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ABSTRACT

QIONG SHOU.Semiparametric time-varying coefficient regression model for
longitudinal data with censored time origin. (Under the direction of DR. YANQING
SUN)

In preventive HIV vaccine efficacy trials, thousands of HIV-negative volunteers
are randomized to receive vaccine or placebo, and are monitored for HIV infection.
The primary objective is to assess vaccine efficacy to prevent HIV infection. An impor-
tant aspect of vaccine efficacy trials is to assess whether vaccine decreases secondary
transmission of HIV and ameliorates HIV disease progression in vaccine recipients
who become infected.

This thesis investigates the vaccine effect on the post HIV longitudinal biomark-
ers (e.g., viral loads and CD4 counts) over time since the actual HIV acquisition. The
method applies to the situation when the time of the actual HIV acquisition may be
missing or censored.

The problem is investigated under the semiparametric additive time-varying
coefficient model where the influences of some covariates vary nonparametrically with
time while the effects of the other covariates remain constant. The weighted profile
least squares estimators are developed for the unknown parameters as well as for the
nonparametric coefficient functions. The method uses the expectation maximization
approach to deal with the censored time origin. The asymptotic properties of both
the parametric and nonparametric estimators are derived and the consistent estimates
of the asymptotic variances are given. The numerical simulations are conducted to

examine finite sample properties of the proposed estimators.
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CHAPTER 1: INTRODUCTION

1.1 A motivating example

In preventive HIV vaccine efficacy trials, thousands of HIV-negative volunteers
are randomized to receive vaccine or placebo, and are monitored for HIV infection.
The primary objective is to assess vaccine efficacy to prevent HIV infection. An impor-
tant aspect of vaccine efficacy trials is to assess whether vaccine decreases secondary
transmission of HIV and ameliorates HIV disease progression in vaccine recipients
who become infected (cf., Clemens et al., 1997; Halloran et al., 1997; Clements-Mann,
1998; Nabel, 2001; Shiver et al., 2002; HVTN, 2004; TAVI, 2004).

We propose to investigate the vaccine effect on the post HIV longitudinal
biomarkers (e.g., viral loads and CD4 counts). Viral load and CD4 counts have
been found to be highly prognostic for both secondary transmission and progression
to clinical disease in observational studies (cf., Mellors et al., 1997; HIV Surrogate
Marker Collaborative Group, 2000; Quinn et al., 2000; Gray et al., 2001). All previous
analyses of HIV vaccine efficacy trials assessed these biomarkers based on the time
from HIV positive diagnosis. However, it is biologically meaningful to assess whether
vaccination modifies or accelerates the development of these biomarkers over time
since the actual HIV acquisition. This assessment can be challenging since exact
times of actual HIV acquisition are often unobtainable for trial participants. A brief
description of HIV vaccine efficacy trial’s diagnosis algorithm is given in the following.

HIV vaccine trials test volunteers for anti-HIV antibodies at periodic intervals
(e.g., every 3 or 6 months); these antibody-based tests have near-perfect sensitivity

to detect infections that occurred at least four weeks ago but otherwise may miss
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the infection. For all subjects with an HIV antibody positive (Ab+) test, a “look-

back” procedure is applied wherein earlier available blood samples are tested for HIV
infection using a more sensitive antigen-based HIV-specific PCR assay, which has
near-perfect sensitivity if the infection occurred at least one week ago. Therefore,
each infected subject is classified into one of two groups, defined by whether the
earliest HIV positive sample is Ab- and PCR+ or is Ab+ and PCR+. The actual
HIV acquisition time is approximated well by the time at Ab- and PCR+, while
actual infection time occur approximately between the first Ab+ and earlier Ab- test
times in the case of Ab+ and PCR+. The Ab+ and PCR+ cases occur in between

20% and 70% of infected subjects, with the rate depending on the frequency of HIV

testing.
actual HIV
acquisition
\ T }
i Sz El l
L; O; D;
Ab- test Ab+ test  1st viral test j-th viral test

Figure 1.1: Time since actual HIV acqusition in case of Ab+ and PCR+.

Consider the 7 = 1,...,n subjects who become HIV infected during the HIV
vaccine efficacy trial. Let O; be the time of actual HIV acquisition, D; the HIV
positive diagnosis time based on the trial’s diagnosis algorithm (first Ab+ test time)
and L; the last Ab- test time. Post-infection biomarkers are measured at times
T, ..., Ti,, where T;; is the time between the first Ab+ and the time at which the jth
measurement is taken. Let S; be the gap between HIV acquisition and the diagnosis,
S; = D; — O;. If subject ¢ has an acute sample (Ab- and PCR+), the actual infection
time can be well approximated by L; and in this case let S; = D; — L;. Otherwise, .5;
is less than D; — L;. The S; (time origin) is left censored by D; — L; with censoring
indicator R;: R; = 11if S; is observed and R; = 0 if S; is less than D; — L;. The time
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from actual HIV acquisition to the jth sampling time is then 77 = S; + T;;. Figure

1.1 illustrates the set-up.

1.2 Existing works

The sampling times T}; = S; + T}; from the actual HIV acquisition are known
when S; is completely observed. In this case many existing statistical methods can
be used to analyze model (2.1). Among others, recent works in this area include
semiparametric methods by Moyeed & Diggle (1994), Zeger & Diggle (1994), and
Liang, Wu & Carroll (2003), nonparametric methods by Hoover, Rice, Wu & Yang
(1998), Wu, Chiang & Hoover (1998), Scheike & Zhang (1998), Wu & Zhang (2002),
Wu & Liang (2004) and Sun & Wu (2003). Martinussen & Scheike (1999, 2000,
2001) and Lin & Ying (2001) considered time-varying coefficients regression models
for longitudinal data and successfully integrated counting process techniques into the
analysis of longitudinal data, providing further bridging between survival analysis,
recurrent events, and time-dependent observations. Sun and Wu (2005) developed
weighted least squares estimation procedure which avoids modeling of the sampling
times is asymptotically more efficient than a single nearest neighbor smoothing which

depends on estimation of the sampling model.



CHAPTER 2: ESTIMATION APPROACH THROUGH EM ALGORITHM

2.1  Preliminaries

Suppose that there is a random sample of n subjects. For subject i, let Y;(t)
be the response process and let X;(t) and Z;(t) be the possibly time-dependent co-
variates of dimensions (p+ 1) x 1 and ¢ x 1, respectively, where ¢ is time since actual
acquisition. The proposed general semiparametric time-varying coefficients regression

model assumes that
Yi(t) = BT () X;(t) + 7 Zi(t) + (1), i=1,...,n (2.1)

where [(t) is an unspecified (p + 1) x 1 vector of smooth regression functions, =y
is a ¢ x 1 dimensional vector of parameters, and ¢;(t) is a mean-zero process. The
notation =’ represents transpose of a vector or matrix . The first component of X (t)
is specified as 1 in general, giving to a model with a nonparametric baseline. The
effect of X (t) is modeled nonparametrically while the effect of Z(t) follows a given
parameter.

The observations of Y;(t) are taken at time points 7] < T3 < --- < T, , where

n; is the total number of observations on the ith subject. The number of observations
taken on the ith subject by time ¢ is NP(t) = >0, I(T}; < t), where I(-) is the
indicator function. Let C; be the end of follow-up time or censoring time for the ¢th
subject starting at HIV positive diagnosis (Ab+ test time). The censoring time C;
will be allowed to depend on the covariates X;(-) and Z;(-). The responses for the ith

subject can only be observed at the time points before C;. The censoring time since

the actual time origin (HIV acquisition) is S; + C;.



Let
E{dN?(t) | X;(t), Z;(t)} = a(t, U(t)) dt = a(t) dt, 1=1,...,n, (2.2)

where U;(t), a m x 1 vector, is the part of the covariates (X;(t), Z;(t)) that affects the
potential sampling times. The function «(t,u) is an unspecified nonnegative smooth
function.

The time S; from actual HIV acquisition to HIV positive diagnosis may be
left censored. Let R; = I(S; > V;) be the censoring indicator. For the applica-
tion concerned here, the censoring time V; (e.g. D; — L;) is always observed. Let
D; = {V;, Ci, Ay, Ty, Xi(T5), Zi(T55), Yi(T5;), j = 1,.. . ,n;}, where A; is a collection of
possible auxiliary variables that are not of interest in the modelling of Y;(¢) but may
be useful in predicting the distribution of S;. The observed data for subject ¢ can
be expressed as X; = {R;S;, R;, D;}. The observation is {S;, D;} if R; = 1 and D; if
R; = 0. Although exact times T may be unobtainable, the values X;; = X;(T}),
Zij = Zi(T5) and Yy = Yi(T7) at Tj; are known. Denote the observed data by
X ={X,i=1,2,...,n}.

Assume that the censoring time C; is noninformative in the sense that E{dN?(t)
| X5(t), Zi(t), S;+C; >t} = E{dN?(t)| Xi(t), Z;(t)} and E{Y;(t)| X;(t), Zi(t), Si+C; >
t} = E{Y;(t)|Xi(t), Zi(t)}. Assume also that Y;(t) and N?(¢) are independent condi-
tional on X;(t), Z;(t) and S; + C; > t. This assumption implies that, conditional on
covariate processes, sampling times are noninformative for the response. Note that
dependence between response and sampling times as well dependence between sam-
pling times and the censoring time Cj is often induced by ignoring certain covariates
(cf., Miloslavsky et al., 2004 and Zeng, 2005). The stated conditional independence
assumptions make the proposed methods applicable to situations where dependence

may exist among response process, sampling times and censoring time C; but be-

coming independent by including appropriate additional covariates. A recent work
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by Sun and Lee (2011) on testing independent censoring for longitudinal data pro-

vides needed procedures for checking such assumptions. Let N;(t) = > 71| I(Ti; <t).
Assume E{Yi()|Xi(), Zi(), Ni(-), Si, Vi, Ci = E{QG(0)|X), Zi()}.

When all 5;’s are observed, the existing statistical methods cited in Section
1.2 can be used to analyze model (2.1). However, none of these methods address
the problem in which the time origin may be censored. We propose to extend the

investigation of model (2.1) to accommodate this situation.

2.2  Estimation Procedures

It is important to note that if the unobserved or censored S; is treated as
missing, then \S; is not missing at random in the sense of Robin (1976). The inverse
probability weighting of complete-cases method of Horvitz and Thompson (1952)
and the augmented inverse probability weighted complete-case method of Robins,
Rotnitzky and Zhao (1994), which have been successfully adapted in Sun and Gilbert
(2011), Sun, Wang and Gilbert (2011) and by many other authors, will not work
in this situation. We propose an estimation procedure based on the missing-data
principle using the EM-algorithm. The EM-algorithm has been applied by Scheike
and Sun (2007) to develop maximum likelihood estimation for tied survival data under
Cox regression model.

Let Fs(s|D;) be the conditional distribution of S; given D;. The conditional
distribution of S; given D; and R; = 0, Fs(s|D;, R; = 0), equals Fs(s|D;)/Fs(Vi|D;)
for s <V, and 1 for s > V;. Assume that max{S;, V;} is bounded by a predetermined
constant ¢. This is reasonable since for the application concerned here max{S;, V;}
is less than the time interval between two consecutive testing times which is usually
between 3 and 6 months. The distribution of S; based on the left censored data can
be estimated by using the right censored data through the transformation {min{c —
Si,c—Vi},Ri =1(c—S; < c¢—1V;)}. Thus, the Kaplan-Meier estimator can be used

to estimate the distribution of S; when S; is independent of D;. Otherwise, a failure
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time regression model such as the Cox model (Cox, 1972) can be used to estimate the
conditional distribution Fs(s|D;). Observing the censoring time V; for all subjects is
a key factor in the estimation of Fs(s|D;, R; = 0). Otherwise Fs(s|D;, R; = 0) is not
identifiable.

Let Fs(s|D;) be the estimated conditional distribution of Fg(s|D;). The prob-
ability m; = P(R; = 1|D;) = P(S; > V;|D;) can be estimated by m; = 1 — ﬁS(VADZ-).
Let dN{(t) = I(S; + C; > t)dN?(t). The estimation of model (2.1) will be based on

targeting to minimize the following objective function:

W3 = 3R [ W) - 5 @Xi(w) ~ 97 2w dNEla)
2 (1- Ri)ES{ /0 Wi(u){Yi(u) — 57 (u) X (u)
STz AN wIX ], 23)

where W;(-) is a nonnegative weight function, and ES{-|X } is the estimate of the
conditional expectation, Es{:|X'}, of a function of S; given X'. For a random function

Gt Xi(), Zi(1), Yi(). B { ] Giulu, Xi(u), Zi(uw), Yi(u))ANE ()| X'} equals

> " Es{Gu(S: + Tij, Xi(T5), Z:(T5), Yi(TENI(C; > Ty)I(Si + Ty < 7)| X'}

j=1

=1
= Z/ Gn(s+ T, Xij, Zi5, Yi) ) I(C; > Ty5) (s +T;; < 1) dﬁS(SIX)
=170

Since F(s|X) is the conditional distribution of S; given X for ith subject with R; =0
and X; = {S;,R; = 1,D;} U{D;, R; = 0}, F(s|X) = F,(s|D;, R; = 0) by indepen-

dence. This also holds for its estimator Fj(s|X) . Hence the above term equals

Z/o Gls + Ty, Xij, Zi, i) I(Ci > Tyj)I (s + Ty < 1) dFs(s|D;, R; = 0)
7j=1
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Z / (5 4+ Ty Xoys Zug, Vi) I(Cs = Ty)I(Tyy < 7 — 5) dFs(s|Dy)/ Fs(ViIDy).

Note that the function G, (u, X;(u), Yi(u), Z;(u)) maybe depend on the observed data
which makes it measurable with respect to X" for each fixed (u, X;(u), Yi(u), Z;(u)).

