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Abstract. In this paper, we establish Gevrey class regularity of solutions to

a class of dissipative equations on the whole space Rd, for initial data in cer-

tain potential spaces. The equation we consider has an analytic nonlinearity
and the dissipation operator is a power (possibly fractional) of the Laplacian.

This generalizes the results in [15] to the Lp setting, where the space peri-

odic case was considered. Additionally, we allow for rougher initial data and
extend the results to the case of the dissipation operator being a fractional

Laplacian. The main tool is a generalization of the Kato-Ponce inequality
([28]) to Gevrey spaces. As an application, we obtain temporal decay of so-

lutions in higher Sobolev norms for a large class of equations including the

Navier-Stokes equations, the subcritical quasi-geostrophic equations, a variant
of the Burger’s equation with a polynomial nonlinearity, and the generalized

Cahn-Hilliard equation.

1. Introduction

It is well-known that regular solutions of many dissipative equations, such as
the Navier-Stokes equations(NSE), the Kuramoto-Sivashinsky equation, the surface
quasi-geostrophic equation and the Smoluchowski equation are in fact analytic, in
both space and time variables ([33], [17], [3], [14], [45]). In fluid-dynamics, the
space analyticity radius has an important physical interpretation: at this length
scale the viscous effects and the (nonlinear) inertial effects are roughly comparable.
Below this length scale the Fourier spectrum decays exponentially ([16], [25], [26],
[13]). In other words, the space analyticity radius yields a Kolmogorov type length
scale encountered in turbulence theory. This fact concerning exponential decay
can be used to show that the finite dimensional Galerkin approximations converge
exponentially fast in these cases. For instance, in the case of the complex Ginzburg-
Landau equation, Doelman and Titi ([12]) used radius of analyticity estimates to
rigorously explain numerical observation that the solutions to this equation can be
accurately represented by a very low-dimensional Galerkin approximation. Other
applications of analyticity radius occur in establishing sharp temporal decay rates
of solutions in higher Sobolev norms ([36]), establishing geometric regularity criteria
for the Navier-Stokes equations, and in measuring the spatial complexity of fluid
flow (see [30], [29], [23]).
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In this paper, we consider a nonlinear evolution equation on a Banach space L
of the form

ut + Λκu = G(u), (κ > 1, t ≥ 0), u0 ∈ L.(1.1)

The Banach space L is a potential space of adequate (positive or negative) regu-
larity. The operator Λ = (−∆)1/2 in our case, and is assumed to be defined on
dense subspace D(Λ) ⊂ L. The term G(u) is a possibly nonlocal, analytic function
of u; see equation (2.3) for a precise description. We will also assume that L is a
Banach space contained in the Schwartz space of distributions S ′(Rd), where S(Rd)
denotes the usual Schwartz space of test functions. The equation (1.1) will model
dissipative evolutionary partial differential equations on the whole space Rd, either
with no boundary or with the space periodic boundary condition.

In this setting, we establish analyticity of solutions to (1.1) and provide a (sharp)
lower estimate for the time evolution of the space analyticity radius. It should be
noted that the class of equations we consider encompasses many nonlocal equa-
tions (for instance, the Navier-Stokes and the quasi-geostrophic equations). There-
fore even the fact that the solutions are analytic for positive times, do not fol-
low from Cauchy-Kovaleskaya type theorems. In case the dissipation operator is
Λκ = Λ2 = (−∆) (i.e., κ = 2), equation (1.1) with an analytic nonlinearity was
first studied by Ferrari and Titi ([15]) and Cao, Rammaha, and Titi ([6]) in the
space periodic case and the sphere case respectively. Their approach was based on
energy technique and their space of initial data comprised of sufficiently smooth
functions belonging to adequate (L2-based) Sobolev spaces. By contrast, we work
on certain Lp-based Banach spaces of initial data which allows us to consider much
rougher (even distributional) initial data in certain situations. We take the mild
solution approach initiated by Fujita and Kato ([21]), Giga and Miyakawa ([22])
and Weissler ([46]) for the Navier-Stokes equations.

Following Foias and Temam ([18]), we study the evolution of Gevrey norms
‖etγΛu‖L for a suitable Banach spaces L and γ > 0. The use of Gevrey norms was
pioneered by Foias and Temam ([18]) for estimating space analyticity radius for the
Navier-Stokes equations and was subsequently used by many authors (see [5], [15],
[2], [4], and the references there in); a closely related approach can be found in [24].
This approach enables one to avoid cumbersome recursive estimation of higher order
derivatives. We show that solutions to (1.1) are Gevrey regular (i.e., they satisfy
the estimate sup

0<t<T
‖et

γΛu‖L <∞), locally in time for initial data of arbitrary size,

and globally in time if the initial data is small in “critical” regularity spaces. In
many cases, this critical regularity space precisely corresponds to a scale invariance
property of the equation. Our key tool in this endeavor is a generalization of the
Kato-Ponce inequality ([28]) to Gevrey spaces.

One of our main emphasis in this paper is to obtain global (in time) Gevrey
regular solutions to (1.1) for small initial data in critical regularity spaces. This
has several applications in the study of long term dynamics. It turns out (as
we show here) that many of the equations encountered in fluid dynamics has the
property that for large times, the solutions have small norm in these critical reg-
ularity spaces. Thus, as a consequence of our result, we obtain exponential decay
of Fourier coefficients in the periodic case and algebraic decay of higher order Lp

based Sobolev norms for a wide class of equations including the Navier-Stokes equa-
tions, sub-critical quasi-geostrophic equation, a variant of Burger’s equation with a
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higher order polynomial nonlinearity and the generalized Cahn-Hilliard equation.
In some cases (example, Navier-Stokes and the subcritical quasigeostrophic equa-
tions) this generalizes known results while in some others (example, Burger’s and
Cahn-Hilliard), the results are new to the best of our knowledge. For instance, fol-
lowing Gevrey class technique, Oliver and Titi ([36]) established sharp upper and
lower bounds for the (time) decay of L2-based higher order Sobolev norms for the
Navier-Stokes equations in the whole space Rd, for a certain class of initial data.
Our result yields decay for Lp-based (p > 1) higher order (homogeneous) Sobolev
norms for the Navier-Stokes equations, and for a larger class of initial data. As
another corollary of our general result, we also recover a similar decay result of
Dong and Li ([14]) for the quasi-geostrophic equations with a proof that avoids the
iterative estimation of higher order derivatives, and consequently the intricate com-
binatorics present there. In summary, our main results provide an unified approach
to a variety of decay results ([36], [37], [40], [14]) thus generalizing them to: a wider
class of equations; to Lp decay; and allowing for a larger class of initial data. A
more detailed comparison of our results vis a vis some known results is made in the
remarks subsequent to the relevant theorems.

The organization of this paper is as follows. In Section 2, we state our main
results while in Section 3, we state our main applications concerning decay. Sec-
tions 4 and 5 are devoted to the proofs of these results while in the Appendix,
we have included some requisite background on Littlewood-Paley decomposition of
functions.

2. Main results

Before describing our main results, we start by establishing some notation and
concepts.

A function u(·) ∈ C([0, T ];L) is said to be a strong solution of (1.1) if ∂tu exists
and u(·) ∈ D(Λκ) a.e. and the equation (1.1) is satisfied a.e. A mild solution of
(1.1) is a solution of the corresponding integral equation

u(t) = (Su)(t), (Su)(t) := e−tΛ
κ

u0 +
∫ t

0

e−(t−s)ΛκG(u(s))ds,(2.1)

where u(·) is assumed to belong to C([0, T ];L). The integral on the right hand side
of (2.1) is interpreted as a Bochner integral. Henceforth, by a solution to (1.1) we
will mean a mild solution, which is a fixed point of the map S. For a discussion on
the connection between weak, strong, mild and classical solutions see [41].

With Λ = (−∆)1/2, the homogeneous potential spaces are defined by

Ḣα
p = {f ∈ S ′(Rd) : Λαf ∈ Lp(Rd), ‖f‖Ḣαp := ‖Λαf‖Lp <∞}, α ∈ R.

For each i = 0, · · · , N , let Ti be a bounded operator mapping Ḣα+αTi
p , αTi ≥ 0

to Ḣα
p such that Ti commutes with Λ and its operator norm is bounded uniformly

with respect to α and p. More precisely, we will assume that there exists constants
C > 0 and αTi ≥ 0 such that for all α ∈ R, 1 < p <∞ and v ∈ Ḣα

p , we have

‖Tiv‖Ḣαp ≤ C‖v‖Ḣα+αTi
p

, TiΛv = ΛTiv.(2.2)

Examples of such operators are Fourier multipliers with symbols

mi(ξ) = Ωi(ξ)ξ~αTi or mi(ξ) = Ωi(ξ)|ξ|αTi ,



4 HANTAEK BAE AND ANIMIKH BISWAS†

where Ωi(·) are bounded homogeneous functions of degree zero (i.e., Ωi(cξ) =
Ω(ξ), c ∈ R) and ~αTi = (α(1)

Ti
, · · · , α(d1)

Ti
), α

(j)
Ti
≥ 0. Other examples also include

shift operators on the space of distributions (in which case αTi = 0).
The nonlinearity G that we consider has the form

G(u) = T0F (T1u, T2u, · · · , TNu), F (z1, · · · , zN ) =
∑
α∈ZN+

aαz
α,(2.3)

where F above is an analytic function defined on a neighborhood of the origin in
Rn. More specific assumptions on F will be made in subsequent sections.

