a vector a, define |a| =
√
a′a =

√
a2
i .

Also, we write the matrix aa′ = a⊗2 and (aa′)(aa′)′ = a⊗4.

For the relative risk function r (for r̂, r∗, r̂∗, φ and φ̂ as well) , let rj denote the jth derivative
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of r with respect to β, j=0,1,2, where r(0) = r. Define

s(0)(β, t) = E[Yi(t)ri(β, t)],

s(1)(β, t) = (∂/∂β)s(0)(β, t) = E[Yi(t)r
(1)
i (β, t)],

s(2)(β, t) = (∂/∂βτ )s(1)(β, t) = E[Yi(t)r
(2)
i (β, t)],

s(3)(β, t) = E
[
Y (t)

(r(1)
i (β, t)

ri(β, t)

)
r∗i (β0, t)

]
,

s(4)(β, t) = E
[
Y (t)

(r(2)
i (β, t)

ri(β, t)

)
r∗i (β0, t)

]
,

s(5)(β, t) = E
[
Y (t)

(r(1)
i (β, t)

ri(β, t)

)⊗2
r∗i (β0, t)

]
,

s(6)(β, t) = E
[
Y (t)

(r(2)
i (β, t)

ri(β, t)

)⊗2
r∗i (β0, t)

]
,

s(7)(β, t) = E
[
Y (t)

(r(1)
i (β, t)

ri(β, t)

)⊗4
r∗i (β0, t)

]
,

where Yi(t) = I[Si≥t] is the at-risk indicator, r
(1)
i (β, t) = (∂/∂β)ri(β, t) and r

(2)
i (β, t) =

(∂/∂β)r
(1)
i (β, t).

Observe that,

E[Yi(t)ri(β, t)] = E[Yi(t)r
∗
i (β, t)]

Next we define

S(0)(β, t) =
1

n

n∑
i=1

Yi(t)ri(β, t),

S(1)(β, t) = (∂/∂β)S(0)(β, t) =
1

n

n∑
i=1

Yi(t)r
(1)
i (β, t),

S(2)(β, t) = (∂/∂βτ )S(1)(β, t) =
1

n

n∑
i=1

Yi(t)r
(2)
i (β, t),

S(3)(β, t) =
1

n

n∑
i=1

Y (t)
(r(1)

i (β, t)

ri(β, t)

)
r∗i (β0, t),
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S(4)(β, t) =
1

n

n∑
i=1

Y (t)
(r(2)

i (β, t)

ri(β, t)

)
r∗i (β0, t),

S(5)(β, t) =
1

n

n∑
i=1

Y (t)
(r(1)

i (β, t)

ri(β, t)

)⊗2
r∗i (β0, t),

S(6)(β, t) =
1

n

n∑
i=1

Y (t)
(r(2)

i (β, t)

ri(β, t)

)⊗2
r∗i (β0, t),

S(7)(β, t) =
1

n

n∑
i=1

Y (t)
(r(1)

i (β, t)

ri(β, t)

)⊗4
r∗(β0, t),

For k = 1, 2, ..., 7, We similarly define Ŝ(k)(β, t) with r(β, t) replaced by r̂(β, t) and

r∗(β, t) by r̂∗(β, t), respectively.

Now, we define,

φ∗i (β, t) = exp{β′2Zi(t)E[exp{β′1Xi(t)}|Si ≥ t, Zi(t),Wi(t)], (3.9)

and

r∗i (β, t) = ηiγi(β, t) + (1− ηi)φ∗i (β, t). (3.10)

Let Ni(t) = I[Si<t,δi=1] and

Mi(t) = Ni(t)−
∫ t

0
Yi(u)r∗i (β0, u)λ0(u)du, (3.11)

which is a martingale (Kalbfleisch and Prentice (1980), Fleming and Harrington (1991)) as

discussed in section 3.1.

Next, without loss of generality, we assume that t ∈ [0, 1]. Put

∆(φi)(u) = φ
(1)
i (u)/φi(u)− s(1)/s(0),

∆(γi)(u) = γ
(1)
i (u)/γi(u)− s(1)/s(0),

Qi =

∫ 1

0
∆(φi)(u)Yi(u)[γi(β0, u)− φi(β0, u)]λ0(u)du,
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Q∗i =

∫ 1

0
∆(φi)(u)Yi(u)θi(u;α)λ0(u)du,

Q∗∗i =

∫ 1

0
∆(φi)(u)Yi(u)[φ∗i (β0, u)− φi(β0, u)]λ0(u)du,

where φ
(1)
i (β, u) = (∂/∂β)φi(β, u), and

θi(u;α) = [ξi(α, u)− ψi(α, u)] exp(β′2Zi(u))ρ∗α(Zi, u)σ1(Zi, u)/σ2(Zi, u).

By using counting process notation, the score function corresponding to the estimated

partial likelihood function (2.10) at time point t can be written as

Û(β, t) =

n∑
i=1

∫ t

0
∆(r̂i)(β, u)dMi(u) +

n∑
i=1

∫ t

0
∆(r̂i)(β, u)r∗i (β0, u)Yi(u)λ0(u)du, (3.12)

where

∆(r̂i)(u) =
r̂

(1)
i (β, u)

r̂i(β, u)
−
∑n

i=1 Yi(u)r̂
1)
i (β, u)∑n

i=1 Yi(u)r̂i(β, u)
.

Next we define I(β), Σ1(β) and Σ2(β) and Σ(β) respectively, which will be required in

the proof of asymptotic normality of our estimator.

Let

I(β) = −E

∫ 1

0

r(2)
i (β, u)

r
(0)
i (β, u)

−

{
r

(1)
i (β, u)

r
(0)
i (β, u)

}⊗2

− s(2)(β, u)

s(0)(β, u)
+

{
s(1)(β, u)

s(0)(β, u)

}⊗2
 dNi(t)

 ,

Σ1(β) = E

[∫ 1

0
∆(φi)(u)dMi(u)− (1− ρ)Q∗i +Q∗∗i

]⊗2

,

Σ2(β) = E

[∫ 1

0
∆(γi)(u)dMi(u)− 1− ρ

ρ
{Qi − (1− ρ)Q∗i }

]⊗2

, and

Σ(β) = ρΣ1(β) + (1− ρ)Σ2(β).
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From Theorem 3.6 proved in section (3.7) , the asymptotic covariance matrix of β̂EPL is of

sandwich form, which can be consistently be estimated by Ω̂ = Î−1(β)Σ̂(β)Î−1(β), where

Î(β) and Σ̂(β) are the corresponding sample quantities, respectively. Specifically,

Î(β) = −n−1
n∑
i=1

∫ 1

0

 r̂i(2)(β, u)

r̂i
(0)(β, u)

−

{
r̂i

(1)(β, u)

r
(0)
i (β, u)

}⊗2

− Ŝ(2)(β, u)

Ŝ(0)(β, u)
+

{
Ŝ(1)(β, u)

Ŝ(0)(β, u)

}⊗2
 dNi(t),

Σ̂1(β) = n−1
n∑
i=1

{∫ 1

0
∆(φ̂i)(t)[dNi(t)− Yi(t)r̂i(β, t) dΛ̂0(t)]− (1− ρ̂)Q̂∗i + Q̂∗∗i

}⊗2
,

Σ̂2(β) = n−1
v

nv∑
i=1

{∫ 1

0
∆(γ̂i)(t)[dNi(t)− Yi(t)r̂i(β, t) dΛ̂0(t)]− 1− ρ̂

ρ̂
[Q̂i − (1− ρ̂)Q̂∗i ]

}⊗2
,

where

Q̂i =

∫ 1

0
∆(φ̂i)(t)Yi(t)[r̂i(β, t)− φ̂i(β, t)] dΛ̂0(t),

Q̂∗i =

∫ 1

0
∆(φ̂i)(t)Yi(t)θ̂i(t;α) dΛ̂0(t),

Q̂∗∗i =
∫ 1

0 ∆(φ̂i)(t)Yi(t)[φ̂i
∗
(β, t)− φ̂i(β, t)] dΛ̂0(t), ρ̂ = nv/n

∆(φ̂i)(t) = φ̂
(1)
i (β, t)/φ̂i(β, t)− Ŝ(1)(β, t)/Ŝ(0)(β, t),

∆(γ̂i)(t) = γ̂
(1)
i (β, t)/γ̂i(β, t)− Ŝ(1)(β, t)/Ŝ(0)(β, t),

and

θ̂i(t;α) =
[
ξi(α, t)− ψ̄i(α, t)

]
exp(βτ2Zi(t))ρ̂

∗
α(Zi, t)σ̂1(Zi, u)/σ̂2(Zi, t).

3.3 Consistency of β̂EPL

To show the consistency of the estimator β̂EPL we use the inverse function theorem

from Walter and Rudin(1964).

Inverse Function Theorem:

For functions of a single variable, if f is a continuously differentiable function and has a
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nonzero derivative at a, then f is invertible in a neighborhood of a at which the linear

transformation f̂(a) is invertible. For functions of more than one variable, the theorem

states that if the total derivative of a continuously differentiable function F defined from

an open set U of Rn into Rn is invertible at a point p (i.e., the jacobian determinant of F

at p is non-singular), then F is an invertible function near p. That is, an inverse function

to F exists in some neighborhood of F (p). Moreover, the inverse function F−1 is also

continuously differentiable. In the infinite dimensional case, it is required that the Frechet

derivative has a bounded inverse at p.

Consider the inverse function 1
n Û
−1 which is a mapping from p-dimensional Euclidean space

to an open subset of B. β̂EPL is the value at 0 of this function. In the later section we show

that, this inverse function is well defined in an open neighborhood about 0 with probability

tending to 1. Then we can prove that β̂EPL = 1
n Û
−1(0) is a consistent estimate of β0.

3.4 Asymptotic Normality of β̂EPL

To prove the asymptotic normality of the estimator β̂EPL we use martingale approach

under mutivariate counting process framework. The main techniques we employed are

Taylor’s expansion of the score function corresponding to the estimated likelihood function

(2.10), Lenglart inequality, the martingale central limit theorem (see e.g. Fleming and

Harrington, 1991), and nonparametric regression techniques.

We use the first order Taylor’s expansion of the score function Û(β, 1) around β0, which

gives

Û(β, 1)− Û(β0, 1) =
∂

∂β∗
Û(β∗, 1)(β̂ − β0),

where, β∗ is between β̂ and β0. Since β̂EPL is the solution of the score equation Û(β, 1) = 0,

we can rewrite the above equation as

n−1/2Û(β0, 1) = {−n−1 ∂

∂β∗
Û(β∗, 1)}n1/2(β̂EPL − β0).

We will show that

−n−1∂Û(β∗, 1)

∂β

P−→ I(β0).

Then the asymptotic normality of n1/2(β̂EPL−β0) follows by showing that n−1/2Û(β0, 1) is
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asymptotically normal with mean 0 and variance (1− ρ)Σ1(β0) + ρΣ2(β0), where ρ, I(β0),

Σ1(β0) and Σ2(β0) are defined in the section (3.2).

3.5 Definitions and Conditions

The following conditions are needed throughout the remaining part of the dissertation:

(1)
∫ 1

0 λ0(s)ds <∞.

(2) Pr(Y (1) = 1|V ) > 0 for any V .

(3)There exists an open subset B, containing the true β, β0, of the Euclidean space Rp.

In addition, r
(2)
i (β, t) with elements (∂2/∂βi∂βj)r(β, t) exists and is continuous on B

for each t ∈ [0, 1], uniform in t, and φ(β, t) is bounded away from 0 on B × [0, 1].

Furthermore, I(β0) definedin section (3.2) is positive definite.

(4)

E{ sup
B×[0,1]

|Y (t)r∗(j)(β, t)|} <∞, j = 0, 1, 2,

E

 sup
B×[0,1]

|Y (t)

(
r(1)(β, t)

r(β, t)

)⊗2j

r∗(β0, t)|

 <∞, j = 1, 2,

E

 sup
B×[0,1]

|Y (t)

(
r(2)(β, t)

r(β, t)

)⊗j
r∗(β0, t)|

 <∞, j = 1, 2.

(5) Let FY (t),Z be the joint distribution of (Y (t), Z), and f(t, z) = (∂/∂z)FY (t),z(1, z).

