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confining sphere, otherwise it is is rejected and the process is repeated. The algorithm

proposed in this paper offers an alternative to the accept/reject method, yielding a

faster generation process when the confining sphere is small. In order to use this

algorithm effectively, a large, reusable data set needs to be pre-computed only once. We

derive the theoretical distribution of the given random polygon model and demonstrate,

with strong numerical evidence, that our implementation of the algorithm follows this

distribution. A run time analysis and a numerical error estimate are given at the end

of the paper.
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1. Introduction

Knots are commonly found in nucleic acids and proteins. DNA knots appear as the

product of random cyclization reactions of DNA molecules in solution [30, 33] and in

confinement [2], as products of enzyme mediated biochemical reactions such as those

mediated by site-specific recombinases [5, 7, 8, 14, 15, 31, 35, 40], topoisomerases

[6, 9, 16, 42] and condensins [18, 28, 34] and as nanotechnological devices [26, 32]. Knots

are also found along the backbone of some proteins. Recent studies of some protein

crystal structures from viruses [44], bacteria [19] and humans [41] have revealed knotted

structures in a wide variety of enzymes such as RNA methyltransferases [27], kinases [44]

and transmembrane protein [19]. Knots have posed a new paradigm in protein folding

and may have important functional and evolutionary implications [21, 22, 36, 41]. A few

examples of linked protein rings have been reported and they are believed to provide

stability to the complex they are part of. These include the proteins that form the

capsid of certain viruses (e.g. [43]), proteins in thermofilic organisms [4] as well as some

engineered proteins [3].

In order to carry out numerical studies needed for mathematically understanding

and analyzing these biological systems it is necessary to model circular molecules. A

few commonly used models for such circular molecules include the various random

polygon models that may or may not take volume exclusion into consideration, the

wormlike chain model and the bead model. However, for a large scale numerical study,

a fast and reliable algorithm to generate non-correlated ensembles of random circular

molecules (whatever the model one uses) is needed and is often a very difficult problem

to overcome. The simplest representation of a circular molecule is by an equilateral

random polygon in 3-space with n edges [12, 13], where each edge represents one

or more monomers [24]. The equilateral random walks, as it turns out, have been

studied extensively for many years, since they are also used to model long polymer

chains in chemistry. There are a few algorithms that can generate large ensembles of

equilateral random polygons relatively fast. These include the crankshaft algorithm

[1, 20, 25] and the hedgehog algorithm [20, 29], and the generalized hedgehog algorithm

[39]. Although it has not been mathematically proven that any of these methods

generate the equilateral random polygons according to their probability distribution

(though numerical evidences strongly indicate that they do), it has been shown that

the crankshaft algorithm [1, 20, 25, 38] and the generalized hedgehog algorithm [39] are

ergodic in the sense that any possible configuration of an equilateral random polygon

can be in theory reached by this algorithm.

In this paper, we continue our earlier studies [10, 11] that focus on equilateral

random polygons under a confinement condition. This study is motivated by the

following biological problem. It is known that macromolecular self-assembly processes

are key players in the complex network of interactions that take place in every organism.

One of the ubiquitous self-assembly processes is the packing of genomic material (long
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DNA chains) inside living organisms. Even in the case of a simple organism such as

viruses, the DNA packing is of high density. For example, in the prototypic case of the

P4 bacteriophage virus, the 3µm-long double-stranded DNA is packed within a viral

capsid with a caliper size of about 50nm, corresponding to a 70-fold linear compaction

[17]. How such a high density packing is achieved and what its effects are on the overall

properties of the packed DNA is of great interest to scientists across several disciplines

including mathematics and biophysics. In both cases, considerable effort has been spent

in recent years to define and characterize the level of entanglement of the packaged DNA.

This problem is one of the main factors that motivate the study of random polygons with

a confinement condition, as such random polygons serve as a coarse model of packed

DNA.