2.1. A degree n nonlinearity. In this section, we will assume that F is a mono-
mial of degree n, i.e.,

G(u) = T0F (T1u, T2u, · · · , Tnu), F (z1, · · · , zn) = z1 · · · zn,(2.4)

for some n ≥ 2, n ∈ N. However, see Remark 2.2 for an extension.
For ξ ∈ Rd, denote |ξ|1 =

∑d
i=1 |ξi| while |ξ| = (

∑
i ξ

2
i )1/2 denotes the usual

Euclidean norm on Rd. Recall that the norms | · |1 and | · | on Rd are equivalent.
Let Λ1 be a Fourier multiplier whose symbol is given by mΛ1(ξ) = |ξ|1. Choose
(and fix) a constant c > 0 such that c|ξ|1 < 1

4 |ξ| for all ξ ∈ Rd. This is possible
since all norms on Rd are equivalent. With this notation, we define the Gevrey
norm (in Ḣβ

p ) to be

‖v‖Gv(s,β,p) =
∥∥ecs1/κΛ1Λβv

∥∥
Lp

=
∥∥ecs1/κΛ1v

∥∥
Ḣβp
,(2.5)

where s ≥ 0, β ∈ R, and 1 ≤ p ≤ ∞.
Before stating our result here, we need to determine an appropriate function

space for the initial data. The idea is to choose a function space where the linear
term ut + Λκu and the nonlinear term G(u) have the same regularity. This can
be interpreted in terms of the scaling invariance. The equation (1.1) with the
nonlinearity (2.4) satisfies the following scaling. Assume that u is a solution of
(1.1). Then, the same is true for the rescaled functions

uλ(t, x) = λsu(λκt, λx), s =
κ−

∑n
i=0 αTi

n− 1
.

Therefore, Ḣβc
p is the scaling invariant space for initial data, with

βc =
d

p
−
κ−

∑n
i=0 αTi

n− 1
,(2.6)

and we can expect the local existence for β > βc for large data and the global
existence for β = βc for small data.

Theorem 2.1. Let G be a nonlinearity as in (2.4). Let u0 ∈ Ḣβ0
p , with

d

p
−
κ−

∑n
i=0 αTi

n− 1
= βc ≤ β0 <

d

p
+ min

1≤i≤n
αTi .

Assume that the following condition holds:

min
1≤i≤n

αTi > max
{∑n

i=1 αTi
n

− d

np
,

∑n
i=0 αTi − κ
n− 1

}
.(2.7)
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Then there exists an adequate T = T (u0) and β > 0 with β0 +β > 0, and a solution
of (2.1) belonging to the space C([0, T ]; Ḣβ0

p ) which additionally satisfies

max
{

sup
o<t<T

‖u(t)‖Gv(t,β0,p), sup
t>0

tβ/κ‖u(t)‖Gv(t,β0+β,p)

}
≤ 2‖u0‖Ḣβ0p .(2.8)

Moreover, if β0 > βc, then the time of existence T is given by

T ≥ C

‖u0‖(β0−βc)/κ
Ḣβ0p

,

for some constant C independent of u0. On the other hand, in case u0 ∈ Ḣβc
p , there

exists ε > 0 such that whenever ‖u0‖Ḣβcp < ε, we can take T =∞.

Remark 2.2. The above theorem can be readily generalized to the case of a nonlin-
earity where F in (2.4) is a homogeneous polynomial of degree n with the following
property: there exists an α ∈ R such that

F (z1, · · · , zN ) =
∑
α∈S

aαz
α,

where

S = {α = (α1, · · · , αN ) ∈ ZN+ :
N∑
i=1

αTiχ{αi 6=0} = α and
N∑
i=1

αi = n}.

This for instance is satisfied if F is a homogeneous polynomial of degree n and
αTi = αTj for all i, j 6= 0.

Remark 2.3. A version of Theorem 2.1, for the special case of a quadratic non-
linearity, was established in [1]. In contrast to the set up of the real space here,
the norms on the initial data space there were defined in the Fourier space. This
enables one to completely avoid the detailed harmonic analysis machinery used in
the proof here. However, due to the Hausdorff-Young inequality, even restricted
to the quadratic nonlinearity case, our consideration here yields a larger space of
initial data in several applications. As we will see later, due to this, we can obtain
decay of Lp (p > 1) based higher Sobolev norms (for instance for the Navier-Stokes
equations) not available in [1].

2.2. Analytic Nonlinearity. In this section, we will consider the more general
case of an analytic nonlinearity. Let F (z) =

∑
k∈Zn+

akz
k be a real analytic function in

a neighborhood of the origin. Here z = (z1, · · · , zn) ∈ Rn and we employ the multi-
index convention zk = zk11 · · · zknn for k = (k1, · · · , kn). The “majorizing function”
for F is defined to be

FM (r) =
∑
k∈Zd+

|ak|r|k|, r <∞,(2.9)

where for any multi-index k ∈ Zd+, |k| = k1 + · · ·+ kd. The functions F and FM are
clearly analytic in the open balls (in Rd and R respectively) with center zero and
radius

RM = sup{r : FM (r) <∞}.(2.10)
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We will assume that the set in the right hand side of (2.10) is nonempty. The
derivative of the function FM , denoted by F ′M , is also analytic in the ball of radius
RM .

The nonlinearity G is of the type

G(u) = T0F
(
T1u, · · · , Tnu

)
,(2.11)

where Ti are as defined in (2.2).
We consider the inhomogeneous Sobolev space

Hα
p = {f : Rd → Rd1 : ‖f‖Hαp := ‖(I + Λ)αf‖Lp <∞},

with Λ = (−∆)1/2. We recall that from the standard Sobolev inequalities and (4.4),
we have

‖f‖L∞ ≤ ‖f‖Hβp , ‖fg‖Hβp ≤ C‖f‖Hβp ‖g‖Hβp for β >
d

p
, 1 < p <∞.(2.12)

The Gevrey norm here is defined as

‖v‖Gv(s,β,p) = ‖e 1
2 s

1/κΛ1(1 + Λ)βv‖Lp .(2.13)

We will show that the Gevrey space Gv(s, β, p) with β > d
p is a Banach algebra.

We are now ready to state our main result concerning analytic nonlinearity.

Theorem 2.4. Let β > d
p and assume that αT0+α

κ < 1, where α := max
1≤i≤n

{αTi}.

Let ‖u0‖Hβ+α
p

< R. Assume that 2RC < RM where C as in Lemma 4.9 and RM
as in (2.10). There exists a time T > 0 and a solution u of (2.1) such that

sup
s∈(0,T )

‖u(s)‖Gv(s,β,p) <∞.

Note that unlike Theorem 2.1, we do not get a global existence result here even in
case of small initial data. However, in case of the periodic boundary condition, we
do obtain a global existence result for small data. We need to assume however that
the nonlinearity G has the property that it leaves the space of mean zero periodic
functions invariant (this happens for instance if T0 = ∇). This is due to the fact
that in the periodic case, Λ has a minimum eigenvalue, denoted by λ0 > 0, and
the Fourier spectrum of all periodic functions with space average zero is contained
in the complement of a ball with radius λ0. More precisely, we have the following
result.

Theorem 2.5. Consider the equation (1.1) with space periodic boundary condi-
tion. Assume that the space of mean zero functions are invariant to the analytic
nonlinearity G which moreover satisfies

a0 = 0,
∑

k∈Zd+,|k|=1

|ak| < δ,

where δ ≥ 0 is suitably small. Then, there exists ε > 0 such that if ‖u0‖Hβp < ε,

with β > d
p , and 1 < p < ∞, we can obtain an unique solution to (2.1) satisfying

sup0<t<∞ ‖u‖Gv(t,β,p) <∞.
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2.3. Equation in Fourier space. In Subsection 2.2, we worked under the restric-
tion 1 < p <∞. In this section, we consider the case p =∞. The harmonic analysis
tools used in the previous sections do not work here since the singular integrals are
not bounded in L∞. We therefore resort to working in the frequency space using th
Fourier transform. Recall that if the Fourier transform of a distribution in S ′(Rd)
is in L1 in the Fourier spaces, then it is an L∞ function. The development here is
in the spirit of [3] and [4]. The other borderline case of p =∞ (in space variables)
is similar and discussed in Remark 2.7.

We will denote by F the Fourier transform (in the space variables) and by F−1

its inverse. By a notational abuse, letting u = F(u), we can reformulate (1.1) as

ut(ξ, t) + |ξ|κu(ξ, t) = G
(
u(·, t)

)
(ξ), u(ξ, 0) = u0(ξ),(2.14)

where G is as in (2.11). Recalling that the Fourier transform converts products in
real space to convolutions in the frequency space, the analytic function F in (2.9)
takes the form

F (v) =
∑
n

anv
∗n1
1 · · · v∗ndd ,v = (v1, · · · , vd)

where ∗ denotes convolution. Denoting by D the multiplication operator (Dv)(ξ) =
|ξ|κv(ξ), we can write the mild formulation of (1.1) as

u(t) = e−tDu0 +
∫ t

0

e−(t−s)DG
(
u(·, s)

)
ds.(2.15)

In this section, we will denote ‖ · ‖ the L1 norm in the Fourier space, i.e.,

‖v‖ =
∫

Rd1
|v(ξ)|dξ.

In case v(ξ) is a vector, |v(ξ)| will denote its usual Euclidean norm. We also recall
that L1 is a Banach algebra under convolution and

‖u ∗ v‖ ≤ ‖u‖‖v‖.

For s ≥ 0 and β ∈ R, we will now introduce the Gevrey norms as

‖v‖Gv(s,β) =
∫

Rd1
e

1
2 s

1/κ|ξ||ξ|β |v(ξ)|dξ.(2.16)

For notational simplicity, we will suppress the dependence of the Gevrey norm on
κ (since it is fixed), and when s = 0, we denote ‖v‖Gv(0,β) = ‖v‖β and when β = 0,
we will write ‖v‖Gv(s,0) = ‖v‖Gv(s). Also, denote

Vβ = {v : ‖v‖β <∞}.