For each t ∈ [0, 1], both f(t, z) and φ(β, t) have the 2nd continuous derivative almost

everywhere.

(6) h→ 0, nh2d+3 → 0 and nhd(log n)2 →∞, as n→∞.

3.6 Properties of Local Polynomial estimators

Our proposed estimator is based on local linear estimation which we introduced in

section 2.2. In particular, we employed the local linear kernel smoother (p = 1) in section

(2.2) of chapter 2. In this section we will mention some properties of local linear estimators.

Most of the proofs are given in Fan and Gijbels (1996), Fan and Yao (2005). First we

show, how a local polynomial kernel smoother can be expressed as usual kernel estimator



25

introduced by Nadaraya and Watson.

Define Sk, for k = 0, 1, ..p given by,

Sk =
n∑
i=1

(Xi − x0)kKh(Xi − x0).

Now, let, S = XTWX, the (p+ 1)× (p+ 1) matrix Sk+l, 0 ≤ k, l ≤ p.

Then the estimator β̂ν from section (1.4) can be written as

β̂ν = eTν+1β̂

= eTν+1S
−1XTWy

=
∑
i∈V

Wν

(Xi − x0

h
)Yi(t), (3.13)

where, Wν is called the effective kernel and can be expresses as the following

Wν(x) = eTν+1S
−1{1, xh, ...., (xh)p}K(x)/h (3.14)

In the expression above Wν depends on the design points and locations. That is why it

can adapt automatically to various designs and to boundary estimation. The weights Wν

satisfies the following discrete moment conditions

n∑
i=1

(Xi − x0)qWν

(Xi − x0

h
) = δν,q 0 ≤ ν, q ≤ p, (3.15)

where δν,q = 0 if ν 6= q and 1, otherwise. It follows from the above result, that the local

polynomial estimator is unbiased for estimating βν when the true regression function m(x)

is polynomial of order p. To prove the asymptotic properties we need the asymptotic form

of the estimator in (3.13) .

Let S be the (p+ 1)× (p+ 1) matrix whose(i, j)th element is µi+j−2, where,
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µj =
∫∞
−∞ u

jK(u)du. With these notations we can define the equivalent kernel by,

K∗ν (x) = eTν+1S
(−1){1, x, ...., (x)p}K(x) =

( p∑
l=0

Sνlxl
)
K(x), (3.16)

where Sνl is the (ν + 1, l + 1)-element of S−1..

Note that,

Sk = nhkf(x0)µk{1 + op(1)} (3.17)

From this, it follows that,

S = nhkf(x0)HSH{1 + op(1)} (3.18)

where, H = diag(1, h, .., hp). substituting the above in the definition of W ν , we have

W ν(x) =
1

nhν + 1f(x0)
eTν+1S

(−1){1, x, ...., (x)p}K(x){1 + op(1)} (3.19)

Therefore,

β̂ν =
1

nhν+1f(x0)

n∑
i=1

K∗ν

(Xi − x0)

h
Yi{1 + op(1)} (3.20)

where, K∗ν (x) is already defined in (3.16).

The kernel K∗ν satisfies the following moment conditions:

∫
uqK∗ν (u)du = δνq 0 ≤ ν, q ≤ p,

This is an asymptotic version of the discrete moment conditions in (3.15). Next we give

the expressions for bias and variance of the estimator m̂ν(x0) with respect to the equivalent

kernels K∗ν

bias(m̂ν(x0)) =
(∫

up+1K∗ν (u)du
) ν!

(p+ 1)!
mp+1(x0)hp+1−ν + op(h

p+1−ν), (3.21)
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and

V ar(m̂ν(x0)) =

∫
K∗2ν (u)du

ν!2σ2(x0)

f(x0)nh1+2ν
+ op

( 1

nh1+2ν

)
. (3.22)

Finally, we state two important results. The proofs are given in fan and Gijbels (1996).

If the design density f is uniformly continuous on [a, b] with infx∈[a,b]f(x) > 0, then the

local polynomial estimator has the following uniform convergence under the condition

supx∈[a,b]|m̂(x)−m(x)| = Op

(
hp+1 + { nh

log(1/h)
}−1/2

)
. (3.23)

Under condition (1) in §6.6.2 of Fan and Yao(2005) and if h = O(n1/(2p+3)) and m(p+1)(.)

is continuous at the point x, then as n→∞,

√
nh
[
diag(1, h, ..., hp){β̂p(x)− β0(x)} − hp+1m(p+1)(x)

(p+ 1)!
S−1cp

]
D−→ N{0, σ2(x)S−1S∗S−1/f(x)}, (3.24)
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3.7 PROOFS

First we prove the two propositions mentioned in Chapter 2.

Proof of Proposition 2.1

Note that ν̂j − νj =
∑

i∈V ωi(νi − νj) +
∑

i∈V ωi(ζi − νi).

In the above ωi is the effective kernel weight and can be expressed as

ωi(t, Zj(t);h) =
{s2 − (Zi(t)− Zj(t))s1}I[Si≥t]Kh(Zi(t)− Zj(t))∑
i∈V {s2 − (Zi(t)− Zj(t))s1}I[Si≥t]Kh(Zi(t)− Zj(t))

= Wnv
ν

By standard nonparametric regression techniques (see for example Härdle, 1990; Fan and

Gijbels, 1996 ), it can be shown that the first term above is Op(h
p+1) as in (3.21) (ν =

0), which is of order op(1/
√
nvhd) if one uses an undersmoothing bandwidth such that

nh2p+3 → 0, so that ν̂j − νj =
∑

i∈V ωi(ζi − νi) + op(1/
√
nvhd).

Similarly, ψ̂j − ψj =
∑

i∈V ωi(ξi − ψi) + op(1/
√
nvhd). Then the asymptotic normality can

be obtained by using the Cramé-Wald device and directly computing the asymptotic mean

and variance (see, for example the Lemma 6.3 in Jiang and Mack, 2001).

Let,

Vn1 =
√
nvhd[ν̂j − νj ] =

∑
wi(ζi − νi) + op(1)

and

Wn2 =
√
nvhd[ξ̂j − ψj ] =

∑
wi(ζi − νi) + op(1)

Let Wn = aVn1 + bVn2 + op(1), where a, b are scalars. Now,

E{Wn|Sj ≥ t, Zj(t)} = E{aVn1 + bVn2 |Sj ≥ t, Zj(t)}

E(aVn1) = E
[
a
∑
{ωi(ζi − E(ζi|Sj ≥ t, Zj(t)}|Si ≥ t, Zi(t)

]
→ 0

Similarly, E(bVn2)→ 0.
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Now,

V ar
[
Wn|Sj ≥ t, Zj(t)

]
= V ar{aVn1 + bVn2 |Sj ≥ t, Zj(t)}

= a2V ar
[∑

ωi(ζi − νi)|Si ≥ t, Zi(t)
]

+ b2V ar
[∑

ωi(ξi − ψi)|Si ≥ t, Zi(t)
]

+2abCov
[(∑

ωi(ζi − νi),
∑

ωi(ξi − ψi)
)
|Si ≥ t, Zi(t)

]
−→ (a b)Σ(a b)′,

where,

Σ = v0(K)p−1(Zj)

 σ2
1(Zj , t) ρ∗α(Zj , t)σ1(Zj , t)σ2(Zj , t)

ρ∗α(Zj , t)σ1(Zj , t)σ2(Zj , t) σ2
2(Zj , t)

 ,
where v0(K) =

∫
K2(u)du, σ2

1(Zj , t) = V ar[ζj |Sj ≥ t, Zj ], σ
2
2(Zj , t) = V ar[ξj |Sj ≥ t, Zj ],

ρ∗α(Zj , t) is the conditional correlation coefficient between ζj and ξj given (Sj ≥ t, Zj), and

p(·) is the density function of Z.

Now, by properties of normal distribution, the result in (3.24) and Cramer-Wold device
√
nvh[{ν̂j(β1, t)− νj(β1, t)}, {ψ̂j(α1, t)− ψj(α, t)}]

is jointly asymptotically normal with covariance matrix Σ defined above. Hence the proof

is completed.

Proof of Proposition 2.2 Note that from (2.9)

√
nvhd[ν̄j − νj ] =

√
nvhd[ν̂j − νj ]

−ρ∗(Zj , t)
σ1(Zj , t)

σ2(Zj , t)

√
nvhd[(ψ̂j − ψj)− (ψ̄j − ψj)](1 + op(1)).

The asymptotic normality of
√
nvhd(ν̄j − νj) is obtained by the asymptotic normality

of
√
nvhd(ν̂j − νj),

√
nvhd(ψ̂j − ψj) and

√
nhd(ψ̄j − ψj).

Note that nv
n → ρ as n→∞.
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Using the property of multivariate normal variables and Slutsky’s theorem

√
nvhd(ν̂j − νj)

L−→ N (0,Ω),

where

Ω = v0(K)p−1(Zj)
[
σ2

1(Zj , t) + ρ∗2α (Zj , t)
σ2

1(Zj , t)

σ2
2(Zj , t)

σ2
2(Zj , t)

+ρ∗2α (Zj , t)
σ2

1(Zj , t)

σ2
2(Zj , t)

ρσ2
2(Zj , t)− 2ρ∗2α (Zj , t)

σ1(Zj , t)

σ2(Zj , t)
σ1(Zj , t)σ2(Zj , t)

−2ρρ∗2α (Zj , t)
σ2

1(Zj , t)

σ2
2(Zj , t)

σ2
2(Zj , t) + 2ρρ∗2α (Zj , t)

σ2
1(Zj , t)

σ2
2(Zj , t)

σ2
2(Zj , t)

]
= σ2

1(Zj , t)[1− (1− ρ)ρ∗2α (Zj , t)]v0(K)p−1(Zj)

Hence proved.

Next we need the following theorems and lemmas to show the consistency and asymptotic

normality of our proposed estimator. Some of the proofs are given in Anderson and

Gill(1982) and Zhou PhD Dissertation(1992). We follow their idea and the proofs relevant

to our model.

Theorem 3.2. Under the conditions in section (3.5)

sup
B×[0,1]

‖ φ̄(β, t)− φ(β, t) ‖→ 0 a.s

and

sup
B×[0,1]

‖ r̂(β, t)− r(β, t) ‖→ 0 a.s

PROOF:

Consider the notations defined in section 2.2. Note that from (2.9)

[ν̄j − νj ] = [ν̂j − νj ]

−ρ̂∗(Zj , t)
σ̂1(Zj , t)

σ̂2(Zj , t)
[(ψ̂j − ψj) + (ψ̄j − ψj)]

Now applying the theorem 6.5 in Fan and Yao (2005) given in (3.23) and the condition (6)
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in section 3.5, we have ν̂j − νj
a.s−→ 0.

Similarly from the definition of ψ̂j and ψ̄j , and the same argument for local polynomial

estimators

(ψ̂j − ψj)
a.s−→ 0

(ψ̄j − ψj)
a.s−→ 0.

Also the local polynomial kernel estimates ρ̂∗α(Zj , t), σ̂1(Zj , t) and σ̂1(Zj , t) converges to

ρ∗α(Zj , t), σ1(Zj , t) and σ2(Zj , t) respectively.

Therefore,

sup
B×[0,1]

‖ φ̄(β, t)− φ(β, t) ‖→ 0 a.s.

Now, (r̂i(β, t)− ri(β, t))=0 when ηi = 1.

So

sup
B×[0,1]

‖ r̂(β, t)− r(β, t) ‖→ 0 a.s.

