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Abstract

This paper studies the generalized semiparametric regression model for longitudi-

nal data where the covariate effects are constant for some and time-varying for others.

Different link functions can be used to allow more flexible modelling of longitudinal

data. The nonparametric components of the model are estimated using a local linear

estimating equation and the parametric components are estimated through a profile

estimating function. The method automatically adjusts for heterogeneity of sampling
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times, allowing the sampling strategy to depend on the past sampling history as well as

possibly time-dependent covariates without specifically model such dependence. Large

sample properties of the proposed estimators are investigated. Large sample pointwise

and simultaneous confidence intervals for the regression coefficients are constructed.

A formal hypothesis testing procedure is proposed to check whether the effect of a

covariate is time-varying. A simulation study is conducted to examine the finite sam-

ple performances of the proposed estimation and hypothesis testing procedures. The

method is illustrated with a data set from a HIV-1 RNA data set from an AIDS clinical

trial.

Key Words: Asymptotics; Censored follow-up times; Cross-validation bandwidth selection;

Kernel smoothing; Link function; Local linear estimating equation; Profile estimating equa-

tion; Sampling adjusted estimation; Testing time-varying effects; Weighted least squares.

1 Introduction

We consider semiparametric modeling of covariate effects on a longitudinal response process

based on repeated measurements observed at a series of sampling times. Suppose that

there is a random sample of n subjects. For the ith subject, let Yi(t) be the response

process and let Zi(t) and Xi(t) be the possibly time-dependent covariates of dimensions p×1

and q × 1, respectively, over the time interval [0, τ ]. We consider the following generalized

semiparametric regression model for Yi(t), 0 ≤ t ≤ τ ,

µi(t) = E{Yi(t)|Xi(t), Zi(t)} = g−1{γT (t)Xi(t) + βTZi(t)}, i = 1, . . . , n, (1)

where g(·) is a known link function, β is a p-dimensional vector of unknown parameters

and γ(t) is a q-dimensional vector of completely unspecified functions. The notation βT

represents transpose of a vector or matrix β. The first component of Xi(t) is set to be

1, which gives a nonparametric baseline function. Under model (1), the effects of some

covariates are constant while others are time-varying. Model (1) is more flexible than the

parametric regression model where all the regression coefficients are time-independent and
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more desirable than the nonparametric model where every covariate effect is an unspecified

function of time. Different link functions can be selected to provide a richer family of models

for longitudinal data.

When the link function g(·) is the identity function, model (1) is known as the semi-

parametric additive model. The semiparametric additive model with longitudinal data has

been studied extensively in recent years. These approaches include the nonparametric ker-

nel smoothing by Hoover et al. (1998), the joint modelling of longitudinal responses and

sampling times by Martinussen and Scheike (1999, 2000, 2001), Lin and Ying (2001), the

backfitting method by Wu and Liang (2004) and the profile kernel smoothing approach by

Sun and Wu (2005). Fan, Huang and Li (2007) proposed a profile local linear approach by

imposing some correlation structure for the longitudinal data for improved efficiency. Fan

and Li (2004) considered the profile local linear approach and the joint modelling for par-

tially linear models. Hu, Wang and Carroll (2004) showed that for partially linear models,

the backfitting is less efficient than the profile kernel method. When the link function is the

natural logarithm function and Xi(t) ≡ 1, model (1) becomes the proportional means model.

Data collected on the individual response processes at a finite set of sampling times are also

called panel data. Zhang (2002) proposed a semiparametric pseudolikelihood method for

the proportional means model under the assumption that the response is a nonhomogeneous

Poisson process. For panel count data, the proportional means model has been studied by

Sun and Wei (2000), Cheng and Wei (2000), and Hu, Sun and Wei (2003). Model (1) uni-

fies the semiparametric additive model and the proportional means model under the same

umbrella.

Although model (1) has been extensively studied for cross-sectional data, few have studied

it with longitudinal data. Lin and Carroll (2001) studied model (1) when Xi(t) ≡ 1 by using

profile-based generalized estimating equations (GEE) and a local linear approach. Lin, Song

and Zhou (2007) proposed a local linear GEE method when all the regression coefficients

are nonparametric functions of time. The GEE method with appropriately selected working

covariance structure of the longitudinal data can lead to improved efficiency (Fan, Huang and

Li (2007)). However, the selection of the working covariance can be difficult and the efficiency
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gain under an improperly selected working covariance structure is not clear. Further, there

may be technique difficulties with the extension of the GEE method to more complicated

sampling schemes. In both Lin and Carroll (2001) and Lin, Song and Zhou (2007), the

sampling times are assumed to be independent of covariates and the situation of possible

dropouts of the subjects in the follow-up is not considered. The extensions of their methods

to more general sampling and censoring schemes would make these methods more useful in

practice.

The marginal approach provides an important alternative to the longitudinal data anal-

ysis. It is more flexible in integrating complicated sampling and censoring schemes into the

analysis. The powerful theories for empirical processes and counting processes facilitate such

developments. Most of the existing marginal approaches for analyzing longitudinal data as-

sume that the sampling times are independent of covariates or follow a proportional/additive

mean rate model (Lin et al. (2000), Scheike (2002)) to account for possible dependence on

the covariates; cf. Lin and Ying (2001), Martinussen and Scheike (1999, 2000, 2001). How-

ever, misspecifications of the sampling model may result in biased estimations and mislead

the inferences for the response process. Sun and Wu (2005) proposed a profile kernel estima-

tion procedure for the semiparametric additive model without having to specify a sampling

model for the observation times. Similar approach was exploited by Sun (2010) for the

proportional means model. This paper proposes a sampling adjusted profile local linear es-

timation method for the generalized semiparametric regression model (1). The paper has

two main contributions. First, the proposed method automatically adjusts for heterogeneity

of sampling times, allowing the sampling strategy to depend on the past sampling history

as well as possibly time-dependent covariates without specifically model such dependence.

Second, this paper presents an unified approach to the semiparametric model (1) with a

general link function which has never been exploited for longitudinal data to the best of

our knowledge. The local linear estimation technique has been shown to be design-adaptive

and more efficient in correcting boundary bias than the kernel smoothing approach for the

cross-sectional data; see Fan and Gijbels (1996). We show that these features preserve un-

der the proposed approach for longitudinal data. The proposed method does not require

4



time-varying covariates to be observed at all time, only the values at the sampling times are

needed. Some hypothesis testing procedures are proposed to check whether the effect of a

covariate is time-varying. This can lead to more efficient estimation when the effects of some

covariates are not really time-varying.

The rest of the paper is organized as follows. In Section 2, a sampling adjusted profile-

based local linear estimation method is proposed for model (1). Large sample properties

are investigated in Section 3. Large sample pointwise and simultaneous confidence inter-

vals for the regression coefficients are constructed. This section also presents some formal

hypothesis testing procedures to check whether the effect of a covariate is time-varying. A

cross-validation bandwidth selection approach is proposed to serve as a working tool for lo-

cating an appropriate bandwidth. A simulation study is conducted in Section 4 to examine

the finite sample performances of the proposed statistical procedures. An application of the

proposed methods to the analysis of a HIV-1 RNA data set from an AIDS clinical trial is

given in Section 5, and some concluding remarks are made in Section 6. All proofs are given

in the Appendix.

2 Profile local linear estimation approach

2.1 Prelimilaries

Suppose that the observations of the response process Yi(t) for the ith subject are taken at

the sampling time points 0 ≤ ti1 < ti2 < · · · < tini
≤ τ , where ni is the total number of

observations on the ith subject and τ is the end of follow-up time. The sampling times are

often irregular and depend on covariates. In addition, some subjects may drop out of the

study early. Let Ni(t) =
∑ni

j=1 I(tij ≤ t) be the number of observations taken on the ith

subject by time t, where I(·) is the indicator function. Let Ci be the end of follow-up time or

censoring time whichever comes first. The responses for the ith subject can only be observed

at the time points before Ci. Thus Ni(t) can be written as N∗i (t ∧ Ci), where N∗i (t) is the

counting process of sampling times. LetXi(t) and Zi(t) be the predictable covariate processes

5



associated with the ith subject. We assume that {(Yi(·), Xi(·), Zi(·), Ni(·))}, i = 1, · · · , n,

are independent identically distributed random processes. In this section, we propose an

estimation procedure for model (1) based on the observations {(Yi(tij), Xi(tij), Zi(tij)); j =

1, . . . , ni, i = 1, . . . , n.}. These are the values of {(Yi(t), Xi(t), Zi(t)), 0 ≤ t ≤ τ} observed at

sampling times or the jump time points of Ni(t) = N∗i (t ∧ Ci), i = 1, . . . , n.

Let Ft be the σ-field representing the history N∗i (·), Xi(·) and Zi(·) up to time t for

1 ≤ i ≤ n. Let λi(t) be the intensity process defined as follows

E{dN∗i (t)|Ft−} = λi(t)dt, (2)

for 0 ≤ t ≤ τ . Thus λi(t) is the sampling rate at time t conditional on the past Ft−.

Let αi(t) = α(t,Xi(t), Zi(t)) be the conditional mean rate of the sampling times such that

E{dN∗i (t)|Xi(t), Zi(t)} = α(t,Xi(t), Zi(t)) dt. Then αi(t) = E{λi(t)|Xi(t), Zi(t)} by the us-

ing the double expectation property.

Many existing methods such as Lin and Ying (2001), Martinussen and Scheike (1999,

2000, 2001) took the approach by modelling αi(t). Lin and Ying (2001) assumed that the

sampling process follows a proportional mean rate model (Lin, et al. (2000)). Martinussen

and Scheike (1999, 2000) assumed that the intensity of the sampling process follows a multi-

plicative Aalen model (Aalen (1978)) λi(t) = ηi(t)α(t) where α(t) is an unknown determin-

istic function and ηi(t) is a predictable process. Martinussen and Scheike (2001) considered

the sampling adjusted approach by assuming that the intensity follows a nonparametric ad-

ditive regression model λi(t) = ηi(t)α(t)TXi(t), where ηi(t) is a predictable at risk indicator,

α(t) is vector of unspecified time-dependent regression functions and Xi(t) are predictable

time varying covariates. For all these methods mentioned above, the misspecifications of the

sampling model can lead to biased estimation of the mean longitudinal response since the

expectations of the estimating equations may not be zero, which is also demonstrated in our

simulation study in Section 4.

The proposed method in the following allows the sampling strategy to depend on the

past Ft− as well as possibly time-dependent covariates without specifically model such de-

pendence. The estimation procedure directly uses the sampling process Ni(·) = N∗i (· ∧ Ci)
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without modeling for λi(t) or αi(t).