Taking derivative of [;(3,~) with respect to § for a fixed ~ yields
Oly(
P Z < WOXADV(0) ~ B OX,l1) 7 20} ANE(D) >, (24)

where and hereafter, the notation < H;(t) >r= R;Hi(t) + (1 — R;) Es{H;(t)|X} is

used for a random function H;(t). This leads to the following estimating function

Z < Wit XiO{Yi(t) = 85O X (t) — YT Z:() Y ANE() >p . (2.5)

The root of the equation Uy(3,~) = 0 is denoted by B(t, 7). However, from U(B,v) =
0 we obtain Y 1 | < Wi(t) X, () XF (1)B(t) ANF(t) >r= "1, < Wi(t) X;(t){Yi(t) —
ZI'(t)y} dN£(t) >g. The equation has no solution for 3(t) for fixed v because of spar-
sity of the data at time t. However, the solution exists by gathering the data around
a neighborhood of t. Let E.,(t) =n ' 30 | < [ Kj(u — ) Zi(u) XF (u) ANf(u) >g,
where Kj(t) = h'K(t/h), K(t) is a symmetric kernel function with a compact sup-
port and h is the bandwidth depending on n. The E,.(t) and E,,(t) are similarly
defined by replacing Z; with Y; and X, respectively. The local least squares estimator

for 5(t) for fixed ~y is then given by

Btsy) =Y, (t) = Z7 (1), (2.6)

where Y, (1) = Eyo(t)(Eax (1))~ and Zo(t) = Eo(t)(Era(t) ™. Replacing f(t;7) for
B(t) in (2.3) and taking derivative with respect to v, we obtain the profile estimating

equation for v:

> [C < Wiz - ZOX 0RO - X0



—Z] ()} dN{(t) >r=0. (2.7)
From (2.7), we solve for v to get ¥ which equals D~'W where

b= il /: K Wilt){Zi(t) = Ze(0) Xi() 2 dN; () >k

W= ! Z/f < WiO{Zi(t) = Zo(O) X HYi() — XT (Y] (D)}ANF () >r .
i=1 /1t

An estimator of 4(t) is given by g(t) = B(t; 7).

When S; is observed for all subjects, R; = 1. The estimators for §(¢) and
v are reduced to those under Sun and Wu (2005). However, when S; is censored,
the estimating equations (2.4) and (2.7) are weighted according to the conditional
distribution of .S; so that the estimated covariate effects correspond to those at the
time since the actual time origin. A key factor for this procedure to work is that the
censoring time V; is observed for all subjects so that the estimation of Fs(s | D;, R; =

0) is possible.

2.3  Computational algorithm

The boundary effects on the estimation of §(¢) and the covariance matrix of
its estimator can be reduced by applying the equivalent kernel for the local linear
approach; see Fan & Gijbels (1996).

Suppose the binary data (11, By), (12, Ba), - - - , (T, Bn) which are n indepen-
dent and identically distributed copies from (7, B). To estimate m(to) = E(B|T = to)
is of interest. Suppose we use symmetric kernel K (z) in local constant method. Then

the local constant estimator of m(t) at point ¢, will be

P = n~! Z:’L:l K (T; — tO)Bi‘
n-! Z?:l Ki(T; — to)

To get the equivalent kernel, we will mimic some notations in Fan & Gijbels
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(1996).

Smj(to) = ZK}L(T'Z - tU)(T; - tO)ja ] = Oa 17 2.
i=1

Then
Sno(to) Snal(to)

Sni(to) Sna(to)

Meanwhile the inverse can be written as

Sn(to) =

. 1 Sna2(to)  —Sni(to)
Sn (to): B
Snolto)Snalto) = Snlto) \ s, () Sno(to)

As stated in the Section 3.2.2 of Fan & Gijbels (1996), the equivalent kernel

for local linear approach is
Ki(t —to) = el Sy (to)(1 t — o) Ku(t — to),
where e; = (1 0). Thus we can simplify the equivalent kernel as follows.

Ki(t—ty) = elS  to)(1 t —to)TKp(t —to)
Kn(t—t0)(1 0) Spa(te)  —Sni(te) 1
Sno(to)Sna2(to) = Su1(t) | _g. 1 (t9)  Snolto) t—t,

{Sn2(to) — Sna(to)(t —to) }Kn(t — to)
Sn0(to)Sn2(to) — S 1 (to)

Therefore, the local linear estimator my, at point ¢, under the model B = m(T') + ¢ is

n YL KR(Ti—t)Bi o Y0 {Sna(te) = Sua(to)(Ti — to) HiS(Ti — to) B

nt Y K (T — o) > {Sn2(to) = Sni(to) (T — to) Y ICH(Ti — to)

Compared to the local constant estimator above, if we use the following kernel
Wi(Ti — to) = {Sn2(to) — Sn1(to)(Ti — to) } Kn(Ti — to) (2.8)

instead of K (T; — to), we simply obtain the local linear estimator.
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Let f(t) be the density function of T'. For a interior point ¢y, the local linear
estimator is asymptotically equivalent to the local constant estimator as h — 0 and

nh® = O(1) since for a symmetric kernel, [ K (z)xdz = 0. Then

W ESy (o) = EEn(Ts — to)(Ti — to)) = / Kt — to)(t — to) f(1) dt

= /K(m)hjxjf(to + hx)dx = W (f(ty) + o(h)) /K(x)xj dx = o(h).

Especially note that n='FS,, 1 (t) = 0. Hence

3 ASna(te) = Spa(to)(Ti — to) YEw(T; — to) B
Yo {Sna(to) = Sni(to)(Ti — to) }EKu(T; — to)
nt T {nTtS,a(t) — n_lSnJ(to)hTi;tO YEG(T; — to) B
n= Y {n S a(te) — n 1S, (to) W IR} KL (T — to)
n~t Y KR (T — to) By 9
S A A R L

= T/T\LC + OP(h2).

Thus (nh)Y2(m — Mc) = o0,((nh®)Y?), which means the asymptotic distributions
for the local linear estimator and the local constant estimator are the same for an
interior point ty as h — 0 and nh®> = O(1). This enables using the equivalent kernel
for the boundary time points while using the kernel in local constant approach for
the interior time points.

In estimating B(t), time points 7" may be unknown since S; is left censored by
Vi. Then we cannot simply use S, ;(to) defined above. Let

Snalt) =) < / Kn(u—t)(u—1)dNE(u) >p, j=0,1,2.
i=1 0

Now under the new definition of S, ;(t), we still have the form of equivalent kernel

in (2.8) for local linear approach of estimating 3(t).
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2.4  Cross-validation bandwidth selection

The optimal theoretical bandwidth is difficult to achieve since it would in-
volve estimating the second derivative §”(t); see Fan and Gijbels (1996) and Cai
and Sun (2002). In practice, the appropriate bandwidth selection can be based on
a cross-validation method. This approach is widely used in nonparametric function
estimation literature; see Rice and Silverman (1991) for leave-one-subject-out cross-
validation approach and Tian, Zucker and Wei (2005) for K-fold cross-validation
approach.

An analog of the K-fold cross-validation approach in the current setting is to
divide the data into K equal-sized groups. Let D, denote the kth subgroup of data,

then the kth prediction error is given by

2

P = Y < [ [0 - Beo) X0 =50 Z0] Vi) >, (29)

i€ Dy, t1
for k = 1,..., K, where B\(_k) (t) and 7(_y) are the estimators of 3(¢) and v based
on the data without the subgroup D,. The data-driven bandwidth selection based
on the K-fold cross-validation is to choose the bandwidth A that minimizes the total

prediction error PE(h) = Y&, PE}(h). This bandwidth selection procedure will be

further studied and tested empirically through simulations.



CHAPTER 3: ASYMPTOTIC PROPERTIES

In this section we will explore the asymptotic properties of our estimators.

First we will define some notations for the future use. Let

exa(t) = E(&(t)o(t) Z;(t) X7 (1)),

where &;(t) = I(S; + C; + ¢; > t). Similarly we can define e,,(t) and e,,(t). Also

let v, (t) = ey (t)(€xa(t)) ™, 22(t) = €20(t)(e2x(t)) ™! and 7o, Bo(t) be the true value or

true curve respectively. Then

Yo (1) — 2 ()70
= (eau(t)) " eye(t) — (eaa(t) €2 ()70
= (ea(t)) T [E(E( () Xi (1) Y, (1)) — E(&(t)as(t) Xi() Z] (1)) 0]
= (ea(t)) " E(&( () Xi ()Y, (1) — Z ()70])
= (eao(t) (&) ai() Xi(0)[XF (1) Bo(t) + € (2)])
= (eao(t) " eaa(t)Bo(t) + E(E[Ei(t)oi(t) Xi(t)e" (t) | Xilt), Zi(t), S; + Ci > 1])
= Bo(t) + E(&()oa(t) Xi(H) E[e" (1) | Xi(t), Zi(1), S; + C; = t])
= Bo(t) + E(&()oa()Xi(H) Ele' (1) | Xi(t), Zi(1)]) = Bo(t)-

Let B*(t) = 7, () — 22 (t)70 where §u(t) = €ya(t)(Eaa(t)) ™, Zo(t) = Exalt)(Eaa(t)) ™
and €,,(t) = [ Kn(u — t)eye(u)du. We have the fact that é,,(t) = [ Kn(u —
)eyl‘( Jdu —

€4:(t). And similar facts hold too. Also we denote the transposes of the matrices by

L eyo(u) as h — 0. Similar definitions can de defined for é,,(t) and

changing the order of the subscripts. Now let us state the following conditions.
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Conditions (I). Assume that the {n;} are bounded; the {S;} are bounded by

a large enough value L and independent of D;; the kernel function K(-) is symmetric
with compact support on [—1,1]; the processes X;(t), Z;(t) and «;(t), 0 < t < T,
are bounded by a constant, continuous and their total variations are bounded by a
constant; the values of the jth measurement X;; and Z;; are also bounded; (e,,(t))™!
for 0 <t < 7 are bounded; the weight function W;(t) can be written as a difference of
two monotone functions and each converges to a deterministic function so that W;(¢)
converges to w(t) for all 7.

Under the conditions above and by Lemma A.2.3 we can prove that E.,(t)
N e..(t) uniformly in t € [t;, 2] C [0,7]. Similar asymptotic results hold for £, (t)
and E~m(t) By continuous mapping theorem, the above results lead to the conclusion
that Y, () and Z,(t) converge to y,(t) and z,(t) uniformly in ¢ € [t1, t5] respectively.

Both parametric and nonparametric estimators we proposed in the previous

chapter are consistent. First we apply (2.6) to (2.3), we can get n~'I(v) equals
Tty < / Wis){Yi(s) = Ya(5)Xi(s) + 7" (Zu(5)Xi(s) = Zi(5))}* AN{ () >
i=1 0

which is a random function of v. This function can be proved to uniformly converge
to a deterministic function of . Then followed by Theorem 5.7 of van der Vaart

(1998), we obtained the consistency of 7.

Theorem 3.1: (Consistency of 7) Under Condition (I), 7 = D'W converges to its

true value 7 in probability as n — oco. O
Then by the definition of B (1), it is apparent to show

Theorem 3.2: (Consistency of 3(¢)) Under Condition (I), B(t) = 3(t;7) converges

to Bo(t) in probability uniformly on [¢1,t5] as n — oo, where 0 < t; <t, < 7. O

Also we can obtain the asymptotic distribution of § and 3(t) for a fix ¢. In
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Section 2.2 7 is the solution of (2.7). So denote U(y) as

Z /ttz K Wilt){Zi(t) — Zo(0) Xs () H{Yi(t) — XT()B(E;7) — Z] ()7} dNS (1) >r

which is usually called the score function. Then the Taylor expansion of U(7) at

260 == () )

where 7* is on the line segment between 7 and 7y. To prove the asymptotic normality

of n'/2(3 =), it is sufficient to prove the convergence in probability to a non-singular

—19U(v")

5.7~ and the weak convergence of n~'2U(vy). The convergence in

matrix of n
probability can be easily obtained by applying Lemma A.2.2. And n="/2U(v,) can be

derived to equal to

oy / CW(OAZi(0) — 2 () X(0) i (0 RiANE (D)
- +E{(1 = R;)dAN{(t) | Di, R; = 0}] + 0,(1).

Then applying theorem 5.21 (van der Vaart, 1998) to the sore function, the asymptotic

normality of 7 is presented in the following theorem.

Theorem 3.3: (Asymptotic Normality of 7) Under Condition (I), n'/2(3 — ) N

N (0, D'V D7) as n — oo where

D E( / W20 — = ()X} de<t>),

t1

v={ [ IRu)z0 - 20X 00N

t1

+(1—Ri)Es{w(t)(Zi(t)—zw(t)Xi(t))ei(t)de(t)|Di,Ri:0}]} .o

Based on the equations (A.9) and (A.11), the asymptotic variance above can

be estimated by D=1V D=1 where

e i—? /: < Wi{Zi(t) — Z:(t) Xi(t)}** N} () >,
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n

‘7 = nIZ{
i=1

and & (t) = Y;(t) — B(t)T X;(t) =37 Z;(t). This estimator is consistent estimator of the

/ " < W) - ZoOX(0)at) ANFE) S }

t1

asymptotic variance by the consistency of D and V.

Before demonstrating the asymptotic normality of B (t) at each fixed time point
t, we first introduce the following notations. We know that N£(t) is a counting process.
Let the filtration Ff = o{Nf(s), R;, Xi(+), Zi(+), Yi(:),0 < s < t}. By the Doob-Meyer
decomposition theorem, under this filtration there is a unique pair of a martingale
M¢(t) and a compensator A$(t) which can be defined as fo Yo (T > s)ag(s)ds
such that Ny(t) = A§(t) + Mg(t). Let Y£(t) = Y20, I(T3; > t).

By definitions we can obtain that

(nh)"*(B(t) — B*(¢))

= () (Bt ) — BY(0)) + (nh)2(F — o) 22 0)

a’y +Op(n_1/2h1/2),

B(t) = Bolt) + (1/2)pah*(exs(t)) "€z, (1) — €1 ()50 — el (t) Bo(t)] + o(h?).