Theorem 3.3. Under the conditions in section , for k = 0, 1, .. . . . , 4

sup
B×[0,1]

‖ Ŝ(k)(β, t)− S(k)(β, t) ‖→ 0 a.s

and

sup
B×[0,1]

‖ Ŝ(k)(β, t)− s(k)(β, t) ‖→ 0 a.s

Proof:

We shall prove the above result for for k = 0. The remaining results can be proved in a

similar way. By the definition of Ŝ, t) and S(0)(β, t) and by the theorem ()

sup
Bx[0,1]

‖ Ŝ(0)(β, t)− S(0)(β, t) ‖→ 0 a.s

Next, by the definition of s(0) and applying the uniform stron law of large numbers

sup
B×[0,1]

‖ S(0)(β, t)− s(0)(β, t) ‖→ 0 a.s
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Now,

sup
B×[0,1]

‖ Ŝ(0)(β, t)− s(0)(β, t) ‖ ≤ sup
B×[0,1]

‖ S(0)(β, t)− S(0)(β, t) ‖

+ sup
B×[0,1]

‖ S(0)(β, t)− s(0)(β, t) ‖

Hence, it follows directly,

sup
B×[0,1]

‖ Ŝ(0)(β, t)− s(0)(β, t) ‖→ 0 a.s

Lemma 3.1.

n−1/2
n∑
i=1

∫ 1

0
(r̂

(k)
i (β0, w)− r(k)

i (β0, w))2Yi(w)r∗i (β0, w)λ0(w) dw
p→ 0, k = 0, 1

n−1/2
n∑
i=1

∫ 1

0
(Ŝ(k)(β0, w)− S(k)(β0, w))2Yi(w)r∗i (β0, w)λ0(w) dw

p→ 0, k = 0, 1.

Proof. The proof of the above theorem is similar to the lemma 2.4 of Zhou (1992,

PhD dissertation)

Lemma 3.2.

n−1/2
n∑
i=1

∫ 1

0
∆(r̂i)(β0, w)Yi(w)r∗i (β0, w)λ0(w) dw

= −n−1/2
n∑
i=1

∫ 1

0
∆(ri)(β0, w)Yi(w)[r̂i(β0, w)− ri(β0, w)]λ0(w) dw

−n−1/2
n∑
i=1

∫ 1

0
∆(ri)(β0, w)Yi(w)[ri(β0, w)− r∗i (β0, w)]λ0(w) dw + op(1)

Proof. By the Taylor expansion The second term of Û(β, t) in (3.7) admits the
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following decomposition

n−1/2
n∑
i=1

∫ 1

0
∆(r̂i)(β0, w)Yi(w)r∗i (β0, w)λ0(w) dw

= −n−1/2
n∑
i=1

∫ 1

0
∆(ri)(β0, w)Yi(w)[r̂i(β0, w)− ri(β,w)]λ0(w)dw

−n−1/2
n∑
i=1

∫ 1

0
∆(ri)(β0, w)Yi(w)[ri(β0, w)− r∗i (β0, w)]λ0(w)dw + op(1).

f(x, y) = f(x0, y0) +
∂f(x, y)

∂x

∣∣∣
x0,y0

(x− x0)

+
∂f(x, y)

∂y

∣∣∣
x0,y0

(y − y0) +O((x− x0)2 + (y − y0)2),

if ∂2f
∂x2

, ∂2f
∂y2

, and ∂2f
∂x∂y are finite. Then

r̂(1)

r̂
=
r̂(1)

r
− r(1)(r̂ − r)

r2
+O[(r̂ − r)2 + (r̂(1) − r(1))2]

Ŝ(1)

Ŝ(0)
=
Ŝ(1)

S(0)
− S(1)(Ŝ − S(0))

S(0)2
+O[(Ŝ − S(0))2 + (Ŝ(1) − S(1))2].

Note that
∑

i ∆r̂i(u)r̂i(u)Yi(u) = 0. It follows that the left side of the result in the lemma

can be expressed as

n−1/2
n∑
i=1

∫ 1

0
∆(r̂i)(β0, w)Yi(w)r∗i (β0, w)λ0(w) dw

= −n−1/2
n∑
i=1

∫ 1

0
∆(r̂i)(β0, w)Yi(w)[r̂i(β0, w)− r∗i (β0, w)]λ0(w) dw

= −n−1/2
n∑
i=1

∫ 1

0
∆(ri)(β0, w)Yi(w)[r̂i(β0, w)− ri(β0, w) + ri(β0, w)− r∗i (β0, w)]λ0(w) dw + op(1)

= −n−1/2
n∑
i=1

∫ 1

0
∆(ri)(β0, w)Yi(w)[r̂i(β0, w)− ri(β0, w)]λ0(w) dw

−n−1/2
n∑
i=1

∫ 1

0
∆(ri)(β0, w)Yi(w)[ri(β0, w)− r∗i (β0, w)]λ0(w) dw + op(1)

where the last equality is from Lemma 2.4 of Zhou (1992). Therefore the result holds.
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Lemma 3.3.

supβ∈B‖ −
1

n

∂Û(β, 1)

∂β
− I(β)‖ P−→ 0.

Furthermore, − 1
n
∂Û(β0)
∂β is positive definite with probability going to 1.

PROOF:

From equation (3.6) we have

Û(β, t) =

n∑
i=1

∫ t

0

[ r̂(1)
i (β, u)

r̂i(β, u)
−
∑n

i=1 Yi(u)r̂
(1)
i (β, u)∑n

i=1 Yi(u)r̂i(β, u)

]
dNi(u) (3.25)

Differentiating with respect to β, we have,

∂Û(β, 1)/∂β =

∫ 1

0

n∑
i=1

[ r̂(2)
i (β, t)

r̂
(0)
i (β, t)

−
( r̂(1)

i (β, t)

r̂
(0)
i (β, t)

)⊗2

− Ŝ
(2)(β, t)

Ŝ(0)(β, t)
+
( Ŝ(1)(β, t)

Ŝ(0)(β, t)

)⊗2]
dNi(t).

Now, we define the process,

C(β, t) =

∫ 1

0

n∑
i=1

[ r̂(2)
i (β, t)

r̂
(0)
i (β, t)

−
( r̂(1)

i (β, t)

r̂
(0)
i (β, t)

)⊗2

− Ŝ
(2)(β, t)

Ŝ(0)(β, t)
+
( Ŝ(1)(β, t)

Ŝ(0)(β, t)

)⊗2]
Y i(t)r∗i (β0, t)λ0(t)dt.

Then,

n−1∂Û(β, 1)/∂β − n−1C(β, 1) =

∫ 1

0
n−1

n∑
i=1

[ r̂(2)
i (β, t)

r̂
(0)
i (β, t)

−
( r̂(1)

i (β, t)

r̂
(0)
i (β, t)

)⊗2

− Ŝ
(2)(β, t)

Ŝ(0)(β, t)
+
( Ŝ(1)(β, t)

Ŝ(0)(β, t)

)⊗2]
dMi(t).

which is a local square integrable martingale by condition (3) and the covariance process is

given by

〈n−1∂Û(β, .)/∂β − n−1C(β, .), n−1∂Û(β, 1)/∂β − n−1C(β, t)〉 = B(β, .),
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where

B(β, 1) =

∫ 1

0

[ 1

n2

n∑
i=1

( r̂(2)
i (β, t)

r̂
(0)
i (β, t)

)⊗2
r∗i (β0, t)λ0(t)

+
1

n2

n∑
i=1

(
(
r̂

(1)
i (β, t)

r̂
(0)
i (β, t)

)⊗4
r∗i (β0, t)λ0(t)

+
1

n

n∑
i=1

( Ŝ(2)(β, t)

Ŝ(0)(β, t)

)⊗2
S(0)(β0, t)λ0(t)

+
1

n

n∑
i=1

( Ŝ(1)(β, t)

Ŝ(0)(β, t)

)⊗4
S(0)(β0, t)λ0(t)

]
dt

+ interaction terms

By the definitions in section (3.2) and conditions in (3.5) all the terms converge to zero.

Therefore ‖B(β, 1)‖B
P−→ 0. Now, by Lenglart’s inequality( Apendix I Anderson and Gill

1982) it follows that 1
nÛ(β, t) and 1

nC(β, t) converges in probability to the same limit

uniformly in β ∈ B. By theorem (3.3) and conditions in section (3.5)

1

n
C(β, t)

P−→
∫ 1

0

n∑
i=1

[
s(3)(β, t)−s(4)(β, t)−s

(2)(β, t)

s(0)(β, t)
s(0)(β0, t)+

(s(1)(β, t)

s(0)(β, t)

)⊗2
s(0)(β0, t)

]
λ0(t)dt

≡ −I(β) uniformly in β in the neighborhood of β0.

Hence,

supβ∈B‖
1

n

∂Û(β, 1)

∂β
− I(β)‖ P−→ 0.

At β = β0 , I(β) = I(β0) which is positive definite by condition (3). Hence the proof is

completed.

Lemma 3.4. Under the conditions in section (3.5) , we have:

n−1/2Û(β0, 1)

= n−1/2
∑
i∈V̄

[∫ 1

0

{
φ

(1)
i (β0, u)

φi(β0, u)
− s(1)(β0, u)

s(0)(β0, u)

}
dMi(s)−

n− nv
n

Q∗i +Q∗∗i

]
+ op(1)

+ n−1/2
∑
i∈V

[∫ 1

0

{
r

(1)
i (β0, u)

ri(β0, u)
− s(1)(β0, u)

s(0)(β0, u)

}
dMi(s)−

n− nv
nv

(Qi −Q∗i
n− nv
n

)

]
.

where Q, Q∗, Q∗∗ are defined in section (3.2).
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Proof. Note that r̂i − ri = (1− ηi)(φ̄i − φi) and ri − r∗i = (1− ηi)(φi − φ∗i ). Applying

the first order expansion x/y = x0/y0 +(x−x0)/y0−(y−y0)x0/y
2
0 +O((x−x0)2 +(y−y0)2)

to r̂(1)/r̂ and Ŝ(1)/Ŝ(0) around (r(1), r) and (s(1), s(0)), respectively, and by lemma 3.2 we

can rewrite the second summation of n−1/2Û(β0, 1) in (3.12) as

∆(ri)(β0, w)Yi(w)[r̂i(β0, w)− ri(β0, w) + ri(β0, w)− r∗i (β0, w)]λ0(w) dw + op(1)

= −n−1/2
n∑
i=1

∫ 1

0
∆(ri)(β0, w)Yi(w)[r̂i(β0, w)− ri(β0, w)]λ0(w) dw

−n−1/2
n∑
i=1

∫ 1

0
∆(ri)(β0, w)Yi(w)[ri(β0, w)− r∗i (β,w)]λ0(w) dw + op(1)

= −n−1/2
∑
j∈V̄

∫ 1

0
(φ̄j − φj)∆(φj)(u)Yj(u)λ0(u)du

+n−1/2
∑
j∈V̄

∫ 1

0
(φ∗j − φj)∆(φj)(u)Yj(u)λ0(u)du+ op(1)

= In1 + In2 + op(1). (3.26)

Note that φ̂j(β, t) = ν̂j(β1, t) exp{β′2Zj(t)}. Since

φ̄j − φj = (φ̂j − φj)− exp{β′2Zj(u)}ρ∗α(Zj , u)
σ1(Zj , u)

σ2(Zj , u)
(ψ̂j − ψ̄j)(1 + op(1))

=
∑
i∈V

ωi(γi − φj)− exp{β′2Zj(u)}[
∑
i∈V

ωi(ξi − ψj)ρ∗α(Zj , u)
σ1(Zj , u)

σ2(Zj , u)

−
∑

i∈V ∪V̄

ω̄i(ξi − ψj)ρ∗α(Zj , u)
σ1(Zj , u)

σ2(Zj , u)
](1 + op(1)) + op(

1√
n

)

=
∑
i∈V

ωi[(γi − φj)− exp{β′2Zj(u)}ρ∗α(Zj , u)
σ1(Zj , u)

σ2(Zj , u)
(ξi − ψj)](1 + op(1))

+
∑

i∈V ∪V̄

ω̄i(ξi − ψj) exp{β′2Zj(u)}ρ∗α(Zj , u)
σ1(Zj , u)

σ2(Zj , u)
(1 + op(1)) + op(

1√
n

),
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the first term in (3.26) can be rewritten as

In1 = −n−1/2
∑
j∈V̄

∫ 1

0
∆(φj)(u)Yj(u)λ0(u)

×
{∑
i∈V

ωi[(γi − φj)− exp{β′2Zj(u)}ρ∗α(Zj , u)
σ1(Zj , u)

σ2(Zj , u)
(ξi − ψj)]

+
∑

i∈V ∪V̄

ω̄i(ξi − ψj) exp{β′2Zj(u)}ρ∗α(Zj , u)
σ1(Zj , u)

σ2(Zj , u)

}
du(1 + op(1)) + op(1)

≡ Jñ1 + Jñ2 + op(1).