2.2 Estimation procedures

We adopt a profile approach for the estimation of model (1). First, assuming β is known,

the nonparametric component, γ(t), of the model is estimated using the local linear esti-

mating equations. The parametric component, β, is estimated through the weighted profile

estimating equations. The details of the estimation procedure are described in the following.

At each t, let γ(s) = γ(t) + γ̇(t)(s− t) +O((s− t)2) be the first order Taylor expansion of

γ(·) for s in a neighborhood of t, where γ̇(t) is the derivative of γ(t) with respect to t. Denote

γa(t) = (γT (t), γ̇T (t))T and X̃i(s, s − t) = Xi(s) ⊗ (1, s − t)T with ⊗ being the Kronecker

product. Let µ̃a(s, γa, β|Xi, Zi) = ϕ{γTa (t)X̃i(s, s− t)+βTZi(s)}, where ϕ(x) = g−1(x) is the

inverse function of the link function g(y). Let Wi(t) = W (t,Xi(t), Zi(t)) be a nonnegative

weight process that may depend on n. At each t and for fixed β, we consider the following

estimating function for γa(t):

Ua(γa, β) =
n∑
i=1

∫ τ

0

Wi(s){Yi(s)− µ̃a(s, γa, β|Xi, Zi)}X̃i(s, s− t)Kh(s− t) dNi(s), (3)

where Kh(·) = K(·/h)/h, K(·) is a kernel function that weights smoothly down the contri-

butions of remote data points and h = hn > 0 is the bandwidth parameter that controls the

size of a local neighborhood. The root of the equation Ua(γa, β) = 0 is denoted by γ̃a(t, β).

Since the data used in (3) are localized in the neighborhood of t, a weight function for (3)

will not have much effect on the local linear estimator.

Let ϕ̇(x) be the derivative of ϕ(x) = g−1(x) with respect to x. The estimating function

Ua(γa, β) can be obtained by setting Qi(s) = Wi(s)[ϕ̇{γTa (t)X̃i(s, s − t) + βTZi(s)}]−1 in

the derivative of the local weighted sum of the squares `a(γa, β) =
∑n

i=1

∫ τ
0
Qi(s){Yi(s) −

µ̃a(s, γa, β |Xi, Zi)}2Kh(s − t) dNi(s) with respect to γa. The expectation of Ua(γa, β) is

approximately zero for the true β and γ(·) as h → 0 under the assumptions given in the

Appendix. Let Ẽxx(t) = n−1
∑n

i=1

∫ τ
0
Wi(s)Kh(s − t) (X̃i(s, s − t))⊗2 dNi(s) and Ẽzx(t) =

n−1
∑n

i=1

∫ τ
0
Wi(s)Kh(s− t)Zi(s)(X̃i(s, s− t))T dNi(s), where v⊗2 = vvT for a column vector

v. Ẽyx(t) is defined similarly to Ẽzx(t) by replacing Zi(·) with Yi(·). Under the identity link

7



function g(x) = x, a explicit solution for (3) can be derived as γ̃a(t, β) = Ỹ T
x (t) − Z̃T

x (t)β,

where Ỹx(t) = Ẽyx(t)(Ẽxx(t))
−1 and Z̃x(t) = Ẽzx(t)(Ẽxx(t))

−1.

Let γ̃(t, β) and ˜̇γ(t, β) be first and last q components of γ̃a(t, β), respectively. The profile

estimating function for β is given by

U(β) =
n∑
i=1

∫ t2

t1

Wi(s)[Yi(s)−ϕ{(γ̃(s, β))TXi(s) + βTZi(s)}]{
∂γ̃(s, β)

∂β
Xi(s) +Zi(s)} dNi(s),

(4)

where [t1, t2] ⊂ (0, τ). The subset [t1, t2] is considered to avoid possible instability of γ̃(t, β)

near the boundary. In practice, this interval can be taken to be close to [0, τ ]. We estimate

β by β̂ that solves U(β̂) = 0 and γ(t) by γ̂(t) = γ̃(t, β̂).

The expression for the derivative ∂γ̃(s,β)
∂β

in (4) is derived in the following. Since Ua(γ̃a(t, β), β)

≡ 02q, γ̃a(t, β) satisfies{
∂Ua(γa, β)

∂γa

∂γ̃a(t, β)

∂β
+
∂Ua(γa, β)

∂β

} ∣∣∣∣
γa=γ̃a(t,β)

= 02q.

It follows that
∂γ̃a(t, β)

∂β
= −

{
∂Ua(γa, β)

∂γa

}−1
∂Ua(γa, β)

∂β

∣∣∣∣
γa=γ̃a(t,β)

, (5)

where

−∂Ua(γa, β)

∂γa
=

n∑
i=1

∫ τ

0

Wi(s)ϕ̇{γTa X̃i(s, s−t)+βTZi(s)}{X̃i(s, s−t)}⊗2Kh(s−t) dNi(s), (6)

−∂Ua(γa, β)

∂β
=

n∑
i=1

∫ τ

0

Wi(s)ϕ̇{γTa X̃i(s, s−t)+βTZi(s)}X̃i(s, s−t)(Zi(s))TKh(s−t) dNi(s).

(7)

The estimator β̂ is a weighted least square estimator since the estimating function U(β)

can be obtained by setting Qi(t) = Wi(t)[ϕ̇{(γ̃(t, β))TXi(t)+βTZi(t)}]−1 in the derivative of

the profile least squares function `(β) with respect to β, where `(β) =
∑n

i=1

∫ t2
t1
Qi(s)[Yi(s)−

ϕ{(γ̃(s, β))TXi(s) + βTZi(s)}]2 dNi(s).

2.3 Computational algorithm

The estimators β̂ and γ̂(t) can be obtained through an iterated estimation procedure. Let

β̂{m−1} be the estimate of β at the (m − 1)th step. The mth step estimator γ̂
{m}
a (t) =
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γ̃a(t, β̂
{m−1}) is the root of the estimating function (3) satisfying Ua(γ̂

{m}
a (t), β̂{m−1}) = 0.

The mth step estimator β̂{m} is obtained by solving the estimating function for β:

Um(β) =
n∑
i=1

∫ t2

t1

Wi(s)[Yi(s)− ϕ{(γ̃(s, β̂{m−1}))TXi(s) + βTZi(s)}]

×{∂γ̃(s, β̂{m−1})

∂β
Xi(s) + Zi(s)} dNi(s), (8)

where ∂γ̃(t,β̂{m−1})
∂β

is calculated using the formula (5) at β = β̂{m−1}. The estimators γ̂
{m}
a (t)

and β̂{m} are updated at each iteration until convergence. The γ̂(t) is the first q components

of γ̂a(t) = γ̃a(t, β̂).

3 Statistical inferences of semiparametric model

3.1 Asymptotic properties

This subsection investigates the asymptotic properties of the proposed estimators. These

asymptotic results are used to construct confidence bands and formulate the test statistics

for the regression coefficients in the subsequent subsections.

Let β0 and γ0(t) be the true values of β and γ(t) under model (1), respectively. Let µi(t) =

ϕ{γT0 (t)Xi(t)+βT0 Zi(t)} and µ̇i(t) = ϕ̇{γT0 (t)Xi(t)+βT0 Zi(t)}. Let w(t, x, z) be the determin-

istic limit of W (t, x, z) in probability as n→∞. Define exx(t) = E[wi(t)µ̇i(t){Xi(t)}⊗2αi(t)

ξi(t)] and exz(t) = E[wi(t)µ̇i(t)Xi(t) {Zi(t)}Tαi(t)ξi(t)], where ξi(t) = I(Ci ≥ t). Let

A = E[
∫ t2
t1
wi(s)µ̇i(s) {Zi(s) − (exz(s))

T (exx(s))
−1 Xi(s)}⊗2 dNi(s)] and Σ = E[

∫ t2
t1
wi(s)

{Yi(s)−µi(s)}{Zi(s)−(exz(s))
T (exx(s))

−1Xi(s)} dNi(s)]
⊗2, where wi(t) = w(t,Xi(t), Zi(t)).

Let µ̂i(s) = ϕ{γ̂T (s)Xi(s)+β̂TZi(s)} and ˆ̇µi(t) = ϕ̇{γ̂T (s)Xi(s)+β̂TZi(s)}. Let Êxx(t) =

n−1
∑n

i=1

∫ τ
0
Wi(s)Kh(s − t) ˆ̇µi(s)(Xi(s))

⊗2 dNi(s) and Êxz(t) = n−1
∑n

i=1

∫ τ
0
Wi(s)Kh(s −

t)ˆ̇µi(s)Xi(s)(Zi(s))
T dNi(s). The following theorem presents the consistency and asymptotic

normality of β̂.

Theorem 1. Assume that Condition A holds. Then

(a) β̂
P−→β0 as n→∞;
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(b) n1/2(β̂ − β0)
D−→N(0, A−1ΣA−1) as nh2 →∞ and nh5 = O(1).

The matrix A can be consistently estimated by

Â = n−1
n∑
i=1

∫ t2

t1

Wi(s)ˆ̇µi(s){Zi(s)− (Êxz(s))
T (Êxx(s))

−1Xi(s)}⊗2 dNi(s),

and Σ can be consistently estimated by

Σ̂ = n−1
n∑
i=1

(∫ t2

t1

Wi(s){Yi(s)− µ̂i(s)}{Zi(s)− (Êxz(s))
T (Êxx(s))

−1Xi(s)} dNi(s)

)⊗2
.

Under Theorem 1, the proposed estimator β̂ is consistent and asymptotically normal as

long as the weight process W (·) converges in probability to a deterministic function w(·).

The selection of W (·) plays a role in the variance of the estimator β̂. Naturally, we would

like to choose the optimal weight such that the asymptotic variance of β̂ is minimized. This

selection is usually difficult. It depends on the correlation structure of the longitudinal

data among other things. Suppose that the repeated measurements of Yi(·) within the

same subject are independent and that Yi(·) is independent of Ni(·) conditional on the

covariates Xi(t) and Zi(t). Let σ2
ε (t|Xi, Zi) = Var{Yi(t)|Xi(t), Zi(t)} be the conditional

variance of Yi(t) given the covariates Xi(t) and Zi(t) under model (1). Then the matrix

Σ = E[
∫ t2
t1
w2
i (s)σ

2
ε (s|Xi, Zi) {Zi(s) − (exz(s))

T (exx(s))
−1 Xi(s)}⊗2αi(s)ξi(s) ds]. Let Σ0 =

E[
∫ t2
t1
{µ̇i(s)/σε(s|Xi, Zi)}2{Zi(s) − (exz(s))

T (exx(s))
−1 Xi(s)}⊗2αi(s)ξi(s) ds]. We show in

the Appendix that

A−1ΣA−1 − Σ−10 ≥ 0, (9)

where B ≥ 0 means that the matrix B is nonnegative definite. When wi(t) = µ̇i(t)/{σε(t|Xi,

Zi)}2, A = Σ = Σ0 and the equality in (9) holds. The situation often leads to asymptotically

efficient estimators in many semiparametric models discussed by Bickel et al. (1993).