When β = 0, we will simply write V = V0.
For u = (u1, · · · , ud1),v = (v1, · · · , vd1) vector valued functions, we denote

u ∗ v = (
∑
ij

bijkui ∗ vj)dk=1, bijk ∈ R.

It is easy to see, applying the Cauchy-Schwartz inequality, that |(u ∗ v)(ξ)| ≤
C(|u| ∗ |v|)(ξ), where C = maxi,j,k |bijk|.

We now state the existence of a solution to (2.14) with respect in the Gevrey
spaces (2.16).
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Theorem 2.6. Let α = max
1≤i≤n

{αTi} and assume that

αT0 + α

κ
< 1 and max{‖u0‖, ‖u0‖α} < R with 2RC < RM ,

where C is as in Lemma 4.11 and RM as in (2.10). There exists a time T > 0 and
a solution u of (2.14) such that

sup
s∈(0,T )

‖u(s)‖Gv(s) <∞.(2.17)

Additionally, suppose that we are in the space periodic setting and the nonlinearity
G leaves the space of functions with zero space average invariant. Then, if we
consider (2.14) on that subspace, there exists ε > 0 such that we can take T = ∞
in the above inequality provided max{‖u0‖, ‖u0‖α} < ε.

Remark 2.7. In this subsection, we worked with L1 norm of the Fourier transform
of the function. Due to the Hausdorff-Young inequality, this “corresponds” to the
L∞ norm in the space variable. However, the other borderline case of Theorem
2.4 occurs when we have L1 norm in the space variable. In the frequency space,
this corresponds to the L∞ norm (in the sense that ‖F(u)‖L∞ ≤ ‖u‖L1). We can
obtain an analogue of Theorem 2.6 if instead of the L1 norm, we let

|‖u‖| = sup
ξ∈Rd

(1 + |ξ|)α0 |u(ξ)|, α0 > d.

The conditions with max{‖u0‖, ‖u0‖α} in Theorem 2.5 will simply be replaced with
analogous conditions with |‖u0‖|α+α0 . The proof of this fact is very similar to the
proof of Theorem 2.6 once one notes that like L1, the Gevrey space based on this
norm is also a Banach algebra under convolution (see [4]).

Remark 2.8. Exponential decay of Fourier coefficients: In the space periodic
setting (with period L), the operator Λ restricted to the subspace of functions
with space average zero, has a discrete spectrum with its lowest eigenvalue being
2π
L . Then, provided max{‖u0‖, ‖u0‖α} in small enough (or in view of Remark

2.7, if |‖u0‖|α0+α is small enough), we have the exponential decay of the Fourier
coefficients

|F(u)(ξ, t)| ≤ Ce−t
1/κ|ξ|.

This is a generalization of the results in [16] and [13] for the special case of the
3d Navier-Stokes equations. In fact, for the 3d Navier-Stokes equations, following
similar techniques as is presented here, one can sharpen this decay result (see [3])
by demanding only that

sup
k∈Z3

+

|k|2|F(u0)(k)| < ε.

This fact was proven in [3] using similar methods, and independently in [42].

3. Applications: Decay of Sobolev Norms

Theorem 2.1 tells us that if the initial data is small in the corresponding critical
space (i.e. in Ḣβc

p ), then the solution is globally in the Gevrey class. Due to
Lemma 4.1 (or Lemma 4.2), this allows us to obtain the following time decay of
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(homogeneous) Sobolev norms as follows:

‖Λζu(t)‖Lp = ‖Λζ−βce−ct
1/κΛ1ect

1/κΛ1Λβcu(t)‖Lp

≤ Cζt−
1
κ (ζ−βc)‖u(t)‖Gv(t,βc,p), (Cζ ∼ Cζζζ , ζ > βc).

(3.1)

If we can show that a solution u(·) of (1.1) satisfies

lim inf
t→∞

‖u(t)‖Ḣβcp = 0,(3.2)

then due to Theorem 2.1, after a certain transient time t0, we have

sup
t>t0

‖u(t)‖Gv(t−t0,βc,p) <∞.

Consequently, we obtain

‖Λζu(t)‖Lp ≤ Cζ‖u(t0)‖Ḣβ0p (t− t0)−
1
κ (ζ−βc), ζ > βc(3.3)

where ‖u(t0)‖Ḣβcp is sufficiently small to apply Theorem 2.1. In the next subsections,
we will provide several examples where this can be achieved.

3.1. Navier-Stokes equations. The first application of Theorem 2.1 is the three
dimensional Navier-Stokes equations, with βc = 3

p − 1, max
{

0, 1 − 3
2p

}
< β < 1.

Compared with previous works by [38, 39, 37, 36, 40, 35] and others, where decay
of L2-based Sobolev norms have been achieved, we will provide decay of Lp-based
Sobolev norms.

Theorem 3.1. Let 1 < p < ∞ and u be a weak solution of the three dimensional
Navier-Stokes equations where u0 ∈ L2. In case 1 < p < 2, we additionally assume
that ω0 = ∇×u0 ∈ L1. Let βc = 3

p −1. We then have the following decay estimate:

‖Λζu(t)‖Lp ≤ Cζε(t− t0)−
1
2 (ζ−βc), ζ > max{0, βc},(3.4)

where ε = ‖u(t0)‖Ḣβcp is sufficiently small to apply Theorem 2.1, and Cζ ∼ Cζζζ

for p = 2.

Remark 3.2. Existence of solutions to the NSE in Gevrey classes was first proven
for the periodic boundary condition by Foias and Temam ([18]) (for initial data
in H1) and subsequently by Oliver and Titi on the whole space, with initial data
in Hs, s > n/2, n = 2, 3 (see also [31] for initial data in Ḣ1/2 for 3D NSE). By
following a slightly different approach, namely interpolating the Lp norms of the
solution and its analytic extension, Grujic and Kukavica ([24]) proved analyticity
of solutions to the 3D NSE for initial data in Lp, p > 3 (see also [32] for a different
proof). Analyticity of solutions for initial data in homogeneous potential spaces
Ḣα
p , 1 < p <∞, α ≥ 3

p − 1, which includes the above mentioned Lp spaces, follows
from Theorem 2.1.

The decay in L2-based (homogeneous) Sobolev norms ‖u‖Ḣζ for the NSE were,
to the best of our knowledge, first given in [37] and [40]. However, the constants
Cζ were not explicitly identified there. The sharp (and optimal, in the sense of
providing lower bounds as well) decay results were provided by Oliver and Titi
([36]) following the Gevrey class approach. The constants Cζ in (3.4) is of the same
order as in [36]. Thus, (3.4) is a Lp version of the sharp decay result in [36]. In [37]
and [36], there is also an assumption of the decay of the L2 norm of the solution.
This is circumvented here due to our working in the “critical” space Ḣ1/2.
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3.2. Subcritical dissipative surface quasi-geostrophic equations. These equa-
tions are given by{

ηt + u · ∇η + Λκη = 0, (x, t) ∈ R2 × (0,∞),
η(x, 0) = η0(x), x ∈ R2,

(3.5)

where,

u = (−R2η,R1η) := (−∂x2Λη, ∂x1Λη).

We will consider the sub-critical case when the parameter κ satisfies κ ∈ (1, 2]. For
initial data in Lp, p ≥ 2

κ−1 , the global existence of a unique, regular solution to
(3.5) in the sub-critical case is known (see [7] and the references there in). The
following theorem concerning the long time behavior of higher Sobolev norms was
first given in [14]. The proof in [14] involves iterative estimation of higher order
derivatives involving elaborate combinatorial arguments. We obtain this result as
an application of Theorem 2.1.

Theorem 3.3. Let κ ∈ (1, 2] in (3.5) and denote p0 = 2
κ−1 . Let η be the unique

regular solution to for initial data η0 ∈ Lp0(R2). The following estimate then holds
with a constant

‖η‖Ḣαp0 ≤
Cααα

t
α
κ

for all t > 0, α > 0,(3.6)

where the constant C may depend on η0, but is independent of t, α.

Remark 3.4. The higher order decay result in Theorem 3.3 was first proven in [14].
The approach there was an iterative estimation of higher order derivatives. The
use of Gevrey class technique presented here eliminates the necessity of involved
combinatorial arguments which is now encoded in the Gevrey norm.

3.3. Burger type equation with higher order nonlinearity. We now give an
application to decay for a viscous Burger’s equation on R of the form

∂tu−∆u = ∂x(un), x ∈ R, n ≥ 3.(3.7)

Here we take p = 2 and, as is customary, we denote Ḣβ
2 = Ḣβ , β ∈ R, β 6= 0 and

Ḣ0 = L2. For p = 2, κ = 2, αT0 = 1 and αTi = 0, 1 ≤ i ≤ n, the critical space for
(3.7) is Ḣ

1
2−

1
n−1 , i.e., βc = 1

2 −
1

n−1 .

Theorem 3.5. Let u0 ∈ Ḣ−1 ∩L2 for n = 3 and u0 ∈ L2 for n ≥ 4. Then, for any
weak solution u of (3.7), there exists t0 > 0 such that

‖Λζu(t)‖L2 ≤ Cζε(t− t0)−
1
2 (ζ−βc), ζ > βc :=

1
2
− 1
n− 1

.

Here, Cζ ∼ ζζCζ and ε = ‖u(t0)‖Ḣβc is sufficiently small to apply Theorem 2.1.