Note that

n−1
v

∑
i∈V

Yi(t)Kh(Zi − Zj) = f(t, Zj)(1 + op(1)),

n−1
∑

i∈V ∪V̄

Yi(t)Kh(Zi − Zj) = f(t, Zj)(1 + op(1)),

ωi(t, Zj ;h) = f−1(t, Zj)(1 + op(1)) n−1
v Yi(t)Kh(Zi − Zj),

ω̄i(t, Zj ;h) = f−1(t, Zj)(1 + op(1)) n−1Yi(t)Kh(Zi − Zj),

uniformly for j = 1, · · · , n. Then

Jñ1 = − 1√
n

∑
j∈V̄

∫ 1

0
∆(φj)(u)Yj(u)λ0(u)f−1(u, Zj) ·

1

nv

∑
i∈V

Yi(u)Kh(Zi − Zj)[(γi − φj)− exp{β′2Zj(u)}ρ∗α(Zj , u)
σ1(Zj , u)

σ2(Zj , u)
(ξi − ψj)]du+ op(1)

= − 1√
n

n− nv
nv

∑
i∈V

[Qi −Q∗i ] + op(1),
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Jñ2 = − 1√
n

∑
j∈V̄

∫ 1

0
∆(φj)(u)Yj(u)λ0(u) exp{β′2Zj(u)}ρ∗α(Zj , u)

σ1(Zj , u)

σ2(Zj , u)

× 1

n

∑
i∈V ∪V̄

Yi(u)Kh(Zi − Zj)(ξi − ψj)f−1(u, Zj)du+ op(1)

= − 1√
n

n− nv
n

∑
i∈V ∪V̄

Q∗i + op(1).

Again, since

φ∗j − φj = φ∗j − E{φ∗j |Yi(t) = 1, Zi(t)}

The second term in (3.26) can be rewritten as

In2 = n−1/2
∑
j∈V̄

∫ 1

0
[φ∗j − E{φ∗j |Yi(u) = 1, Zi(u)]∆(φj)(u)Yj(u)λ0(u)

≡ n−1/2
∑
j∈V̄

Q∗∗i .

Therefore, the second summation of n−1/2Û(β, 1) in (3.12) equals

− 1√
n

n− nv
nv

∑
i∈V

[Qi −Q∗i ]−
1√
n

n− nv
n

∑
i∈V ∪V̄

Q∗i + n−1/2
∑
j∈V̄

Q∗∗i + op(1).

Hence, n−1/2Û(β, 1) can be expressed as

n−1/2
∑
i∈V̄

[∫ 1

0

{
φ

(1)
i (β0, u)

φi(β0, u)
− s(1)(β0, u)

s(0)(β0, u)

}
dMi(s)−

n− nv
n

Q∗i +Q∗∗i

]
+ op(1)

+ n−1/2
∑
i∈V

[∫ 1

0

{
r

(1)
i (β0, u)

ri(β0, u)
− s(1)(β0, u)

s(0)(β0, u)

}
dMi(s)−

n− nv
nv

(Qi −Q∗i
n− nv
n

)

]
.

Lemma 3.5. Under the conditions in section (3.5)

n−1Û(β0, 1)
a.s−→ 0.
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PROOF: From lemma (3.4) we can write,

n−1/2Û(β0, 1)

= n−1/2
∑
i∈V̄

[∫ 1

0

{
φ

(1)
i (β0, u)

φi(β0, u)
− s(1)(β0, u)

s(0)(β0, u)

}
dMi(s)−

n− nv
n

Q∗i +Q∗∗i

]
+ op(1)

+ n−1/2
∑
i∈V

[∫ 1

0

{
r

(1)
i (β0, u)

ri(β0, u)
− s(1)(β0, u)

s(0)(β0, u)

}
dMi(s)−

n− nv
nv

(Qi −Q∗i
n− nv
n

)

]
.

Note that Mi(t) is a martingale with mean zero. Also E [Q∗i ] = 0, E [Q∗∗i ] = 0and E [Qi] = 0.

Then, by strong law of large numbers, we have

n−1Û(β0, 1)
a.s−→ 0

3.8 Proof of consistency of β̂EPL

Theorem 3.4. β̂EPL is a consistent estimator for β0.

PROOF: By the conditions in section (3.5) and by lemmas 3.1 and 3.2 We have,

1. n−1 ∂
∂β Û(β, 1) exists and is continuous in an open neighborhood B of β0.

2. −n−1 ∂
∂β Û(β, 1) converges in probability to a fixed function I(β), uniformly in an open

neighborhood of β0. Also every element of I(β) is a continuous function of β in the

neighborhood of β0 and I−1(β0) exiss.

3. −n−1 ∂
∂β Û(β, 1) is negative-definite with probability going to 1;

4. n−1 ∂
∂β Û(β0, 1)

a.s−→ 0

Using the above results, Inverse Function Theorem and following closely the arguments of

Foutz (1977), β̂EPL is a consistent estimator for β0.

3.9 Proof of Asymptotic Normality of β̂EPL

Theorem 3.5.

− 1

n

∂

∂β
Û(β, 1)|β=β∗

a.s−→ I(β0)
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Proof. In lemma (3.3) we have shown that,

− 1
n
∂
∂β Û(β, 1)

a.s−→ I(β) for any β ∈ B and that I(β0) is positive definite, where

I(β0)

=

∫ 1

0

[
s(3)(β0, t)− s(4)(β0, t)−

s(2)(β0, t)

s(0)(β0, t)
s(0)(β0, t) +

(s(1)(β0, t)

s(0)(β0, t)

)⊗2
s(0)(β0, t)

]
λ0(t)dt

=

∫ 1

0

[s(2)(β0, t)

s(0)(β0, t)
−
(s(1)(β0, t)

s(0)(β0, t)

)⊗2]
s(0)(β0, t)λ0(t)dt

I(β) is continuous in β. Now, for β∗ lying between β̂EPL and β0

| − 1

n

∂

∂β
Û(β, 1)− I(β0) |

=| − 1

n

∂

∂β
Û(β, 1)− I(β∗) + I(β∗)− I(β0) |

≤| − 1

n

∂

∂β
Û(β, 1)− I(β) | + |I(β∗)− I(β0)|

The first term on the right hand side goes to zero in probability by lemmma 2. . Since β̂EPL

is consistent estimator for β0 by theorem ..and I is continuous, the second term converges

to zero in probability. Hence,

− 1

n

∂

∂β
Û(β, 1)|β=β∗

a.s−→ I(β0) as n → ∞

.

Theorem 3.6. Suppose that Conditions in section 3.5 holds. Then β̂EPL satisfies

√
n(β̂EPL − β0)

L−→ N (0,Ω(β0)),

where Ω(β0) = I−1(β0)Σ(β0)I−1(β0) with Σ(β0) = (1− ρ)Σ1(β0) + ρΣ2(β0),

Proof:

By (3.12), β̂EPL solves the equation Û(β, 1) = 0. By Taylor expansion, one gets

n−1/2Û(β0, 1) = −n−1∂Û(β∗, 1)

∂β

√
n(β̂EPL − β0), (3.27)
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where β∗ is between β̂EPL and β0. By Lemma (3.3) and consistency of β̂EPL,

−n−1∂Û(β∗, 1)

∂β

P−→ I(β0).

Therefore, to prove the asymptotic normality in the theorem it suffices to show that

n−1/2Û(β0, 1) is asymptotically normal with mean 0 and variance (1− ρ)Σ1(β0) + ρΣ2(β0).

From lemma (3.4) we have,

n−1/2
∑
i∈V̄

[∫ 1

0

{
φ

(1)
i (β0, u)

φi(β0, u)
− s(1)(β0, u)

s(0)(β0, u)

}
dMi(s)−

n− nv
n

Q∗i +Q∗∗i

]
+ op(1)

+ n−1/2
∑
i∈V

[∫ 1

0

{
r

(1)
i (β0, u)

ri(β0, u)
− s(1)(β0, u)

s(0)(β0, u)

}
dMi(s)−

n− nv
nv

(Qi −Q∗i
n− nv
n

)

]
.

Now, ∆φ(β0, u) is locally bounded by the given conditions. By the martingale central

limit theorem the first term above converges weakly to a gaussian process with covariance

(1−ρ)Σ1(β0). The third term above is a sum of independently distributed terms with mean

zero from the validation subsample. Then this term is asymptotically normal with mean zero

and variance ρΣ2(β0). By independence of the two terms, n−1/2Û(β0, 1)
P−→ N(0,Σ(β0))

with Σ(β0) = (1− ρ)Σ1(β0) + ρΣ2(β0).



CHAPTER 4: SIMULATION STUDY

In this section, we conduct finite-sample simulations. The aims of the simulations are

three-fold: one is to examine the small sample behavior of β̂EPL, another is to compare the

performance of our estimator with some existing estimators under various situations, and

the third and the most important is to illustrate that the proposed estimation allows for an

informative auxiliary vector W .

4.1 Generation of Data

The covariates (X,Z) are generated from the following transformation to create correlation:

 X

Z

 =

 1 0.0

0.5 1


 U1

U2

 , (4.1)

where Ui’s are independent and identically distributed as U(0, 2). The failure time T

conditional on covariate X is from an exponential distribution with hazard function

λ(t;X) = lambda exp(β1X + β2Z),

where, λ is the baseline constant hazard. We only consider the case λ = 1.

Then

f(t;X,Z) = exp(β1X1 + β2X2)exp(−te(β1X1+β2X2)).

The auxiliary variable W is generated from

W = X + γ log(T ) + e, (4.2)

where e ∼ N (0, σ2) and σ2 is the parameter controlling the strength of the association

between X and W . We consider the settings with γ = 0, 2 and 4. The model (4.2) with

γ = 2 allows one to explore the effectiveness of the proposed method with an informative
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surrogate W . For γ = 0, it also allows us to compare the performance of the newly proposed

method and that in Zhou and Wang (2000). We do simulations for σ = 0.2, 0.8 and 1.6.

The censoring variable C is uniformly distributed and is independent of the failure time

variable. It is generated from the uniform (0, c) distribution where c is a parameter which

determines the percentage of censoring in the sample.

For β = (ln(2), 0.5))′, the values of c for 20%, 50% and 80% censoring obtained are

0.1353, 0.372 and 0.0965 respectively. The observation time is then obtained from S = T∧C.

The validation set is randomly selected by using P (ηi = 1) = 0.5. We choose the Gaussian

kernel function with the bandwidths h = (σ̂Zn
−1/3 which satisfy the bandwidth conditions

in section 3.5, where σ̂Z is the sample standard deviation of Z.

4.2 Implementation method in finite samples

In the proposed estimation method we obtained the pseudo-partial likelihood by considering

all the subjects both in the validation and non-validation sets. For the subjects in the

non-validation set we estimated the relative risk function by the kernel smoothing approach.

Recall that, the estimated relative risk defined in (2.9) is given by

r̂i(β, t) = ηiγi(β, t) + (1− ηi)φ̄i(β, t),

where φ̄i(β, t) = ν̄i(β1, t) exp{β′2Zi(t)} and for j ∈ V̄ ,

ν̄j(β1, t) = ν̂j(β1, t)− ρ̂∗α(Zj , t)
σ̂1(Zj , t)

σ̂2(Zj , t)
[ψ̂j(α, t)− ψ̄j(α, t)].

Now consider the weight function in the definitions of ν̂j(β1, t), ψ̂i(β, t) and ψ̄i(β, t) in

Section (4.1). ν̂j(β1, t) is undefined when the denominator is zero. It happens when the

risk set in the validation set is a null set. Similar situations occur in estimation of ψ̂i(β, t)

and ψ̄i(β, t). In practice, when we have a finite sample it is indeed possible that there will

be no subject in the validation set at time t which usually happen in the latter part of the

time interval being studied. Consequently r̂i(β1, t) (i = 1, 2, ..., n) becomes impossible to

calculate. In this case we could use either of the following two approaches

(a) perform estimation without using those points where the risk set in the validation set
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becomes empty.

(b) perform estimation after imputation of the relative risk function at those points by

interpolation based on neighboring points.

Since Z is assumed to be a continuous variable, we employed the latter approach in

our study to deal with the problem. A brief description of this approach is given below.