Next, we state an asymptotic result for the estimator γ̂(t). The result is useful for

constructing confidence intervals for the mean response curve given the covariates. Denote

γ̇0(t), γ̈0(t) the first and second derivatives of γ0(t) with respect to t, respectively.
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Theorem 2. Under Condition A, γ̂(t)
P−→γ0(t),

√
nh(γ̂(t)− γ0(t)−

1

2
µ2h

2γ̈T0 (t))
D−→N (0,Σγ(t)) ,

as nh2 →∞ and nh5 = O(1) for t ∈ (0, τ), where µ2 =
∫ 1

−1 t
2K(t) dt, Σγ(t) = (exx(t))

−1 Σe(t)

(exx(t))
−1, Σe(t) = limn→∞ hE{

∫ τ
0
wi(s){Yi(s)− µi(s)} Xi(s)Kh(s− t) dNi(s)}⊗2 . The co-

variance matrix Σγ(t) can be estimated consistently by Σ̂γ(t) = n−1
∑n

i=1 {ĝi(t)}
⊗2 , where

ĝi(t) = h1/2(Êxx(t))
−1
∫ τ

0

Wi(s)Kh(s− t)Xi(s){Yi(s)− µ̂i(s)} dNi(s)− h1/2(Êxx(t))−1Êxz(t)

×Â−1
∫ t2

t1

Wi(s){Zi(s)− (Êxz(s))
T (Êxx(s))

−1Xi(s)}{Yi(s)− µ̂i(s)} dNi(s).

When the link function is the identity function, Sun and Wu (2005) showed that the

asymptotic bias of using the profile kernel smoothing for γ0(t) is 1
2
µ2h

2{γ̈T0 (t)+2(exx(t))
−1ėxx(t)

γ̇0(t)}. This phenomenon parallels the situation described in Fan and Gijbels (1996, p.17) for

the nonparametric regression with cross-sectional data that compares the Nadaraya-Watson

estimator and the local linear estimator. The extra term in the bias of γ̂(t) using profile

kernel smoothing depends on (exx(t))
−1ėxx(t)γ̇0(t). The bias of the profile kernel smoothing

estimator can be large in the highly asymmetric design where (exx(t))
−1ėxx(t)γ̇0(t) is large.

On the other hand, the bias of the profile local linear smoothing estimator only involves

the second derivative γ̈0(t), thus is design-adaptive. Another advantage of the local linear

smoothing over the kernel smoothing, as discussed in Fan and Gijbels (1996), is the auto-

matic boundary adaption. The rate of convergence at boundary points using the local linear

smoothing is same as for the interior points, which can be shown to hold for model (1) with

longitudinal data as well.

Let Γ0(t) =
∫ t
t1
γ0(s) ds and Γ̂(t) =

∫ t
t1
γ̂(s) ds. The following theorem presents a weak

convergence result for Gn(t) = n1/2(Γ̂(t)−Γ0(t)) over t ∈ [t1, t2]. This result provides theoret-

ical justifications for testing the regression coefficient functions γ(t) and for the construction

of simultaneous confidence bands of Γ(t) =
∫ t
t1
γ(s) ds developed later.

Theorem 3. Under Condition A, Gn(t) = n−1/2
∑n

i=1Hi(t)+op(1) uniformly in t ∈ [t1, t2] ⊂
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(0, τ) as nh2 →∞ and nh5 → 0, where

Hi(t) =

∫ t

t1

(exx(s))
−1
∫ τ

0

wi(u)Kh(u− s)Xi(u){Yi(u)− µi(u)} dNi(u) ds

−
∫ t

t1

(exx(s))
−1exz(s) dsA

−1 (10)

×
∫ t2

t1

wi(s){Zi(s)− (exz(s))
T (exx(s))

−1Xi(s)}{Yi(s)− µi(s)} dNi(s).

The processes Gn(t) converges weakly to a zero-mean Gaussian process G(t) on [t1, t2]. The

asymptotic covariance matrix of Gn(t) can be estimated consistently by Σ̂G(t) = n−1
∑n

i=1{Ĥi(t)}⊗2,

where

Ĥi(t) =

∫ t

t1

(Êxx(s))
−1
∫ τ

0

Wi(u)Kh(u− s)Xi(u){Yi(u)− µ̂i(u)} dNi(u) ds

−
∫ t

t1

(Êxx(s))
−1Êxz(s) ds Â

−1 (11)

×
∫ t2

t1

Wi(s){Zi(s)− (Êxz(s))
T (Êxx(s))

−1Xi(s)}{Yi(s)− µ̂i(s)} dNi(s).

3.2 Confidence intervals and simultaneous confidence bands

Let γ(k)(t) be the kth component of γ(t). Similar notations are used throughout with the

superscript (k) denoting the kth component of the corresponding vector. Assuming nh5 → 0,

based on Theorem 2, the under-smoothing avoids estimating the second derivative γ̈(t) and

controls the size of the bias term. The large sample pointwise confidence intervals for γ(k)(t),

0 < t < τ , is obtained by

γ̂(k)(t)± (nh)−1/2zα/2

[
n−1

n∑
i=1

{ĝ(k)i (t)}2
]1/2

. (12)

By Theorem 3, the pointwise confidence intervals for Γ(k)(t), 0 < t < τ , is given by

Γ̂(k)(t)± n−1/2zα/2
[
n−1

n∑
i=1

{Ĥ(k)
i (t)}2

]1/2
. (13)

Furthermore, based on Theorem 3, simultaneous confidence bands and hypothesis tests re-

lated to the regression coefficient functions γ(t) can be constructed. A key component is
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the estimation of confidence coefficients and the critical values. The Gaussian multiplier

resampling method of Lin, Wei and Ying (1993) has been widely employed for this purpose

and is described in the following.

Let G∗n(t) = n−1/2
∑n

i=1 Ĥi(t)ξi, where ξ1, ξ2, . . . , ξn are independent identically dis-

tributed (iid) standard normal random variables independent from the observed data set. By

Lemma 1 of Sun and Wu (2005), the processes Gn(t) and G∗n(t) given the observed data se-

quence converge weakly to the same zero-mean Gaussian process on [t1, t2]. To approximate

the distribution of Gn(t), we simulate a large number of realizations from G∗n(t) by repeat-

edly generating (ξ1, . . . , ξn) while fixing {Yi(t), Xi(t), Zi(t), Ni(t)), t ≥ 0} at their observed

values. Let cα be the (1 − α)-quantile of supt1≤t≤t2 |G
∗(k)
n (t)/[

∑n
i=1{Ĥ

(k)
i (t)}2/n]1/2|, which

can be approximated by repeatedly generating independent normal samples (ξ1, . . . , ξn). An

asymptotic 1− α simultaneous confidence bands for Γ(k)(t) on [t1, t2] is given by

Γ̂(k)(t)± n−1/2cα
[
n−1

n∑
i=1

{Ĥ(k)
i (t)}2

]1/2
. (14)

3.3 Hypothesis testing of regression coefficients

The generalized semiparametric regression model (1) postulates that the covariates effects

are constant for some and are time-varying for others. A formal hypothesis testing procedure

can be established to check whether the effect of a covariate is time-varying under model

(1). This can lead to more efficient estimation when the effects of some covariates are not

really time-varying. We consider testing the null hypothesis H0 that γ(k)(t) is constant for

0 ≤ t ≤ τ .

Under H0, Γ(k)(t) − t−t1
t2−t1 Γ(k)(t2) = 0 for t ∈ [t1, t2]. By Theorem 3 and the continuous

mapping theorem,

n1/2

{
Γ̂(k)(t)− t− t1

t2 − t1
Γ̂(k)(t2)

}
= n1/2

{
Γ̂(k)(t)− Γ(k)(t)

}
− t− t1
t2 − t1

n1/2
{

Γ̂(k)(t2)− Γ(k)(t2)
}

converges weakly to G(k)(t)− t−t1
t2−t1G

(k)(t2), where G(k)(t) is the kth component of the limiting

Gaussian process G(t) of n1/2
{

Γ̂(t)−Γ(t)
}

. The rationale leads to the following constructions

13



of the test statistics:

S = sup
t1≤t≤t2

n1/2

∣∣∣∣Γ̂(k)(t)− t− t1
t2 − t1

Γ̂(k)(t2)

∣∣∣∣
and

L =

∫ t2

t1

n

{
Γ̂(k)(t)− t− t1

t2 − t1
Γ̂(k)(t2)

}2

dt.

By the continuous mapping theorem, under H0, the test statistic S converges in distribution

to supt1≤t≤t2
∣∣G(k)(t) − t−t1

t2−t1G
(k)(t2)

∣∣, and the test statistic S converges in distribution to∫ t2
t1

{
G(k)(t) − t−t1

t2−t1G
(k)(t2)

}2
dt. The two test statistics are commonly used in statistics

literature with S referred as the supremum type and L as the integrated square type, cf.,

Martinussen and Scheike (2006).

Let

S∗ = sup
t1≤t≤t2

n1/2

∣∣∣∣G∗(k)n (t)− t− t1
t2 − t1

G∗(k)n (t2)

∣∣∣∣
and

L∗ =

∫ t2

t1

n

{
G∗(k)n (t)− t− t1

t2 − t1
G∗(k)n (t2)

}2

dt.

The critical values of S and L can be approximated by simulating a number of copies of

S∗ and L∗ obtained by repeatedly generating independent normal samples (ξ1, . . . , ξn) while

holding the observed data fixed. For example, the critical values of test statistics S and L

at the significance level α can be estimated by the upper α quantile of, say 1000, copies of

S∗ and L∗, respectively. The p-values of the tests based on S and L are the percentages of

S∗ and L∗ exceeding S and L, respectively. The null hypothesis is rejected if the p-values

are less than α.