So it suffices to focus on the difference (nh)2(B(t; ) — 5*(t)) to get the following

theorem.

Theorem 3.4: (Asymptotic Normality of 3(¢)) Under Condition (I), ((nh)"2(3(t) —
Bo(t) — Bpias(t)) 2, N(0, 1p%(t)) for each fixed time point ¢ as n — oo, h — 0,
nh — oo and nh® = O(1). Here po = f K?(u)du, pg = f_ll w? K*(u)du,

Brias(t) = (1/2)pah(eau(t)) ™ [, (t) — €. (£)70 — €52 (t) Bo(t)
+2€4, (1) Bo(1) + €aa (£) 85 (1)),

and X(t) is a positive semidefinite matrix. ©

Based on the equation (A.14), the covariance matrix of B (t) can be estimated
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by

n~%(E, { (<</ K (u— 1) X; (w)& (u)dNE (u) >>R)®2] (Ewe(t) ™,

which is a consistent estimator base on the derivation in Appendix. And since

(nh)2(B(t) — Bo(t) — Bpias(t))
= (nh)lm(g(t’ ”Yo) - ﬁo(t) - ﬁBms(t)) + (nh)l/zﬁ - ”Yo)

9B(t;70)
vy

_ —1/22h1/2[6m (A [ - XN

{/ K(u— )X )dNC()|DZ-,RZ-:O})

D ( / WO Z1) — 2 (O Xi(0) e (O RANE()

+ Op(n”?h1?)

FE(1= R)INE(D) | Dy R =0)]) (1)
+O(hl/2) —|—Op(h1/2) +Op(n_1/2h5/2) +Op(n_1/2hl/2),

we can adjust the estimation of covariance matrix of 3 (t) as follows
( <</Khu—t (u)dN{(u) >r

D« / WOZ() — Z,()X.(0) Yo (1)ANE (D) >>Rzz<t>) |



CHAPTER 4: A SIMULATION STUDY

A numerical study is conducted to illustrate the feasibility and validity of the
proposed methods. The performances of the estimator for v are measured through the
bias (Bias), the sample standard error of the estimates (SSE), the estimated standard
error of 7(ESE) and the coverage probability of a 95% confidence interval for . The
overall performance of the estimator for the jth component 3;(-) on the interval [0, 7]

is evaluated through the square root of integrated average square error

1/2

- [ G- 5j(t))2dt)} ,

RASE(5,0) = { -
where Bj(t) is the estimate of f;(¢). The simulation uses the unit weight function.
The interval [ty, t3] = [0.15, 7] is taken to be [0, 7] in the estimating functions (2.7).

The performance of the proposed estimators are examined under the following

selected setting of model (2.1). Let Y;(t) follow the semiparametric additive model:

where fy(t) =1 —t, f1(t) = 5sin(t), v = 8, X; is uniformly distributed on [0, 1], and
Z; is a Bernoulli random variable with P(Z; = 1) = 0.5. The error process ¢;(t) has
a normal distribution with mean ¢; and variance 1 for subject i where ¢; follows a
standard normal distribution.

For subject 7, S; is generated from the uniform distribution on [0,0.8]. The
first sampling point is set as Tj; = 0, and the rest T;;’s are generated from a Poisson
process N;(t) with the intensity rate of A\g exp(m X;+n27;) where Ag = 0.4, 1 = 1 and

ne = 0.3. Let Y;; be the responses Y;() at time points Tg = T;; + S; following model
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(4.1). The censoring time C; is exponentially distributed with the parameter adjusted
to give an approximately 0% or 30% censoring in the time interval [0, 7] = [0, 4], which
is the probability of max; <<, {T7;AT} > S;+C;, denoted as cg. The average number
of observations in the interval [0, 7] = [0,4] per subject is about 3.48.

The following four cases, including three different left censoring percentages for
S;,denoted as ¢y, and the one that ignores S; by mistreating 7;; as the measurement
times since the actual time origin, are conducted to examine the behavior of both
estimators: (1) ¢, = 0% which means {S;} are observed for all the subjects; (2)
cr, = 20%; (3) ¢, = 50%; and (4) the last case treats Tj; as the time since the actual
time origin and Y;; = Yz(Tg) as the response at ¢t = Tj;. The censoring time V; is
generated from an uniform distribution [a, b] with the parameters a and b adjusted
to yield desired percentages of left censoring for 5.

The simulation presented in the following is carried out using local linear
approach. As discussed in Section 2.3, to reduce the time consumption of simulations,
the Epanechnikov kernel K (u) = 0.75(1 — u?)I(|Ju| < 1) is used for the inner points
of time interval, i.e. (3h, 7 — 3h) while the equivalent kernel in (2.8) is applied for the
boundary points in [0, 3h] [T — 3h, 7].

For sample sizes n = 200, 300 and 500, and bandwidths h = 0.3, 0.4 and 0.5,
Table 4.1 shows the biases (Bias), the sample standard errors (SSE), the estimated
standard errors (ESE) of 7, the coverage probabilities of a 95% confidence interval
for v and also the square root of integrated average square error (RASE) of both
components of B\ (t) for the first three cases based on 500 simulations when there is
no right censoring. While Table 4.2 shows the same criterions for the first three cases
based on 500 simulations when there is 30% of subjects right-censored during the
time scale. The biases of 7 for the first three cases using the proposed method are
small. The sample standard errors of 7 are close to its estimated standard errors.

Both standard errors reduce as the sample size increases. When the left censoring
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percentage of S; goes up, the standard errors rise a tiny bit since the increase of
percentage means more unknown information of S;. The coverage probabilities of 7
are slightly around 0.95 as expected. The square root of integrated average square
error of By(t) is smaller than that of 3;(¢) because Bo(t) is a straight line while /()
is more curvy. Both RASE’s increase together with the left censoring percentage of
S;.

Furthermore, as the bandwidth h changes from small values to big values, there
are more data in the neighborhood. Then for the straight line j3;(¢), larger bandwidth
makes the estimator fit better. As a result RASE(By(-)) becomes smaller. However
Pa(t) is a curve. Larger bandwidth only leads to bigger value of RASFE (31())

Table 4.3 present the biases, sample standard errors, estimated standard er-
rors and the coverage probabilities related to 7 in the case of mistreating 7;; as the
measurement times since the actual time origin. Although both the standard errors
of 74 increase compared to the third case with the same left censoring percentage, the
biases are also small, the coverage probabilities are close to 0.95 and two types of
standard errors are also close. This means even the time origin is mistreated, we can
still get an unbiased estimator of 7 since 7 is time-independent.

Table 4.4 compare the RASE’s in the two cases when the left censoring per-
centage of S; is 50%. An obvious reduction of both RASE’s is shown in the table.

Figure 4.1 shows the average estimates of 3(t) = (8y(t), 51(t))T based on 500
simulations under four cases proposed above. Figure 4.1 (a), (b) and (c) are the plots
of the average of the estimates based on the proposed method corresponding to 0%,
20% and 50% left censoring for S;, and Figure 4.1 (d) corresponds to the fourth case.
Figure 4.1 (a), (b) and (c) show that the estimated curves fit the true curve quite
well. There is an obvious time shift for the covariate effect of X; in Figure 4.1 (d).

Figure 4.2 shows both the standard errors of 3(t) = (By(t), 51(t))" based on

500 simulations under four cases proposed above. Figure 4.2 (a), (b) and (c) are the



21
plots based on the proposed method corresponding to 0%, 20% and 50% left censoring

for S;, and Figure 4.2 (d) corresponds to the fourth case. In all four plots, the sample
standard error curves are quite close to the estimated standard error curve. In the
first three cases there are big variation at the beginning time while in the fourth case
there are large variation at the end of the time scale. It is related to the amount of
data. According to the generation of data, for each subject the first measure is taken
at T;j = 0. Then in fourth case there are most data at the beginning while least data
at the end. On the other hand, in the first three cases the time point is T}; = S; +T};
which results in a time shift of length S;. Then there are less data near the beginning
and more data near ¢t = 4 than in the fourth case.

Figure 4.3 shows the coverage probability of a pointwise 95% confidence in-
terval for each component of 3(t) = (Bo(t), 81(t))" at each time point t based on 500
simulations under four cases proposed above. Figure 4.3 (a), (b) and (c) are the plots
based on the proposed method corresponding to 0%, 20% and 50% left censoring for
S;, and Figure 4.3 (d) corresponds to the fourth case. The doted line in all four plots
are the line when coverage probability is 95%. It is quite clear that all the coverage

probabilities are close to 0.95.
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Table 4.1: Summary statistics from the estimator 7 and B (t) for no right censoring

c, n h Bias SSE  ESE  CP RASE(By(t)) RASE(pSi(t))
0% 200 0.3 —0.0090 0.1794 0.1780 0.958 0.0205 0.0479
0.4 —-0.0082 0.1794 0.1786 0.948 0.0172 0.0596
0.5 —0.0078 0.1794 0.1790 0.954 0.0161 0.0858
300 0.3 —0.0009 0.1386 0.1450 0.966 0.0182 0.0500
0.4 0.0011 0.1385 0.1454 0.966 0.0163 0.0639
0.5 0.0013 0.1384 0.1457 0.968 0.0160 0.0907
500 0.3 —0.0083 0.1117 0.1134 0.950 0.0104 0.0323
0.4 —0.0083 0.1116 0.1136 0.952 0.0064 0.0445
0.5 —0.0081 0.1116 0.1137 0.950 0.0056 0.0724
20% 200 0.3 —0.0064 0.1809 0.1781 0.948 0.0279 0.0686
0.4 —0.0064 0.1808 0.1788 0.946 0.0256 0.0758
0.5 —0.0062 0.1810 0.1793 0.944 0.0241 0.0959
300 0.3 0.0022 0.1426 0.1450 0.960 0.0314 0.0772
0.4 0.0027 0.1427 0.1454 0.960 0.0310 0.0864
0.5 0.0033 0.1426 0.1457 0.960 0.0289 0.1061
500 0.3 —0.0059 0.1127 0.1135 0.942 0.0182 0.0704
0.4 —0.0058 0.1127 0.1137 0.944 0.0154 0.0759
0.5 —0.0057 0.1127 0.1139 0.944 0.0147 0.0914
50% 200 0.3 —0.0061 0.1821 0.1784 0.952 0.0905 0.2187
0.4 —0.0055 0.1822 0.1795 0.952 0.0897 0.1960
0.5 —0.0051 0.1822 0.1800 0.952 0.0547 0.1608
300 0.3 0.00561 0.1418 0.1451 0.962 0.0725 0.1798
0.4  0.0068 0.1417 0.1458 0.964 0.0672 0.1743
0.5 0.0060 0.1417 0.1461 0.962 0.0585 0.1626
500 0.3 —0.0050 0.1132 0.1138 0.942 0.0557 0.1824
0.4 —0.0039 0.1147 0.1145 0.948 0.0544 0.1711
0.5 —0.0041 0.1135 0.1143 0.942 0.0431 0.1615
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Table 4.2: Summary statistics from the estimator 7 and B (t) for 30% right censoring

rate
c, n h Bias SSE  ESE  CP RASE(By(t)) RASE(pSi(t))
0% 200 0.3 —0.0131 0.1871 0.1836 0.946 0.0213 0.0479
0.4 —0.0121 0.1873 0.1843 0.946 0.0179 0.0569
0.5 —0.0113 0.1872 0.1848 0.950 0.0172 0.0823
300 0.3 —0.0011 0.1436 0.1500 0.962 0.0243 0.0548
0.4 —0.0009 0.1434 0.1504 0.968 0.0226 0.0667
0.5 —0.0006 0.1432 0.1507 0.968 0.0223 0.0921
500 0.3 —0.0092 0.1154 0.1173 0.948 0.0123 0.0334
0.4 —0.0092 0.1152 0.1175 0.946 0.0076 0.0415
0.5 —0.0089 0.1152 0.1177 0.944 0.0066 0.0677
20% 200 0.3 —0.0084 0.1874 0.1835 0.944 0.0330 0.0745
0.4 —0.0085 0.1875 0.1844 0.950 0.0306 0.0784
0.5 —0.0083 0.1879 0.1850 0.952 0.0290 0.0962
300 0.3 0.0015 0.1468 0.1500 0.960 0.0376 0.0796
0.4  0.0019 0.1469 0.1504 0.962 0.0381 0.0874
0.5  0.0024 0.1470 0.1507 0.962 0.0362 0.1065
500 0.3 —0.0066 0.1160 0.1174 0.942 0.0181 0.0773
0.4 —0.0064 0.1158 0.1176 0.942 0.0148 0.0806
0.5 —0.0063 0.1157 0.1178 0.942 0.0152 0.0924
50% 200 0.3 —0.0081 0.1897 0.1835 0.950 0.0921 0.2330
0.4 —0.0077 0.1897 0.1847 0.952 0.0873 0.2065
0.5 —0.0072 0.1898 0.1854 0.952 0.0565 0.1688
300 0.3 0.0042 0.1467 0.1500 0.962 0.0773 0.1844
0.4 0.0047 0.1468 0.1507 0.960 0.0736 0.1789
0.5 0.0052 0.1467 0.1512 0.962 0.0653 0.1672
500 0.3 —0.0057 0.1164 0.1175 0.942 0.0557 0.1935
0.4 —-0.0051 0.1163 0.1179 0.944 0.0491 0.1852
0.5 —0.0049 0.1163 0.1182 0.942 0.0442 0.1683
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Table 4.3: Summary statistics from the estimator 7 for misplaced time origin with

Cr, = 50%

CR n h Bias SSE ESE CP
0% 200 0.3 —0.0016 0.2126 0.2119 0.946
0.4 —0.0005 0.2122 0.2127 0.950

0.5 0.0006 0.2121 0.2134 0.946

300 0.3  0.0019 0.1746 0.1733 0.944

0.4 0.0026 0.1746 0.1738 0.944

0.5 0.0033 0.1745 0.1742 0.948

500 0.3 —0.0066 0.1410 0.1349 0.932

0.4 —0.0058 0.1407 0.1352 0.932

0.5 —0.0052 0.1404 0.1354 0.932

30% 200 0.3 0.0003 0.2251 0.2262 0.946
04 0.0014 0.2251 0.2272 0.946

0.5  0.0027 0.2250 0.2281 0.946

300 0.3  0.0019 0.1853 0.1865 0.938

0.4 0.0029 0.1848 0.1871 0.940

0.5 0.0040 0.1845 0.1876 0.946

500 0.3 —0.0106 0.1487 0.1449 0.936

0.4 —0.0096 0.1486 0.1452 0.936

0.5 —0.0086 0.1480 0.1455 0.942
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Figure 4.1: Averages in estimating §(t) for n = 300 and h = 0.4. The solid lines are
for £1(t) and the dashed lines are for Gy(t). The grey lines are the true cures.
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Figure 4.2: Sample and estimated standard errors in estimating 5(t) for n = 300 and
h = 0.4. The solid lines are for 5, (¢) and the dashed lines are for 5y(¢). The grey lines
are the estimated standard error and the black ones are the sample standard error.
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Figure 4.3: Coverage probability of a 95% confidence interval of 3(t) for n = 300 and
h = 0.4. The solid lines are for §;(¢) and the dashed lines are for 5y(t).