Remark 3.6. In case n = 2, the critical space is Ḣ− 1
2 . If

lim inf
t→∞

‖u‖
Ḣ−

1
2

= 0,(3.8)

then, decay of higher Sobolev norms hold.
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3.4. Cahn-Hilliard equation (special case). The Cahn-Hilliard equation is
given by

ut = −∆2u− α∆u+ β∆(u3), x ∈ Rd, β > 0, α ≥ 0.(3.9)

Here we will consider the special case when α = 0 and β > 0. Here, in the notation
of Theorem 2.1, we have n = 3, κ = 4, αT0 = 2, αTi = 0, i = 1, 2, 3, from (2.6),
βc := d

2 − 1. We have the following decay result.

Theorem 3.7. Let u be a (weak) solution of (3.9)with initial data u0 ∈ L2 in space
dimensions d ≥ 1. Then, there exists t0 > 0 such that

‖Λζu(t)‖L2 ≤ Cζε(t− t0)−
1
2 (ζ−βc), ζ > βc :=

d

2
− 1.

Here, Cζ ∼ ζζCζ when p = 2 and ε = ‖u(t0)‖Ḣβc is sufficiently small to apply
Theorem 2.1.

The generalized Cahn-Hilliard equation has been studied in [44]. Due to Theorem
2.5, in the periodic case, we can improve the previous decay result to include the
generalized Cahn-Hilliard equation.

Theorem 3.8. Let u : Rd → R, d = 1, 2, 3 be a space periodic solution of the
general Cahn-Hilliard equation

ut −∆2u = ∆f(u), f(u) =
2N−1∑
j=1

aju
j and a2N−1 = A > 0.

Assume further that
2N−2∑
j=1

j|aj | < δ,(3.10)

for δ suitably small and let u0 ∈ Ḣβ with d
2 < β < 2. Then, any solution u satisfies

the decay estimate

‖Λζu(t)‖L2 ≤ Cζ‖u(t0)‖Ḣβ (t− t0)−
ζ−β
κ , ζ > β,

where ‖u(t0)‖Ḣβ is sufficiently small to apply Theorem 2.5.

Remark 3.9. The decay results presented in Theorems 3.5, 3.7 and 3.8 are new to
the best of our knowledge.

4. Proofs of Main Results

4.1. Degree n nonlinearity. We will start with some preparatory results. Here
we will follow the notation in Section 2.1. The following lemma is well-known.
We provide a proof for completeness and to give precise estimates of the constants
involved.

Lemma 4.1. Let β, t ≥ 0 and κ > 0. The Fourier multipliers corresponding to the
symbols m1(ξ) = |ξ|βe−t|ξ|κ1 and m2(ξ) = |ξ|βe−t|ξ|κ are given by convolution with
corresponding kernels k1 and k2 both of which are L1 functions with

‖ki‖L1 ≤ 2Cβ/κββ/κ

tβ/κ
, i = 1, 2,

where C is a constant independent of β and κ.
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Proof. We only need to obtain the desired estimate for m1 and m2 with t = 1.
Then, time dependent bounds can be obtain by the scaling: ξ 7→ t

1
κ ξ. To estimate

mi at t = 1, we will use the Littlewood-Paley decomposition (see Appendix for the
definition of this decomposition). Since the estimation is the same for m1 and m2,
we only estimate m2. We apply 4j to m2 and take the L1 norm.

‖4jm2‖L1 ≤ C2jβ‖4je−|ξ|
κ

‖L1 ≤ C2jβe−2jκ ,

where the second inequality can be found in [27]. Since

‖m2‖L1 ≤ C
∑
j∈Z
‖4jm2‖L1 ,

we have

‖m2‖L1 ≤ C
∑
j∈Z

2jβe−2jκ .(4.1)

The series
∑
j∈Z 2jβe−2jκ is readily seen to be bounded by 2Cβ/κββ/κ. �

From this lemma and the definitions of the operators Ti and the Gevrey norms,
we immediately have the following estimates concerning the Gevrey norms.

Lemma 4.2. Denote Cβ = Cβββ. For any s, t, β′ ≥ 0, we have

‖Tiv‖Gv(s,β,p) ≤ C‖v‖Gv(s,β+αTi ,p)
, ‖e− 1

2 tΛ
k

v‖Gv(s,β+β′,p) ≤
Cβ′

tβ′/κ
‖v‖Gv(s,β,p),

where αTi is as defined in (2.2).

We will need the following elementary inequality:

(x+ y)γ ≤ xγ + yγ , x, y ≥ 0, γ ∈ [0, 1].(4.2)

In the inequality above, by convention, we take 00 = 1 when γ = 0 and min(x, y) =
0. We also have the following result concerning the semigroup.

Lemma 4.3. Let 0 ≤ s ≤ t <∞. Let

E = e−c((t−s)
1/κ+s1/κ−t1/κ)Λ1

The operator E is either the identity operator or is a Fourier multiplier with an L1

kernel and its L1 norm is bounded independent of s, t.

Proof. Note that since κ ≥ 1, by (4.2) we have t1/κ ≤ s1/κ + (t − s)1/κ. Thus,
E = e−aΛ1 where a = c{(t−s)1/κ+s1/κ−t1/κ} ≥ 0. In case a = 0, E is the identity
operator while if a > 0, E is a Fourier multiplier with symbol mE(ξ) =

∏d
i=1 e

−a|ξi|.
Thus, the kernel of E is given by the product of one dimensional Poisson kernels∏d
i=1

a
π(a2+x2

i )
. The L1 norm of this kernel is bounded by a constant independent

of a. �

We will also need the following lemma to proceed.

Lemma 4.4. Let κ ≥ 1. The operator Ẽ = e−
1
2aΛκ+a1/κcΛ1 is a Fourier multiplier

which acts as a bounded operator on all Lp spaces (1 < p < ∞) and its operator
norm is uniformly bounded with respect to a ≥ 0.
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Proof. When a = 0, Ẽ is the identity operator. On the other hand, if a > 0, then
Ẽ is Fourier multiplier with symbol mẼ(ξ) = e−

1
2 |a

1/κξ|κ+c|a1/κξ|1 . Since mẼ(ξ)
is uniformly bounded for all ξ the claim now follows from Hormander’s multiplier
theorem (see [43]). �

We also have the following lemma concerning the linear term.

Lemma 4.5. Let u0 ∈ Ḣβ0
p for some β0 ∈ R and 0 < T ≤ ∞, β > 0. Denote

M = sup
0<t<T

tβ/κ‖e−tΛ
κ

u0‖Gv(t,β0+β,p).(4.3)

Then M ≤ Cβ‖u0‖Ḣβ0p and M → 0 as T → 0.

Proof. Due to Lemmas 4.2 and 4.4, for any 0 < t ≤ T , we have

‖e−tΛ
κ

u0‖Gv(t,β0+β,p) = ‖ect
1/κΛ1− 1

2 tΛ
κ

Λβe−
1
2 tΛ

κ

Λβ0u0‖Lp

≤ C‖Λβe− 1
2 tΛ

κ

Λβ0u0‖Lp ≤ Cβt−β/κ‖Λβ0u0‖Lp

= Cβt
−β/κ‖u0‖Ḣβ0p ,

which proves the first assertion. Concerning the second, note that there exists
u′0 ∈ Ḣβ+β0

p such that ‖u0 − u′0‖Ḣβ0p < ε for any ε > 0. Proceeding as above, and

using the fact that u′0 ∈ Ḣβ+β0
p , we obtain

tβ/κ‖e−tΛ
κ

u0‖Gv(t,β0+β,p)

≤ tβ/κ‖e−tΛ
κ

(u0 − u′0)‖Gv(t,β0+β,p) + tβ/κ‖e−tΛ
κ

u′0‖Gv(t,β0+β,p)

≤ Cε+ Ctβ/κ‖u′0‖Ḣβ+β0
p

.

Letting T → 0 and noting that ε > 0 is arbitrary, the claim follows. �

We will need the following versions of the Kato-Ponce inequality ([28]). For
Γ = Λ or Γ = (I + Λ), we have

‖Γβ(ϕψ)‖Lp ≤ C
[
‖Γβϕ‖Lp1‖ψ‖Lq1 + ‖ϕ‖Lp2 ‖Γβψ‖Lq2

]
,(4.4)

where β ≥ 0 and 1 < p, pi, qi < ∞ are such that 1
p = 1

p1
+ 1

q1
= 1

p2
+ 1

q2
. For

completeness, a proof is provided in the Appendix.
The following lemma, which shows that the Kato-Ponce inequality holds for

Gevrey norms, is crucial to estimate the nonlinear term in (1.1).

Lemma 4.6. Let t, β ≥ 0 and 1 < p, pi, qi <∞ such that 1
p = 1

p1
+ 1

q1
= 1

p2
+ 1

q2
.

Then, we have the following estimate:

‖fg‖Gv(t,β,p) ≤ C
[
‖f‖Gv(t,β,p1)‖g‖Gv(t,0,q1) + ‖f‖Gv(t,0,p2)‖g‖Gv(t,β,q2)

]
.

Proof. For notational convenience, denote

a = ct1/κ and ϕ = eaΛ1f, ψ = eaΛ1g.(4.5)

By a density argument, it will be enough to prove the result for ϕ,ψ ∈ S(Rd). Note
that, using the Fourier inversion formula, we have

Ba(f, g) := eaΛ1(f · g) = eaΛ1((e−aΛ1ϕ) · (e−aΛ1ψ))

=
1

(2π)d

∫ ∫
eıx·(ξ+η)ea(‖ξ+η‖1−‖ξ‖1−‖η‖1)f̂(ξ)ĝ(η) dξ dη.
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Recall that for a vector ξ = (ξ1, · · · , ξd), we denoted ‖ξ‖1 =
∑d
i=1 |ξi|. For ξ =

(ξ1, · · · , ξd), η = (η1, · · · , ηd), we now split the domain of integration of the above
integral into sub-domains depending on the sign of ξj , ηj and ξj + ηj . In order to
do so, we introduce the operators acting on one variable (see page 253 in [31]) by

K1f =
1

2π

∫ ∞
0

eıxξ f̂(ξ) dξ, K−1f =
1

2π

∫ 0

−∞
eıxξ f̂(ξ) dξ.