There are several issues involving any (random polygon) model-based numerical

study of the DNA packing problem. The first issue is how to define the models to

reflect the various packing properties the DNA or polymer chains may have. Once a

confined random polygon model is defined, the next issue is determining the probability

distributions of the random polygons based on the model, and the third issue is

the actual generation of the random polygons in accordance with these (theoretical)

probability distributions.

The focus of this paper is on the third issue for one particular confined random

polygon model. In our earlier study [10, 11] we focused on equilateral random polygons

that are confined in a sphere of fixed radius, where the confining sphere behaves

somewhat similar to a “reflective surface”. In this paper, the confined equilateral

random polygon model is defined such that the confining sphere behaves more like

an “absorbing boundary”. More precisely, in [10] an equilateral random polygon is

generated sequentially starting and ending at the origin by reversing the order (vertex

by vertex) of equilateral random walks with fixed end points. Once a vertex Xk+1 is

generated, the next vertex Xk is generated subject to two conditions:

(1) X0 = O, X1, ... Xk, Xk+1 form an equilateral random walk with fixed end points

X0 = O and Xk+1 and

(2) Xk is within the confining sphere.

Whereas in this paper, condition (2) above is replaced by the following condition:

(2′) Xj is within the confining sphere for 1 ≤ j ≤ k.

This seemingly small difference in the definition in fact makes a big difference in

the distributions of the random polygons and also a big difference in the ways the

polygons can be generated. In fact, the confined random equilateral polygon model

defined using condition (2′) results in precisely the equilateral random polygons that

are bounded within the confining sphere, hence their probability density function is

the same as the probability density function in the non-confined case, normalized by a

constant (which would be the reciprocal of the probability for such a random polygon

to be within the confining sphere). This is not the case when condition (2) is used

instead. Similar to [10], our aim here is to develop an algorithm that is capable of
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producing large sets of relatively long confined equilateral random polygons according

to their probability distributions in a reasonable runtime. As pointed out in [10], in

the non-confined case, there are several known algorithms that work reasonably well,

these include the crankshaft algorithm [20, 25], the hedgehog algorithm [20, 29] and

the generalized hedgehog algorithm [39]. In order to generate a random equilateral

polygon under the confinement conditions (1) and (2′), one can always use the simple

accept/reject approach. That is, we can generate an equilateral random polygon without

the confinement condition using one of the methods mentioned above, but only accept

the polygons that are within the confinement sphere. The main problem with this

approach is the run time constrain. If the polygon is long (relative to the radius of the

confining sphere), then the rejection rate will be very high (since only exponentially few

of the generated polygons would be bounded within the confining sphere). See the review

article [23] about generating polygons in confinement with a more sophisticated approach

of an accept/reject approach to generated polygons in confinement. To improve on the

accept/reject approach is the main motivation for our study in this paper. Let us

point out that it is widely accepted (confirmed by numerous numerical studies) that

these methods do generate equilateral random polygons (in the non-confined case) with

the correct distribution (even though none has been theoretically proven), therefore,

these methods can still be of use to us. We use them to generate confined equilateral

random polygons with the accept/reject approach and compare them with the polygons

generated by our new method to validate/refute our proposed method.

The method proposed in [10] relied on a schema that used a database of evenly

spaced sample points where the exact value was computed by the evaluation of required

cumulative probability density function by analytic integration. These sample points

then allowed us to approximate the cumulative probability density functions at those

points where we did not sample. This yields algorithms with a runtime of about O(n3.5)

(where n is the length of the polygon). A similar idea is used in this paper. That is,

our generation method also requires some precomputation. However, for the confined

random equilateral polygons defined here, the probability distribution is more difficult

to deal with numerically. Consequently, the computation time needed, both for the

creation of the initial data set and the generation of the random polygons, is much

longer.

The rest of the paper is organized as follows: In Section 2, we give the theoretical

background of the conditional probability density distributions needed. This section

repeats some results already established in [10] that are essential for this paper to be

self-contained and allow the the reader to understand our methods. In Section 3, we

introduce the basic principle of an algorithm for generating the equilateral random

polygon. We also derive a closed form expression for the needed theoretical conditional

probability distributions. In Section 4, we discuss how to numerically implement the

algorithm and provide some numerical results on runtime for both algorithms, the effect

of numerical error on the shape of a generated polygons and the vertex distributions of
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the generated confined polygons.