CHAPTER 5: REAL DATA APPLICATION

In this chapter a real data from the step study (cf., Buchbinder et al., 2008;
Fitzgerald et al., 2011) is analyzed by applying the methods discussed in previous
chapters. The step study was a multicenter, double-blind, randomized, placebo-
controlled, phase II test-of-concept study to determine whether the MRKAd5 HIV-1
gag/pol/nef vaccine, which elicits T cell immunity, is capable to result in controlling
the replication of the Human immunodeficiency virus among the participants who
got HIV-infected after vaccination. This study opened in December 2004 and was
conducted at 34 sites in North America, the Caribbean, South America, and Australia.
Three thousand HIV-1 negative participants aged from 18 to 45 who were at high risk
of HIV-infection were enrolled and randomly assigned to receive vaccine (Xs = 1) or
placebo (X5 = 0) in ratio 1:1, stratified by sex, study site (Z3 = 1 if North America
or Australia and 0 otherwise) and adenovirus type 5 (Ad5) antibody titer at baseline
(Z1 = In Adb). Some of the participant were fully adherent to vaccinations (Z, = 1)
while others not (Z; = 0).

The analysis in this chapter includes a subset of the 3000 participants which
involves all 174 MITT cases as of September 22, 2009. It is recommended to study
males only, for the entire analysis to avoid the effect of sex since there are only
15 females that are < 10% of the sample. All 159 males got HIV-infected at time
0 which may be not observed. However, each participants had the records of the
dates of their first positive Elisa confirmed by Western Blot or RNA (D;’s in the
above chapters), their first evidence of infection, and the estimated dates of infection

which is considered as the midpoint between last RNA negative visit date (L;’s in
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the above chapters) which is not given in the data, and the date of first evidence of
infection. Using the above dates, we can calculate our V; in the above chapters by
Vi = D; — L; = D; — 2x estimated infection dates + the date of first evidence of
infection. And R;, the indicator of whether the actual acquisition of 7th subject is
observed or not, is 1 if the date of first evidence of infection is before the date of
first positive Elisa. Otherwise R; = 0. When R; = 1, V; = S5;. Otherwise S; is left
censored by V.

After the participant was infected, there were 18 scheduled post-infection visit
per subject at weeks 0, 1, 2, 8, 12, 26, and every 26 weeks thereafter through week
338. However, the actual times and dates of visits may vary due to each individual.
During jth visit, the ith subject received tests to have the measurements of HIV virus
load (Y;; = log,(virus load)) and CD4 cell counts (Xi;; = square root of CD4 counts)
before the subject started the antiretroviral therapy (ART) or was censored. And the
time from the first positive Elisa to the jth visit for ¢th subject is T;; in the above
chapters. The time between the first positive Elisa and ART initiation or censoring
is the right censoring time. All the time in this chapter is in year. Our main interest
is to see the effect of vaccine on the HIV virus load response.

In the data 159 males made a total of 791 pre-ART visits. Among them there
are 156 missing in CD4 cell counts and 5 missing in HIV virus load. Since there are
no missing in CD4 and virus load at the same time, we could use a simple imputation
model to create a complete data set. At each time point separately, we use a linear
regression model linking log,,(viral load) to square root of CD4 count (for those with
data on both), and use the viral load value for those with missing data to fill in the
missing CD4 cell count or predict missing virus load data by CD4 values. However,
at three time points there are no complete data for conducting the linear regression
model fitting; at two other points there are only one complete data which is unable to

complete the linear model fitting; at another time point one predicted value of virus
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load is relatively far beyond the range of other values of virus load and may affect
the analysis results. Therefore, we delete these six visits to get the complete data for
the entire analysis.

Now in this complete data set there are 159 subjects with 785 visits. 97 Of all
the participants were in the vaccine group while 62 received the placebo. 122 subjects
participate in the study in North America or Australia and the rest are residents in
the other sites mentioned at the beginning of this chapter. The left censoring rate of
S; is 70.44% and the right censoring rate of T;; is 69.81%. Figure 5.1 to Figure 5.3
are further exploration of the data. It is easy to figure out that there are few data
after time point 2.5. Therefore, we will choose ¢; = 0 and t, = 2.5 to estimate 7, and
also plot the estimators of (t)’s for the time points in the interval [0,2.5]. Finally,
Figure 5.4 shows the Kaplan Meier estimator of the distribution of S;. Note that the
smallest observed S; is 0.14. Before that time we do not have enough information to
get the estimator of the distribution. However, since time is always nonnegative, the
probability of S; reduce to 0 at S; = 0.

After preliminary exploration of the data, we propose the following model for

virus load response of the ith subject in this study:

Yi(t) = Bo(t) + Bi(t) Xui(t) + Ba(t) Xoi + 11 21i + y2Zai + 13Z3i + €i(t). (5.1)

By the study of simulation and several tries of different bandwidths, a possible rea-
sonable choice of the bandwidth for this data set is 0.5. And we still consider the
unit weight for the analysis. The estimates of 71, 72 and 73 are 0.0302, —0.1467 and
0.1956, with the standard deviations 0.0389, 0.1492 and 0.1540, respectively. The
p-values for testing Hy : 73 = 0, Hy : 75 = 0 and Hy : 73 = 0 are equal to 0.4375,
0.3255 and 0.2042, respectively, which indicates that there are no significant effects
of baseline Ad5 titer, study sites or the pre-protocol on the HIV viral load level. The

estimates of time-dependent effects and their 95% pointwise confidence interval are
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shown in Figure 5.5. From the graph the effects of vaccine or CD4 cell count on the
HIV viral load level are not significant, either. Further hypothesis test study will be
done in the future. Finally Figure 5.6 shows the scatter plot of the residuals from

fitting the model (5.1).
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Histogram of time from the diagnosis to each visit
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Figure 5.1: Histogram of the time from the first positive Elisa confirmed by Western
Blot or RNA to each visit, denoted as Tj; in the paper.



Histogram of Si with Ri=1
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Figure 5.2: Histograms of the time from actual HIV acquisition to the first positive
Elisa confirmed by Western Blot or RNA, denoted as S; in the paper. Figure (a)
shows the observed ones (R; = 1) while figure (b) shows the counts of censored ones

(R, = 0).
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Histogram of right censoring time
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Figure 5.3: Histograms of the time from the first positive Elisa confirmed by Western
Blot or RNA to ART initiation or censoring, denoted as C; in the paper.



36

Kaplan Meier estimator of the distribution of Si
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Figure 5.4: The Kaplan Meier estimator of the distribution function of the time from
actual HIV acquisition to the first positive Elisa confirmed by Western Blot or RNA.
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Estimated BO(t)
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Figure 5.5: Figure (a) shows the estimated intercept effect, Sy(t) curve and its 95%
pointwise confidence intervals. Figure (b) shows the estimated squared CD4 effect,
P1(t) curve and its 95% pointwise confidence intervals. Figure (c) shows the estimated
treatment effect, B5(t) curve and its 95% pointwise confidence intervals. The solid
curves are the estimated curves and the dashed curves are the confidence intervals.
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Residuals of subjects with Ri=1
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Figure 5.6: Scatter plot of residuals of the subjects with R; = 1.
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APPENDIX A: PROOFS OF LEMMA AND THEOREM

Now we will show the detailed proofs of five lemmas and four theorems we
present in Chapter 3. In Section A.2, Lemma A.2.1 is used to prove Lemma A.2.2.
The results of Lemma A.2.2 and Lemma A.2.3 states the consistent properties of our
proposed notation < >x. Lemma A.2.4 is the basis of getting Lemma A.2.5. We
will repeatedly apply Lemmas A.2.2, A.2.3 and A.2.5 in proofs of theorems in Section
A.3.

A.1  Preliminaries

Preparing for future application in this section, we first derive the martingale
decomposition of the Kaplan-Meier estimator of the survival function for the left
censored data.

In general, we have the i.i.d. data structure of the left censored data as follows,
{Ti = max(S;, Cy), 6; = 1(S; > Ci)},

where S; is the failure time censored by C}, T; is observed time and d; is the indicator
of non-censorship for ith subject. Suppose L be a large enough number so that all

SZ'<L. Then

is the corresponding right censored data structure. Let S(t) = P(S; > t) and SE(t) =
P(L—S; > t) be the survival functions of the failure time for the left and right censored
data respectively. And S(¢), SE(t) are the Kaplan-Meyer estimators of the survival

functions respectively. Now define the counting process N*(t) = I(L—T; < t,6; = 1).
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By the Doob-Meyer decomposition, there is a compensator fot YR (s)dAR(s) and a

martingale M/%(t) so that Nf*(t) = [5 Yi(s)dAR(s)+MF(t). Here V() = I(L—T; >
t) is the at risk indicator and A®(¢) is the cumulative hazard function. Let Nf(t) =
Z?:l Nz'R<t>a MR<t> = Z?:l Mz'R<t> and YR(t) = Z?:l YiR(t) = Z?:I I(T; < L—1).
Assume that Y#(t)/n N y®(t). Hence according to Equation (2.11) in Chapter 3

on Page 98 of Fleming & Harrington (1991), we have the decomposition

LSR(s—) I(YR(s) > 0)
o Sf(s)  YH(s)

n'2(SR(t) — SR(t)) = —n25%(t) dM"(s) + 0,(1).

Since
S(t)y=P(S;i>t)=P(L—-S;<L—-t)=1-P(L-S;>L—1t)= 1—SR((L—7§)—),
then for the left censored data

n'2(S(t) - (1))

= -2 — 1)) = SH(L — 1))

(L—-t)— QR S— R(g
S = 0-) /0 SS}E(S)) I(YYR(>S)> :

== | _ (L —s R(s
= e S0) [ s e M)+ 0y (1)

(L-t)- 1
_ (- S(t))/ a0 (s) + 0,(1). (A1)
0 yi(s)
Now let us define the following notations for the future use.

Xii(u) = /Ou[Rz'Zi(w)XiT(w)de(w) — B(Ri&i(w)oi(w) Zy(w) X (w))duw],

xi = /OOO /OL /t:E{(l R Z(w)XT (wa (u — 5) 1 S;SL(V:)%)_)}

dM}(z)
fi(z)

Yy
- /OL— /O(L—x)— /tlt E{(l Ry Zl(u)XZTF(;g/?);"(u —5) }

(epe(u)) tdu S dMiR(x)

(€22 (u)) " tdudFy(s)
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e (u))~L udMiR<<L_3)_)
(eas(w) a2

Xl (u) = /OU(ES{(l — Ri) Zi(w) X[ (w)dN{ (w) | D;, R; = 0}

—B{(1 - Rj)&(w)oi(w) Zy(w) X (w) ydw),

and

— n—l/? Z 7X§7€ _ n—1/2 ZX XIII _ n—1/2 ZXIII

Similarly, we can define X (u), XJI(t), X[ (u), X],(u), X]J\(t), X[ (u), X[;(u),

X (y), X (u), X I (u) by replacing Z;(+) above with Y;(-) and X;(-) respectively.

However
st = [7 [ [ e roxwxr e - o =R
(car )" dudF, <s>d§§2)>
A R e e
(ear)) M () )
[ [ oo ry R
(eanlu))" dude((é 2,

Then X (t) =n=23"  XII(¢).

=1 21

A2  Some Lemmas

Lemma A.2.1: Let a random function g;(t) = g(t, X;(t), Z;(t), Yi(t)). Then under
Conditions (I), for t € [t1,ts] C [0, 7],

n

; i_l(l—Ri)Es{ / g:(w)dNE(u) | Dy, R, = o} r, E{(l— R / gi(def(u)}
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as n — o0.