Let the operators La,−1 and La,1 be defined by

La,1f = f, La,−1f =
1

2π

∫
R
eıxξe−2a|ξ|f̂(ξ) dξ.

For ~α = (α1, · · · , αd), ~β = (β1, · · · , βd) ∈ {−1, 1}d, denote the operator

Za,~α,~β = Kβ1Lt,α1β1 ⊗ · ⊗KβdLt,αdβd and K~α = kα1 ⊗ · · · ⊗Kαd .

The above tensor product means that the j−th operator in the tensor product acts
on the j−th variable of the function f(x1, · · · , xd). A tedious (but elementary)
calculation now yields the following identity:

Ba(f, g) =
∑

~α,~β,~γ∈{−1,1}d

K~α((Za,~α,~βf) · (Za,~α,~γg)).

We now note that the operators K~α, Za,~α,~β defined above, being linear combi-
nations of Fourier multipliers (including Hilbert transform) and the identity oper-
ator, commute with Λ1 and Λ. Moreover, they are bounded linear operators on
Lp, 1 < p <∞ and the corresponding operator norm of Za,~α,~β is bounded indepen-
dent of a ≥ 0. Thus, we can write

‖fg‖Gv(t,β,p) = ‖ΛβeaΛ1(fg)‖Lp = ‖ΛβeaΛ1((e−aΛ1ϕ)(e−aΛ1ψ))‖Lp

=
∥∥∥Λβ

[ ∑
~α,~β,~γ∈{−1,1}d

K~α

((
Za,~α,~βϕ

)(
Za,~α,~γψ

))]∥∥∥
Lp

=
∥∥∥[ ∑

~α,~β,~γ∈{−1,1}d

K~αΛβ
((
Za,~α,~βϕ

)(
Za,~α,~γψ

))]∥∥∥
Lp

≤ C
∥∥∥Λβ

((
Za,~α,~βϕ

)(
Za,~α,~γψ

))∥∥∥
Lp

≤ C
[∥∥ΛβZa,~α,~βϕ

∥∥
Lp1

∥∥Za,~α,~γψ)
∥∥
Lq1

+
∥∥Za,~α,~βϕ∥∥Lp2∥∥ΛβZa,~α,~γψ)

∥∥
Lq2

]
≤ C

[∥∥Za,~α,~βΛβϕ
∥∥
Lp1

∥∥Za,~α,~γψ∥∥Lq1 +
∥∥Za,~α,~βϕ∥∥Lp2∥∥Za,~α,~γΛβψ

∥∥
Lq2

]
≤ C

[
‖f‖Gv(t,β,p1)‖g‖Gv(t,0,q1) + ‖f‖Gv(t,0,p2)‖g‖Gv(t,β,q2)

]
,

where to obtain the above relations, we used the commutativity of Λβ with the op-
erators K~α, Za,~α,~β , the Lp-boundedness of these operators (with uniformly bounded
operator norms with respect to a ≥ 0) and (4.4). �

We will also need the following lemma.

Lemma 4.7. All functions are defined on Rd. Let s ≥ 0, 1 < p < ∞ and 0 <
α, β < d

p and α+ β > d
p . We have

‖fg‖Gv(s,γ,p) ≤ C‖f‖Gv(s,α,p)‖g‖Gv(s,β,p), γ = α+ β − d

p
.(4.6)
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Proof. Applying Lemma 4.6, we have

‖fg‖Gv(s,γ,p) ≤ C(‖f‖Gv(s,γ,r1)‖g‖Gv(s,0,r2) + ‖f‖Gv(s,0,r3)‖g‖Gv(s,γ,r4)),(4.7)

where 1
r1

+ 1
r2

= 1
r3

+ 1
r4

= 1
p . We now need the Sobolev inequalities ([31])

‖f‖Lq ≤ C‖Λδf‖Lp , 0 ≤ δ < d

p
, δ =

d

p
− d

q
.(4.8)

By taking ri, i = 1, · · · , 4 in (4.7) with

1
r1

=
1
p
− α− γ

d
,

1
r2

=
1
p
− β

d
,

1
r3

=
1
p
− α

d
,

1
r4

=
1
p
− β − γ

d
,

and applying the Sobolev inequalities given above, we obtain (4.6). �

An iterative application of this lemma yields the following:∥∥∥ n∏
i=1

fi

∥∥∥
Gv(s,γ,p)

≤ C
n∏
i=1

‖fi‖Gv(s,αi,p)(4.9)

provided

γ =
n∑
i=1

αi −
(n− 1)d

p
> 0, max

1≤i≤n
{αi} <

d

p
.

Proof of Theorem 2.1. Let γ = β0 + β for adequate β > 0 to be specified
later and define the Banach space

E =
{

u ∈ C([0, T ); Ḣβ0
p ) : ‖u(·)‖E := max{‖u(·)‖E1 , ‖u(·)‖E2} <∞

}
,

where

‖u(·)‖E1 := sup
s∈(0,T )

‖u(s)‖Gv(s,β0,p), ‖u(·)‖E2 := sβ/κ‖u(s)‖Gv(s,γ,p).

Additionally,
E = {u ∈ E : ‖u− e−tΛ

κ

u0‖E ≤M},
where M is as in (4.3). It is easy to see that E is a compete metric space (it
is a closed, bounded subset of the Banach space E). For S as in (2.1), note that
(Su)(t) = e−tΛ

κ

u0 + (Bu)(t) where

(Bu)(t) =
∫ t

0

e−(t−s)ΛκG(u(s)) ds.(4.10)

We will prove an inequality of the form

‖(Bu)‖E ≤ CTµ‖u‖nE2
(4.11)

for adequate µ ≥ 0 satisfying µ = 0 if and only if β0 = βc. Note that this implies

‖Su− e−tΛ
κ

u0‖E ≤ CTµMn, ‖Su− Sv‖E ≤ nCTµMn−1‖u− v‖E .
The first inequality immediately follows from (4.11) while the second follows by
noting

G(u)−G(v) =
n∑
i=1

T0F (T1u, · · · , Ti−1u, Ti(u− v), Ti+1v, · · · , Tn(v)).(4.12)

If β0 > βc, then µ > 0 and S is a contractive self map of E provided T is sufficiently
small. On the other hand, in case β0 = βc and µ = 0, in view of Lemma 4.5, we
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can either choose T small in case the initial data is arbitrary or the initial data
sufficiently small if T =∞, to reach the same conclusion.

We now proceed to estimate ‖Bu‖E2 , the estimate for ‖Bu‖E1 being similar.
Note that

‖e−(t−s)ΛκG(u(s))‖Gv(t,γ,p)

= ‖ect
1/κΛ1Λγe−(t−s)ΛκG(u(s))‖Lp

≤ C‖ec(t−s)
1/κΛ1ecs

1/κΛ1e−(t−s)ΛκΛγG(u(s))‖Lp

= ‖ec(t−s)
1/κΛ1− 1

2 (t−s)Λκecs
1/κΛ1Λγe−

1
2 (t−s)ΛκG(u(s))‖Lp

≤ C‖Λγecs
1/κΛ1e−

1
2 (t−s)ΛκG(u(s))‖Lp .

(4.13)

By (4.9) with αi = γ−αTi and Lemma 4.2 with β′ =
∑n
i=0 αTi+(n−1)dp−(n−1)γ,

we have
tβ/κ‖(Bu)(t)‖Gv(t,γ,p)

≤ C‖u‖nE2
tβ/κ

∫ t

0

1
s(nβ)/κ

1

(t− s)
1
κ [

∑n
i=0 αTi+(n−1) dp−(n−1)γ]

ds

≤ C‖u‖nE2
tµ,

(4.14)

where

µ =
(n− 1)(β0 − βc)

κ
.

In order to apply (4.9) and Lemma 4.2, and to ensure the finiteness of the integral
in (4.14), we need

β′ =
n∑
i=0

αTi+(n−1)
(d
p
−γ
)
≥ 0, γ− min

1≤i≤n
αTi <

d

p
, nγ−

n∑
i=1

αTi−(n−1)
d

p
> 0.

For the convergence of the integral in (4.14), we also need

nβ < κ, β′ < κ.

A choice of β > 0 satisfying all these conditions can be made provided the conditions
on the parameters stated in the theorem hold.

4.2. Analytic Nonlinearity. Here we follow the notation in subsection .. We will
once again start with some auxiliary results.

Lemma 4.8. Let β > d
p . For any t ≥ 0, we have

‖fg‖Gv(t,β,p) ≤ C‖f‖Gv(t,β,p)‖g‖Gv(t,β,p).