For those observations, for which the risk set is empty, the relative risk functions can be

estimated by the relative risk function of the subject with maximum observation time at

risk in the validation set. The efficiency loss will be negligible if the points are a small

fraction of the data set. Both the methods mentioned above performs reasonably well in

terms of mean squared error.

Then the parameters β can be estimated by maximizing the following estimated partial

likelihood function:

EPL(β) =

n∏
i=1

{
r̂i(β, Si)∑

j∈R(Si)
r̂j(β, Si)

}δi
,

whereR(Si) is the risk set at time Si. We denote β̂EPL = arg maxβ EPL(β). The performance

of the proposed estimator in finite sample is illustrated in the following section.

4.3 Simulation Results

Tables 4.1-4.9 provide the results for the following settings:

1. β0: [ln(2), 0.5]′.

2. n: 100, 200 and 300.

3. Censoring percentage: 20%, 50% and 80%.

4. σ : 0.2, 0.8, 1.6.

5. γ : 0, 2, 4.

6. validation fraction ρ: 30%, 50% and 70%.
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In this section we will discuss the results in regards to bias and asymptotic normality

of β̂EPL. We will also observe the performance of the variance estimator proposed in our

study.

4.3.1 Bias of β̂EPL

Examining the first column in the Tables 4.1-4.9, we find that there exists a bias in

different situations which tends to zero. In all the situations β̂EPL is observed to be a

consistent estimator of true β0.

We observed the effect of four different factors on the bias of the estimator β̂EPL which is

illustrated below.

1. n : As the sample size n increases, the bias decreases.

2. Censoring Percentage: We did not observe any significant effect of censoring percentage

on the bias of β̂EPL.

3. σ: σ represents the strength of association between X and W . Since we include the

information contained in W both from the validation and non-validation sets the effect

of σ2 on the bias of the estimator is not dramatic. When n increases, the bias of β̂EPL

goes to zero.

4. Validation fraction: As the validation fraction increases the bias decreases. In table

4.10, we have shown the bias in the estimator for different validation fractions and

n = 300.

The simulation study shows that the bias is negligible when sample size is large.

4.3.2 Normality of β̂EPL

In chapter 3 we proved the asymptotic normality of the proposed estimator β̂EPL.

In figures 4.1-4.3 we draw the QQplot of the estimates for different values of σ and γ and

n=300. We observe that normality is achieved in all the cases considered. As n increases the

plot improves but normality properties holds pretty much for all the sample sizes considered.

We also observed that censoring percentage, validation fraction and



46

4.3.3 Performance of estimator of standard error for β̂EPL

The sample standard error of β̂EPL is calculated from 500 simulations and shown in

the tables 4.1-4.9 for different settings. This simulation variance can be used as an estimate

of the true variance of the estimator. We also calculated the mean of 500 estimates of

standard error using the closed form estimator suggested in chapter 3. By examining the

corresponding columns in the tables we observe that the estimated standard errors provide

very good estimates of the true standard errors of the EPL estimator. In our implementation

method the standard error estimates tend to underestimate the true standard error of β̂EPL

but the bias in the estimation decreases with increase in the values of n or validation fraction.

The mean of the estimated standard error is quite close to the simulated standard deviations

of β̂EPL.

We also calculated the nominal 95% confidence intervals using the following formula

β̂EPL ± 1.96ŝ.e(βEPL).

The coverage probabilities are listed in the table which ranges from .91-.96 in most of the

cases. This implies that standard error estimates of β̂EPL are quite reasonable.
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4.3.4 Results

Table 4.1: Simulation Results β = [0.693 0.5]′, γ = 0 and 50% censoring

n σ β̂EPL mean median sse mean(ŝe) cp

100 0.2 β̂1 0.701 0.679 0.436 0.405 0.948

β̂2 0.509 0.513 0.310 0.277 0.926

0.8 β̂1 0.744 0.726 0.443 0.399 0.940

β̂2 0.505 0.499 0.307 0.279 0.926

1.6 β̂1 0.761 0.745 0.438 0.404 0.950

β̂2 0.503 0.495 0.304 0.277 0.936

200 0.2 β̂1 0.727 0.700 0.304 0.283 0.936

β̂2 0.503 0.516 0.201 0.194 0.944

0.8 β̂1 0.761 0.720 0.312 0.287 0.930

β̂2 0.492 0.510 0.205 0.197 0.944

1.6 β̂1 0.763 0.727 0.311 0.290 0.922

β̂2 0.494 0.514 0.204 0.199 0.944

300 0.2 β̂1 0.671 0.671 0.238 0.249 0.940

β̂2 0.505 0.504 0.163 0.161 0.946

0.8 β̂1 0.693 0.697 0.243 0.227 0.930

β̂2 0.498 0.503 0.166 0.159 0.942

1.6 β̂1 0.697 0.697 0.242 0.228 0.938

β̂2 0.497 0.504 0.166 0.160 0.952

1β̂EPL denotes the proposed estimator, se is the standard error of β from simulation, mean(ŝe) denotes
the mean of the estimated standard errors and cp denotes the coverage probability.
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Figure 4.1: QQplot of β̂EPL = (β1 β2)′ for n = 300, γ = 0, σ = 0.2, Censoring rate 50%
and Validation fraction 0.5.
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Figure 4.2: QQplot of β̂EPL = (β1 β2)′ for n = 300, γ = 0, σ = 0.8, Censoring rate 50%
and Validation fraction 0.5.
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Table 4.2: Simulation Results β = [0.693 0.5]′, γ = 2 and 50% censoring

n σ β̂EPL mean median sse mean(ŝe) cp

100 0.2 β̂1 0.691 0.683 0.242 0.233 0.938

β̂2 0.500 0.509 0.169 0.161 0.938

0.8 β̂1 0.689 0.687 0.234 0.226 0.942

β̂2 0.500 0.512 0.163 0.159 0.948

1.6 β̂1 0.741 0.717 0.425 0.412 0.950

β̂2 0.516 0.507 0.311 0.278 0.922

200 0.2 β̂1 0.747 0.713 0.296 0.287 0.944

β̂2 0.502 0.513 0.202 0.198 0.952

0.8 β̂1 0.748 0.719 0.291 0.287 0.948

β̂2 0.502 0.512 0.203 0.198 0.952

1.6 β̂1 0.758 0.740 0.296 0.289 0.942

β̂2 0.498 0.503 0.202 0.199 0.950

300 0.2 β̂1 0.691 0.683 0.242 0.233 0.938

β̂2 0.500 0.509 0.169 0.161 0.938

0.8 β̂1 0.689 0.687 0.234 0.226 0.942

β̂2 0.500 0.512 0.163 0.159 0.948

1.6 β̂1 0.688 0.677 0.242 0.227 0.942

β̂2 0.501 0.513 0.167 0.159 0.944
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Figure 4.3: QQplot of β̂EPL = (β1 β2)′ for n = 300, γ = 2, σ = 0.2, Censoring rate 50%
and Validation fraction 0.5.
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Figure 4.4: QQplot of β̂EPL = (β1 β2)′ for n = 300, γ = 2, σ = 0.8, Censoring rate 50%
and Validation fraction 0.5.

−4 −3 −2 −1 0 1 2 3 4
−0.5

0

0.5

1

1.5

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 E
P

L 
es

tim
at

or

−4 −3 −2 −1 0 1 2 3 4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 E
P

L 
es

tim
at

or



53

Table 4.3: Simulation Results β = [0.693 .5]′, γ = 4 and 50% censoring

n σ β̂EPL mean median sse mean(ŝe) cp

100 0.2 β̂1 0.733 0.714 0.436 0.415 0.954

β̂2 0.521 0.511 0.314 0.285 0.922

0.8 β̂1 0.735 0.727 0.435 0.432 0.946

β̂2 0.517 0.509 0.314 0.295 0.922

1.6 β̂1 0.732 0.716 0.443 0.478 0.952

β̂2 0.513 0.510 0.326 0.299 0.926

200 0.2 β̂1 0.738 0.713 0.297 0.287 0.946

β̂2 0.504 0.515 0.205 0.198 0.944

0.8 β̂1 0.738 0.717 0.287 0.285 0.944

β̂2 0.504 0.509 0.202 0.197 0.944

1.6 β̂1 0.743 0.725 0.291 0.288 0.944

β̂2 0.502 0.518 0.201 0.198 0.944

300 0.2 β̂1 0.681 0.677 0.237 0.226 0.944

β̂2 0.503 0.509 0.167 0.159 0.950

0.8 β̂1 0.681 0.679 0.234 0.226 0.942

β̂2 0.504 -0.513 0.166 0.159 0.944

01.6 β̂1 0.685 0.684 0.236 0.226 0.946

β̂2 0.504 0.512 0.165 0.159 0.950
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Table 4.4: Simulation Results β = [0.693 .5]′, γ = 0 and 20% censoring

n σ β̂EPL mean median sse mean(ŝe) cp

100 0.2 β̂1 0.705 0.692 0.346 0.308 0.914

β̂2 0.506 0.503 0.224 0.213 0.934

0.8 β̂1 0.740 0.718 0.350 0.314 0.922

β̂2 0.517 0.504 0.229 0.216 0.940

1.6 β̂1 0.751 0.742 0.347 0.318 0.914

β̂2 0.504 0.503 0.231 0.220 0.940

200 0.2 β̂1 0.722 0.702 0.250 0.220 0.920

β̂2 0.498 0.491 0.167 0.151 0.930

0.8 β̂1 0.754 0.736 0.260 0.229 0.904

β̂2 0.492 0.491 0.168 0.155 0.936

1.6 β̂1 0.761 0.746 0.255 0.225 0.928

β̂2 0.489 0.489 0.171 0.156 0.936

300 0.2 β̂1 0.682 0.670 0.192 0.178 0.942

β̂2 0.497 0.495 0.126 0.123 0.940

0.8 β̂1 0.700 0.695 0.197 0.205 0.932

β̂2 0.494 0.494 0.131 0.136 0.950

01.6 β̂1 0.706 0.690 0.194 0.288 0.936

β̂2 0.493 0.491 0.129 0.173 0.952
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Table 4.5: Simulation Results β = [0.693 .5]′, γ = 2 and 20% censoring

n σ β̂EPL mean median sse mean(ŝe) cp

100 0.2 β̂1 0.743 0.737 0.337 0.318 0.926

β̂2 0.513 0.506 0.233 0.222 0.944

0.8 β̂1 0.737 0.742 0.332 0.315 0.930

β̂2 0.515 0.513 0.231 0.219 0.952

1.6 β̂1 0.737 0.738 0.345 0.326 0.920

β̂2 0.513 0.507 0.231 0.217 0.932

200 0.2 β̂1 0.754 0.742 0.243 0.222 0.922

β̂2 0.492 0.485 0.167 0.154 0.944

0.8 β̂1 0.748 0.735 0.246 0.222 0.934

β̂2 0.500 0.488 0.170 0.154 0.942

1.6 β̂1 0.754 0.732 0.253 0.223 0.928

β̂2 0.493 0.490 0.170 0.155 0.946

300 0.2 β̂1 0.701 0.689 0.190 0.179 0.

β̂2 0.497 0.495 0.126 0.123 0.