Proof.  As mentioned in Section 2.2,

n

RS - R»ES{ /t2 (W AN (w) | Ds, By — 0}

t1

e [ e s G D)
- Zu R) [ > als + TIC> Ty s
— YR /ig,S—FTW O>TU)dF<$||£)) (A-2)

» - "N dF,(s | D;)  dF.(s| D)
o Zl /ng I T”( RV | Dy) stm)

L Lo dF,(s | D;) — dF,(s | D;)
+ -1 1—R1 / Z’S—i‘ﬂ C>E ® AZ 2 -
n ZZ1< ) ; jzlg( J) ( J) F.(V.| Dy)

If F,(s | D;) is the Kaplan-Meier estimator of conditional survival function, we
still have Fy(s | D;) i F,(s | Di), Es(V; | D)) i F,(V; | D;). Then by continuous
theorem, 1/F,(V; | D;) N 1/Fs(V; | D;). So under the Conditions (I) the second

term in (A.2) which is equal to

S & 1 1
72,71 1—R2 ZS+E[CzZ,TZ <A — )dFSS ,Dl
1= R |30+ TG 2 ) 5 = gy 4R 1 D)

converges to zero in probability. Since S; is independent of D; and remind that
Ni(t) = >_71, I(Ti; < t), the third term in (A.2) is equal to
n L N

_ dﬁg(s) — dFy(s)
1 E
b i——l / gl EJ C T‘Z]) Es(‘/z ‘ Dz) OP(l)

n

— p! > (1-R,) /OL (/tt_ gi(s +0)I(C; > v)dNi(v)) d@(?)ﬂ gj§$>>

+0,(1)

_ /OL {n—l i(l —R)) /tzs gi(s+v)I(C; > U>dNi(U)m:|

i=1 ti=s

d(Fy(s) — Fi(s)) + 0,(1)
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Let

n to—s 1

Ho(s) = n-' 571 - Ri)/ s+ 0)1(C = V)N, (0) g

i=1 ti=s

So the absolute value of the third term in (A.2) equals

\Aﬁa@aﬁw—ﬂwﬂ

= ‘HH<L)(ﬁs(L) - FS(L)) - Hn<0)(ﬁs(0) - Fs(0)> - /(; (FS(S) - Fs(s))dHn(S)

< [Ho(L)(F(L) = Fy(L))| + [ Ha(0)(F,(0) = F,(0))] +

< |H.(L)(Fy(L) — Fy(L))| + |H, <0><F;<0> — F.(0))|

+ sup |Fi(s y/ (dH, (s

s€[0,L]

Under Conditions (I), by the uniform consistency of ﬁs(s) and the convergence of
ﬁs(s) at point s = 0, or s = L, the third term converges to zero in probability
uniformly in s as n — oo. Therefore,

L "

A2 5 E{ /ZQZ'”T” C>T’J)%}

_ E{(l—RZ-)ES(/tItQ () dANC(u) | Di, By = o)}
_ E{I(Ri:O)ES(/tlb (W) dN(w) | Di, R, = 0)}
_ E{E8<J(RFO) /: (W)dN(u) | Dy, R; _o)}
= p{a-r) [Cawano)

The proof of Lemma A.2.1 is completed. O

Based on the above lemma, we can easily prove the following lemma.

Lemma A.2.2: Let a random function g;(t) = g(t, X;(t), Z;(t), Yi(t)). Then under
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Conditions (I), for ¢ € [t1,ts] C [0, 7],

n” Z<</ W) dNE (1) > g LE{ /t2 gi(u)de(u)}

t1

as n — oQ.

Proof. Applying Lemma A.2.1,

n to
n! Z < / gi(w)dNf (u) >gr

_ —123/ w)dNE(u) + _1Zj:(1—Ri)ES{/mgi(u)de(u)|X}
= ‘IZR/ w)dNE (u)
! i(l - Ri)ES{ /tz Gi(W)ANC(w) | Ds, By — o}

i=1 t1

N E{R,- /: g,-(u)dN;(u)} +E{(1—Rz~)/tlt2 gi(u)de(u)}
_ E{RZ- /: Gi(w)dN*(u) + (1 — Ry) /t ’ gi(u)de(u)}

_ E{ /t :2 gl-(u)de(u)}

Lemma A.2.2 is proved. O

Lemma A.2.3: Let a random function g;(t) = g(t, X;(t), Zi(t), Yi(t)). Then under
Conditions (I), for ¢t € [t1,t2] C [0,7], &(t) = 1(SF + C; > t),
Y < / Kn(u — g:(w)ANE(w) >n 2 B (ai(t)g:(t))
=1

as n — 00, h — 0 and nh? — oo.

Proof. By the definition,

n z<</ Ki(u = £)g:(u) AN () >

i=1

— n*zm /t Kp(u — t)g;(u)dNE (u)
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! 2(1 - RZ»)ES{ /t f Kn( — £)g: () AN (w) | X}

By the independence of subjects, the second term can be written as

n

D WIE {/ Kn(u — £)g: (W) AN (u) | Dy, Ry —o}

= n_lz 1 (1-R / Kn(u—1) (/uﬁs{gi(v)dl\ff(v) ]DZ-,RZ-:O})(A.B)

0

Note that the limits of integration in Lemma A.2.1 can be replaced by 0 and u, and

the convergence is uniform in u. We have

n

n 31— Ry [ / " Bu(gi(0)dNe(0) | Dy Ry = 0) / " Fu(gi(0)dNe(0) | Dy R, = 0>]

=1

converges to zero in probability uniformly in u € [t1,ts]. So

(A3) — / Kol — 1) ( Z(I—R)/OuEs{gi(v)de(v)|Dl~,RZ~:0})

—I—op
to

= ) Kp(u — t)d(E [(1 - R)) /Ou E{g:(v)dNf(v) | Di, R; = O}D + 0p(1)

= [ K- t)d( / " BIE{(L - R)g:(0)dN<(v) | Dy, R, = 0}]) T o,(1)

t1

- /t2 Ky (u— t)d(/ou E{(1- Ri)gi(v)de(v)}) + 0,(1)
_ /t " K(u — D E{(1 — Ri)gs(u)dNE(u)} + o, (1).

According to the argument on Page 37 of Sun & Wu (2005), the first term at the

beginning of this proof is equal to
to
/ Kn(u — £) E{Rugi ()N (u)} + O, (n~2hY).
t1

So the whole expression equals

/t 2 Ky(u — t)E{R;g;(u)dN{ (u)} + /t : Kn(u—t)E{(1 — R;)g:(u)dNf(u)}
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+O0,(n2h71) + 0,(1)

B / " K(u — O B{gi(w)dNE ()} + Opln~2h) + 0,(1)

= [ Kalu = 0Bl )s )N )} + 0yn 1) +0,(1)
= [ Bl = BB @ (0N ) | Xi(w). Zi) 5] + G 2 1)
+0,(n" Y2171 4 0,(1)
= [ K= 0B @Ela) | Xi(u). Z(0. 5 + Co = 1
EANY(w) | Xi(u), Zi(u), S + Ci = 1]} + Opln2h7) + 0,(1)

= Kn(u— 1) E{&(w) Elgi(u) | Xi(u), Zi(w)] E[AN} (u) | Xi(u), Zi(u)]}

t1

Op(n™2h™") + 0p(1)

- / Kn(u — ) E[&(w) Blgi(u) | Xi(w), Zi(u)]ai(u)du] + Op(n~2h™") + 0,(1)
= /t Kp(u =) E(E[&(u)gi(u)ai(v)du | Xi(u), Zi(uw)]) + Op(n_l/Qh_l) +0p(1)

- /t K = DB (& (w)gi (wai (w)du) + Op(n™2h) + 0,(1)
= B&0)ait)gi(t) + O(0%) + Op(n~*h7) + 0,(1) == E(&(1)ai(1)gi(1))

as n — 0o, h — 0 and nh? — co. Lemma A.2.3 is proved. O
Lemma A.2.4:
t ~
02 [ (Bualt) = €xafu))(eanlu))
t1

n1? Z {] 0 0) + X0 (ennl0) ™ + 00| + X200

\—h
+0,(n"Y20? + n'/?h%) 4 0,(1)

converges weakly to a vector of mean-zero Gaussian processes with continuous paths

as n — 00, h — 0 and nh* — 0. Similar results hold for

nt/? / (Byol) — ey (1)) (2 (1)~ du
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n

- ey / 0K 0+ X )0 + 00| + X0}

i=1
+Op<n71/2h2+n1/2h2) "‘Op(l),

/2 / 87 () — a0 (1)) (€xa(w)) "du
Y { /h [(BT( )+ O(h)d(X5(v) + X[ (0))(exa(v) ! + 0<h2>>}

i=1

+X§{(t)} + O0,(n~2h% 4 n2h%) 4+ 0,(1).

Proof. By the definitions,

w | j(Emm) — 2a(W)) (ean (1)) " du
(03 [ Ko =z x )
— B{& (o) Z () X7 >}) (exelw)du
n*1/2 [R /O Kn(v — u) Z(0) X T (0)dN(v)

—E{Ré(u)a (W) Zi(u) X (u)}
—R)ES{ i Kh(v—u)Zi(v)XiT(v)de(v)|X}

—E{(1- R)é’(u)Oéi(U)Z'(U)XT(U)}} (eau(u) ™ du

71/2 /tl { / Kp(v—u) X/ (v)dN; (v)

—E{Ré () Zi(uw) X' (u)}

{ / Ki(v — u) Z(0)XT (0)dNS(v) | Dy, Ry = o}

—E{(1 = Ri)&(u)ai(u) Z;(u) X (u )}} (€aa(u)) ™ du

n—1/2; /t [R,» /0 " K(w — ) Zi(0) X ()N (0)

—E{Rz-mu)ai(u)Zi(u)Xf(u)}} (60a(u)"du



54

+n*1/2 / { {/ Ky(v—u)Z ()de(v)]Di,Ri:O}

_E, {/ Kin(v — ) Zs(0) XT (0)dNe(v) | D, Ri = oH (enn (1))

+n72y / { E{/ Kuy(v—u)Z ()de(v)|Di,Ri:0}

=1

CB{(1 - R (u)ons(w) Zi(u) X (u >}} (60a(u)~du
= n’1/2n t ’ Ky (v — ) Z;(0) X (v ‘(v
= w3 [ ][ Rt - 0z N

=1/t LJO

~BR& (W00 X (0} eael)
+n /2 i /t(l - R)) /L i Ky(s+1T;; — U)Zi]’Xg;[(Ci > Tjj) {dﬁFS(S | Dz)

ARG [D))
(V,D)]<m< )

+n72y / { {/ Ky(v—u)Z ()de(v)|Di,Ri:0}

=1

CB{(1 - R (u)on(w) Zi(u) X (u >}}<em<u>>—1du. (A.4)

Now let us look at them summation by summation. The first summation of

(A.4) equals

nl/zz/ [/ Kn(v — 1) RiZi (0) X7 (0)AN<(0)

=1

—/ Kn(v—u)E{R:((v)a;(v) Zi(v) X (v) Ydv + O(R?) | (4 (w)) ~ du
o n71/2 W0 —u T c
= 0ty [ [ Ko - wikz XN

i=1 vt

— B{REW)0i(v) Z:(0) XT (0) }dv) (e () du + Oy (nV/2h?)
— pl/? (v—u)n Ty Sl
// Kol S IR Z () XT (0)ANE ()

=1

~B{Ri€(v)ai(v) Zi(0) X[ () }dv] (ews (u)) ™ du + Op(n'/*h?)

— /tlt /OT Kn(v — u)d(n_1/2 iz:;/ov[RiZi(w)Xf(w)de(w)
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—E{lei(w)ai(w)Zi(w)XiT(w)}dw]> (e2e (1))~ rdu + O, (n'/?h?).
Let
L () =n"1/? Z /OU[RZ-Zi(w)XiT(w)de(w) — B{R:&(w)oy(w) Zs(w) X[ (w) }dw).

Under Condition (I) X! (v) converges to a vector of mean zero Gaussian processes,
saying X!(v) uniformly in v. Then also by the compactness of K(-) and the applica-

tion of the continuous mapping theorem the first summation above equals

/tl / K (v — u)dX 2, (v) (€0 (w)) " du + O, (n*h?)
_ /tt+h |:dXzIn(U) /t: h 1K ( ;U)(em(U))‘ldu] + 0, (n'/2h2)

1—h

- X0 (ean) ™+ 0| + 0,020

1—h

[ [extonenor]

Is

as n — 00, h — 0 and nh* — 0.

Then the third summation in (A.4) is equal to

2y / [ | e =B = R Zi)XT @)aN; ) | D By = 0)

=1

—E{(1 - Ri)&(U)ai(U)Zi(U)XiT(U)}] (€za(w)) ™ du
= a2y /t U (v — w)B,{(1 — R)Zi(v)XT (v)dN$(v) | Dy, R; = 0}

—/ Kn(v —u)E{(1 — R)&()a;(v) Zi(v) X (v) Ydv + O(h?)
(€pe(u))'du

n

_ / [ / Khv_u{ 23 (B - R)Zi(0)X] (0)dNE(w) | Diy R, = 0}

i=1

_E{<1 — Rz)&(U)OéZ(U)Zz(U)XZT(U)}dU)}} (em(u))_ldu + Op(nl/ghg)
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[ o= walue Z [ (B0 = RYZ@)XT )N w) | D
=0} = B{(1 ~ A& () )X @) | esti0) e
+0,(n?h?).
Let
X = S [ (B0 = R)Z0XT N W) | PR, = 0}
“B— R (o) Z4) X () o)

Under Condition (I) XZI7(v) converges to a vector of mean zero Gaussian processes,
saying X! (v) uniformly in v. Now follow the argument in discussing the first sum-

mation, we know

/ / Kp(v —u)dX I (v)(ege(u) " 'du + O, (n*/?h?)
= /t”h {dXZITIJ(U)((em(U))l + O(hQ))} +0,(n'/2h2)

1—h

2 [ [axs et )

as n — 0o, h — 0 and nh* — 0.
Under the assumption that {.S;} are independent of D; and defining the count-

ing process

ZIT <t)I(C; > t)

with the mean rate
E{dN;(t) | Ri, Xi(t),Yi(t), Zi(t), Vi} = aj (t)dt,
the second summation of (A.4) equals

—-1/2 ~ [ e T dﬁs@)
n Z (1-Ry) ZKh(S-i-Tij _U)Zinij[(Oi >Ty) | =
i=1 7/t 0 j=1 F(V3)
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—jlf((v; ] (ea0 (1))~ du

— n_1/2l 1 tl / / Kip(v—u)Z ()dNi*@_S){(ﬁs(lV;)
_Fsgvi))dFs(s)deF(l d)Fs(S)](em( )l A

B n_mzl b / / Kn(v —u)Z ()dNi*(U_S)FS(%EvSS(m

dF( )(€as(u) ™ du

+n72Yy /tl : / / Ki(v —u) XT(v)dN; (v — s)