Proof. For notational convenience, denote a = ct1/κ and ϕ = eaΛ1f, ψ = eaΛ1g.
Proceeding as in the proof of Lemma 4.6 (with the notation there in) and using
(2.12), we obtain

‖fg‖Gv(t,β,p)

≤ C
[∥∥Za,~α,~β(I + Λ)βϕ

∥∥
Lp

∥∥Za,~α,~γψ∥∥L∞ +
∥∥Za,~α,~βϕ∥∥L∞∥∥Za,~α,~γ(I + Λ)βψ

∥∥
Lp

]
≤ C

[∥∥(I + Λ)βϕ
∥∥
Lp

∥∥(I + Λ)βZa,~α,~γψ
∥∥
Lp

+
∥∥(I + Λ)βZa,~α,~βϕ

∥∥
Lp

∥∥(I + Λ)βψ
∥∥
Lp

]
≤ C‖ϕ‖Hβp ‖ψ‖Hβp ≤ C‖f‖Gv(t,β,p)‖g‖Gv(t,β,p),



GEVREY REGULARITY FOR DISSIPATIVE EQUATIONS 17

where we have used the fact that (I + Λ) commutes with Za,~α,~β . �

Lemma 4.9. Let β > d
p , s ≥ 0 and u,v be such that

max
1≤i≤n

{‖Tiu‖Gv(s,β,p), ‖Tiv‖Gv(s,β,p)} ≤ R.

For notational simplicity, denote F (T1u, · · · , Tnu) = F (u). There exists a constant
C independent of s,u,v such that

‖F (u)‖Gv(s,β,p) ≤ FM (RC),

‖F (u)− F (v)‖Gv(s,β,p) ≤ CF ′M (RC) max
1≤i≤n

‖Ti(u− v)‖Gv(s,β,p).
(4.15)

Proof. The first inequality in (4.15) is an immediate consequence of Lemma 4.8.
Concerning the second, proceeding as in (4.12), we have

‖F (u)− F (v)‖Gv(s,β,p) ≤
∑
j∈Zd+

|aj ||j|C |j|R|j|−1 max
1≤i≤n

‖Ti(u− v)‖Gv(s,β,p)

≤ CF ′M (RC) max
1≤i≤n

‖Ti(u− v)‖Gv(s,β,p).

This completes the proof. �

Proof of Theorem 2.4. We recall α = max
1≤i≤n

{αTi}, and set

E =

{
u ∈ C

(
(0, T ); Hβ0+α

)
: ‖u(·)‖E = sup

s∈(0,T )

‖u(s)‖Gv(s,α,p) ≤ 2R

}
Proceeding as in the proof of Theorem 2.1 and using Lemma 4.9, we obtain

‖e−(t−s)ΛκG(u(s))‖Gv(t,α,p) ≤
C

(t− s)(αT0+α)/κ
FM (2RC).(4.16)

Thus, ∥∥∥∫ t

0

e−(t−s)ΛκG(u(s)) ds
∥∥∥
E
≤ CFM (2RC)T 1−

αT0
+α

κ .

Similarly, using the second inequality in (4.15), we can also obtain

‖Su− Sv‖E ≤ CF ′M (2RC)T 1−
αT0

+α

κ ‖u− v‖E .
The proof is now completed along the lines of the proof of Theorem 2.1.

4.3. The periodic case. In this case, Λ has a minimum eigenvalue, denoted by
λ0 > 0, and the Fourier spectrum of all periodic functions with space average zero
is contained in the complement of a ball with radius λ0. Thus, following [11, 27],
we can show that

‖e−aΛκu0‖Lp ≤ Ce−aλ
κ
0 ‖u0‖p, a > 0.

This fact can be easily proven for p = 2 using Plancheral theorem. Thus, instead
of (4.16), we can obtain

‖e−(t−s)ΛκG(u(s))‖Gv(t,β+α,p) = ‖e− 1
4 (t−s)Λκe−

3
4 (t−s)ΛκG(u(s))‖Gv(t,β+α,p)

≤ e− 1
2λ

κ
0 (t−s)‖e− 3

4 (t−s)ΛκG(u(s))‖Gv(t,β+α,p)

≤ Ce−b(t−s)

(t− s)(αT0+α)/κ
FM (2RC),

(4.17)
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where b = 1
2λ

κ
0 . Using now the elementary fact (see for instance Proposition 7.5 in

[3])

sup
t>0

∫ t

0

e−b(t−s)s−ads ≤ C <∞, b > 0, 0 < a < 1,

it follows that

‖Su‖E ≤ CFM (2RC) and ‖Su− Sv‖E ≤ CF ′M (2RC)‖u− v‖E .

The proof of Theorem 2.5 follows immediately from the above discussion and by
noting that

lim
R→0

FM (2RC) = 0, lim sup
R→0

F ′M (2RC) ≤ δ.

We can thus ensure that S is a contractive self map for T =∞ provided ‖u0‖Ḣβ+α
p

and δ are small.

4.4. Equation in Fourier space. As before, we start with some estimates on
Gevrey norms.

Lemma 4.10. For any s ≥ 0 and β = 0, we have

‖u ∗ v‖Gv(s) ≤ C‖u‖Gv(s)‖v‖Gv(s).

Proof. Let γ = 1
2s

1/κ. By triangle inequality |ξ| ≤ |ξ − η|+ |η|,

‖u ∗ v‖Gv(s) ≤ C
∫

Rd1

∫
Rd1

eγ|ξ||u|(ξ − η)|v|(η)dξdη

≤ C
∫

Rd1

∫
Rd1

eγ|ξ−η||u|(ξ − η)eγ|η||v|(η)dξdη ≤ C‖u‖Gv(s)‖v‖Gv(s),

which completes the proof. �

Lemma 4.10 tells that for any s ≥ 0, Gv(s) is a Banach algebra. Therefore, this
space can be used to estimate analytic functions G(u) as follows.

Lemma 4.11. Let G be as in (2.11) and u,v be such that

max
1≤i≤n

{‖Tiu‖Gv(s,β,p), ‖Tiv‖Gv(s,β,p)} ≤ R.

For notational simplicity, denote F (T1u, · · · , Tnu) = F (u). There exists a constant
C independent of s,u,v such that

‖F (u)‖Gv(s) ≤ C1FM (RC),

‖F (u)− F (v)‖Gv(s) ≤ CF
′

M (RC) max
1≤i≤n

‖Ti(u− v)‖Gv(s).
(4.18)

Proof. The first inequality in (4.18) is an immediate consequence of Lemma 4.10.
Concerning the second, we have

F (u)− F (v) =
∑
j∈Zd+

aj(u∗j − v∗j)

=
∑
j∈Zd+

aj

|j|−1∑
k=0

[
u∗(|j|−|k|) ∗ v∗|k| − u∗(|j|−|k|−1) ∗ v∗(|k|+1)

]
.
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Applying now Lemma 4.10, we readily obtain

‖F (u)− F (v)‖Gv(s) ≤
∑
j≥1

|aj |jCjRj−1 max
1≤i≤n

‖Ti(u− v)‖Gv(s)

≤ CF
′

M (RC) max
1≤i≤n

‖Ti(u− v)‖Gv(s).

This completes the proof. �

Lemma 4.12. From the assumptions on Ti, for s, t, β ≥ 0,

‖Tiv‖Gv(s) ≤ ‖v‖Gv(s,αTi )
, ‖Tie−

1
2 tDv‖Gv(s) ≤

CαTi
tαTi/κ

‖v‖Gv(s).(4.19)

Proof. By definition of the Gevery norm, the first term in (4.19) can be obtained
by

‖Tiv‖Gv(s) ≤
∫

Rd1
|ξ|αTi e 1

2 s
1
κ |ξ||v(ξ)|dξ = ‖v‖Gv(s,αTi )

.

Since for all α ≥ 0

|ξ|αe−t|ξ|
κ

≤ Cαt−
α
κ , where C is independent of ξ, t, α,

we can prove the second term in (4.20) by

‖Tie−
1
2 tDv‖Gv(s) ≤

∫
Rd1
|ξ|αTi e− 1

2 |ξ|
κte

1
2 s

1
κ |ξ||v(ξ)|dξ

≤
CαTi
tαTi/κ

∫
Rd1

e
1
2 s

1
κ |ξ||v(ξ)|dξ =

C

tαTi/κ
‖v‖Gv(s).

which completes the proof. �

Proof of Theorem 2.6 We set

E =

{
u ∈ C

(
(0, T ); V

)
: ‖u(·)‖E = sup

s∈(0,T )

max
{
‖u(s)‖Gv(s), ‖u(s)‖Gv(s,α)

}
≤ R

}
For u ∈ E, we define

(Su)(t) = e−tDu0 +
∫ t

0

e−(t−s)DG(u(s))ds.(4.20)

Note that since κ ≥ 1, we have t1/κ ≤ s1/κ + (t− s)1/κ. Consequently,

‖e−(t−s)DG(u(s))‖Gv(t)

≤
∫

Rd1
e

1
2 t

1/κ|ξ|e−(t−s)|ξ|κ ∣∣(T0F (u(s)))(ξ)
∣∣dξ

≤ C
∫

Rd1
e

1
2 (t−s)1/κ|ξ|e−

1
2 (t−s)|ξ|κe

1
2 s

1/κ
e−

(t−s)
2 |ξ|κ∣∣(T0F (u(s)))(ξ)

∣∣dξ
≤ C

∫
Rd1

e
1
2 s

1/κ|ξ|e−
(t−s)

2 |ξ|κ ∣∣(T0F (u(s)))(ξ)
∣∣dξ,

(4.21)

where we use the fact that

e
1
2 τ

1/κ|ξ|e−
τ
2 |ξ|

κ

= e
1
2 |τ

1/κξ|e−
1
2 |τ

1/κξ|κ ≤ C, (τ ≥ 0, ξ ∈ Rd),(4.22)
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with the constant C independent of τ, ξ. Therefore,

‖e−(t−s)DG(u(s))‖Gv(t) ≤
CαT0

(t− s)αT0/κ
‖F (u)‖Gv(t)

≤
CαT0

(t− s)αT0/κ
C1FM (RC),

(4.23)

where we used (4.19) to obtain the first inequality, and we used the first inequality
in (4.18) to obtain the second inequality in (4.23). Similarly, one can obtain also
the estimate

‖e−(t−s)DG(u(s))‖Gv(t,α) ≤
CαT0+α

(t− s)(αT0+α)/κ
C1FM (RC).(4.24)

Thus, ∥∥∥∫ t

0

e−(t−s)DG(u(s)) ds
∥∥∥
E

≤ CαT0+αFM (RC) max
{
T 1−

αT0
+α

κ , T 1−
αT0
κ

}
.