2. Basic background, terminology and notations

As this paper is a sequel to [10], the background is similar and we use similar terminology

and notations. The reader may refer to [10] for details that may be missing here.

Suppose U1, U2, ... , Un are n independent random vectors uniformly distributed

on S2 (so the joint probability density function of the three coordinates of each Uj is

simply 1
4π

on the unit sphere). An equilateral random walk of n steps, denoted by

EWO
n , is defined as the sequence of points in the three dimensional space R3: X0 = O,

Xk = U1 +U2 + · · ·+Uk, k = 1, 2, ..., n. Each Xk is called a vertex of the EWO
n and the

line segment joining Xk and Xk+1 is called an edge of EWO
n (which is of unit length).

If the last vertex Xn of EWO
n is fixed at X, then we have a conditioned random walk

EWO
n |Xn=X . In particular, EWO

n becomes a polygon EPn if Xn = O. In this case, it

is called an equilateral random polygon and is denoted by EPn. The confining sphere

considered in this paper is the sphere SR(O) centered at the origin with a radius R ≥ 1

and the random polygon is rooted at the origin. The later condition is only for simplicity

at this stage of study with no biological justification provided. Let n be the length of

the equilateral polygon, then the polygon has n vertices and the vertices are denoted

(in the sequential order as they appear on the polygon) by X0 = O, X1, X2, ..., Xn−1,

Xn = X0 = O. In [10], the equilateral random polygon confined in SR(O) is defined

sequentially (in a backward order, that is, Xn, Xn−1, . . . , X1, X0 ) subject to

Condition (r): once Xk+1 is generated, the next vertex Xk is generated subject to the

conditions that X0 = O, X1, ... Xk, Xk+1 form an equilateral random walk with fixed

end points X0 = O and Xk+1 and that Xk is within the confining sphere SR(O).

In this paper, the equilateral random polygon confined in SR(O) is defined

sequentially (in a backward order, that is Xn, Xn−1, . . . , X1, X0 ) subject to

Condition (a): once Xk+1 is generated, the next vertex Xk is generated subject to the

condition that X0 = O, X1, ... Xk, Xk+1 form an equilateral random walk with fixed

end points X0 = O and Xk+1 which is confined in SR(O).

An equilateral random polygon of length n is denoted by EP r
n(R) if it is generated

using condition (r) and EP a
n (R) if it is generated using condition (a). The letters r and

a are referring to the fact that the confining sphere acts in a way similar to a reflective

surface in the first case and an absorbing surface in the second case. At this point,

the difference between the two definitions may seem subtle so let us elaborate on the

importance of this difference. Suppose that Xk+1 has been generated (so it is fixed).

To generate Xk, we generate an equilateral random walk (of length k + 1 with end

points at O and Xk+1). In the first definition, as long as this random walk satisfy the

condition that |Xk| ≤ R, no matter where the other vertices are, Xk (and only Xk!)

is selected and this process is repeated for the choice of Xk−1. However, in the second
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definition, Xk is rejected if any of the vertices X2, ..., Xk−1 is not bounded in SR(O).

Clearly the exact positions of X1, X2, ..., Xk−1 are not known when the position of Xk is

generated but different sets of potential positions for X1, X2, ..., Xk−1 strongly influence

the conditional probability density function that determines the position of Xk.

In the following, we provide a list of the various probability and conditional

probability density functions needed for the rest of the paper, as well as some known

formulas about them. The derivations of the formulas can be found in [10] and the

references therein. Throughout the rest of the paper, for any integer k, rk stands for

|Xk|, the distance between Xk (the k-th vertex of the random polygon or the random

walk) and the origin. Most of the time rk is a random variable when Xk is treated as a

random point (on the random walk or polygon), however rk can also mean a constant

when the point Xk has been already chosen.