0.8 β̂1 0.706 0.691 0.192 0.180 0.944

β̂2 0.493 0.486 0.128 0.125 0.952

01.6 β̂1 0.700 0.683 0.193 0.184 0.938

β̂2 0.495 0.491 0.132 0.127 0.946
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Table 4.6: Simulation Results β = [0.693 .5]′, γ = 4 and 20% censoring

n σ β̂EPL mean median sse mean(ŝe) cp

100 0.2 β̂1 0.716 0.701 0.334 0.334 0.928

β̂2 0.523 0.510 0.232 0.231 0.942

0.8 β̂1 0.731 0.715 0.347 0.318 0.922

β̂2 0.522 0.515 0.235 0.224 0.944

1.6 β̂1 0.736 0.712 0.344 0.319 0.940

β̂2 0.520 0.517 0.233 0.222 0.940

200 0.2 β̂1 0.738 0.718 0.242 0.222 0.936

β̂2 0.499 0.498 0.169 0.155 0.942

0.8 β̂1 0.741 0.725 0.246 0.222 0.920

β̂2 0.496 0.496 0.170 0.154 0.942

1.6 β̂1 0.740 0.729 0.253 0.225 0.926

β̂2 0.497 0.492 0.171 0.162 0.938

300 0.2 β̂1 0.690 0.681 0.187 0.178 0.940

β̂2 0.499 0.495 0.129 0.125 0.946

0.8 β̂1 0.692 0.687 0.190 0.179 0.934

β̂2 0.500 0.501 0.127 0.126 0.950

01.6 β̂1 0.690 0.676 0.189 0.182 0.942

β̂2 0.500 0.503 0.129 0.127 0.952
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Table 4.7: Simulation Results β = [0.693 .5]′, γ = 0 and 80% censoring

n σ β̂EPL mean median sse mean(ŝe) cp

100 0.2 β̂1 0.717 0.699 0.756 0.784 0.946

β̂2 0.531 0.489 0.498 0.490 0.944

0.8 β̂1 0.743 0.710 0.803 0.774 0.952

β̂2 0.532 0.507 0.517 0.468 0.944

1.6 β̂1 0.765 0.752 0.752 0.713 0.960

β̂2 0.529 0.504 0.494 0.463 0.946

200 0.2 β̂1 0.742 0.738 0.492 0.470 0.942

β̂2 0.501 0.489 0.319 0.317 0.956

0.8 β̂1 0.776 0.764 0.491 0.472 0.942

β̂2 0.492 0.491 0.318 0.317 0.964

01.6 β̂1 0.772 0.763 0.497 0.475 0.952

β̂2 0.496 0.502 0.318 0.320 0.960

300 0.2 β̂1 0.690 0.681 0.187 0.178 0.940

β̂2 0.499 0.495 0.129 0.125 0.946

0.8 β̂1 0.692 0.687 0.190 0.179 0.934

β̂2 0.500 0.501 0.127 0.126 0.950

1.6 β̂1 0.700 0.692 0.397 0.376 0.934

β̂2 0.509 0.511 0.259 0.259 0.960



58

Table 4.8: Simulation Results β = [0.693 .5]′, γ = 2 and 80% censoring

n σ β̂EPL mean median sse mean(ŝe) cp

100 0.2 β̂1 0.752 0.690 0.740 0.723 0.962

β̂2 0.536 0.503 0.506 0.474 0.952

0.8 β̂1 0.762 0.735 0.763 0.819 0.958

β̂2 0.532 0.511 0.503 0.505 0.956

1.6 β̂1 0.772 0.731 0.751 0.742 0.956

β̂2 0.536 0.504 0.501 0.485 0.948

200 0.2 β̂1 0.757 0.768 0.489 0.469 0.950

β̂2 0.501 0.496 0.323 0.318 0.952

0.8 β̂1 0.752 0.760 0.481 0.469 0.952

β̂2 0.501 0.500 0.319 0.317 0.960

01.6 β̂1 0.771 0.785 0.484 0.473 0.950

β̂2 0.496 0.502 0.323 0.319 0.956

300 0.2 β̂1 0.688 0.677 0.391 0.374 0.942

β̂2 0.513 0.518 0.259 0.257 0.960

0.8 β̂1 0.689 0.677 0.374 0.368 0.938

β̂2 0.512 0.512 0.260 0.257 0.960

01.6 β̂1 0.692 0.674 0.391 0.375 0.938

β̂2 0.513 0.517 0.262 0.258 0.956
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Table 4.9: Simulation Results β = [0.693 .5]′, γ = 4 and 80% censoring

n σ β̂EPL mean median sse mean(ŝe) cp

100 0.2 β̂1 0.752 0.690 0.740 0.723 0.962

β̂2 0.536 0.503 0.506 0.474 0.952

0.8 β̂1 0.761 0.719 0.762 1.077 0.950

β̂2 0.533 0.481 0.503 0.732 0.946

1.6 β̂1 0.772 0.718 0.745 0.807 0.956

β̂2 0.530 0.505 0.493 0.509 0.946

200 0.2 β̂1 0.745 0.761 0.487 0.469 0.940

β̂2 0.505 0.505 0.323 0.318 0.962

0.8 β̂1 0.747 0.777 0.487 0.472 0.950

β̂2 0.505 0.505 0.323 0.318 0.964

01.6 β̂1 0.762 0.781 0.481 0.471 0.956

β̂2 0.500 0.500 0.323 0.319 0.958

300 0.2 β̂1 0.685 0.670 0.392 0.374 0.934

β̂2 0.515 0.518 0.259 0.258 0.956

0.8 β̂1 0.682 0.674 0.391 0.440 0.938

β̂2 0.517 0.524 0.259 0.285 0.960

01.6 β̂1 0.686 0.675 0.395 0.374 0.936

β̂2 0.517 0.517 0.257 0.258 0.956
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In the following two tables illustrate the effect of validation fraction on the estimator.

Table 4.10: Simulation Results σ = 0.2

n V alidationProportion β̂EPL mean median sse mean(ŝe) cp

100 0.3 β̂1 0.745 0.756 0.537 0.528 0.924

β̂2 0.514 0.500 0.314 0.308 0.928

0.5 β̂1 0.701 0.679 0.436 0.405 0.948

β̂2 0.509 0.513 0.310 0.277 0.926

0.7 β̂1 0.700 0.674 0.370 0.338 0.918

β̂2 0.507 0.497 0.292 0.261 0.912

200 0.3 β̂1 0.731 0.704 0.371 0.352 0.936

β̂2 0.503 0.511 0.215 0.212 0.944

0.5 β̂1 0.727 0.700 0.304 0.283 0.936

β̂2 0.503 0.516 0.201 0.194 0.944

0.7 β̂1 0.713 0.717 0.224 0.269 0.948

β̂2 0.509 0.516 0.185 0.204 0.958

300 0.3 β̂1 0.709 0.703 0.320 0.279 0.920

β̂2 0.495 0.495 0.180 0.170 0.918

0.5 β̂1 0.670 0.671 0.238 0.249 0.940

β̂2 0.505 0.504 0.163 0.161 0.946

0.7 β̂1 0.670 0.661 0.191 0.193 0.946

β̂2 0.505 0.513 0.152 0.151 0.956
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Table 4.11: Simulation Results σ = 0.8

n V alidationProportion β̂EPL mean median sse mean(ŝe) cp

100 0.3 β̂1 0.805 0.788 0.540 0.633 0.938

β̂2 0.511 0.496 0.330 0.357 0.936

0.5 β̂1 0.744 0.726 0.443 0.399 0.940

β̂2 0.505 0.499 0.307 0.279 0.926

0.7 β̂1 0.720 0.701 0.376 0.340 0.920

β̂2 0.507 0.502 0.293 0.261 0.916

200 0.3 β̂1 0.782 0.762 0.385 0.372 0.950

β̂2 0.496 0.503 0.221 0.229 0.944

0.5 β̂1 0.761 0.720 0.312 0.287 0.930

β̂2 0.492 0.510 0.205 0.197 0.944

0.7 β̂1 0.723 0.725 0.226 0.228 0.948

β̂2 0.506 0.514 0.186 0.188 0.960

300 0.3 β̂1 0.746 0.727 0.335 0.287 0.904

β̂2 0.485 0.493 0.187 0.178 0.932

0.5 β̂1 0.693 0.697 0.243 0.227 0.930

β̂2 0.498 0.503 0.166 0.159 0.942

0.7 β̂1 0.676 0.668 0.193 0.193 0.952

β̂2 0.503 0.513 0.152 0.152 0.950
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4.4 Comparison of different methods

In this section, we have explored five different methods to estimate the unknown

parameter in our simulation study.

1. The full-data Cox regression analysis (β̂F ) which uses the the full data without any

missing covariate.

2. The complete-case Cox regression analysis (β̂CC) which uses the data available only

on the validation set.

3. The Cox regression with W substitued for the missing X (β̂N ) for the subjects in the

non-validation set.

4. The estimated partial likelihood and regression analysis (β̂ZW ) originally suggested

by Zhou and Wang (2000), and

5. The newly proposed estimated partial likehood and failure time regression analysis

(β̂EPL)

4.4.1 Performance of different methods

Tables 4.11-4.21 provide the results for the following settings for different methods

discussed above.

1. β0: [ln(2), 0.5]′.

2. n: 100 and 300.

3. Censoring percentage: 20% and 50%.

4. σ : 0.2, 0.8, 1.6.

5. γ : 0, 4.

6. validation fraction ρ: 50%.
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4.4.2 Results

In tables 4.12-4.23 we represent the results obtained using the estimation procedure

suggested in different methods discussed above. For a given sample size bias, robust bias

(median-β0), standard errors, mean of the estimated standard errors and 95% confidence

intervals for the estimators are obtained using 500 independent runs. First we observe that,

both the Complete-case Cox Regression Analysis (β̂cc) and our proposed estimator(β̂EPL)

valid. The estimated partial likelihood method ((β̂ZW )) proposed by Zhou and Wang (2000)

are valid for γ = 0 but biased for γ 6= 0. The naive estimator βN is biased. We do not

observe any significant bias in the means or medians of the proposed estimator. Again,

(β̂EPL) is more efficient than (β̂cc). For γ = 0 and smaller values of σ the efficiency of

Zhou’s estimator is higher than our estimator, but for other situations the standard error of

the estimators are not estimated correctly. Also, for higher values of σ the efficiency of our

method more or less stays the same and the bias remains very small unlike Zhou’s method

where bias is bigger for bigger values of σ in finite samples. Since our method assumes

that W is informative about the hazard of failure given X, the estimator is consistent for

all situations considered even when W is less informative about X. In real life it is very

difficult to find a true surrogate. That is why our method is more useful for practical

purposes. Also, it helps in dimensionality reduction to a certain extent. The simulation

time for our method is approximately one-fourth of that taken by Zhou’s method due to

higher dimensional smoothing involved in their estimation.
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Table 4.12: n = 100, σ = 0.2 and γ = 0

Censoring mean− β0 median− β0 sse mean(ŝe) cp

50% β̂F β̂1 0.018 0.013 0.323 0.292 0.916

β̂2 0.004 -0.015 0.281 0.258 0.956

β̂CC β̂1 0.026 0.024 0.234 0.233 0.930

β̂2 0.017 0.001 0.217 0.209 0.942

β̂N β̂1 0.068 0.076 0.158 0.158 0.926

β̂2 0.024 0.028 0.146 0.145 0.954

β̂ZW β̂1 0.045 0.033 0.346 0.329 0.940

β̂2 0.013 -0.001 0.283 0.257 0.914

β̂EPL β̂1 0.008 -0.014 0.436 0.405 0.948

β̂2 0.009 0.013 0.310 0.277 0.926

20% β̂F β̂1 0.021 0.016 0.248 0.232 0.936

β̂2 0.001 -0.008 0.211 0.205 0.938

β̂CC β̂1 0.020 0.014 0.339 0.340 0.956

β̂2 0.014 -0.001 0.305 0.302 0.956

β̂N β̂1 -0.031 -0.029 0.234 0.223 0.934

β̂2 0.018 0.011 0.210 0.204 0.938

β̂ZW β̂1 0.044 0.038 0.272 0.263 0.966

β̂2 0.013 0.005 0.212 0.204 0.952

β̂EPL β̂1 0.012 -0.001 0.346 0.308 0.914

β̂2 0.006 0.003 0.224 0.213 0.934
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Table 4.13: n = 100, σ = 0.8 and γ = 0