=1

d<ﬁ8(3) - FS(S))

(€aa(u) ™ du + 0y(1)

_ /tl//1— DKW =) Zi(0) X[ (0)dN; (v = 5)
1/2

Ss(Vi) = 5:(Vi))
F2(Vi)

—7f1 / / / Kn(v —u)Z;(v) X (v)dN} (v — )

d[ 1/2(55(5) — 55())]

dFy(s)(€qe(u)) ™ du (A.5)

(€aa(u)) ' du (A.6)

+0p(1)

Plugging (A.1) into both (A.5) and (A.6), we have

n-1/2 ,
(A5) = /t/ / (1= Ry)Kn(v—u)Z ()X?(v)dNi*(v—8>F3+i()m
V)= dME(z) 1
/ LT AP e ) du + 0,1

-/ [ / ROK(v =) Zi0) X (AN 0 =) i

[ 1< - Sr )

— —1/2/ //tl/Khv—u ' 1—R)Z(v)Xf(v)dNi*(v—s)

=1

dF,(s)(ese(u))  du + 0p(1)
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(exn () dudFy(5) 2L

@) + 0,(1),

and

(4.6) = —n"! : /t 1—F) /L / Koo — ) 0T ﬁzij)v(v )

d[n 1/2(55(3)—5 (s)](eze(u)) du

S fom [ e

n~Y2F,(s %e w)) tdu
d Fs<>/ )](m()) d

s fuem [ /m_u XN =

n1/2 / dM—]%()dFs(s)(em(u))_ldu

o [ O

dMR((L )) (eaa(1))- Ly

— —1/2/L_/L v /tl/ Kp(v—u)n Z: 1—Ri)Zi(;3()‘(;j)(U)

dM"(x)
yf(x)

tn! //tl/Khv—u -1 1—Ri)Z"@)XiT(t)dNi*(”_S)Fs(s)

dME((L — s)— ):
yR(L—s)=)

dN; (v — 5)(exe(u)) tdu dF,(s)

(eze(w))  du




— /Khv—udE E{ w) X! (w)dN; (w — s)
L \ Xi() <>Z<t>,m]}+op<1>
_ /Khv—udE{/O R)Zi(w) X (w) BJN? (w — 5) | Re, X,(1), Yi(1
2o v = B >}+op<>
- /Khv—u {0 D Zi(w)XT (w)a (w—S)dw](xS(L(‘_/igm)_)}

- /Khv—u { R)Zi(v)XT (v)al (v — s) _F(X_/l-)i - }dv+op(1)

= {(1 — R)Zi(w) X} (u)a (u — s)l(x = g*f;(‘_/z)(%))_) } + O(h?) + 0,(1)

and similarly

Or Kp(v—u)n™* Z(l R )Z( )X gzéj\; (v )

(A5) = —1/2/ // { X (w)o (U_S)I(:cgg(—%g%))ﬂ}

(canlw) M dudF (s >% + O, V202) + 0,(1),
o - [ [
dudF()d]\;[%Z)
e / / p{(1- ) PRI ) e
AM((L — 5)-)

du + 0, (nY2h%) + 0,(1)

yR((L —s)—)
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Thus the second summation of (A.4) equals

o | [ sl tesgigo)

R xr
(e2s ()" 1dudF< >%

/L_ / / { <>X;i(>vi)<u—s>}<m<u>>—ldu
dME(z

dFs(s)

T
dMR

yR<<L - s;) ))] + 0,(n7R%) + 0,(1).

By the multivariate martingale central limit theorem, we know that the above three

terms converge weakly to Wiener processes since the integrants of the martingale
integral are deterministic functions.
Above all, Equation (A.4) weakly converges to a vector of mean zero Gaussian

processes with continuous paths as n — 0o, h — 0 and nh* = 0. o

Recall the definitions in Section A.1. We can have the following lemma.

Lemma A.2.5:
/2 / {67 (u, ) — B (u) Ydu
_ Z {X” - X1y - X1

t+h
+/t (X (v) + X, (v) = X5(0) = X5 (0) (€22 (v)) 7" + O(R?))

1—h
t+h
- / (8" (v) + O(h*))d(X;(v) + X3 (V) ((eaa(v)) " + O(hz))}
t1—h
+Op(n_1/2h2 + n1/2h2) + Op(l)
converges weakly to a vector of mean zero Gaussian processes with continuous paths

asn — 00, h — 0 and nh* — 0.
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Proof. By the definitions,

112 / {57 (u,30) — 67 () Y
_ / N2V, (1) — 48 Zo(u) — (g () — 48 20 () Ydu
- /{y w)hdu — ¢ 1/2/{2 (u) Ydu

By the continuous mapping theorem, it is sufficient to prove that

( /{Y u) }du, n' /{Z ) — 2 (u )}du) (A7)

converges weakly to a vector of mean zero Gaussian processes with continuous sample

paths. And

nl? / (Vo (ut) — o (1)}l
= / (B () (B (1)) ™ — 0 (1) (o)t

= ”1/2/ {[Eya(u) = eya(u)](Ere (1) ™" — €ya(u) (Erz (1) ™ [Ea(u)
€z ()] (€2 (u ))_l}du
= / {[Eya( eyz(u)](em(u))_l — eye(u) (6$$<u))_1[sz(u)

—ega ()] (Ere (u))_l}du + 01?(1)

n!/? Li{f/m(u) — 2 (u) }du has a similar decomposition. Under Condition (), applying
Lemma A.1 of Lin & Ying (2001) and Lemma A.2.4 above,

1/2/{Y — Yy (u)}du and n1/2/{Z ) — Zo(u) du

converges weakly to a mean zero Gaussian process respectively. So using the Wald
device, we could have the joint weak convergence of (A.7) which leads to the weak
convergence of n'/? fttl {57 (u, ) — BT (u)}du with zero mean. This completes the

proof. O
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A.3  Proof of Theorems

Proof of Theorem 3.1
By the uniform convergence of Y, (t) and Z,(t), which can be proved by using

Lemma A.2.3, we have

B(tiy) =Y (1) — ZX(t)y = yL(t) — 2L (t)y

uniformly in ¢ € [t1,t5] as n — oo, h — 0. Since By(t) = yL(t) — 2L ()70, by using

2.6), replace B(s) in (2.3) and Applying Lemma A.2.2 We have n™"[(7y) equals
lace d Appl L A We h 1 |

LR | W) = (T2l =77 Zu(6)Xils) =47 Z(0) aNEC)

Y E[ / Wils) (Yils) — (Va(s) — A7 Za(5)Xi(5)

T Z()) dNE(s) |X]

= n! Z < /OT Wi(s){Yi(s) = (Ya(s) = 7" Zu())Xils) = 4" Zi()}? dN{ (s) > g

=< /OTst){n(s) — Val8)Xi(s) + 17 (Za(5) Xi(5)

—Zi(s))}* dN;(s) >r

where
| wisi, Xils) + 7 (Za(s) Xi(5) = Zi(s)) Y2 dNE(s)
= W) = Vale)Xilo) T (Ze() i) = Z{NY = (il
—a(5)X:(5) + 77 (2(8)Xi(s) = Zi(s))}] dNE(s)
[ W) = 1)) +7 (o) i) = ()Y aNEC)
- /{ AT (Z4(5) = () X (S)Wil5) 2Yi(5)
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[ = ) 7 Zelo) = DKW T2(0) = 1o)X

97 (Zuls) = 25 Xi(5) + 20m()Xi(5) + 2%i()

7 (25(9)Xi(5) — 2i(5)}AN: )
/ Wi(sHYi(5) = 0a(5)X(5) + 7 (2o ) Xi(5) = Z4(5))} dNECs)
= [0 = 06 49T (Zelo) = D)X Wil )aNEC)
[ 2 0006) = 5D +97(Zals) = 5N PX WA (X5 + Vi)
497 (22(5)X,(5) — Z4(5)) JANE(S)

+ OT Wi(s){Yi(s) — ya(5)Xi(s) + 7" (22(5) Xi(s) — Zi(s))}* dN; (s)

So by the linearity of the operation < >p,

{0l5)X,05) + Yls) + 97 (o) X) — Zi)HINE(S) >
S0 W) = 1 Xil) +7 (o) Xils) — Z4(5)Y

dN{(s) >gr +o,(1)
The first term equals

ot Z Ry [ H=(705) = 1(6)) 4 57 (Z6() = 2D XA Wil )



n_lz/ R X () X (w) " Wi(u)dNE (u)

N E{ / RiXi(u)Xi(u)TW(u)de(u)},

0

Y /0 "1 = R)X () X ()W) ANE (1)

*, E{ / 8(1—Ri)Xi(u)Xi(u)TWi(u)de(u)}

0
and by the uniform convergence of Y, (s) and Z,(s) which lead to —(Y,(s) — y2(s)) +

YT (Zy(5) — 24(s)) 0, the first term converges to zero in probability.
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The second term equals

anR/ 2(8) = 52 (5)) + 7" (Za(s) = 2a(5))}Xa(8)Wils){ya () Xi(s)
+Yi(s) + 7" [2a(5) Xi(s) — Zi(s)]}dN; (s)

n

+nt Yy (1 - R»Es{ / 2 (Vals) — ya(5)) + AT (Zu(s) — 2u(5))} X5 Wils)

=1

[0a(5)X0(5) + Yi(5) + 77 [z (5)X:(5) — Zi(s)JNEs) | X}

= [ ) = o) +7Zls) = sl (o —12/ RoXi(u
(00 + Vi) +7 20X, (o) = Z N ) )
+Ed [ 2009 = o) 44729 - 2l —12/ (-
W) s ) X,0) + ¥i0) 497 a0 X,0) — Z}NE W) | X}

+0,(1).

Also

*Z/ R () Wi 1) g () X4 (10) + i)
7 ) Xs ) — Zi(w)] AN )
2 [ R0 X0 + Vit
() X, () — Zi<u>1}de<u>},

n Z /08(1 — Ri) Xi(u)W (u){ya (u) Xi(u) + Yi(u)
7" [z () Xi(u) — Zi(u)| }ANT (u)

-, E{ 0= ROX W 0 a0 X0 + Vi)

0

o [z () Xi() — Zi(u>]}de(u>}-

Similarly to the first term, the second term converges to zero in probability.
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Therefore according to our lemma A.2.2,

i) =t [0 %) X
2N ANEE) B o)
Lo B [ w6 - (X9 + 1 X (5) — Z()P V) |
= Bf [ w0 - (nls) () Xe) =2 20

10— 70) (e ()Xo (8) — Zi(s)))? de<s>}
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= h(y) = lolro) = E{ / Tw<s>e$<s>de<s>},

uniformly in 7 in I'. Let d(7,70) be the Euclidean distance between v and ~y. There-

fore, for every e > 0,

dsup (—lo(7)) = —Td(ivqyfop lo(7)
- }yl%yfo {/ w( + (v =) (x(S>Xi(S)—ZZ‘(S))]2}dNZ-C(S)}
< =t i) = - nt o
- d(SuP) (—lo(70))-

Then according to Theorem 5.7 of van der Vaart (1998), we have 7 L. o

Proof of Theorem 3.2
By continuous mapping theorem, the asymptotic uniform consistency of B\ (t)

on [t1,t3] can be easily obtained by the consistency of 7, the uniform consistency of

Y,(t) and Z,(t) since B(t) = YT (t) — ZT(t)F. o

Proof of Theorem 3.3

Recall the score function U(~y) and the Taylor expansion of U(7) at v

w2 = a0) = = (0 Z0D) ), (A5)

where 7* is on the line segment between 7 and ~.

By plugging (2.6) into the score function (2.7) we will have

U6) = 3 [ < WHOHZ() - ZOXOHYO - XT O 0
~Z(t)7) - ZF (0} ANE(E) >
> [ < WHOHZ() = ZLOXOHY (0 = XTOTI () + (X (0ZE )

—Z; ()7} dN;(t) > -
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Then take the partial derivative with respect to -y, we get
n*laU( = —n7! Z / < Wit {Zi(t) — Z,(t) X: () Y22 ANE(E) > A
_ ; ; r- (A9

According to the similar argument we discussed in the proof of consistency of 7, Z, (t)
and W;(t) can be replaced by their limits z,(¢) and w(t) respectively, and this change

only contributes a o0,(1) difference to the above equation. Thus by Lemma A.2.2

n! 0(([;;’;*) —  _p! ; < /t12 Wt {Zi(t) — 2 () X:(t) Y22 ANE(t) >p +0,(1)

TN —E( / P WOAZ(1) — (1) X, (1)} de(t)) ~ D

t1

Now we define B(t ft Po(s)ds and a mean zero process
M(t:8.7.a / {1Yi(s) = 7" Zi(s)JANE(5) — &(9)ou()X] (s)dB(s)}. (A.10)
For simplicity, we use M;(t) = M;(t; B, vy, ). Also let O;(t) fo (s

Hence

nPU(y) = n‘”zi/tth«Wi(t){Zi(t) Z,(6)Xs(t) HYi(t) — X (£)B(t;70)
—Z] (t)0} ANE(t) >r
= nlﬂé /: < Wit){Zi(t) — Zo(t) X, (1) H{dMi(t)
+&(Da(t) XT (H)dB()} >r
—n‘”?i;/: < WL Zi(t) = Zo(6) Xs(£)}XT (£) B(t; 70) AN; () >

_ n—l/:»zn: /t " S WL — Zo()X (O}
—Zﬂép(t)lXi(t)dOi(t)} >R
Y Z / " WD) — 2o X (O HAT ()
_,3:?:(115) };Q(t) ANE(t) >n

Y / T < WOLZ() - ZoOXOHAT (O XT (DO
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+&i(t)au(H) X7 ()B(1)dt — By (1) X (1) ANF(t)} >r

By the definition of O;(t), the third term above is equal to zero. Let n be the second

term. Hence

p = *WZ / < Wih{Z(t) = Zo(®)X:() BT (1 70)
)X ANED)
_ —1/22/ < Wit — Zu() X HBT (t570) — 55 ()} Xa()[dOs(1)

+&i(t) oy (t)dt] >p
_ n”zi /: < Wilh){& ()i (t) Zi() XT (1) — Za(0)&: (H)ou (1) X (1) X7 (8)}
{}3& 10) — Ao(t) bt
+n—1/2z / < Wi Zi(t) = Ze() XD }XT ()51 70)

—ﬁo( )}dO (t) >r .