(i) Let Xk be the k-th vertex of an equilateral random walk starting at the origin. The

probability density function of rk = |Xk| is denoted by gk(rk), which is given by the

following closed formula:

gk(rk) =
2rk
π

∫ ∞
0

x sin rkx

(
sinx

x

)k
dx. (1)

(ii) Let Xk be the k-th vertex of an equilateral random walk with end points X0 = O

and Xk+1. Then under the condition that |Xk+1| = rk+1 is fixed (that is, the end point

Xk+1 can be anywhere on the sphere of radius rk+1 centered at O), the conditional

probability density function of rk is denoted by hk(rk|rk+1) and we have the following

formula [10]:

hk(rk|rk+1) =
rk+1

2rk

gk(rk)

gk+1(rk+1)
. (2)

The corresponding cumulative probability distribution P (|Xk| ≤ rk|rk+1) will be

denoted by Hk(rk|rk+1).

(iii) Let EWO
k+1|Xk+1

be an equilateral random walk of length k+1 with fixed end points

X0 = O and Xk+1 such that |Xk+1| = rk+1 ≤ R. Let Bk be the event that EWO
k+1|Xk+1

is confined in SR(O). The probability density function of |Xk| = rk given Bk and

|Xk+1| = rk+1(≤ R) is denoted by λk(rk|Bk, rk+1) and its corresponding cumulative

probability distribution function is denoted by Λk(rk|Bk, rk+1).

3. An EP a
n (R) generating algorithm based on the distribution functions

λk(rk|Bk, rk+1) and Λk(rk|Bk, rk+1)

3.1. The description of the algorithm.

Let us suppose we have a formula for the distribution functions λk(rk|Bk, rk+1) and

Λk(rk|Bk, rk+1) and an effective way to compute them, then we use the following

algorithm to generate an EP a
n (R).
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Initial step: The starting and ending point of the polygon is set to be the origin

by default. Xn−1 is chosen uniformly on the unit sphere centered at the origin. The

uniformity is guaranteed by the symmetry of the random polygon with respect to the

confining sphere.

Recursive steps: Starting with j = 2. Given that in the previous step, Xn−j+1 has

been chosen. Thus Xn−j+1, hence rn−j+1 = |Xn−j+1|, is fixed. rn−j is thus a random

variable with probability density function λn−j(rn−j|Bn−j, rn−j+1). It can therefore be

chosen to be the solution of the equation Λn−j(rn−j|Bn−j, rn−j+1) = u, where u is a

random number uniformly chosen from [0, 1]. Once rn−j is chosen, Xn−j is chosen

uniformly on the intersection circle of the unit sphere centered at Xn−j+1 and the sphere

centered at O with radius rn−j. This process is repeated for all j ≤ n−2, and terminates

once X2 has been chosen.

Final step: At this point X1 is simply chosen uniformly from the intersection circle

of the unit sphere centered at X2 and the unit sphere centered at O. This allows the

random walk to return to the origin.

3.2. The derivation of an explicit formulation of λk(rk|Bk, rk+1) and Λk(rk|Bk, rk+1).

We now derive an explicit formulation of the probability density function λk(rk|Bk, rk+1)

and the corresponding cumulative probability distribution function Λk(rk|Bk, rk+1).

Notice that by definition Λk(rk|Bk, rk+1) = P (|Xk| ≤ rk|Bk, rk+1).

Let j be a positive integer, r ≥ 0 and τ ≥ 0 be real numbers. Given that rj+1 = τ

then we denote by Ij(τ) the interval that contains all possible values of rj, that is

Ij(τ) = [|τ − 1|,min(R, j, τ + 1)].

Ij(τ, r) stands for the interval of all possible values of rj subject to two conditions

rj+1 = τ and rj ≤ r.