(4.25)

Proceeding along similar lines but using the second inequality in (4.18) in the last
step, we can also obtain

‖Su1 − Su2‖E ≤ F
′

M (RC) max
{
T 1−

αT0
+α

κ , T 1−
αT0
κ

}
‖u1 − u2‖E .(4.26)

Concerning the linear term, using (4.22), it is easy to see that

max
{
‖e−tDu0‖Gv(t), ‖e−tDu0‖Gv(t,α)

}
≤ C̃ max

{
‖u0‖, ‖u0‖α

}
≤ R

2
.(4.27)

From (4.25), (4.26) and (4.27), it follows that S is a (strictly) contractive self map
of E provided T is suitably small. Thus we can find a fixed point.

The adjustment in the above argument necessary to obtain the global result in
the periodic setting is similar to Subsection 4.3 above.

5. Proof of Applications

We will now provide the proof of the decay results stated in Section 3. We will
follow the notation in Section 3.

5.1. Proof of Theorem 3.1. It is enough to prove (3.2). For u0 ∈ L2, we have
the following energy estimate

‖u(t)‖2L2 +
∫ t

0

‖u(s)‖2Ḣ1 ds ≤ ‖u0‖2L2 .

This implies that

sup
t>0
‖u(t)‖2L2 ≤ ‖u0‖2L2 , lim inf

t→∞
‖u(t)‖Ḣ1 = 0.(5.1)

In order to obtain the second relation in (5.1), for ε > 0 arbitrary, choose t large
so that 1

t ‖u0‖2L2 < ε/4. We note that the energy inequality yields 1
t

∫ t
0
‖u(s)‖2Ḣ1 ds ≤

1
t ‖u0‖2L2 . This immediately implies that there exists t0 ∈ (0, t) such that ‖u(t0)‖2Ḣ1 <
ε. Recall now the interpolation inequality

‖u‖Ḣβ ≤ ‖u‖
θ
Ḣβ1‖u‖

1−θ
Ḣβ2 , β = θβ1 + (1− θ)β2, θ ∈ (0, 1), βi ∈ R, i = 1, 2.
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Due the uniform bound on ‖u(t)‖2L2 , it also follows that lim inf
t→∞

‖u(t)‖Ḣβ = 0 for
0 < β ≤ 1.

When p = 2, we have βc = 1
2 and consequently (3.2) holds, which implies (3.4).

For p > 2, (3.4) follows from a direct application of the Sobolev inequalities
(4.8).

We will now focus on the case 1 < p < 2. We will use the the vorticity ω = ∇×u.
Note first that

lim inf
t→∞

‖ω‖2L2 = lim inf
t→∞

‖∇u‖2L2 = lim inf
t→∞

‖u‖2Ḣ1 = 0.

From the vorticity equation, ωt + u · ∇ω − ∆ω = ω∇u, we have the uniform L1

bound (see [9])

‖ω(t)‖L1 ≤ C(‖u0‖2L2 + ‖ω0‖L1).(5.2)

The uniform L1 bound and the interpolation inequality

‖ω‖Lq ≤ ‖ω‖θL1‖ω‖(1−θ)L2 , 1/q = θ + (1− θ)/2

implies

lim inf
t→∞

‖ω‖Lq = 0, 1 < q ≤ 2.(5.3)

Recall that ∇u = ∇(∇ × (∆)−1ω). The operator ∇(∇ × (∆)−1) is a Fourier
multiplier of homogeneous degree zero, and consequently, by the Calderon-Zygmund
theorem, we have

‖ω‖Ḣζq = ‖Λζω‖Lq ∼ ‖Λζ∇u‖Lq ∼ ‖u‖Ḣ1+ζ
q

, 1 < q <∞, ζ ≥ 0.(5.4)

Consequently,

lim inf
t→∞

‖u‖Ḣ1
q

= 0, 1 < q < 2.(5.5)

For p = 3/2, βc = 1 and (3.2) follows directly from (5.5). For 3/2 < p < 2 and βc
as above, applying (4.8), we have ‖u‖Ḣβcp ≤ ‖u‖Ḣ1

3/2
and once again (3.2) follows

from (5.5).
We now consider the case 1 < p < 3/2. From (5.4) and (3.4) with p = 2 (which

we already established), it follows that

lim
t→∞

‖ω‖Ḣζ ≤ lim
t→∞

‖u‖Ḣ1+ζ = 0, ζ ≥ 0.(5.6)

Recall now the generalization of the Gagliardo-Nirenberg inequalities for the frac-
tional (homogeneous) Sobolev spaces (see [34]), namely,

‖ω‖Ḣαp ≤ C‖ω‖
θ
Ḣα1
q1
‖ω‖1−θLq2 , θ ∈ (0, 1), α = θα1,

1
p

=
θ

q1
+

1− θ
q2

.(5.7)

Combining (5.7) with (5.3) and (5.6) we have

lim inf
t→∞

‖ω‖Ḣβp = 0, β > 0, 1 < p < 2.

Consequently, by (5.4), we also have

lim inf
t→∞

‖u‖Ḣ1+β
p

= 0, 1 < p < 3/2, β > 0.

Noting that for 1 < p < 3/2, we have βc > 1. By taking β such that 1 + β = βc,
(3.2) follows.



22 HANTAEK BAE AND ANIMIKH BISWAS†

5.2. Proof of Theorem 3.3. For notational simplicity, we will write ‖·‖Gv(t,0,p0) =
‖·‖Gv(t). Note that in the notation of Theorem 2.1, we have T0 = ∇, T1 = R, T2 = I.
It is known that solution to (3.5) satisfies (see [10])

lim
t→∞

‖η‖Lp = 0, 1 ≤ p ≤ ∞.

We will apply the local existence part of Theorem 2.1 with d = 2, n = 2, αT0 =
1, αT1 = αT2 = 0, p0 = 2

κ−1 , βc = 0. Let t1 be such that ‖η(t1)‖Lp0 < ε where ε is
as in Theorem 2.1. Applying the global existence part of this theorem, we have

sup
t>t1

‖η(t)‖Gv(t−t1) <∞.

From (3.1), we obtain

‖η(t)‖Ḣαp0 ≤
Cααα

(t− t1)
α
κ
≤ Cα1 α

α

t
α
κ

for all t ≥ t1 + 1, α > 0.

Also from the local existence part of the theorem, there exists t2 > 0, β > 0 such
that

max{‖η‖Gv(t), t
β/κ‖η‖Ḣβp0 } ≤ 2‖η0‖Lp0 for all 0 < t ≤ t2.(5.8)

Thus (3.6) holds for all t ∈ (0, t2] ∪ [t1 + 1,∞).
To complete the proof, we will need to show (3.6) for t ∈ [t2, t1 + 1]. In fact,

since t lies in the compact interval [t2, t1 + 1], it will be enough to show an estimate
of the form

‖η(t)‖Ḣαp0 ≤ C
ααα(5.9)

for a constant C that does not depend on t or α. Note that due to (5.8), we have
‖η(t2/2)‖Ḣβp0 < ∞. Due to the global well-posedness for the sub-critical quasi-
geostrophic equations, we have (see [47, 7])

M := sup
t2≤t≤t1+1

‖η(t)‖Ḣβp0 <∞.

Thus, applying the non-critical case of Theorem 2.1, there exists a time 0 < t3 <
t2/2 depending on M , such that

‖η(t)‖Gv(t3) ≤ 2‖η(t− t3)‖Ḣβp0 ≤ 2M for all t2 ≤ t ≤ t1 + 1.

Once again due to (3.1), this yields (5.9).

5.3. Proof of Theorem 3.5. As noted previously, it will suffice to prove (3.2).
We begin with the the L2 energy estimate. We multiply (3.7) by u and integrate
over R. Using integration by parts, we get

‖u(t)‖2L2 +
∫ t

0

‖u(s)‖2Ḣ1 ds ≤ ‖u0‖2L2 .

As in the previous subsection, this implies lim inft→∞ ‖u(t)‖Ḣ1 = 0. Consequently,
due to the uniform bound on ‖u‖2L2 , it also follows that lim inf

t→∞
‖u(t)‖Ḣβ = 0 for all

0 < β ≤ 1.
If n ≥ 4, βc ∈ (0, 1) and so the decay now follows.
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For n = 3, the critical space is L2. Therefore, we need to show lim inf
t→∞

‖u(t)‖L2 =

0. To do this, it will be enough to obtain a time independent bound for ‖u(t)‖Ḣ−1 .
To this end, we multiply (3.7) by Λ−2u and integrate by parts over R to get

d

dt
‖Λ−1u(t)‖2L2 + ‖u(t)‖2L2 =

∫
R

Λ−2u(t)∂x(u(t)3)dx

≤ ‖Λ−1u(t)‖L2‖u(t)‖L2‖u(t)‖2L∞

≤ C
[
‖Λ−1u(t)‖2L2‖u(t)‖4L∞

]
+

1
2
‖u(t)‖2L2 ,

(5.10)

where we have used the fact that the Hilbert transform ∂xΛ−1 is a bounded operator
on L2. In one dimension, we have the inequality [20]:

‖u(t)‖L∞ ≤ C‖u(t)‖
1
2
L2‖∇u(t)‖

1
2
L2 .(5.11)

Using (5.10), (5.11) and Gronwall’s inequality, we obtain

‖Λ−1u(t)‖2L2 ≤ C‖Λ−1u0‖2L2 exp
∫ t

0

‖u(s)‖4L∞ds

≤ C‖Λ−1u0‖2L2 exp
∫ t

0

‖u(s)‖2L2‖∇u(s)‖2L2ds

≤ C‖Λ−1u0‖2L2 exp
[
‖u0‖2L2

∫ t

0

‖∇u(s)‖2L2ds
]

≤ C‖Λ−1u0‖2L2 exp
[
‖u0‖4L2

]
.