3.4 Cross-validation bandwidth selection

Let σ(k)(t) be the (k, k)th element of Σγ(t). It follows from Theorem 2 that the mean

integrated square error for estimating the kth component γ(k)(t) over [t1, t2] is∫ t2

t1

[
1

4
µ2
2{γ̈

(k)
0 (t)}2h4 +

1

nh
σ(k)(t)

]
dt.
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The asymptotic optimal bandwidth is given by

hopt,k =

[ ∫ t2
t1
σ(k)(t) dt∫ t2

t1
µ2
2{γ̈

(k)
0 (t)}2

]1/5
n−1/5.

The optimal theoretical bandwidth is difficult to achieve since it involves estimating the

second derivative γ̈
(k)
0 (t). In practice, the appropriate bandwidth selection can be based on a

cross-validation method. This approach is widely used in nonparametric function estimation

literature, see Rice and Silverman (1991) for leave-one-subject-out cross-validation approach

and Tian, Zucker and Wei (2005) for K-fold cross-validation approach.

An analog of the K-fold cross-validation approach in the current setting is to divide the

data into K equal-sized groups. Let Dk denote the kth subgroup of data, then the kth

prediction error is given by

PEk(h) =
∑
i∈Dk

∫ t2

t1

[
Yi(t)− ϕ{(γ̂(−k)(t))TXi(t) + β̂T(−k)Zi(t)}

]2
dNi(t), (15)

for k = 1, . . . , K, where γ̂(−k)(t) and β̂(−k) are the estimators of γ0(t) and β0 based on

the data without the subgroup Dk. The data-driven bandwidth selection based on the K-

fold cross-validation is to choose the bandwidth h that minimizes the total prediction error

PE(h) =
∑K

k=1 PEk(h). As we show in Section 5 in the analysis of a HIV-1 RNA data

set from an AIDS clinical trial, the K-fold cross-validation bandwidth selection provides a

working tool for locating an appropriate bandwidth.

4 A simulation study

In this section, we examine finite sample properties of the estimation and hypothesis testing

procedures proposed for model (1). The performances of the estimators for β and γ(t) at

a fixed time t are measured through the bias, the sample mean of the estimated standard

errors (ESE), the sample standard error of the estimators (SEE) and the 95% empirical

coverage probability (CP). To evaluate the overall performance of the estimator γ̂(k)(t) on

the interval [h, τ−h], we consider the square root of integrated mean square error RMSEk ={
1

N(τ−2h)
∑N

j=1

∫ τ−h
h

(γ̂
(k)
j (t)− γ(k)0 (t))2 dt)

}1/2

, where N is the repetition number, γ̂
(k)
j (t) is
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the jth estimate of γ(k)(t) for j = 1, . . . , N . We use the unit weight function and the

Epanechnikov kernel K(u) = 0.75(1 − u2)I(|u| ≤ 1) throughout the simulation. We take

t1 = 0 and t2 = τ in the estimating functions (4) and (8).

The performance of the estimators are examined under the following selected setting of

model (1), in which we take the link function g(x) = ln(x):

Yi(t) = exp{0.5
√
t+ 0.5 sin(2t)Xi + βZi}+ εi(t), i = 1, . . . , n, (16)

for 0 ≤ t ≤ τ with τ = 3.5, where Xi is a Bernoulli random variable with the success

probability of 0.5, Zi is uniformly distributed on (0, 1), εi(t) is N(φi, 0.5
2) conditional on φi

and φi is N(0, 1). Here γ(t) = (γ1(t), γ2(t))
T with γ1(t) = 0.5t1/2 and γ2(t) = 0.5 sin(2t).

We consider three models for the sampling times. The first model is a Poison process

with the proportional mean rate

α(t|Xi, Zi) = 0.6 exp(0.7Zi), i = 1, . . . , n. (17)

The second model is a Poison process with the additive mean rate

α(t|Xi, Zi) = 0.4 + 0.9Zi, i = 1, . . . , n. (18)

To examine the performance of the proposed method when the sampling strategy depends

on the past history, we consider a nonhomogeneous poisson process for the sampling times

with the intensity function

λ(t|Zi, Z∗i ) = 0.12t1/2 exp{2Zi + Z∗i (t)}, (19)

where Zi is uniform on (0, 1) and Z∗i (t) = 1 if there was an event within the interval [t−1, t)

and 0 otherwise. For all the three sampling models, the censoring times Ci are generated

from U(1.5, 8). There are approximately 3 observations per subject in the interval [0, τ ] and

about 30% subjects are censored before τ = 3.5.

Table 1 summarizes the bias, SEE, ESE and CP for β and RMSE for γ(t) under the models

(16) and (17). The integrals are evaluated on the grid points si = 0.05i, i = 1, 2, . . . , 69. The

summaries of performance of γ̂(t) at time points 0.5j, j = 1, . . . , 6, are given in Table 2.
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The summaries of performances of β̂ and γ̂(t) under the models (16) and (18) are presented

in Tables 3 and 4. The summaries under the models (16) and (19) are presented in (5) and

(6). Each entry of the tables is calculated based on 1000 repetitions.

It can be seen from Tables 1-6 that the proposed estimation procedures performed well

for three sampling situations considered here. It appears that the estimates are unbiased

and there is a good agreement between the estimated and empirical standard errors. The

empirical coverage probabilities are reasonable and the results become better when the sam-

ple size increases from 100 to 300. Plots of γ̂1(t) and γ̂2(t) for model (16) are depicted in

Figure 1 when β = 0.5 for n = 100 and h = 0.3. Figure 1 (a) and (b) in the first row

are under the proportional sampling model (17), Figure 1 (c) and (d) in the second row are

under the additive sampling model (18) and Figure 1 (e) and (f) in the third row are under

the sampling model (19). The estimators γ̂1(t) and γ̂2(t) are essentially unbiased. These fig-

ures also show that the proposed estimation procedures perform well for the nonparametric

components under these three different sampling models.

The following models are considered to evaluate the performance of the test statistics S

and L:

Yi(t) = exp{0.5
√
t+ {0.5− θ sin(2t)}Xi + 0.5Zi}+ εi(t), i = 1, . . . , n, (20)

for 0 ≤ t ≤ τ , where the distributions of Xi, Zi and εi(t) are same as those given in model

(16). Different values of θ are to be selected to examine the power of the tests.

Our null hypothesis is that the effect of Xi does not change with time. The observed

sizes of the test statistics are calculated under θ = 0. The powers of the tests are evaluated

at θ = 0.1, 0.15 and 0.2. Table 7 lists the empirical sizes and powers of the test statistics

S and L at the significance level 0.05 under the sampling models (17), (18) and (19). Each

entry is based on 1000 repetitions. Each p-value is estimated by generating 1000 independent

Gaussian random samples. The empirical sizes of both the tests are reasonably close to the

0.05 nominal level. The empirical power increases when sample size increases. There is also

an increased power when θ increases, which represents an increased time-varying effect under

model (20). Again, the performances of the tests are robust to the models of sampling times.
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Finally, we conduct a small simulation study under the identity link function to compare

with the joint modelling method of Lin and Ying (2001) in which the sampling times are

modelled through the proportional mean rate model. We consider the following model for

the longitudinal response

Yi(t) = α(t) + Zi + εi(t), (21)

where Zi and εi(t) are same as those for model (16). Table 8 list the summaries of the

estimation for β = 1 using the method of Lin and Ying (2001) (L&Y) and the proposed

method with h = 0.3, 0.4 and 0.5 when the sampling times are generated from model (17),

(18) and (19). Each entry is based on 1000 repetitions. The estimation of Lin and Ying

(2001) has larger biases when the sampling model is mis-specified under (18) and (19),

especially when the sampling strategy depends on the past history and the intercept α(t)

varies more. In all the cases, Lin and Ying (2001) estimation yields large variances compared

to the proposed method.

5 An application

We apply the methods developed in the previous sections to a HIV-1 RNA data set from

an AIDS clinical trial for comparing a single protease inhibitor (PI) versus a double-PI

antiretroviral regimens in treating HIV-infected patients. In this study, all subjects initiated

the antiretroviral treatment at time 0 (baseline) and HIV-1 RNA levels in plasma (viral

load) was measured repeatedly over time. The scheduled visits for the measurements were

at weeks 0, 2, 4, 8, 16 and 24. However, the actual time of visits for individual subjects may

vary around the scheduled visiting times. Some patients had prior antiviral treatment with

non-nucleoside analogue reverse transcriptase inhibitors (NNRTIs) (indicated by a covariate

Z = 1) and others did not have prior NNRTI treatment (Z = 0). The prior treatment

experience is considered to be a factor that affects the antiviral response to the antiretroviral

regimens in the current study. Let X = 1 to indicate the patients who received a double-PI

treatment and X = 0 for patients who received a single-PI treatment in this study. Our

interest is to compare the HIV viral load responses of the double-PI treatment with those of
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the single-PI treatment.

A total of 481 patients were enrolled in the study, with 2626 total visits. Owing to

technical limitations, 175 responses were censored below the detection limit, or 6.67% and

three responses were censored above the detection limit or 0.11%. The handling of the

censored viral load data needs more complicated statistical methods and is out of the scope

of this paper. We restrict our analysis to those responses within the detectable range for the

purpose of illustrating the proposed methodologies. The average number of visits was 5.01

for treatment group X = 1 and 5.25 for treatment group X = 0. The scheduled durations

between visits get longer at later times of the study. we consider the transformed time scale

t = log10(day of actual visit + 40) − log10(32). This kind of transformation is often used

to make independent variables equally spaced for convenient bandwidth selections in non-

parametric regression analysis. The transformation is also used to accommodate the fact

that the data for actual visit times may have negative values. A value of −7 for the first

actual visit indicates that the patient visited the clinic 7 days before the first scheduled visit.

The response variable Y (t) is the change of HIV-1 RNA level using a log10 scale at time t

from the baseline. Here log10 scale of viral load is commonly used by AIDS researchers and

is also good for stabilizing the variance of measurement errors.

The data is fitted to the following the model

Yi(t) = exp{γ1(t) + γ2(t)Xi + βZi}+ εi(t), (22)

for 0 ≤ t ≤ τ with τ = 0.88, the maximum of transformed observation times. We set

t1 = 0.2 and t2 = τ −0.2 in (4) for the estimation of β. The bandwidth selected using K-fold

cross-validation method presented in Section 3.4 using K = 13 yields h = 0.05; see Figure 2

(a) for the plot of the total prediction error. With h = 0.05, the value of β̂ is 0.1643 and the

standard error is 0.0230. The estimators γ̂1(t) and γ̂2(t) and the 95% pointwise confidence

intervals are plotted in the first row in Figure 3. The p-values for testing for time-dependence

of γ2(t) are 0.003 and 0.005 for test statistics S and L, respectively, based on 1000 Gaussian

samples.