Ij(τ, r) = [|τ − 1|,min(R, j, r, τ + 1)]

Next we define

Vk(τ, r) =

∫
Ik(τ,r)

∫
Ik−1(τk)

· · ·
∫
I2(τ3)

dτ2 · · · dτk−1dτk. (3)

Notice that since Ik(τ, R) = Ik(τ), we have

Vk(τ, R) =

∫
Ik(τ)

∫
Ik−1(τk)

· · ·
∫
I2(τ3)

dτ2 · · · dτk−1dτk. (4)

The following theorem gives an explicit expression for the needed conditional

cumulative probability distributions.
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Theorem 1 Given that Xk+1 is fixed with |Xk+1| = rk+1 (so rk+1 is also fixed), then

we have

Λk(rk|Bk, rk+1) = P (|Xk| ≤ rk|Bk, rk+1) =
Vk(rk+1, rk)

Vk(rk+1, R)
. (5)

Proof. Recall all the probability events in consideration are under the condition that

Xk+1 is fixed with |Xk+1| = rk+1 ≤ R and the condition |Xk+1| = rk+1 is abbreviated as

rk+1. Using Bayes Theorem we have

P (|Xk| ≤ rk|Bk, rk+1) =
P (|Xk| ≤ rk, Bk|rk+1)

P (Bk|rk+1)

=
P (Bk−1, |Xk| ≤ rk ≤ R|rk+1)

P (Bk|rk+1)
. (6)

Using (2) we obtain

P (Bk|rk+1) =

∫
Ik(rk+1)

P (Bk|rk)hk(rk|rk+1)drk

=

∫
Ik(rk+1)

P (Bk−1|rk)hk(rk|rk+1)drk

=

∫
Ik(rk+1)

P (Bk−1|rk)
rk+1

2rk

gk(rk)

gk+1(rk+1)
drk,

where in the above the event Bk is replaced by Bk−1 since the condition that |Xk| = rk
and rk ∈ Ik(rk+1) trivially implies that |Xk| ≤ R. Similarly (with rk ≤ R),

P (Bk−1|rk) =

∫
Ik−1(rk)

P (Bk−2|rk−1)
rk

2rk−1

gk−1(rk−1)

gk(rk)
drk−1,

hence

P (Bk|rk+1) =

∫
Ik(rk+1)

∫
Ik−1(rk)

P (Bk−2|rk−1)
rk+1

22rk−1

gk−1(rk−1)

gk+1(rk+1)
drk−1drk.

Repeating this procedure until we reach B2, and since B1 is trivially true, g2(r2) = r2/2,

we obtain

P (Bk|rk+1) =

∫
Ik(rk+1)

∫
Ik−1(rk)

· · ·
∫
I2(r3)

rk+1

2k−1r2

g2(r2)

gk+1(rk+1)
dr2 · · · drk−1drk

=
rk+1

2kgk+1(rk+1)
Vk(rk+1, R).

Similarly,

P ((Bk−1, |Xk| ≤ rk ≤ R)|rk+1)

=

∫
Ik(rk+1,rk)

P (Bk−1|r′k)hk(r′k|rk+1)dr
′
k

=

∫
Ik(rk+1,rk)

P (Bk−1|r′k)
rk+1

2r′k

gk(r
′
k)

gk+1(rk+1)
dr′k
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=

∫
Ik(rk+1,rk)

∫
Ik−1(rk)

P (Bk−2|rk−1)
rk+1

22rk−1

gk−1(rk−1)

gk+1(rk+1)
drk−1dr

′
k

= · · ·

=

∫
Ik(rk+1,rk)

∫
Ik−1(rk)

· · ·
∫
I2(r3)

rk+1

2k−1r2

g2(r2)

gk+1(rk+1)
dr2 · · · drk−1dr′k

=
rk+1

2kgk+1(rk+1)
Vk(rk+1, rk).

(5) now follows trivially from (6).

4. The implementation of the algorithm and numerical results

Using Theorem 1, we implement the algorithm outlined in the last section as follows.

For the given confinement radius R and the polygon length n, we first precompute the

integrals in the volume function defined in (3) for all values up n. For k = 2, 3, . . . , n−1,

define Λk(rk|rk+1) = Vk(rk+1,rk)

Vk(rk+1,R)
. Once Xk+1 is selected, a random number u ∈ U [0, 1] is

chosen and rk = |Xk| is selected as the solution to the equation u = Λk(rk|rk+1).