Censoring mean− β0 median− β0 sse mean(ŝe) cp

50% β̂F β̂1 0.018 0.013 0.323 0.292 0.916

β̂2 0.004 -0.015 0.281 0.258 0.956

β̂CC β̂1 0.026 0.024 0.234 0.233 0.930

β̂2 0.017 0.001 0.217 0.209 0.942

β̂N β̂1 -0.369 -0.381 0.206 0.196 0.504

β̂2 0.139 0.028 0.260 0.249 0.914

β̂ZW β̂1 -0.045 -0.052 0.374 0.356 0.940

β̂2 0.055 0.051 0.287 0.262 0.932

β̂EPL β̂1 0.051 0.033 0.443 0.399 0.940

β̂2 0.005 -0.001 0.307 0.279 0.926

20% β̂F β̂1 0.021 0.016 0.248 0.232 0.936

β̂2 0.001 -0.008 0.211 0.205 0.938

β̂CC β̂1 0.020 0.014 0.339 0.340 0.956

β̂2 0.014 -0.001 0.305 0.302 0.956

β̂N β̂1 -0.368 -0.372 0.165 0.156 0.352

β̂2 0.126 0.122 0.202 0.198 0.918

β̂ZW β̂1 -0.046 -0.052 0.272 0.263 0.966

β̂2 0.052 0.053 0.213 0.207 0.942

β̂EPL β̂1 0.046 0.025 0.350 0.314 0.922

β̂2 0.007 0.004 0.229 0.217 0.940
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Table 4.14: n = 300, σ = 0.2 and γ = 0

Censoring mean− β0 median− β0 sse mean(ŝe) cp

50% β̂F β̂1 -0.019 -0.028 0.161 0.164 0.944

β̂2 0.006 0.007 0.146 0.146 0.956

β̂CC β̂1 0.026 0.024 0.234 0.233 0.942

β̂2 0.017 0.001 0.217 0.209 0.942

β̂N β̂1 0.068 0.076 0.158 0.158 0.926

β̂2 0.024 0.028 0.146 0.145 0.954

β̂ZW β̂1 -0.007 -0.012 0.176 0.177 0.950

β̂2 0.010 0.018 0.150 0.147 0.944

β̂EPL β̂1 0.022 0.022 0.238 0.249 0.940

β̂2 0.005 0.004 0.163 0.161 0.946

20% β̂F β̂1 -0.007 -0.019 0.131 0.131 0.948

β̂2 -0.001 -0.002 0.116 0.116 0.952

β̂CC β̂1 -0.009 -0.016 0.190 0.187 0.960

β̂2 0.008 0.002 0.164 0.166 0.954

β̂N β̂1 -0.056 -0.064 0.127 0.126 0.928

β̂2 0.016 0.011 0.116 0.115 0.952

β̂ZW β̂1 -0.006 -0.006 0.141 0.142 0.966

β̂2 0.004 0.003 0.119 0.117 0.952

β̂EPL β̂1 -0.011 -0.023 0.192 0.178 0.942

β̂2 -0.003 -0.005 0.126 0.123 0.940
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Table 4.15: n = 300, σ = 0.8 and γ = 0

Censoring mean− β0 median− β0 sse mean(ŝe) cp

50% β̂F β̂1 -0.019 -0.028 0.161 0.164 0.944

β̂2 0.006 0.007 0.146 0.146 0.956

β̂CC β̂1 0.026 0.024 0.234 0.233 0.942

β̂2 0.017 0.001 0.217 0.209 0.942

β̂N β̂1 -0.392 -0.392 0.114 0.108 0.068

β̂2 0.139 0.139 0.142 0.140 0.830

β̂ZW β̂1 -0.056 -0.055 0.198 0.223 0.932

β̂2 0.033 0.044 0.156 0.157 0.946

β̂EPL β̂1 0.000 0-.004 0.243 0.227 0.930

β̂2 -0.002 0.003 0.166 0.159 0.942

20% β̂F β̂1 -0.007 -0.019 0.131 0.131 0.948

β̂2 -0.001 -0.002 0.116 0.116 0.952

β̂CC β̂1 -0.009 -0.016 0.190 0.187 0.960

β̂2 0.008 0.002 0.164 0.166 0.954

β̂N β̂1 -0.390 -0.393 0.092 0.086 0.018

β̂2 0.123 0.123 0.115 0.112 0.792

β̂ZW β̂1 -0.048 -0.058 0.159 0.172 0.954

β̂2 0.026 0.028 0.123 0.123 0.944

β̂EPL β̂1 0.007 0.004 0.243 0.227 0.930

β̂2 -0.007 0.031 0.166 0.159 0.942
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Table 4.16: n = 100, σ = 0.2 and γ = 2

Censoring mean− β0 median− β0 sse mean(ŝe) cp

50% β̂F β̂1 0.018 0.013 0.323 0.292 0.916

β̂2 0.004 -0.015 0.281 0.258 0.956

β̂CC β̂1 0.026 0.024 0.234 0.233 0.930

β̂2 0.017 0.001 0.217 0.209 0.942

β̂N β̂1 -0.988 -0.983 0.084 0.068 0.0

β̂2 0.169 0.160 0.237 0.244 0.920

β̂ZW β̂1 -0.434 -0.484 0.574 0.373 0.670

β̂2 0.174 0.172 0.324 0.274 0.892

β̂EPL β̂1 0.052 0.034 0.432 0.403 0.948

β̂2 0.016 0.014 0.312 0.280 0.928

20% β̂F β̂1 0.021 0.016 0.248 0.232 0.936

β̂2 0.001 -0.008 0.211 0.205 0.938

β̂CC β̂1 0.020 0.014 0.339 0.340 0.956

β̂2 0.014 -0.001 0.305 0.302 0.956

β̂N β̂1 -1.003 -1.000 0.071 0.062 0.0

β̂2 0.155 0.151 0.180 0.195 0.924

β̂ZW β̂1 -0.455 -0.466 0.467 0.292 0.550

β̂2 0.163 0.159 0.241 0.214 0.862

β̂EPL β̂1 0.050 0.044 0.337 0.318 0.926

β̂2 0.013 0.006 0.233 0.222 0.944
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Table 4.17: n = 100, σ = 0.8 and γ = 2

Censoring mean− β0 median− β0 sse mean(ŝe) cp

50% β̂F β̂1 0.018 0.013 0.323 0.292 0.916

β̂2 0.004 -0.015 0.281 0.258 0.956

β̂CC β̂1 0.026 0.024 0.234 0.233 0.930

β̂2 0.017 0.001 0.217 0.209 0.942

β̂N β̂1 -0.961 -0.955 0.076 0.064 0.0

β̂2 0.177 0.164 0.243 0.244 0.904

β̂ZW β̂1 -0.325 -0.368 0.569 0.374 0.721

β̂2 0.141 0.140 0.325 0.271 0.888

β̂EPL β̂1 0.054 0.046 0.435 0.406 0.942

β̂2 0.015 0.008 0.310 0.281 0.920

20% β̂F β̂1 0.021 0.016 0.248 0.232 0.936

β̂2 0.001 -0.008 0.211 0.205 0.938

β̂CC β̂1 0.020 0.014 0.339 0.340 0.956

β̂2 0.014 -0.001 0.305 0.302 0.956

β̂N β̂1 -0.969 -0.966 0.064 0.057 0.0

β̂2 0.163 0.168 0.186 0.195 0.910

β̂ZW β̂1 -0.328 -0.354 0.450 0.291 0.658

β̂2 0.128 0.124 0.238 0.212 0.878

β̂EPL β̂1 0.044 0.049 0.332 0.315 0.930

β̂2 0.015 0.013 0.231 0.219 0.952
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Table 4.18: n = 100, σ = 0.2 and γ = 4

Censoring mean− β0 median− β0 sse mean(ŝe) cp

50% β̂F β̂1 0.018 0.013 0.323 0.292 0.916

β̂2 0.004 -0.015 0.281 0.258 0.956

β̂CC β̂1 0.026 0.024 0.234 0.233 0.930

β̂2 0.017 0.001 0.217 0.209 0.942

β̂N β̂1 -0.852 -0.849 0.042 0.034 0.0

β̂2 0.104 0.090 0.239 0.245 0.952

β̂ZW β̂1 -0.126 -0.127 0.595 0.375 0.845

β̂2 0.081 0.085 0.335 0.273 0.938

β̂EPL β̂1 0.040 0.021 0.436 0.415 0.954

β̂2 0.021 0.011 0.314 0.285 0.922

20% β̂F β̂1 0.021 0.016 0.248 0.232 0.936

β̂2 0.001 -0.008 0.211 0.205 0.938

β̂CC β̂1 0.020 0.014 0.339 0.340 0.956

β̂2 0.014 -0.001 0.305 0.302 0.956

β̂N β̂1 -0.865 -0.864 0.037 0.032 0.0

β̂2 0.092 0.088 0.180 0.195 0.960

β̂ZW β̂1 -0.130 -0.141 0.496 0.288 0.

β̂2 0.074 0.082 0.250 0.215 0.

β̂EPL β̂1 0.023 0.008 0.334 0.334 0.928

β̂2 0.023 0.010 0.232 0.231 0.942
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Table 4.19: n = 100, σ = 0.8 and γ = 4

Censoring mean− β0 median− β0 sse mean(ŝe) cp

50% β̂F β̂1 0.018 0.013 0.323 0.292 0.916

β̂2 0.004 -0.015 0.281 0.258 0.956

β̂CC β̂1 0.026 0.024 0.234 0.233 0.930

β̂2 0.017 0.001 0.217 0.209 0.942

β̂N β̂1 -0.845 -0.846 0.041 0.034 0.0

β̂2 0.108 0.093 0.241 0.245 0.946

β̂ZW β̂1 -0.102 -0.127 0.606 0.401 0.894

β̂2 0.118 0.108 0.336 0.271 0.888

β̂EPL β̂1 0.042 0.034 0.435 0.432 0.946

β̂2 0.074 0.085 0.336 0.275 0.794

20% β̂F β̂1 0.021 0.016 0.248 0.232 0.936

β̂2 0.001 -0.008 0.211 0.205 0.938

β̂CC β̂1 0.020 0.014 0.339 0.340 0.956

β̂2 0.014 -0.001 0.305 0.302 0.956

β̂N β̂1 -0.859 -0.857 0.035 0.031 0.0

β̂2 0.096 0.097 0.182 0.195 0.952

β̂ZW β̂1 -0.120 -0.109 0.488 0.290 0.

β̂2 0.071 0.073 0.251 0.215 0.

β̂EPL β̂1 0.034 0.022 0.347 0.318 0.922

β̂2 0.022 0.015 0.235 0.224 0.944
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Table 4.20: n = 300, σ = 0.2 and γ = 2

Censoring mean− β0 median− β0 sse mean(ŝe) cp

50% β̂F β̂1 -0.019 -0.028 0.161 0.164 0.944

β̂2 0.006 0.007 0.146 0.146 0.956

β̂CC β̂1 0.026 0.024 0.234 0.233 0.942

β̂2 0.017 0.001 0.217 0.209 0.942

β̂N β̂1 -0.994 -0.991 0.048 0.039 0.0

β̂2 0.166 0.169 0.127 0.137 0.796

β̂ZW β̂1 -0.0 -0.0 0. 0. 0.

β̂2 0. 0. 0. 0. 0.

β̂EPL β̂1 -0.003 0-.010 0.242 0.233 0.938

β̂2 -0.001 0.009 0.169 0.161 0.938

20% β̂F β̂1 -0.007 -0.019 0.131 0.131 0.948

β̂2 -0.001 -0.002 0.116 0.116 0.952

β̂CC β̂1 -0.009 -0.016 0.190 0.187 0.960

β̂2 0.008 0.002 0.164 0.166 0.954

β̂N β̂1 -1.001 0.152 0.044 0.034 0

β̂2 -1.007 0.154 0.100 0.110 0.748

β̂ZW β̂1 -0.0 -0.0 0. 0. 0.

β̂2 0. 0. 0. 0. 0.

β̂EPL β̂1 0.007 -0.004 0.190 0.179 0.