To show how the estimates are affected by choices of bandwidth, we plot β̂ against h in
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Figure 2 (b). At h = 0.11, the value of β̂ is 0.1599 and the standard error is 0.0233. The

p-values for testing for time-dependence of γ2(t) are 0.051 and 0.035 for test statistics S and

L, respectively. For h = 0.2, the value of β̂ is 0.1569 and the standard error is 0.0233. The

p-values for testing for time-dependence of γ2(t) are 0.0550 for both test statistics S and L.

The estimators γ̂1(t) and γ̂2(t) and the 95% pointwise confidence intervals at h = 0.11 and

0.2 are plotted in the second and third rows of Figure 3, respectively.

Our hypothesis tests indicate that the treatment effect changes with time. The double-PI

antiretroviral regimens works better than the single PI regimens in reducing viral load in

treating HIV-infected patients and this effect becomes stronger over time during the course of

the study as shown in Figure 3. The patients who had prior antiviral treatment with NNRTIs

tend to have higher level of viral load than those who did not have the prior treatment.

Our experience shows that the “optimal” bandwidth that minimizes the total prediction

error tends to be a little small to yield smoothed curves for the nonparametric regression

coefficient functions. The values of the estimators of the parametric components are not

greatly affected by the choices of the bandwidth and tend to stabilize for larger bandwidths.

Nevertheless, the K-fold cross-validation bandwidth selection provides a working tool for

locating an appropriate bandwidth.

6 Appendix

We assume the following conditions throughout the paper:

Condition A. The covariate processesXi(·) and Zi(·) are left continuous; The censoring time

Ci is noninformative in the sense that E{dN∗i (t) |Xi(t), Zi(t), Ci ≥ t} = E{dN∗i (t)|Xi(t), Zi(t)}

and E{Yi(t)|Xi(t), Zi(t), Ci ≥ t} = E{Yi(t)|Xi(t), Zi(t)}; dN∗i (t) is independent of Yi(t) con-

ditional on Xi(t), Zi(t) and Ci ≥ t; the processes Yi(t), Xi(t), Zi(t) and αi(t), 0 ≤ t ≤ τ , are

bounded and their total variations are bounded by a constant; E|Ni(t2)−Ni(t1)|2 ≤ L(t2−t1)

for 0 ≤ t1 ≤ t2 ≤ τ , where L > 0 is a constant; the link function g(y) is monotone and its

inverse function g−1(x) is twice differentiable; γ0(t), exx(t) and exz(t) are twice differen-

tiable; (exx(t))
−1 is bounded over 0 ≤ t ≤ τ ; the matrices A and Σ are positive definite;
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the weight process W (t, x, z)
P−→w(t, x, z) uniformly in the range of (t, x, z); w(t, x, z) is

differentiable with uniformly bounded partial derivatives; the kernel function K(·) is sym-

metric with compact support on [−1, 1] and bounded variation; bandwidth h→ 0; E|Ni(t+

h) − Ni(t − h)|2+v = O(h), for some v > 0; the limit limn→∞ hE{
∫ τ
0
wi(s){Yi(s) − µi(s)}

Xi(s)Kh(s− t) dNi(s)}⊗2 = Σe(t) exists and is finite.

Let ua(γ, β) = E([ϕ{γT0 (t)Xi(t) + βT0 Zi(t)} − ϕ{γT (t)Xi(t) + βTZi(t)}]Xi(t)ξi(t)αi(t)).

Define γβ(t) as the unique root such that ua(γβ, β) = 0 for β ∈ Nβ where Nβ is a neigh-

borhood of β0. Let eβ,xx(t) = E
[
wi(t)ϕ̇{γTβ (t)Xi(t) + βTZi(t)}{Xi(t)}⊗2αi(t)ξi(t)

]
and

eβ,xz(t) = E
[
wi(t)ϕ̇{γTβ (t)Xi(t) + βTZi(t)}Xi(t)(Zi(t))

Tαi(t)ξi(t)
]
. When β = β0, we have

γβ(t) = γ0(t). In this case, eβ,xx(t) = exx(t) and eβ,xz(t) = exz(t). Let γaβ(t) = (γTβ (t),0Tq )T

where 0q is a q × 1 vector of zeros.

Let H = diag{Iq, hIq}. The following lemmas are used in the proofs of the main theorems.

The proofs of the lemmas make repeated applications of the Glivenko-Cantelli Theorem

(Theorem 19.4 of van der Vaart, 1998). A sufficient condition for applying the Glivenko-

Cantelli Theorem can be checked by estimating the order of the bracketing number, similar

to the proof of Lemma 2 of Sun, Gilbert and McKeague (2009). This sufficient condition

holds under the conditions provided in Condition A. The details are omitted to save space.

Lemma 1. Assume that Condition A holds. Then as n→∞, Hγ̃a(t, β)
P−→γaβ(t),

H
∂γ̃a(t, β)

∂β

P−→

 −(eβ,xx(t))
−1eβ,xz(t)

0q

 ,

and H∂2γ̃(t, β)/∂β2 converges in probability to a deterministic function of (t, β) of bounded

variation, uniformly in t ∈ [t1, t2] ⊂ (0, τ) and β ∈ Nβ at the rate n−1/2+ν for ν > 0.

Proof of Lemma 1.

To simplify the presentations, we use the notations γaβ and γβ for γaβ(t) and γβ(t),

respectively. Let θ = H(γa − γaβ) and θ̃ = H(γ̃a(t, β) − γaβ). By (3), θ̃ is the root of the

following estimating function for fixed β:

Ua(γaβ+H−1θ, β)=
n∑
i=1

∫ τ

0

Wi(s){Yi(s)−µ̃a(s, γaβ+H−1θ, β|Xi, Zi)}X̃i(s, s−t)Kh(s−t) dNi(s),

(23)
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where µ̃a(s, γaβ + H−1θ, β|Xi, Zi) = ϕ{θT Ũi(s, s − t) + γTaβ(t)X̃i(s, s − t) + βTZi(s)} and

Ũi(s, s− t) = H−1X̃i(s, s− t).

By the Glivenko-Cantelli theorem,

n−1{Ua(γaβ +H−1θ, β)− Ua(γaβ, β)}

=−n−1
n∑
i=1

∫ τ

0

Wi(s){µ̃a(s, γaβ+H−1θ, β|Xi, Zi)−µ̃a(s, γaβ, β|Xi, Zi)}X̃i(s, s−t)Kh(s−t) dNi(s)

P−→ −E
(∫ 1

−1
wi(t)µ̇iβ(t)θT{XT

i (t), uXT
i (t)}T{XT

i (t), 0}TK(u)αi(t)ξi(t) du

)
,

uniformly in t ∈ [t1, t2], β ∈ Nβ and θ ∈ N0, a neighborhood of 02q ∈ R2q, where µ̇iβ(t) =

ϕ̇{γTβ (t)Xi(t) + βTZi(t)}. The limit has a unique root at θ = 02q.

By the Glivenko-Cantelli theorem and (3), n−1Ua(γaβ, β)
P−→{uTa (γβ, β),0Tq }T = 02q. It

follows by Lemma 1 of Sun, Gilbert and McKeague (2009) that θ̃
P−→02q uniformly in t and

β. Thus

Hγ̃a(t, β)− γaβ(t)
P−→02q uniformly in t ∈ [t1, t2] and β ∈ Nβ. (24)

Since Ua(γ̃a(t, β), β) ≡ 02q, γ̃a(t, β) satisfies{
∂Ua(γa, β)

∂γa

∂γ̃a(t, β)

∂β
+
∂Ua(γa, β)

∂β

} ∣∣∣∣
γa=γ̃a(t,β)

= 02q. (25)

Note that

−n−1H−2∂Ua(γa, β)

∂γa

= n−1
n∑
i=1

∫ τ

0

Wi(s)ϕ̇{γTa X̃i(s, s−t) + βTZi(s)}H−2{X̃i(s, s−t)}⊗2Kh(s−t) dNi(s) (26)

= n−1
n∑
i=1

∫ τ

0

Wi(s)ϕ̇{(Hγa)TH−1X̃i(s, s−t) + βTZi(s)}H−2{X̃i(s, s−t)}⊗2Kh(s−t) dNi(s).

By the Glivenko-Cantelli theorem, the process

n−1
n∑
i=1

∫ τ

0

Wi(s)ϕ̇{ηTH−1X̃i(s, s− t) + βTZi(s)}H−2{X̃i(s, s− t)}⊗2Kh(s− t) dNi(s)

converges in probability to

E

∫ τ

0

wi(t)ϕ̇[ηT{XT
i (t), uXT

i (t)}T + βTZi(t)]

 1 u

u u2

⊗ {Xi(t)}⊗2ξi(t)αi(t)K(u) du

 ,
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uniformly in t ∈ [t1, t2], β ∈ Nβ and η in a neighborhood of γaβ(t) at the rate n−1/2+ν for

ν > 0.

It follows from (24) that

−n−1H−2∂Ua(γa, β)

∂γa

∣∣∣∣
γa=γ̃a(t,β)

P−→E

wi(t)ϕ̇{γTβ (t)Xi(t)+βTZi(t)}

1 0

0 µ2

⊗ {Xi(t)}⊗2ξi(t)αi(t)

 ,
uniformly in t ∈ [t1, t2] and β ∈ Nβ at the rate n−1/2+ν for ν > 0.

Similarly,

−n−1H−1∂Ua(γa, β)

∂β

∣∣∣∣
γa=γ̃a(t,β)

= n−1
n∑
i=1

∫ τ

0

Wi(s)ϕ̇{γTa X̃i(s, s− t)+βTZi(s)}H−1X̃i(s, s−t)(Zi(s))TKh(s−t)dNi(s)

∣∣∣∣
γa=̃γa(t,β)

P−→

 E
[
wi(t)ϕ̇{γTβ (t)Xi(t)+βTZi(t)}Xi(t)(Zi(t))

T ξi(t)αi(t)
]

0q

 , (27)

uniformly in t ∈ [t1, t2] and β ∈ Nβ at the rate n−1/2+ν for ν > 0. It follows from (25) that

H
∂γ̃a(t, β)

∂β

P−→

 −(eβ,xx(t))
−1eβ,xz(t)

0q

 , (28)

at the rate n−1/2+ν for ν > 0, uniformly in t ∈ [t1, t2] and β ∈ Nβ.

By a similar argument, H∂2γ̃(t, β)/∂β2 converges in probability to a deterministic func-

tion of (t, β) of bounded variation, uniformly in t ∈ [t1, t2] and β ∈ Nβ.