The solution to the equation u = Λk(rk|rk+1) cannot be found analytically and must

be accomplished by a numerical, iterative process which terminates when a desired

precision is reached. More precisely, since Λk(rk|rk+1) is a non-decreasing function

(of rk, as rk+1 is fixed), a simple bisection (binary search) algorithm can be used on

the interval Ik(rk+1). Thus an efficient implementation of the overall algorithm must

include an efficient implementation of the bisection algorithm to estimate the inverse

cumulative distribution functions Λ−1k (rk|rk+1). In our implementation of the algorithm,

the precision level of the computation is measured in the form of 10−m for various positive

integer m.

4.1. Comparison with the generalized hedgehog method.

To test the validity of the algorithm we decided to compare it with data collected

using the accept/reject approach based on the hedgehog method. We set R = 2 and

generated a polygon of length 20 using the hedgehog method. If the polygon was

inside the confining sphere we kept the polygon; if any part of the polygon was outside

the confinement we deleted the polygon and started over. We continued this process

and collected 20000 polygons in confinement. We also collected 10000 polygons in

confinement generated by the algorithm described in the previous section. For each

set of polygons we computed the distance of each vertex from the origin and binned

all distances to form a vertex density chart for the sphere of radius R = 2. In this

computation we deleted the starting vertex v0 = v20 (since it has distance zero) and

the vertices v1 and v19 (since they have distance one) to remove bars in the graph

that are artifacts of anchoring the polygons at the origin. The scale on the y-axis of

the histogram is chosen so that the total area is one and the histogram represents a

pdf function. Figure 1 shows that the two histograms are virtually identical providing

strong numerical evidence that our algorithm generates random polygons in confinement
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according to the theoretical probability distribution for the underlying model. It also

shows that the vertex density is not uniform, but strongly declines for radii greater than

one.

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

Figure 1. Two virtually identical histograms of polygons with 20 segments in a

confinement sphere of radius two.

We investigated the runtime of our implementation in comparison to the existing

generalized hedgehog method. We generated polygons with the generalized hedgehog

method and only kept those which fit into the confining sphere. We measured the time

needed to generate 1000 polygons of various lengths and confining radii of R = 1, 1.5, 2,

and 2.5 for both the generalized hedgehog and our method. The results of the analysis

are summarized in Figure 2. The x-axis shows the length of the polygons and the y-axis

is the time used. (The y-axis uses a logarithmic scale to better represent all the data

in the plot.) The runtime for the hedgehog method is shown with empty markers and

the runtime for our method with filled markers. For each radius of the confining sphere

the measured runtime for the hedgehog method grows faster than the runtime for our

method and there is a cross over point at which our method generates polygons faster.

All cross over points are shown in the same figure - from left to right for R = 1, 1.5, 2,

and 2.5. The lengths of the polygons at the crossovers are roughly 11, 23, 41, and 68,

respectively. We want to remark that the actual crossovers of runtimes are, of course,

dependent on how the two algorithms are implemented. In our case the hedgehog

algorithm is implemented with a C program while our algorithm is implemented in

Mathematica making use of its high precision and ability to compute the needed volume

functions given in equations 3 and 4. Implementation of both algorithms in the same

programming environment would change the location of the crossovers. However it

would not change the fact that our algorithm is much faster for polygons in a relatively

small confinement sphere.

4.2. The effect of the integer m on the shape of the polygons.

Larger m values force the algorithm to make a smaller error when solving the equation

u = Λk(rk|rk+1) for rk. The effect of the choice of the integer m can be measured

very effectively. For the generation of each vertex Xk we need to choose a random real
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11

23

43

68

10 20 30 40 50 60 70
length

0.018

0.050

0.14

0.37

1.0

2.7

time

Figure 2. The diagram shows the polygon length at which the runtime of our

method (filled markers) becomes faster than the generalized hedgehog method (empty

markers). From left to right, the radii are 1, 1.5, 2, and 2.5. The x-axis shows the

length of the polygons and the y-axis shows the average time per polygon (scaled using

ln).

number uk in the unit interval I. Thus we say that the polygon EPn uses a list of seed

values {ui} in its generation. For a fixed set of seed values {ui} we choose several values

of m to generate polygons. By using the same seed values {ui} we directly measure the

effect of the different m values by comparing the polygons that are generated. In the

left of Figure 3 two polygons are shown that are generated using m = 4 and m = 5 and

even at this low precision they cannot be visually distinguished. On the right in Figure

3 we see that the difference between any two corresponding vertices is at most 0.00042.