β̂2 -0.006 -0.011 0.128 0.125 0.
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Table 4.21: n = 300, σ = 0.8 and γ = 2

Censoring mean− β0 median− β0 sse mean(ŝe) cp

50% β̂F β̂1 -0.019 -0.028 0.161 0.164 0.944

β̂2 0.006 0.007 0.146 0.146 0.956

β̂CC β̂1 0.026 0.024 0.234 0.233 0.942

β̂2 0.017 0.001 0.217 0.209 0.942

β̂N β̂1 -0.965 -0.963 0.044 0.129 0.0

β̂2 0.175 0.176 0.036 0.137 0.770

β̂ZW β̂1 -0.399 -0.395 0.325 0.213 0.520

β̂2 0.147 0.145 0.180 0.157 0.808

β̂EPL β̂1 0.004 0-.006 0.234 0.226 0.942

β̂2 0.000 0.012 0.163 0.159 0.948

20% β̂F β̂1 -0.007 -0.019 0.131 0.131 0.948

β̂2 -0.001 -0.002 0.116 0.116 0.952

β̂CC β̂1 -0.009 -0.016 0.190 0.187 0.960

β̂2 0.008 0.002 0.164 0.166 0.954

β̂N β̂1 -0.972 -0.972 0.039 0.033 0.0

β̂2 0.161 0.164 0.102 0.110 0.716

β̂ZW β̂1 -0.388 -0.399 0.262 0.168 0.412

β̂2 0.127 0.128 0.138 0.122 0.784

β̂EPL β̂1 0.012 -0.002 0.192 0.180 0.944

β̂2 -0.007 -0.014 0.128 0.126 0.952
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Table 4.22: n = 300, σ = 0.2 and γ = 4

Censoring mean− β0 median− β0 sse mean(ŝe) cp

Censoring mean− β0 median− β0 sse mean(ŝe) cp

50% β̂F β̂1 -0.019 -0.028 0.161 0.164 0.944

β̂2 0.006 0.007 0.146 0.146 0.956

β̂CC β̂1 0.026 0.024 0.234 0.233 0.942

β̂2 0.017 0.001 0.217 0.209 0.942

β̂N β̂1 -0.856 -0.854 0.024 0.020 0.0

β̂2 0.097 0.099 0.129 0.138 0.910

β̂ZW β̂1 -0.293 -0.292 0.331 0.213 0.608

β̂2 0.111 0.111 0.181 0.158 0.878

β̂EPL β̂1 -0.013 0-.016 0.237 0.226 0.942

β̂2 0.003 0.009 0.167 0.159 0.944

20% β̂F β̂1 -0.007 -0.019 0.131 0.131 0.948

β̂2 -0.001 -0.002 0.116 0.116 0.952

β̂CC β̂1 -0.009 -0.016 0.190 0.187 0.960

β̂2 0.008 0.002 0.164 0.166 0.954

β̂N β̂1 -0.868 -0.867 0.023 0.018 0.0

β̂2 0.087 0.090 0.100 0.110 0.904

β̂ZW β̂1 -0.310 -0.301 0.284 0.167 0.508

β̂2 0.103 0.096 0.143 0.123 0.814

β̂EPL β̂1 -0.003 -0.011 0.187 0.178 0.940

β̂2 -0.002 -0.005 0.129 0.125 0.946
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Table 4.23: n = 300, σ = 0.8 and γ = 4

Censoring mean− β0 median− β0 sse mean(ŝe) cp

50% β̂F β̂1 -0.019 -0.028 0.161 0.164 0.944

β̂2 0.006 0.007 0.146 0.146 0.956

β̂CC β̂1 0.026 0.024 0.234 0.233 0.942

β̂2 0.017 0.001 0.217 0.209 0.942

β̂N β̂1 -0.851 -0.850 0.024 0.019 0.0

β̂2 0.100 0.099 0.128 0.138 0.908

β̂ZW β̂1 -0.218 -0.191 0.335 0.221 0.682

β̂2 0.086 0.081 0.183 0.159 0.892

β̂EPL β̂1 -0.012 0-.014 0.234 0.226 0.942

β̂2 0.004 0.013 0.166 0.160 0.944

20% β̂F β̂1 -0.007 -0.019 0.131 0.131 0.948

β̂2 -0.001 -0.002 0.116 0.116 0.952

β̂CC β̂1 -0.009 -0.016 0.190 0.187 0.960

β̂2 0.008 0.002 0.164 0.166 0.954

β̂N β̂1 -0.868 -0.867 0.023 0.018 0.0

β̂2 0.087 0.090 0.100 0.110 0.904

β̂ZW β̂1 -0.221 -0.217 0.284 0.169 0.614

β̂2 0.076 0.074 0.143 0.123 0.874

β̂EPL β̂1 -0.001 -0.006 0.190 0.179 0.934

β̂2 -0.001 0.001 0.127 0.125 0.950



CHAPTER 5: REAL DATA ANALYSIS

We apply the proposed approach to the data from the Mayo Clinic trial in primary

biliary cirrhosis (PBC) of the liver conducted between 1974 and 1984. PBC is a rare but

fatal chronic liver disease of unknown cause, with a prevalence of about 50-cases-per-million

population. The primary pathologic event appears to be the destruction of interlobular

bile ducts, which may be mediated by immunologic mechanisms. A total of 424 PBC

patients, referred to Mayo Clinic during that ten-year interval, met eligibility criteria for

the randomized placebo controlled trial of the drug D-penicillamine. The first 312 cases in

the data set participated in the randomized trial and contain largely complete data. The

additional 112 cases did not participate in the clinical trial, but they agreed to have basic

measurements recorded and to be followed for survival. Six of those cases were lost to

follow-up shortly after diagnosis, so the data here are on an additional 106 cases as well

as the 312 randomized participants.A clinical background description and a more extended

discussion for the trial and the covariates recorded can be found in Dickson et al. [29] and

Markus et al. [30].

The PBC data can be used to: estimate a survival distribution; test for differences

between two groups; and estimate covariate effects via a regression model. The variables

involved in our specfic analysis include id: case number; days: number of days between

registration and the earlier of death, transplantation, or study analysis time; status: status

of censoring; bili: serum bilirubin (in mg/dl); chol: serum cholesterol (inmg/dl) and Age:

age in days.

In this analysis, we are particularly interested in the effect of patients’ serum cholesterol

and age on the survival of the patients. This type of failure time data can be modeled by

the Cox Proportional hazards models with an unknown baseline hazard function. However,
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about 31% outcomes of cholesterol were missing in this data set. Removing those observations

can lead to biased estimates and standard errors. We noted that the outcomes of serum

bilirubin were completely obtained with no missing values. Also preliminary analysis showed

that there is a significant correlation (.4490) between serum cholesterol and bilirubin. Also,

intuitively bilirubin has some additional effect on the hazard of failure and we would like

to use that information efficiently. To illustrate this effect, we performed a complete cox

regression analysis for two different situations.

Table 5.1: Regression Analysis of Primary Biliary Cirrhosis (PBC) data
Method Variable Estimates of the

Parameter
Standard Error 95% Confidence

Interval
logbili < 1.6

CC
logchol 0.271 0.393 (-0.499, 1.040)

age 0.055 0.012 (0.031, 0.079)
logbili ≥ 1.6

ZW
logchol -0.635 0.345 (-1.312, 0.042)

age -0.005 0.016 (-0.037, 0.027)

We observe that, the coefficient and standard error estimates are quite different for both

the situations and the 95% confidence intervals for the coefficient of age are nonoverlapping.

Though there is a significant correlation between Bilirubin and Cholesterol, from the above

analysis, we can conclude that serum bilirubin has some additional effect on the hazard of

failure. Also it may not be a true surrogate for cholesterol. Hence, our proposed method can

be applied to this dataset considering serum bilirubin as the informative auxiliary covariate.

In a preliminary step, we take the logarithmic transformation of cholesterol and bilirubin as

suggested in the clinical literature. The following table displays the analysis results based

on the the CC method, the method proposed by Zhou and Wang(2000) and the proposed

method EPL. The CC method uses only 284 complete-case observations and the other two

methods use all 418 observations. Variables ”logchol” denote the logarithm of cholesterol.

The estimates of the coefficients and their standard errors are given in the table.

The regression analysis confirm that both serum cholesterol and age are significantly

related to the time to event. The variance estimate for ˆβEPL is calculated using the proposed

estimator Ω̂(β). For estimating the effect of serum cholesterol and age, there is a reasonable

efficiency gain by using the two methods based on partial likelihood approach over the

complete case cox regression analysis. Note that there is a discrepancy between the estimates
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Table 5.2: Regression Analysis of Primary Biliary Cirrhosis (PBC) data
Method Variable Estimates of the

Parameter
Standard Error 95% Confidence

Interval

CC
logchol 0.853 0.214 (0.432, 1.273)

age 0.048 0.010 (0.067, 0.029)

ZW
logchol 1.054 0.168 (0.726, 1.383)

age 0.046 .008 (0.032, 0.061)

EPL
logchol 0.871 0.212 (0.456, 1.287)

age 0.043 0.007 (0.029, 0.058)

from complete data and Zhou and Wangs estimate which could be due to the fact that the

latter method does not consider the additional effect contributed by the auxiliary covariate.

In our simulation we observed that the standard error of the estimates were underestimated

in Zhou and Wang method when auxiliary variable was informative. In the real data analysis

also the standard error estimate for serum cholesterol is underestimated. Moreover, the

standard error estimates in our method is comparable to Zhou and Wang method whereas

the calculation time is much less compared to their method since it is not affected by the

curse of dimensionality.



CHAPTER 6: CONCLUSION AND FUTURE WORK

In this dissertation we have studied the a new estimated partial likelihood method

(EPL)for dealing with the problem missing and auxiliary covariate in Failure time data. We

compared the proposed method with Zhou and Wang’s (1992)estimated partial likelihood

method (1992). We assumed that the auxiliary covariate Z is continuous. In our model the

auxiliary covariate W is assumed to be informative about the hazard of failure conditional

on X, where X is the exposure variable which is missing for some of the subjects in the study

cohort. We discussed the asymptotic properties of the proposed estimator. We have shown

that the proposed estimator β̂EPL is consistent for the parameter β and is asymptotically

normally distributed. We also derived the closed form expression for a consistent estimator

of the asymptotic covariance of β̂EPL.

In the simulation study, we analyzed the finite sample properties for the proposed estimator

and compared the performance with several existing methods . It was observed that in most

practical scenarios our estimator performs favorably and it is more efficient than the Cox

partial likelihood estimator based only on the validation set. It was also found that the

proposed method performs much better than Zhou and wang’s proposed EPL estimator

for different settings where auxiliary covariate W is informative about the hazard of failure

given X. In real life we often have auxiliary covariates which are not true surrogates for X.

That is why it outperforms existing methods for many practical situations.

A brief description of the nice properties of our proposed estimator β̂EPL is given below:

(a) The proposed method allows W to be higher dimensional and to be informative in the

sense that , conditional X, it provide additional information about hazard of failure.

(b) The proposed method is efficient in certain situations even if the ratio of validation

observations is small.
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(c) The method fully utilizes the information about β in the non validation set since the

partial likelihood includes all the individuals in the cohort.

(d) We do not have any rare disease assumption in this method.

(e) The validation set in our model is taken as a simple random sample from the cohort.

This model can be extended to different sampling schemes like stratified sampling or

outcome dependent sampling.

(f) The method is computationally straight forward and the computation time is much

less than Zhou and Wang’s method.

(g) The problem of curse of dimensionality has been partially removed.

(h) As illustrated in the simulation study Zhou and Wang’s estimator is consistent for

different values of σ when γ = 0. In finite samples their method is more efficient for

very small value of σ but for higher values of sigma both methods are almost equally

efficient and their estimator has more bias than our estimator. Also for situations

where γ 6= 0, the consistency property of their estimator does not hold whereas our

estimator remains to be consistent.

CONCERNS:

We have few concerns with the proposed method.

1. The proposed estimator will not perform well if the dimension of Z is high. In such

situations we can introduce some additive structure.

2. We observed that there was no substantial gain in efficiency for β1 compared to

Complete-case Cox regression analysis. Since we introduced a new parameter α in

the model, this result is expected. We employed an intuitive method to choose alpha.

Future researches might suggest a better method for choosing the optimum α.

3. We used the same bandwidth as suggested by Zhou and Wang (2000) in our estimation.

Though it performs reasonably well, it would be worthwhile to consider a bandwidth

selection criteria like generalized cross-validation.
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4. In recent researches it is shown that we can improve the efficiency of our estimator by

including a suitable weight in the partial likelihood score equation. In future research

we should consider such modification for our model.

FUTURE RESEARCH:

In our study, the sampling scheme is simple random sampling. We would like to extend

our method for outcome dependent sampling which is a cost effective sampling strategy.

In the ODS design with a continuous outcome variable, one observes the exposure with a

probability, maybe unknown, depending on the outcome. In practice, multivariate data arise

in many contexts, such as longitudinal data or data collected on the basis of participating

cluster units. In that case our model can be extended to a stratified model.
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