Lemma 2. Under Condition A, as nh→∞ and nh5 = O(1),

(nh)1/2{γ̃(t, β0)− γ0(t)−
1

2
µ2h

2γ̈T0 (t)} = (exx(t))
−1 (nh)1/2n−1Uγ(γ0, β0) + op(1), (29)

uniformly in t ∈ [t1, t2] ⊂ (0, τ), where µ2 =
∫ 1

−1 t
2K(t) dt and

Uγ(γ0, β0) =
n∑
i=1

∫ τ

0

Wi(s){Yi(s)− µi(s)}Xi(s)Kh(s− t) dNi(s).

Further, (nh)1/2n−1Uγ(γ0, β0) = Op(1) uniformly in t ∈ [t1, t2] ⊂ (0, τ).
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Proof of Lemma 2.

Let γ0a(t) = (γT0 (t), γ̇T0 (t))T , ρn = (nh)1/2 and θ = ρnH(γa − γ0a(t)). By the first order

Taylor expansion, we have

n−1{Ua(γ0a + ρ−1n H−1θ, β0)− Ua(γ0a, β0)}

= −n−1
n∑
i=1

∫ τ

0

Wi(s){µ̃a(s, γ0a + ρ−1n H−1θ, β0|Xi, Zi)− µ̃a(s, γ0a, β0|Xi, Zi)}

×X̃i(s, s− t)Kh(s− t) dNi(s)

= −n−1
n∑
i=1

∫ τ

0

Wi(s){ρ−1n θT Ũi(s, s− t)}ϕ̇{γT0aX̃i(s, s− t) + βT0 Zi(s)}

×X̃i(s, s− t)Kh(s− t) dNi(s) + op(ρ
−1
n θ)

= −n−1
n∑
i=1

∫ τ

0

Wi(s)(X̃i(s, s− t))⊗2ρ−1n H−1θϕ̇{γT0aX̃i(s, s− t) + βT0 Zi(s)}Kh(s− t) dNi(s)

+op(ρ
−1
n θ),

which holds uniformly in t ∈ [t1, t2]. Since θ̃ = ρnH(γ̃a(t, β0)− γ0a(t)) is the root of Ua(γ0a +

ρ−1n H−1θ, β0), it follows that θ̃ equals(
n−1

∑n
i=1

∫ τ
0
Wi(s)(X̃i(s, s−t))⊗2H−1ϕ̇{γT0aX̃i(s, s−t)+βT0 Zi(s)}Kh(s−t)dNi(s)+op(ρ

−1
n )
)−1

×ρnn−1Ua(γ0a, β0).

The first q components of θ̃ yields

ρn(γ̃(t, β0)− γ0(t)) = (exx(t))
−1 ρnn

−1U1(γ0a, β0) + op(ρ
−1
n ), (30)

uniformly in t ∈ [t1, t2], where

U1(γ0a, β0) =
n∑
i=1

∫ τ

0

Wi(s){Yi(s)− µ̃a(s, γ0a, β0|Xi, Zi)}Xi(s)Kh(s− t) dNi(s).

By the local linear approximation for γ0(s) around t,

µi(s)− µ̃a(s, γ0a, β0|Xi, Zi)

= ϕ{γT0 (s)Xi(s) + βT0 Zi(s)} − ϕ[{γT0 (t) + γ̇T0 (t)(s− t)}Xi(s) + βT0 Zi(s)]

= µ̇i(s)

{
1

2
γ̈T0 (t)Xi(s)(s− t)2 +O((s− t)3)

}
(1 + op(1)),
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as s→ t, where µ̇i(s) = ϕ̇{γT0 (s)Xi(s) + βT0 Zi(s)}. It follows that

ρnn
−1

n∑
i=1

∫ τ

0

Wi(s){µi(s)− µ̃a(s, γ0a, β0|Xi, Zi)}Xi(s)Kh(s− t) dNi(s)

=
1

2
µ2ρnh

2E{wi(t)µ̇i(t)Xi(t)X
T
i (t)ξi(t)αi(t)}γ̈0(t) + op(ρnh

2)

=
1

2
µ2ρnh

2exx(t)γ̈0(t) + op(ρnh
2),

uniformly in t ∈ [t1, t2]. Hence

ρnn
−1U1(γ0a, β0)

= ρnn
−1

n∑
i=1

∫ τ

0

Wi(s)[Yi(s)− µi(s) + {µi(s)− µ̃a(s, γ0a, β0|Xi, Zi)}]Xi(s)Kh(s− t) dNi(s)

= ρnn
−1Uγ(γ0, β0) +

1

2
µ2ρnh

2exx(t)γ̈0(t) + op(ρnh
2), (31)

uniformly in t ∈ [t1, t2]. By (30) and (31),

ρn{γ̃(t, β0)− γ0(t)−
1

2
µ2h

2γ̈T0 (t)} = (exx(t))
−1 ρnn

−1Uγ(γ0, β0) + op(ρ
−1
n ) + op(ρnh

2), (32)

uniformly in t ∈ [t1, t2].

Following the same lines as the proof in Appendix A of Tian, Zucker and Wei (2005), we

get (nh)1/2n−1Uγ(γ0, β0) = Op(1) uniformly in t ∈ [t1, t2] ⊂ (0, τ).

Proof of Theorem 1.

By Lemma 1 and application of the Glivenko-Cantelli theorem to the estimating function

defined in (4), we have

n−1U(β)

P−→E
{∫ t2

t1

wi(s)

[
Yi(s)− ϕ{(γβ(s))TXi(s) + βTZi(s)}

]
×
[
− (eβ,xz(s))

T (eβ,xx(s))
−1Xi(s) + Zi(s)

]
dNi(s)

}
= E

{∫ t2

t1

wi(s)

[
ϕ{(γ0(s))TXi(s) + βT0 Zi(s)} − ϕ{(γβ(s))TXi(s) + βTZi(s)}

]
×
[
− (eβ,xz(s))

T (eβ,xx(s))
−1Xi(s) + Zi(s)

]
ξi(s)αi(s) ds

}
≡ u(β),
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uniformly for β ∈ Nβ. Since u(β0) = 0 and A is positive definite, β0 is the unique root of

u(β). By Theorem 5.9 of van der Vaart (1998), β̂
P−→β0.

By Lemma 1 and the Glivenko-Cantelli theorem,

n−1
n∑
i=1

∫ t2

t1

Wi(s)[Yi(s)− ϕ{(γ̃(s, β0))
TXi(s) + βT0 Zi(s)}]

∂2γ̃(s, β0)

∂β2
Xi(s) dNi(s)

P−→0.

It follows that

−n−1∂U(β)

∂β

∣∣∣∣
β=β0

= n−1
n∑
i=1

∫ t2

t1

Wi(s)ϕ̇{(γ̃(s, β0))
TXi(s) + βT0 Zi(s)}

×
{(

∂γ̃(s, β0)

∂β

)T
Xi(s) + Zi(s)

}⊗2
dNi(s) + op(1)

P−→E{
∫ t2

t1

wi(s)ϕ̇{(γ0(s))TXi(s) + βT0 Zi(s)}{−(exz(s))
T (exx(s))

−1Xi(s) + Zi(s)}⊗2 dNi(s)}

= A, (33)

uniformly in a neighborhood of β.

Now we show that n−1/2U(β0) converges in distribution to a normal distribution. By

Taylor expansion,

ϕ{(γ̃(s, β0))
TXi(s) + βT0 Zi(s)} − ϕ{(γ0(s))TXi(s) + βT0 Zi(s)}

= µ̇i(s){(γ̃(s, β0))
T − (γ0(s))

T}Xi(s) +Op(‖γ̃(s, β0)− γ0(s)‖2).

By Lemmas 1 and 2,

n−1/2
n∑
i=1

∫ t2

t1

Wi(s)[ϕ{(γ̃(s, β0))
TXi(s) + βT0 Zi(s)} − ϕ{(γ0(s))TXi(s) + βT0 Zi(s)}]

×
{

(Xi(s))
T ∂γ̃(s, β0)

∂β
+ (Zi(s))

T

}
dNi(s)

= n−1/2
n∑
i=1

∫ t2

t1

Wi(s)[(γ̃(s, β0))
T − (γ0(s))

T ]

×µ̇i(s)Xi(s)

{
(Xi(s))

T ∂γ̃(s, β0)

∂β
+ (Zi(s))

T

}
dNi(s) +Op((nh

2)−1/2)

= op(1), as nh2 →∞.
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Hence

n−1/2U(β0) (34)

= n−1/2
n∑
i=1

∫ t2

t1

Wi(s)[Yi(s)− µi(s)]

{(
∂γ̃(s, β0)

∂β

)T
Xi(s) + Zi(s)

}
dNi(s) + op(1)

= n−1/2
n∑
i=1

∫ t2

t1

wi(s)[Yi(s)− µi(s)]{Zi(s)− (exz(s))
T (exx(s))

−1Xi(s)} dNi(s) + op(1),

which converges in distribution to N(0,Σ), where

Σ = E

(∫ t2

t1

wi(s)[Yi(s)− µi(s)]{Zi(s)− (exz(s))
T (exx(s))

−1Xi(s)} dNi(s)

)⊗2
. (35)

Since n1/2(β̂ − β0) = −
(
n−1 ∂U(β0)

∂β

)−1
n−1/2U(β0) + op(1), it follows from (33) and (34) that

n1/2(β̂ − β0)
D−→N(0, A−1ΣA−1) as n→∞.

Proof of Theorem 2.

Since γ̂(t) = γ̃(t, β̂), we have γ̂(t)
P−→γ0(t) uniform in t ∈ [0, τ ] by Theorem 1 and Lemma

1. It also follows that ∂γ̃(t, β∗)/∂β
P−→− (exx(t))

−1exz(t) for β∗ on the line segment between

β̂ and β0. By Lemma 2 and (34),

(nh)1/2{γ̂(t)− γ0(t)−
1

2
µ2h

2γ̈T0 (t)}

= (nh)1/2{γ̃(t, β0)− γ0(t)−
1

2
µ2h

2γ̈T0 (t)} − (nh)1/2(exx(t))
−1exz(t) (β̂ − β0) + op(1)

= n−1/2
n∑
i=1

gi(t) + op(1),

where

gi(t) = h1/2(exx(t))
−1
∫ τ

0

wi(s)Kh(s−t)Xi(s){Yi(s)−µi(s)}dNi(s)− h1/2(exx(t))−1exz(t)

×A−1
∫ t2

t1

wi(s){Zi(s)− (exz(s))
T (exx(s))

−1Xi(s)}{Yi(s)−µi(s)} dNi(s).