5 10 15 20

0.0001

0.0002

0.0003

0.0004

Figure 3. On the left two polygons with 20 segments are shown which were generated

with the same seed values ui using m = 4, m = 5 and R = 1 . For m = 4 we use

opaque cylinders of radius .03 and for m = 5 we use cylinders of radius .01. On the

right the distance between corresponding vertices is shown.

To check that the above behavior is typical we computed sets of 100 polygons using
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a fixed list of seed values for various values of k and R. In the table below we show the

results for k = 20 and R = 1. For a given m value, we compute the vertex displacement

of the polygons generated using m and m+ 1 respectively. The maximum of this vertex

displacement, taken over the 100 polygons generated, is denoted by D. Table 1 shows

the relationship between m and D in our study. Figure 4 is the log plot of the data in

Table 1, which has a best fit line with a slope of about −0.99431. From this we conclude

that for a fixed m we generate a polygon with a spatial accuracy of at least 103−m. For

other values of k and R we have found similar results.

m 3 4 5 6 7 8 9 10

D 2.6 · 10−1 2.1 · 10−2 3.0 · 10−3 1.5 · 10−4 3.6 · 10−5 4.6 · 10−6 1.3 · 10−7 4.6 · 10−8

Table 1. The relationship between m and the maximum vertex displacement D.

6 8 10 12 14

-10

-8

-6

-4

-2

Figure 4. The log plot of the data presented in Table 1.

This shows that the numerical errors do not accumulate, and get out of control.

Heuristically this can be explained as follows: Each rounding error might cause the

computation of a radius that is slightly too large or slightly too small with equal

probability. Thus these types of rounding error have the tendency to cancel each other.

Similarly, a rounding error may lead us to a slightly different value of τ , say τ ′. We

now have two different cumulative probability density functions Λk(rk|Bk, rk+1 = τ)

and Λk(rk|Bk, rk+1 = τ ′) for which we compute the inverse value for a fixed choice of

u. Comparing the two plots of such graphs we can see that the two graphs sometimes

intersect and we suspect that such intersections help to reduce the rounding error in rk.

The behavior shown in Figure 3 on the right shows these random fluctuations of the

rounding error.

4.3. The runtime of the algorithm.

The runtime of the algorithm increases with the length of the generated polygons as

shown in Figure 5. In the data set used for this study, for each length 10, 20, 30, 40,
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and 50 and each R value between 1 and 4 with 0.5 increments, 1000 polygons were

generated. For a few R values (1, 2.5, and 3) sets of 1000 polygons each with lengths

60, 70, 80, and 90 were also generated. The right side of Figure 5 shows the runtime

for polygons up to length 90. The data shows that the runtime grows slower than an

exponential function, but faster than a power function. The function shown with the

data in Figure 5 is f(x) = 1.6 · 10−6 · x3 · ln(x) but there is no evidence that the fit is

good for polygons with length > 90. The function merely provides context information

about how the runtime grows for the given data.
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Figure 5. Left: Plot of runtime as a function of the length of the polygon with length

up to 50. Different lines are used for different radii of the confining sphere. Right:

Plot of runtime for polygons up to length 90 for R = 1, 2.5 and 3, together with the

plot of the function f(x) = 1.6 · 10−6 · x3 · ln(x).