This finishes the proof.

5.4. Proof of Theorem 3.7. We only need to show (3.2). Multiplying (3.9) by u
and integrating by parts, we arrive at

1
2
d

dt
‖u‖2L2 + ‖∆u‖2L2 ≤ −3β

∫
Rd
|u|2|∇u|2dx.

Noting β > 0, as before, this immediately yields

‖u(t)‖2L2 +
∫ t

0

‖∆u(s)‖2L2ds ≤ ‖u0‖2L2 .

This yields an time independent uniform bound for ‖u(t)‖L2 and also that lim inf
t→∞

‖∆u‖L2 =

0. Interpolation immediately yields (3.2) in case d ≥ 3. For cases d = 1, 2, multi-
plying (3.9) by Λ−2u (recall Λ2 = −∆) and integrating by parts, we arrive at

1
2
d

dt
‖Λ−1u‖2L2 + ‖Λu‖2L2 ≤ −3β

∫
Rd
|u|4dx.

This yields

‖u‖Ḣ−1 ≤ ‖u0‖Ḣ−1 , lim inf
t→∞

‖u‖Ḣ1 = 0.

Noting that for d = 1 and d = 2, we have βc = −1/2 and βc = 0 respectively, we
have (3.2).
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5.5. Proof of Theorem 3.8. Multiplying the equation by u and integrating by
parts, we have the energy inequality

1
2
d

dt
‖u‖2L2 + ‖∆u‖2L2 ≤

2N−2∑
j=1

j|aj |
∫
Rd
|∇u|2|u|j−1dx

− (2N − 1)a2N−1

∫
Rd
|∇u|2u2(N−1)dx.

Let

I1 =
2N−2∑
j=1

j|aj |
∫
u:|u|≤1

|∇u|2|u|j−1dx, I2 =
2N−2∑
j=1

j|aj |
∫
u:|u|>1

|∇u|2|u|j−1dx

and note that applying (3.10) and Poincare inequality, we get

I1 ≤ δ
∫
Rd
|∇u|2dx ≤ δλ0‖u‖2L2 , I2 ≤ δ

∫
Rd
|∇u|2u2(N−1)dx.

Provided δ is sufficiently small, from the energy inequality, we get
1
2
d

dt
‖u‖2L2 + γ‖∆u‖2L2 ≤ 0,

where γ > 0 is an adequate constant. As before, from here we obtain

‖u‖2L2 ≤ ‖u0‖2L2 , lim sup
t→∞

‖∆u‖L2 = 0.

By interpolation, this implies that lim inft→∞ ‖u‖Ḣβ = 0 for all β < 2. By
Poincare inequality, this in turn implies lim inft→∞ ‖u‖L2 = 0 as well. Conse-
quently, lim inft→∞ ‖u‖Hβ = 0 for all β < 2. This finishes the proof.

6. Appendix

We now present the Littlewood-Paley theory and its application to the Kato-
Ponce inequality. For more details of the Littlewood-Paley theory, see [8, 11].

6.1. Littlewood-Paley theory. We take a couple of smooth functions (χ, ϕ) sup-
ported on {ξ; |ξ| ≤ 1} with values in [0, 1] such that for all ξ ∈ Rd,

χ(ξ) +
∞∑
j=0

ψ(2−jξ) = 1,

where ψ(ξ) = ϕ( ξ2 )−ϕ(ξ). We denote ψ(2−jξ) by ψj(ξ). The homogeneous dyadic
blocks and lower frequency cut-off functions are defined by

4ju = 2jd
∫
Rd
h(2jy)u(x− y)dy, Sju = 2jd

∫
Rd
h̃(2jy)u(x− y)dy,

where h = F−1ψ and h̃ = F−1χ. We note that u =
∑
j∈Z4ju in S ′h, where S ′h is

the space of tempered distributions u such that lim
j→−∞

Sju = 0 in S ′ . This is called

the Littlewood-Paley decomposition.
This decomposition allows us to characterize a large range of functions spaces in

a unified way. In this section, we only consider the homogeneous Triebel-Lizorkin
spaces ([19]):

‖f‖Ḟαp,q =
∥∥∥(∑

j∈Z
22jα|4jf |2

) 1
2
∥∥∥
Lp
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In particular, for q = 2,

‖f‖Ḣαp '
∥∥∥(∑

j∈Z
22jα|4jf |2

) 1
2
∥∥∥
Lp
.(6.1)

The concept of paraproduct is to deal with the interaction of two functions in
terms of low or high frequency parts. For u, v two tempered distributions,

uv = Tuv + Tvu+R(u, v), where

Tuv =
∑
i≤j−2

4iu4jv =
∑
j∈Z

Sj−1u4jv, Sju =
∑
l≤j−1

4lu,

R(u, v) =
∑

|j−j′ |≤1

4ju4j′ v.

Then, up to finitely many terms,

4j(Tuv) = Sj−1u4jv, 4j(R(u, v)) =
∑
k≥j−2

4ku4kv.

6.2. Proof of the Kato-Ponce inequality ([28]). We only prove the homoge-
neous part: for p, pi, and qi such that 1

p = 1
p1

+ 1
q1

= 1
p2

+ 1
q2

, 1 ≤ p <∞, pi, qi 6= 1,
we have the following estimation:

‖Λs(fg)‖Lp ≤ C
[
‖Λsf‖Lp1‖g‖Lq1 + ‖f‖Lp2 ‖Λsg‖Lq2

]
.(6.2)

Proof. We decompose fg as follows:

fg =
∑
k

(
∑
j≤k−2

4jf)4kg +
∑
k

(
∑
j≤k−2

4jg)4kf +
∑
|j−k|≤1

4jf4kg

=
∑
k

Sk−1f4kg +
∑
k

4kSk−1g4kf +
∑
|j−k|≤1

4jf4kg

= (a) + (b) + (c).

(6.3)

We apply Λs to (6.3) and estimate three terms separately. We begin with (a).

‖Λs(a)‖Lp ≤ C
∥∥∥[∑

k

∣∣∣Λs(∑
l

Sl−1f4lg
)∣∣2] 1

2
∥∥∥
Lp

≤ C
∥∥∥[∑

k

∣∣2ksSk−1f4kg
∣∣2] 1

2
∥∥∥
Lp
.

(6.4)

Since for any k,

|Sk−1f(x)| ≤ CMf(x) = sup
r>0

1
rd

∫
B(x,r)

|f(y)|dy,

where M is the Hardy-Littlewood maximal operator, we can estimate the right-
hand side of (6.4) by

‖Λs(a)‖Lp ≤ C
∥∥∥Mf

[∑
k

∣∣2ks4kg∣∣2] 1
2
∥∥∥
Lp

≤ C‖Mf‖Lp1
∥∥∥[∑

k

∣∣2ks4kg∣∣2] 1
2
∥∥∥
Lq1
≤ C‖f‖Lp1‖Λsg‖Lq1 ,

(6.5)
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where we use the fact that M maps Lp to Lp for all p > 1. By using the same
method,

‖Λs(b)‖Lp ≤ C‖Λsf‖Lp2‖g‖Lq2 .(6.6)

We finally estimate Λs(c).

‖Λs(c)‖Lp ≤ C
∥∥∥[∑

k

∣∣∣Λs( ∑
|l−l′ |≤1

4lf4l′ g
)∣∣∣2] 1

2
∥∥∥
Lp

≤ C
∥∥∥[∑

k

∣∣∣2ks ∑
l≥k−2

4lf4lg
∣∣∣2] 1

2
∥∥∥
Lp

=
∥∥∥[{2ks

( ∑
l≥k−2

(
2−ls

)2) 1
2 ×

(∑
l

(
4k(4lf2ls4lg)

)2) 1
2
}2] 1

2
∥∥∥
Lp

≤ C
∥∥∥[∑

k

∑
l

(
4k
(
4lf2ls4lg

))2] 1
2
∥∥∥
Lp
.

(6.7)

We now need to use the extension of the Littlewood-Paley operator [31]: if L :
Lp → Lpl2 is a Littlewood-Paley operator, then L : Lpl2 → Lpl2l2 is the extension
of L such that ∥∥∥L∥∥∥

Lpl2→Lpl2l2
≤ C

∥∥∥L∥∥∥
Lp→Lpl2

.

Using this relation, we can replace the last term in (6.7) by

‖Λs(c)‖Lp ≤ C
∥∥∥[∑

l

(
4lf2ls4lg

)2] 1
2
∥∥∥
Lp
≤ C

∥∥∥[Mf
∑
l

(
2ls4lg

)2] 1
2
∥∥∥
Lp

≤ C‖Mf‖Lp2
∥∥∥[∑

l

(
2ls4lg

)2] 1
2
∥∥∥
Lq2

≤ C‖f‖Lp2 ‖Λsg‖Lq2 .
(6.8)

By (6.5), (6.6), and (6.8), we obtain (6.2). �
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