Following the arguments of Lemma 2 of Sun (2010),

(nh)1/2(γ̂(t)− γ0(t)−
1

2
µ2h

2γ̈T0 (t))
D−→N (0,Σγ(t)) , (36)
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as nh2 → ∞ and nh5 = O(1). The consistency of the variance estimator for Σγ(t) follows

from the proof of Theorem 2 of Sun (2010).

Proof of Theorem 3.

By (29), (33) and (34), we have

Gn(t) = n1/2

∫ t

t1

(γ̃(s; β0)− γ0(s)) ds+ n1/2

∫ t

t1

(γ̃(s; β̂)− γ̃(s; β0)) ds

= n1/2

∫ t

t1

(γ̃(s; β0)− γ0(s)) ds−
∫ t

t1

(exx(s))
−1exz(s) ds n

1/2(β̂ − β0) + op(1)

= n−1/2
n∑
i=1

{∫ t

t1

(exx(s))
−1
∫ τ

0

Kh(u− s)wi(s)Xi(u){Yi(u)− µi(u)} dNi(u) ds

−
∫ t

0

(exx(s))
−1exz(s) dsA

−1

×
∫ τ

0

wi(s){Zi(s)− (exz(s))
T (exx(s))

−1Xi(s)}{Yi(s)− µi(s)} dNi(s)

}
+ op(1),

which converges weakly to a zero-mean Gaussian process by Lemma 1 of Sun and Wu (2005).

Proof of (9).

Note that A = E[
∫ t2
t1
wi(s)µ̇i(s) {Zi(s)− (exz(s))

T (exx(s))
−1 Xi(s)}⊗2αi(s) ds]. Let

D(s) = A−1wi(s){Zi(s)− (exz(s))
T (exx(s))

−1Xi(s)}Tσε(s|Xi, Zi)α
1/2
i (s)

−Σ−10 {Zi(s)− (exz(s))
T (exx(s))

−1Xi(s)}T{µ̇i(s)/σε(s|Xi, Zi)}α1/2
i (s).

Then the matrix

E

(∫ t2

t1

D(s)D(s)T ds

)
= A−1ΣA−1 − A−1AΣ−10 − Σ−10 AA−1 + Σ−10 Σ0Σ

−1
0

= A−1ΣA−1 − Σ−10

is nonnegative definite.
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Table 1: Summary of Bias, SEE, ESE and CP for β and RMSE for γ(t) under models (16)

and (17).

β n h Bias SEE ESE CP RMSE1 RMSE2

0 100 0.3 0.0002 0.1272 0.1177 93.1 0.2020 0.3124

0.4 0.0068 0.1220 0.1173 93.8 0.1413 0.1795

0.5 0.0016 0.1188 0.1173 94.8 0.1254 0.1611

200 0.3 0.0019 0.0868 0.0830 94.4 0.1002 0.1321

0.4 0.0015 0.0852 0.0832 94.2 0.0949 0.1227

0.5 0.0009 0.0875 0.0836 94.3 0.0858 0.1114

300 0.3 0.0034 0.0672 0.0683 95.1 0.0855 0.1122

0.4 -0.0029 0.0709 0.0682 94.2 0.0770 0.0995

0.5 0.0025 0.0692 0.0682 95.1 0.0716 0.0919

0.5 100 0.3 0.0013 0.0944 0.0930 93.5 0.1212 0.1520

0.4 -0.0007 0.0972 0.0926 93.6 0.1099 0.1333

0.5 -0.0081 0.0991 0.0924 92.7 0.1009 0.1206

200 0.3 0.0012 0.0671 0.0657 94.1 0.0753 0.0960

0.4 0.0020 0.0681 0.0660 94.7 0.0735 0.0907

0.5 0.0031 0.0680 0.0664 94.4 0.0704 0.0878

300 0.3 0.0028 0.0562 0.0540 94.4 0.0678 0.0849

0.4 0.0011 0.0566 0.0539 94.4 0.0608 0.0758

0.5 -0.0013 0.0561 0.0542 93.2 0.0570 0.0750

1.5 100 0.3 0.0015 0.0662 0.0618 92.8 0.0750 0.0848

0.4 -0.0017 0.0658 0.0618 93.2 0.0674 0.0733

0.5 0.0008 0.0668 0.0618 91.9 0.0659 0.0719

200 0.3 0.0003 0.0442 0.0437 94.8 0.0459 0.0530

0.4 0.0012 0.0446 0.0439 94.6 0.0461 0.0525

0.5 -0.0008 0.0432 0.0439 95.2 0.0435 0.0573

300 0.3 0.0017 0.0351 0.0355 95.5 0.0404 0.0462

0.4 0.0006 0.0373 0.0356 94.2 0.0383 0.0456

0.5 -0.0002 0.0374 0.0358 93.9 0.0366 0.0502
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Table 2: Summary of Bias, SEE, ESE and CP for γ(t) for β = 0.5 under models (16) and

(17).

γ1(t) = 0.5
√
t γ2(t) = 0.5 sin(2t)

t Bias SEE ESE CP Bias SEE ESE CP

n = 100, h = 0.5

0.5 -0.0161 0.1186 0.1117 0.932 -0.0316 0.1219 0.1157 0.924

1.0 -0.0058 0.1046 0.0989 0.935 -0.0385 0.1016 0.0978 0.910

1.5 -0.0057 0.1022 0.0927 0.919 -0.0009 0.1078 0.0994 0.923

2.0 0.0003 0.0985 0.0889 0.909 0.0342 0.1244 0.1142 0.914

2.5 -0.0031 0.0921 0.0865 0.924 0.0481 0.1291 0.1159 0.881

3.0 -0.0037 0.0936 0.0847 0.913 0.0178 0.1040 0.0936 0.906

n = 200, h = 0.4

0.5 -0.0164 0.0876 0.0862 0.940 -0.0181 0.0940 0.0909 0.929

1.0 -0.0110 0.0792 0.0766 0.946 -0.0207 0.0771 0.0772 0.927

1.5 -0.0079 0.0708 0.0707 0.941 -0.0012 0.0836 0.0780 0.930

2.0 -0.0030 0.0698 0.0674 0.944 0.0221 0.0931 0.0916 0.945

2.5 -0.0040 0.0661 0.0662 0.958 0.0284 0.1004 0.0938 0.911

3.0 -0.0038 0.0661 0.0648 0.944 0.0073 0.0792 0.0754 0.932

n = 300, h = 0.3

0.5 -0.0112 0.0781 0.0782 0.945 -0.0129 0.0854 0.0845 0.944

1.0 -0.0083 0.0726 0.0693 0.937 -0.0115 0.0746 0.0719 0.929

1.5 -0.0063 0.0655 0.0633 0.938 -0.0016 0.0770 0.0733 0.938

2.0 -0.0036 0.0621 0.0612 0.943 0.0089 0.0901 0.0886 0.936

2.5 -0.0050 0.0626 0.0595 0.938 0.0142 0.0968 0.0904 0.929

3.0 -0.0019 0.0600 0.0581 0.935 0.0028 0.0743 0.0714 0.933
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Table 3: Summary of Bias, SEE, ESE and CP for β and RMSE for γ(t) under models (16)

and (18).

β n h Bias SEE ESE CP RMSE1 RMSE2

0 100 0.3 -0.0027 0.1288 0.1219 93.0 0.1639 0.2179

0.4 0.0018 0.1289 0.1222 93.2 0.1464 0.1785

0.5 0.0084 0.1259 0.1217 93.4 0.1299 0.1604

200 0.3 0.0037 0.0877 0.0861 95.1 0.1003 0.1320

0.4 0.0053 0.0893 0.0866 94.0 0.0973 0.1217

0.5 0.0009 0.0881 0.0865 94.4 0.0881 0.1103

300 0.3 0.0003 0.0738 0.0706 93.3 0.0889 0.1140

0.4 0.0045 0.0708 0.0707 95.1 0.0790 0.0981

0.5 -0.0002 0.0738 0.0706 93.7 0.0726 0.0919

0.5 100 0.3 0.0048 0.1074 0.0966 92.1 0.1249 0.1552

0.4 0.0064 0.1011 0.0964 93.5 0.1113 0.1302

0.5 -0.0017 0.1051 0.0964 92.5 0.1033 0.1197

200 0.3 -0.0010 0.0676 0.0681 94.7 0.0754 0.0959

0.4 0.0032 0.0709 0.0685 93.8 0.0758 0.0896

0.5 0.0035 0.0693 0.0687 94.8 0.0695 0.0855

300 0.3 -0.0043 0.0580 0.0557 93.5 0.0690 0.0843

0.4 -0.0020 0.0555 0.0560 95.9 0.0600 0.0743

0.5 0.0005 0.0553 0.0561 94.7 0.0569 0.0730

1.5 100 0.3 0.0029 0.0674 0.0632 93.3 0.0746 0.0808

0.4 0.0031 0.0672 0.0630 94.5 0.0673 0.0704

0.5 0.0013 0.0653 0.0633 93.9 0.0640 0.0689

200 0.3 0.0005 0.0447 0.0445 94.8 0.0491 0.0547

0.4 0.0025 0.0458 0.0447 94.6 0.0473 0.0508

0.5 0.0010 0.0458 0.0447 93.8 0.0442 0.0529

300 0.3 0.0008 0.0371 0.0364 94.0 0.0384 0.0427

0.4 0.0007 0.0382 0.0364 95.3 0.0387 0.0439

0.5 0.0004 0.0376 0.0365 93.8 0.0361 0.0490
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Table 4: Summary of Bias, SEE, ESE and CP for γ(t) for β = 0.5 under models (16) and

(18).