The change in the runtime with respect to the change in R is more complex than

one might have expected. The runtime does not consistently increase with the increase

of R. It seems that less time is needed for integer values of R than for fractional values

of R as suggested by the left side plot of Figure 5. In fact, starting at length 30, the

maximum runtime among the integer R values is less than the minimum runtime among

the non-integer R values in our study. Oddly, generating polygons in confinement with

R = 3 is faster than for R = 2, as suggested by Figure 6 where the runtime is plotted

as a function of R (for several fixed polygon lengths).

4.4. The vertex distribution.

One important characteristic (of the random polygon model) to be considered is how

the vertices are distributed within the confining sphere. Let vi be the i-th vertex of

a confined equilateral random polygon of total length n. Then |vi| (the distance of vi
to the origin) is a random variable. Let fi(|vi|) be the probability density function of

|vi|. For simplicity of the presentation, instead of investigating fi(|vi|) for each i, we

choose to study their simple summation
∑

0≤i<n fi(|vi|) instead. The results presented

in this section correspond to n = 20. Because |v0| = |v20| = 0, |v1| = |v19| = 1,

their corresponding density functions are just the delta functions and are thus should

be excluded from the study. Furthermore, f2(|v2|) and f18(|v18|) are both density
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Figure 6. The runtime dependence on the radii of the confining sphere is shown for

several fixed lengths (denoted by s in the figure).

functions with jump discontinuity and are thus also excluded from our study, otherwise

the obtained distributions may contain discontinuity that may distract the reader’s

attention. Thus what we presented in this section is
∑

3≤i≤17 fi(|vi|) for the case of

n = 20, normalized by a factor of 1/15. For the purpose of comparison, corresponding

results using the generating method of [10] are also provided. Using each method, we

generate 10000 confined polygons of length 20 for each R value ranging from 1.5 to

4.5 (with an increment of 0.5). The case R = ∞ (corresponding to no confinement)

is also included (realized by using R = 10). For each set of polygons corresponding to

a given R value, we partition [0, R] into small equal length subintervals first, compute

|vi| for each 3 ≤ i ≤ 17 and count the total number of these within each subinterval.

The resulting relative frequency histogram is an estimate of F = (1/15)
∑

3≤i≤17 fi(|vi|).
The combined results are shown in Figure 7. In the figure, for each R value, a pair of

graphs is given, one with the histogram obtained using the method in [10] at the front

(left), and the other with the histogram obtained using the method in this paper at the

front (right). This way the reader sees the difference of the two (average) distributions

easily. Clearly, the figure shows that the two distributions of F from these two methods

converges to each other as R increases to infinity as expected. However, for small R

values, the distribution F from the method in [10] has a much larger weight towards

its right tail, meaning that more vertices are crowded around the boundary of the

confining sphere, comparing with F obtained from the method in this paper. These

phenomena coincide with what one would expect from a reflective boundary and an

absorbing boundary.

5. Conclusions and ending remarks

Following our earlier study [10], in this paper we explored the generating method of

equilateral random polygons confined within a sphere, but under a different set of

defining conditions. We rigorously proved that our algorithm generates the random

polygons according to their probability distributions. When the radius of the confining
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Figure 7. The histograms that approximate the average probability density function

F for R = 1.5, 2.5, 3.5, 4.5 and 10 ordered from top to bottom. Darker shading relates

to the model discussed in this paper; lighter shading relates to the model from [10].

.
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sphere is small, our algorithm can generate the random polygons much faster than an

algorithm that is based on the accept/reject approach. Many questions remain to be

answered. For example, if the polygons are not rooted at the center of the confining

sphere but their starting points are randomly selected from a certain distribution, how

are such random polygons distributed within the confining sphere? Is it still possible

for us to find a fast generating algorithm for such confined random polygons using

confining conditions such as the ones used in this paper or the ones used in [10]? Another

question is the following more biologically related question. Suppose that we know how

the vertices of the random polygons are distributed within the confining sphere (for

example such information may become available in a related biological study), how

do we generate equilateral random polygons following this distribution? In particular,

how do we generate equilateral random polygons such that their vertices are uniformly

distributed within the confining sphere? We mention the uniform distribution since it

is the simplest. Studying the simplest case may shed some light to the general case.

These are a few directions that we intend to pursue in the future.
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