Denote

mo o= an/t < Wi(){& ()i () Zi(t) X (t) — Zo(t)&(H) s () X (1) X[ ()}
(8(6:70) = folt)} e >
_ i Z / K Wi{Zi(t) = Z:(O) X))} XT () {B(t:70) — Bo(t) }dO(t) >
In the following statement we will prove that both terms converge to zero in proba-
bility.
mo= Y [ WO a0 ZOX] 0 — 2 08OnO X OXT (0}
{B(t;70) — Bo(t)}dt >g
> / T Wi)(Zalt) — ()& aiD) X (O XT (1) (Bt 70)

i=1 7t

—Bo(t))dt >g
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n

- nfl/QZ W) {&(H)ai(t) Zi(t) X[ (1) — 2o ()& (D) (D) Xs(0) X[ ()}

=1

(Blt) - (e
237 [0 = BB & O 01X 0) - 206000 X ()

i=1 71

XT()}B(t;70) = Bo(t)}dt | X]

n

—n_mz t 2Rz'W(t)(Zz(t) — 2 (1)& () (t) X () XT () (B(t:70) — o(t))at

23 [ ROBIWHO(Z:(2) = 5(0)60a: (0 X0 XE ()(5(E 20

i=1 Yt

—Po(t))dt | X].

By the X-measurability of the random functions 3(-;7o), Z.(-), Xi(-), Z;(-) R; and
&(+), then

= w23 [T RIOIEOaOAOXT0) - 20600 XX 0}
{B(t;70) — Bo(t) }dt
w3 [0 = RO OO AOXT O - 0600 (0)

i=1 /0

X6 HB(t;70) — Bolt) ht

n

—n*l/QZ t CRWO(Za(1) — 2 0)& O XX OBt 0) - folt)de

—n 12 Z /tlz(l - Ri)Wi<t)(Zz(t) - Zz(t))fz'(t)%(t)Xi(t)XzT(t)(B(t§ ’Yo)

_B(t))dt
= Y [ WG ZI0XT(0) - 506 (000X,0XT (0}

{B(t; ) — Bo(t) }at
—n2y 2 Wi(t)(Za(t) — 2(8)& () () X3 () XT () (B(t: 70) — Bo(t))dlt

i=1 Yt

— /ttZ Wi<t>n*1 Z{fz(i)&l(t)zl(t)XZT(t) — 2 (t)gz(t)al(wXZ(t)XzT(t)}
d<nl/2/t (5(5;70) —50(8))d5>



—50(3))615)

By the consistency of the Z,(t), the convergence of Wj(t), the application of Lemma
A.2.5 and Lemma A.1 of Lin & Ying (2001), and the facts that

nflZ{&(t)az(t)zz(t)XiT(t) — z ()& (0o ()X (1) X7 ()}

= E{G(Oai)Zi(0XT (1) = 2(0& (D) X)) X] (1)}
= Bla®a()Zi(0)X] ()} — zt) E{&(0)a () X () X] (1)}

= ze(t) = 22(l)era(t) = €2(t) — ezw(t)(em(t))_lem(t) =0

and

Y G0 X ()X (1) L BLEa) X XT (1)} = ealt),

we have n; L.
n = nt/? Z/t 2 RW;(){Zi(t) — Zo(6)Xi ()} XT (){B(t;70) — Bo(t) }dO4(t)

2y /t (1= ROBAWADZi(t) — Zu() X} XT ({3t 70)
—Bo(t)}dO;(t) | X}
= wy) /t TRWA{Zi(1) — Zo(O) X (O}XT ()0 (1) {B(E:70) — fo())]

+n—1/2Z/t (1= RYBAWAO{Z(1) — Zo(H) X0} XT(1)dOL(t) | X}

{B(t; %) — Bo()}].

The first term of 7y

w3 RO - ZOX )T IO - )
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= [ win > RAZE) = 20 X)X (DO, {Btiw) = Fu(0)}

t1

- / Wit *WZR{Z — 2 (OX(O}X] (OBt 70) = Bo(t)}

t1

- / -1/221-2{2 (OYX(OXT (OB (t:70) — folt))
. / (-WZ / RAZ(5) — () As)}X?(s)doi(s))Wi<t>{5<t;%>
By
/{z " >}d( —1/22 Rixi<s>xf<s>doi<s>)m@){éu;%)
By},

Under the condition (I) and by Lemma 1 of Sun & Wu (2005), both

_1/22/ Ri{Zi(s) — z:(8) X3(5)} X[ (5)dO;(s)

and
n

n-1/2 Z /t RiXi(s) X} (5)dO;(s)
— Jt
converge weakly to vectors of mean zero Gaussian processes with continuous sample
paths respectively. And from the early derivation, W;(£){5(t;70) — Bo(t)} and Z,(t) —
z,(t) are of bounded variations and both converge to zero in probability uniformly
in . Hence by Lemma A.1 of Lin & Ying (2001), the first term converges to zero in
probability.
As the second term of 7,

w23 [0 RBAWOAR) ~ ZUOX )X @00 | XHA

i=1 7t

—Bo(t)}]

n

_ n—l/zz/ (1= R)BAWO{Zi(t) — 2 () X:(0)}XT(1)dOs() | XAt 0)

i=1 Jh

—Po(t)}]
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23 [0 ROBAWOIZ ) ~ 20 XX (0400 | KHBE )
)
= w3 [0 = BBV - 20X} 0400 | %) (30
o)
B Y [0 - RIZAD) - 0 60T 000 {30
o)} | 2)

n

S / (1= R)BAWHO{Z(t) — () X))} XL (dOL() | Dy, By = 0)

(B(t:70) — fol0)}
SB[ W20 - 203 (Y [0 R @A o)
{B(t;70) — Bo(t)} | X,

also by Lemma 1 of Sun & Wu (2005) n= /2" | ft (u) XF (u)dO;(u) con-
verges weakly to a vector of mean zero Gaussian processes with continuous sample
paths. Then from the early derivation, W;(£){5(t;70) —Bo(t)} is of bounded variations
and converges to zero in probability uniformly in ¢. Hence by Lemma A.1 of Lin &

Ying (2001),

/: Wi(){Z.(t) — Z:v(t)}d(n_l/Q lz:; /tlt(l - Ri)Xi(U)XiT(U)dOi(U)) 0

Also using the similar argument in Lemma A.2.1, the second term of 7y equals to

w Z [ 10 = RBAWOE WO - 0 X 01X 00 | D R~ 0)
{Blt20) - (0] + o)

= [ [rexa- L OXOIXT O ELAO) | Di, By = )W
{Blts0) - <>}] +o,(1)

_ / (i Z / (1 = R} Z(0) — 2() Xu(w)}XT (0) EfdOu(w) | D,
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R — 0}) W3t ) = Bo(®)} | + on(1)

Now apply Lemma 1 of Sun & Wu (2005) again.

n~Y 2; /t (1 — R){Zi(u) — 2 (u) X ()} X (u) E{dOi(u) | D;, R; = 0}

converges weakly to a vector of mean zero Gaussian processes with continuous sample
paths. Also from the early derivation, W;(£){5(t; 7o) — Bo(t)} is of bounded variations
and converges to zero in probability uniformly in ¢. Hence by Lemma A.1 of Lin &
Ying (2001) the second term of 7, 5 0. Then n =1 +n 5 0. Thus n~2U (o)

equals
Ty / " € W) — 20X HAM (1) — BT ()X (0dOL(0))

Since
dM;(t) — g (1) Xi(1)dO;i(t)
= [Yi(t) — 70 Zi(O)ANF(t) — &) (t) X[ ()dB(t) — By (1) Xi(t)dN; (1)
+By (1) Xi()& (t)ou(t)dt
= [Yi(t) =0 Zi(t) — By () Xi(OIANF (1) — &(t)os (1) X5 (1) Bo(t)(t)
+By (1) Xi()&(t)ou(t)dt

= &(t)dN;(1),
n V20 (y) = n—l/zi / " WAZi(0) — Zo(0) X)) es (D) ANE(E) S

_ n—l/i; /:RiW(t){Zi(t)—Zz(t)Xi(t)}ei(t)de(t) (A.11)

+n1/2Z/t 2(1 — R)E{W;(t){Z(t)

—Z,()X;(t) Yei(£)ANE(E) | XY (A.12)
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(A1) = w2y tQRz-w<t>{zi<t>—zx<t>xi<t>}ei<t>dfvf<t>

03 [ RO - 00N
" Z [ rw 120 - o x @

- [ w0120 - st Z R (M) — 5L () X0, (1)
—— Z [ ravea® - =oxmana

_ / WiD{Z.(t) - zz<t>}d(n” > tRiX%u)de(“))

i=1 7/t

+ [ WOLZ:0) = 50 Y RX(OXT (005
_ n—l/zz /t TRV {Z(E) — 2 (8)X: () }es () ANE(E)

W20 - s} (n/ g / t Rixxu)dMi(u))

t1

; / WO Ze(0) = 2a(0)a (" z / RX,(0)XT (0)d0, () ) (0

= n V2 Zl: /1t12 RW (t){Zi(t) — 2, (t) X;(t) }ei(£)dN; () + 0,(1).

The last equality holds because of the joint weak convergence of

(nlﬂg / t R; X, (w)dM;(u), nlﬂi / t R X;(u)XT (u)dOi(u)>

t1 i=1 Yt

by Lemma 1 of Sun & Wu (2005), the consistency of W;(t){Z,(t) — z,(t)} and Lemma
A1 of Lin & Ying (2001).

(412) = w23 [ = BB - ZAOXO}a(OINT() | X}
= 2 Y 1= ROBAWOLZ) - 20X O)aaN: (o) | X)

i=1 7t
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iy /t (1= R)BAWIO{Za(8) — 2 (D)} X(8)[dMi (1)
650X, (0d01)] | X)
— i Z / DBAWAOLZt) — 2 () X.(0)}es(H)ANE(E) | X}

==ty CWZ) - =t (o —1/22/ (1= B)X,(wdM(0))|4)

+E{/ Wit {Za(t) — 2t }d( —1/22/ (W) X (1)
100 )8 (0| 2}

t2

= 2y / (1 = RYEAW:(){Zi(t) — z() Xi(t) i (£)dN{ () | D;,

i=1 7t

The last equality holds also because of the weak convergence of

n_l/zz; /t (1 — R)X;(u)dM;(u) and n—l/QZ; /tl(l—Ri)Xi(u)XiT(u)dOi(u)

by Lemma 1 of Sun & Wu (2005), the consistency of W;(){Z(t) — z(t)} and Lemma
A.1 of Lin & Ying (2001). Similarly the W;(t) can be replaced by its limit w(¢). Then

@) = w3 [0 RO~ 0 XN | D,
R, = 0}
471 Z [ 1= B0z - X0}l | D,
=0}
no2 Z / DE{w({Zi(t) - ()X }e(DANE() | D,
R =0) 4 o)
= *1/22 / DEL0(OZ(0) - %)X(0)}a (AN | D
=0}



7

Y 1R, / Z[t1<s—|—TU<t2) (s + Tij){ 2y
i=1

—za(s + Tij) Xij }ei(s + Tiy) 1(Ci = Thy) [C;?ngj)) a C}lszs/‘j))

} (A13)

+0p(1)

Referring to the argument in Lemma A.2.4, (A.13) has the following decomposition.

(A13) = n 12 / / { / W) (Zs(0) = 20(0) Xs(0))ei () AN (0 — s)
)W)}dF . >dyM—(())
T / / o { / R)u(0)(Z(0) — 2a(0) X(0))es(v)
R }dF”d%Z))
s [ ) e{ [ :2<1 - RIWIZ) - 20X 00 T =

R([ _ )—
R o)

[e%) L
= n1/2/ / E{E
0 0

dN} (v — s)

| = Ryuw)(Zio) = 5 0)Xido)e(w)

dFS(s)M

@)
wa [ ) / o 24 /:a ~ R)uw()(Zu(w) — 2 (0)X0)ei(v)

AN} (v —s) dM*%(x)
W XZ.(.),Zi(.),Ni(.),Si,vi,Oi] }dFs(s) ()

e 2 R T A B s

X,(), Z;(-), Ni(+), S;, Vi C-] }Fs(s)d;\é(g__s)s)__ +0,(1)

Y / / { / W) (Zi(v) = 2 (0)X(0) Ele(0) | Xi(-),

e e T ) s
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dM*E(z)
yfi(x
L p(L—a)— t2
+n /2 ), E{/t (1= R)w(v)(Z;(v) — z:(v) X;(v)) Ele; (v)

AN} (v —s) dM*%(x)
R

w2 | E{/ (1= R)w)(Zi(v) = 2(0)X:(0) Eles(v) | Xi(),

o — s R([ _ ¢)—
Zz‘(')aNi<')7Si>V;aCi]dNi( : )}Fs(s)d%(éL_ S))_

| Xi(+), Zi(+), Ni(+), Si, Vi, Ci]

+0,(1).

Under the assumption that E{Y(¢)|X;(-), Zi(-), Ni(-), 9, Vi, Ci} = E{Yi(£)|Xi (), Zi()},
Elei(v) | Xi(-), Zi(-)s Ni(-), Si, Vi, i) = Blei(v) | Xi(-), Zi(-)] = 0.