γ1(t) = 0.5
√
t γ2(t) = 0.5 sin(2t)

t Bias SEE ESE CP Bias SEE ESE CP

n = 100, h = 0.5

0.5 -0.0135 0.1233 0.1125 0.936 -0.0376 0.1227 0.1136 0.924

1.0 -0.0090 0.1065 0.1017 0.940 -0.0404 0.1016 0.0969 0.894

1.5 -0.0067 0.1021 0.0959 0.925 -0.0018 0.1042 0.0981 0.931

2.0 -0.0050 0.0996 0.0918 0.930 0.0369 0.1214 0.1125 0.901

2.5 -0.0072 0.0984 0.0897 0.924 0.0483 0.1288 0.1147 0.885

3.0 -0.0051 0.0933 0.0876 0.926 0.0127 0.0989 0.0919 0.924

n = 200, h = 0.4

0.5 -0.0148 0.0893 0.0869 0.949 -0.0213 0.0929 0.0892 0.930

1.0 -0.0057 0.0804 0.0776 0.932 -0.0283 0.0776 0.0758 0.921

1.5 -0.0050 0.0745 0.0724 0.933 -0.0042 0.0806 0.0774 0.942

2.0 -0.0026 0.0711 0.0689 0.936 0.0187 0.0963 0.0904 0.925

2.5 -0.0035 0.0699 0.0675 0.937 0.0230 0.0941 0.0925 0.928

3.0 -0.0046 0.0699 0.0668 0.931 0.0070 0.0808 0.0748 0.923

n = 300, h = 0.3

0.5 -0.0049 0.0808 0.0781 0.935 -0.0145 0.0883 0.0829 0.927

1.0 -0.0019 0.0727 0.0698 0.937 -0.0136 0.0717 0.0709 0.943

1.5 0.0011 0.0682 0.0642 0.935 -0.0069 0.0768 0.0724 0.935

2.0 0.0038 0.0620 0.0618 0.949 0.0049 0.0898 0.0870 0.931

2.5 0.0021 0.0652 0.0600 0.928 0.0106 0.0972 0.0896 0.918

3.0 -0.0014 0.0629 0.0594 0.924 0.0092 0.0742 0.0709 0.938
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Table 5: Summary of Bias, SEE, ESE and CP for β and RMSE for γ(t) under models (16)

and (19).

β n h Bias SEE ESE CP RMSE1 RMSE2

0 100 0.3 -0.0009 0.1403 0.1364 0.924 0.3850 0.4263

0.4 0.0055 0.1323 0.1245 0.933 0.2241 0.2371

0.5 0.0004 0.1379 0.1255 0.932 0.1438 0.1548

200 0.3 0.0028 0.0891 0.0887 0.941 0.1117 0.1335

0.4 -0.0004 0.0926 0.0894 0.942 0.1035 0.1196

0.5 -0.0018 0.0923 0.0895 0.933 0.0955 0.1074

300 0.3 -0.0003 0.0757 0.0730 0.944 0.0906 0.1056

0.4 0.0033 0.0728 0.0731 0.951 0.0827 0.0959

0.5 -0.0025 0.0709 0.0727 0.944 0.0763 0.0884

0.5 100 0.3 -0.0009 0.1112 0.0987 0.920 0.2054 0.2218

0.4 0.0036 0.1066 0.0990 0.925 0.1195 0.1244

0.5 0.0019 0.1020 0.0997 0.933 0.1072 0.1122

200 0.3 0.0004 0.0776 0.0703 0.923 0.0850 0.0914

0.4 -0.0015 0.0730 0.0703 0.944 0.0803 0.0856

0.5 -0.0025 0.0711 0.0705 0.948 0.0730 0.0799

300 0.3 0.0013 0.0595 0.0575 0.945 0.0679 0.0751

0.4 0.0024 0.0603 0.0581 0.935 0.0668 0.0703

0.5 -0.0007 0.0589 0.0577 0.943 0.0605 0.0702

1.5 100 0.3 -0.0006 0.0671 0.0638 0.938 0.0737 0.0822

0.4 -0.0010 0.0684 0.0641 0.930 0.0699 0.0627

0.5 -0.0035 0.0650 0.0638 0.934 0.0634 0.0605

200 0.3 0.0020 0.0457 0.0449 0.941 0.0477 0.0450

0.4 -0.0007 0.0469 0.0452 0.939 0.0477 0.0456

0.5 0.0010 0.0478 0.0453 0.933 0.0461 0.0490

300 0.3 -0.0001 0.0368 0.0367 0.954 0.0403 0.0396

0.4 -0.0006 0.0386 0.0369 0.934 0.0392 0.0396

0.5 -0.0005 0.0369 0.0368 0.951 0.0363 0.0446
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Table 6: Summary of Bias, SEE, ESE and CP for γ(t) for β = 0.5 under models (16) and

(19).

γ1(t) = 0.5
√
t γ2(t) = 0.5 sin(2t)

t Bias SEE ESE CP Bias SEE ESE CP

n = 100, h = 0.5

0.5 -0.0235 0.1462 0.1237 0.905 -0.0227 0.1487 0.1217 0.873

1.0 -0.0106 0.1152 0.1076 0.938 -0.0374 0.1033 0.0958 0.912

1.5 -0.0062 0.1039 0.1004 0.942 -0.0049 0.1021 0.0927 0.921

2.0 -0.0052 0.0969 0.0955 0.935 0.0352 0.1096 0.0998 0.895

2.5 -0.0033 0.0971 0.0917 0.919 0.0424 0.1083 0.0946 0.868

3.0 -0.0050 0.0932 0.0895 0.926 0.0114 0.0829 0.0723 0.907

n = 200, h = 0.4

0.5 -0.0097 0.1029 0.0947 0.927 -0.0193 0.1075 0.0961 0.921

1.0 -0.0078 0.0867 0.0808 0.920 -0.0225 0.0780 0.0749 0.927

1.5 -0.0033 0.0774 0.0754 0.936 -0.0028 0.0793 0.0739 0.933

2.0 -0.0023 0.0749 0.0706 0.924 0.0195 0.0864 0.0812 0.922

2.5 -0.0013 0.0715 0.0673 0.933 0.0318 0.0819 0.0765 0.895

3.0 -0.0001 0.0666 0.0649 0.941 0.0074 0.0606 0.0575 0.936

n = 300, h = 0.3

0.5 -0.0111 0.0942 0.0865 0.923 -0.0073 0.0972 0.0909 0.930

1.0 -0.0047 0.0736 0.0721 0.940 -0.0166 0.0739 0.0699 0.927

1.5 -0.0044 0.0702 0.0665 0.934 -0.0020 0.0711 0.0694 0.950

2.0 -0.0029 0.0646 0.0617 0.941 0.0114 0.0802 0.0772 0.937

2.5 -0.0041 0.0614 0.0587 0.948 0.0180 0.0790 0.0735 0.919

3.0 -0.0025 0.0577 0.0561 0.942 0.0033 0.0572 0.0547 0.934
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Table 7: Empirical sizes and powers of the proposed tests at nominal level α = 0.05 for

model (16) under models (17), (18) and (19) for sampling times.

size power

θ = 0 θ = 0.1 θ = 0.15 θ = 0.2

n h S L S L S L S L

Under sampling times model (17)

200 0.3 0.053 0.054 0.503 0.526 0.851 0.863 0.968 0.970

0.4 0.055 0.057 0.542 0.566 0.851 0.859 0.980 0.981

0.5 0.047 0.045 0.542 0.536 0.853 0.864 0.976 0.976

300 0.3 0.054 0.054 0.687 0.684 0.954 0.960 0.997 0.997

0.4 0.060 0.054 0.699 0.702 0.950 0.952 0.999 0.998

0.5 0.059 0.054 0.696 0.689 0.955 0.962 0.996 0.996

Under sampling times model (18)

200 0.3 0.057 0.056 0.535 0.554 0.986 0.987 0.979 0.984

0.4 0.053 0.049 0.529 0.542 0.861 0.862 0.975 0.977

0.5 0.066 0.058 0.565 0.558 0.872 0.867 0.974 0.973

300 0.3 0.064 0.055 0.695 0.703 0.952 0.959 0.997 0.997

0.4 0.066 0.069 0.717 0.718 0.956 0.956 1.000 1.000

0.5 0.052 0.045 0.710 0.717 0.958 0.965 0.999 0.999

Under sampling times model (19)

200 0.3 0.060 0.065 0.572 0.599 0.887 0.895 0.990 0.986

0.4 0.065 0.066 0.584 0.578 0.886 0.885 0.986 0.989

0.5 0.058 0.059 0.604 0.598 0.880 0.886 0.988 0.989

300 0.3 0.058 0.069 0.738 0.755 0.960 0.965 0.998 0.998

0.4 0.065 0.066 0.760 0.768 0.967 0.968 0.999 0.998

0.5 0.044 0.049 0.738 0.741 0.965 0.969 1.000 0.999
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Table 8: Comparisons of the estimation for β = 1 using the proposed method and the method

of Lin and Ying (2001) under model (21) with n = 200.

α(t) = 1 + t α(t) = 1 + t3

h Bias SEE ESE CP Bias SEE ESE CP

Under sampling times model (17)

0.3 0.0008 0.1665 0.1648 0.952 0.0065 0.1692 0.1675 0.944

0.4 0.0013 0.1660 0.1649 0.947 0.0072 0.1693 0.1714 0.951

0.5 0.0013 0.1659 0.1649 0.944 0.0076 0.1693 0.1786 0.962

L&Y 0.0024 0.1772 0.1786 0.947 -0.0390 0.9055 0.8756 0.943

Under sampling times model (18)

0.3 0.0052 0.1724 0.1728 0.954 -0.0019 0.1801 0.1756 0.942

0.4 0.0053 0.1720 0.1728 0.952 -0.0022 0.1793 0.1794 0.951

0.5 0.0051 0.1717 0.1728 0.953 -0.0021 0.1788 0.1867 0.958

L&Y 0.0033 0.1802 0.1879 0.952 0.0182 0.9088 0.9081 0.949

Under sampling times model (19)

0.3 0.0062 0.1779 0.1765 0.948 0.0068 0.1801 0.1796 0.938

0.4 0.0061 0.1775 0.1764 0.950 0.0068 0.1797 0.1863 0.949

0.5 0.0059 0.1770 0.1764 0.951 0.0063 0.1797 0.1985 0.964

L&Y 0.0905 0.1885 0.2026 0.931 0.7316 0.9190 0.9414 0.871
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Plots of γ̂(t) for model (16) when γ1(t) = 0.5t1/2, γ2(t) = 0.5 sin(2t) and β = 0.5

for n = 100 and h = 0.3. The figures (a) and (b) in the first row are under the proportional

sampling model (17), the figures (c) and (d) in the second row are under the additive sampling

model (18) and the figures (e) and (f) in the third row are under the sampling model (19).

The solid lines are the estimates and the doted lines are the true curves.
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(a)

(b)

Figure 2: The curve of the total prediction error PE(h) is plotted against h in (a) and the

change of β̂ with h is shown in (b) for the HIV-1 RNA data.
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(a) γ̂1(t) for h = 0.05 (b) γ̂2(t) for h = 0.05

(c) γ̂1(t) for h = 0.11 (d) γ̂2(t) for h = 0.11

(e) γ̂1(t) for h = 0.2 (f) γ̂2(t) for h = 0.2

Figure 3: The plots of the estimators γ̂1(t) and γ̂2(t) for three different bandwidths h =

0.05, 0.11 and 0.2 for the HIV-1 RNA data.
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