Then (A.13) = 0+ 0,(1) —— 0. Hence

n"VU(y) = o2 i : Raw(t){Zi(t) — z() Xi(t) bei(H)dN] ()

#1231 RIEAOZ(0) - 20X 0)a(0dN: 0| s
R = 0} + 0,(1)
= n /2 Z/t 2 w(t){Zi(t) — 2, () X;(t) }e; (t) RyANF(t)
+n Y2 Z/t 2 w(){Zi(t) — z() Xa(t) }ei () E{(1 — Ry)dN{ () | D,
R, = 0} + 0,(1)
= p 2 Z/t 2 w(t){Z:(t) — z(t) X;(t) ye: (¢)[R:dN£ (¢)
+E{(1 = R)N(t) | Dy, R; = 0}] + 0,(1).
Applying theorem 5.21 (van der Vaart, 1998) to the score function, (A.8) becomes

W25 = 7o) = D~ [0~ Y2U (70)] + 0,(1).

Hence n'/2(7 — 7o) L, N(O,D7'VD™Y). ©
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Proof of Theorem 3.4

By the definitions, we have

Bltsyo) = B(t) = Y (t) = Z7 (t)y0 — (g2 () — 27 (t)7%]

= (ewx(t))_IKExy(t) - éazy(t» - (Em(t) - éxZ(t»%]

_<€xx(t))71[Em (t) — €ua(t)](€ra (t))il[exy(t) — exz(t)y0] + 0p(1).

The last equality holds by Slutsky’s theorem. Then
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X7 ()0
(eart) (™ Z o [ Kalu = X, XT0(0) — SN e
! éu - B [ Falu = XX @I ~ ol
AN (u) | x}
- [ alu = 0B{G@a0 XX WA - ) +o,(0)
= (em()! (n_l ilRi /0 " Kol — 1) X (u)es (w)dNE(u)
! 2(1 _ R»ES{ /O " Ko — ) Xi(w)e () dNE () | X}
- [ Eu = 0BG X et
~Cea)™ ([ Hatu= 0l Z [ R g ) - o)
+E8{ /OT Kn(u— t)d[n_l Zj; /Ou(1 - Ri)Xi(w)Xf(w)dNiC(w)}
ot~ el ¢
= [ Bt = 0B X, XT ) 50) — ) + 0,01
We know that
| = 0BG @it Xitw)e ) du
= [ Kl 0B(Blg X @) | X, Z()]du
= [ Ko~ DB(6 @00 X Efa) | X0, 20} = 0

Therefore,

(nh)2(B(t; %) — 5°(¢))
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= (nh)"?*(euu(t) ( <</ Kp(u—t)X (u)dNE(u )>>R)
et ([ 1 [WZ / R, ()X ()N )| ()
—Bo(u)]

+E\s{ /OT WP Ky (u—t)d {n_l/z lz:; /Ou(l - Ri)Xi(w)XiT(w)de(w)}
[Bo(t) — Bo(w)] | X}
_ /T(nh)WKh(u — ) E{&u) o (w) X (u) X7 (u) HBo(t) — Bo(u)] du)

0
+OP(1)7

Applying the substitution z = “~,

/_1h1/2K [ —1/22/ R X:(w)XT (w)dNE(w )] [Bo(t) — Bo(u)]

z+th

- /_1 WK [ 1/22/ R X;(w)XT (w)dN¢(w )] Po(t) —ﬁ};)(terh)

- = ey [ R sl + 00

— 0

since n=/2 3" fOerth RiX;(w) X[ (w)dNf(w) converges weakly as h — 0 and n — oo.

Similarly,

[ = 1/22 1= ROX @)X (w)iNe(w)| (5:() - o] > 0

as h — 0 and n — oo. And

/0 (mh) 2Ky — £) E{Eu)ors(u) Xo(w) XT ()} Bo(t) — folw))dus
= /_11(nh)1/2K(x)em(t + xh)[Bo(t) — Po(t + zh)|dx

= - /_ 1 (nh)Y2 K (2)eqa (t + xh)[whB)(1) + (1/2)2°h>BL(t) + o(h?)]dx

1
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- /_1(%)1/2[((35)[6”“) + whel, (1) + (1/2)a* e, () + o(h*)][whB(t)
+(1/2)w2h26(/)/(t) +0(h2)]d23

= ()" | K(@)lew(t)hBy(t) + 22h?el, (H)6(1) + (1/2)a°h eqa(t) B3 (1)

-1

+o(h?)]|dx

= ) [ e D50) — (08 e (O30
FO/2enOH0] [ K@+ o (1)

= 0 (Y LR + (/2)eas 0] [ K@+ o (k)2

= O OB + (1 2eas O] [ K@+ o (k)2

as nh® — O(1). Thus
()50 = 5°0) 4 12 (ean) a0 500

H(1/2)en(BBD)] / 11 a;?K(x)dx)

= (nh)Y*(egu(t ( Z<< / Kp(u—t)X;(u)e;(u)dNE(u) >>R) (A.14)

= (nh)Y*(e4a(t))” ( —123/ Kn(u — 1) Xi(u)e;(u)dN; (u)

! (1—RZ-)ES{/ Kh(u—t)Xi(u)ei(u)de(u)|X}>

()2 (en (1)) ( 123/ Kol — £) X (u)es () AN (w)

+n_1 (1 _ Ri)Es{/ Kn(u—t)X;(u)e;(u)dNF(u) | ?Q})

= (nh)Y*(ega(t))” ( —123/ Kp(u — ) X;(u)e;(u)dNE (u)

! {/ Kn(u — £) X (u)es (w)dN (u )|Di,R,»:O})

— ()2 (en (1)) ( IZR/ Koot — 1) Xi(w)es (w)dN(w)



+nt {/Khu—t

I(x < L—(V}))
(V) )dFS” S

Xi(u)e;(u)of
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(N () | Dy =0

(N () | Dy =0

(W)dNE(w) | Dyt = 0} )
(e ()N ()

(N (w) | DR =0} )

u)ei(u)a;(s —u)

+/0L— /O(L—x)—E((l R;) s
+/OLE((1 — Ri)X(

welwai(s —u)\ . dMA((L — 5)-)
V) )F +(s) }

F,
+0,(1) + O (n_1/2h2)}
- ( ‘12}%/ Kp(u—1t)X

+nt {/ Kp(u—1)X

+O(h1/2) +o0 (h1/2) + 0, (n~12h%?)

= (nh)"?*(egu(t

(w)ei(u)dN; (u)

(w)dNC(u) | Dy, Ri = o})

which for each fixed time point ¢, converges in distribution to a multivariate distri-

bution with mean 0 and covariance matrix po%(¢) by Lindeberg-Feller theorem.

We derive the asymptotic covariance matrix in the following way.

[(m)m (B(t; 10) = B(8) + W% (ens(6)) [ (D)B4(0)

+(1/2) e, (t) 5y (t)] x%((x)dx)}

= cov{(nh) (eaa(t))™ ( 121%/ Kp(u—t)X



[(ZR/ K~ )X, (u)es()dNE )
+;1 R)E {/ Kl — )X (w)er i<>|Di,Ri:o})}<em<t>>—l
Note that al the subjects are f.d. and that , is an indicator,
cou o) 2 (3t 70) = B(0) + 12 can) 050
H1/Dea30)] [ K]

= h(ew (1) Zl [cov (Ri /0 ' Kh(u—t)Xi(u)ei(u)de(u))
+cov< {/TKh u—t)X;(u)e;(u)d f(u)|D,~,R,~=0})](em(t))_1

= hleaa(t)) {cov( / Kon(u — )R Xs(u)e <u>dN;(u))
+cov< {/ Kl — 1)1 — B)X:(w)es(u)d ;(u)yu,m:o})](em(n)1.

(
«(1

By the Doob-Meyer decomposition of Nf(t), NE(t) = f(f Ye(s)as(s)ds + MF(t). Let
Velt) = S0, 1T = 1), So

bleantt) teon( [ Katu— DRX (AN ) enn(0)
— Blen(t) " cov ( JE t)RiXAu)ei(u)de(u)) (s (1))

+2h (€44 (t)) cov ( /0 ' Kin(u — t) R X(u)e;(w)dME (u),
[ Kt R et ) e
a0 con ([ Kalu = DR e )t ) (el

R;, X;(t) and ¢;(t) are Ff-predictable. This leads the first term above to

blean(®) o0 [ il = ORX ()W) ) ean()
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= leal) B( [ K- DR @XT 0 < M > () ()
= nleal) B( [ K- DRI @Y a0 ) enlr)
= (ew(t))'E ( /_ 11 K*(2)RIX;(t + xh) X[ (t + zh)€; (t + zh) Y (t + xh)
atle + ahie ) (elt)

— (en(®)'E <R?Xi(t)X?(t)e?(t)iﬁ”(t)af(t) [ K@ o<h2>) (ennlt))
— io(en () EIRX (X T (Y as(D] (exs (1)~ + O(H2).

And
h(eg(t))  cov < /OT Kp(u — t)RiX,»(u)ei(u)Yic(u)af(u)du> (€pe(t)) !
= h(egw(t)) cov < /_11 K(2)R, X;(t + zh)e;(t + xh)Y, (t + xh)ag(t + xh)dm)

'(em(t))_l
= hlen(t) " eov[Ri X (e (1) Y () ag (t) + O(h*)](ean(t)) ™ = O(h).

E < /0 " Ko (u — t)RiXi(u)ei(u)de(u))

= FE E(/OT Kn(u = ) R Xi(w)e; (w)dM (u)| Xi(-), Zi(-), Ni-), S, Vi, Ol)]

— E_/OTK}L(U—t)RiXi(U)E(€i<U)|Xi(-),ZZ‘(')7Ni(-)7SZ»7‘/;,Oi)dMiC(u)]

_— / " K — RX () Bl ()| (), Zi<->>de<u>] 0
and
E(/OT Kp(u— t)RiXi(u)ei(u)Yic(u)af(u)du)

_ E[E( /0 " Kl — O R X (w)es (w)YE(u)a (u) du

Xi(+), Zi(+), Ni(-), S5, Vi, C)]



3%
= 8| [ Kulu - ORXBE(IX0. Z0), 0.5 Vi COYelwatu)aa]
= 5| [ Kl - DR WB X, 2OV Wa )] =0

we have

cov ( /0 " Ko — t)RiXi(u)ei(u)de(u))
= o [ K o)

(/1rutmx<><M%mmm0

- ([ st <>mw@§

COU(/OT Kp(u—t)R; X (w)e;(u)dM (u), /OT Kp(u—t)RiXi(u)e;(u) Y (u)

a;’(u)du)

= &|( [ K- orxawar) ([ K- orxwaw )

attuda) } .

Then by the Cauchy-Schwarz inequality,

(/KutRX w)dME( /K Ye(u)
o))

= | [ mte - orxa@aw) ([ r- orXweariw
cctun) |
< { [p( [ mte- nroxaeann) ][e( [ me- or
nmmmmm)}}m
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- h{ {cov ( /0 " K(u— t)RiXi(u)ei(u)de(u)ﬂ [cov ( /0 " Kn(u — ) R X (1)

qwmwmmwmﬂ}m

_ { {hcov ( /0 " Ko (u — t)RiXi(u)ei(u)de(u)ﬂ [hcov ( /0 " Kot — 1) R X (1)
awmwmmwmﬂ}w
= {Dolene®) EIR X)X OOV EO05 (0] (exel0) ™+ OGNOM]}

h(ew(t))  cov ( /OT Kp(u— t)RiXi(u)ei(u)de(u)> (epe(t))
= po(eaa (1) T E[RIXG (1) X ()€ ()Y (1) s (1)) (eae (1)) ™1 + O(B?) + O(h).

Note that

t+h S_t
Euy(t) = /Kh t)esy(s ds-/ h K ( ; )ewy(s)ds
t

—h

- K( Yeay(t + xh)dz

= /_IK(x)(ezy(t) + hael,(t) + (1/2)h*a?e], (t) + o(h?))d

- /_ (o) + bl (1) /_ R (a)do -+ (1/2)h, () /_ K@)
+0(h2)

= e (t) + (/2% (1) /_ K@)+ olh?).

Similar results hold for €,,(t) and é,,(t). Let pus = f L 7°K(z)dz. So by the long

division of functions

o () = (Eua(t)) " eny(t)

— (eaalt) + (1/2)p2h e (1) + o(h?)) ™ (eny (1) + (1/2)ph %€, () + (1))
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=y, (1) + (1/2)palt® (€0 (t)) ™ e, (8) — €5, (1) (€2 (1)) ™" €ay (1)] + 0(h?).

Also

2 () = 2, (8) + (1/2)pah (eww (1)) (€ (1) — €5a(t) (€aa(t)) ™ eaz ()] + o(h?).

B(t) = Uz (t) = 2 ()%
= ¥ (1) = 2z (D0 + (1/2)p2h (eaa (1)) " ey (1) — €40(t) (€aa(t)) €y ()]
—(1/2)p2h* (€00 ()~ eR- (1) — €0 () (€aa(t) " €as(t)]70 + 0(h?)
= o (1) = 2 ()70 + (1/2)pah* (eaa (8)) e, (1) — €50 (t)ys (1)]
—(1/2)p2h* (€20 (1)) 7 €7 (1) — € (t)2 ()]0 + o(h?)

= Bo(t) + (1/2)pah?(eaa(t) " [e7, (1) — €. ()70 — € () B()] + o(h?).

So

(nh)'2(B(t) — B*(t))
= (nh)'"2(B(t:7) — B* (1)) ~
= (nh)"*(B(t;%0) — B*(1)) + (nh)"* (7 — 70)%;%) + O, (n-2R12)
= (nh)"2(B(t;70) — B7(1)) + O(h'/?) + Oy(n~"/2h1/?)

since nY/2(3 — 7o) -2 A(0, D"V D7) and

IBt;v%) 5 P
) ——21tt) L — =)

Therefore,
(nh)Y2(B(t) — Bo(t) — Bpias(t)) -2 N(0, oS (1)),

asn — 0o, h — 0, nh — oo, nh® = O(1). D



