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Abstract. In this paper we continue our earlier studies [5, 6] on the generation

methods of random equilateral polygons confined in a sphere. The first half of the

paper is concerned with the generation of confined equilateral random walks. We show

that if the selection of a vertex is uniform subject to the position of its previous vertex

and the confining condition, then the distributions of the vertices are not uniform,

although there exists a distribution such that if the initial vertex is selected following

this distribution, then all vertices of the random walk follow this same distribution.

Thus in order to generate a confined equilateral random walk, the selection of a vertex

cannot be uniform subject to the position of its previous vertex and the confining

condition. We provide a simple algorithm capable of generating confined equilateral

random walks whose vertex distribution is almost uniform in the confinement sphere.

In the second half of the paper we show that any process generating confined equilateral

random walks can be turned into a process generating confined equilateral random

polygons with the property that the vertex distribution of the polygons approaches

the vertex distribution of the walks as the polygons get longer and longer. In our

earlier studies, the starting point of the confined polygon is fixed at the center of the

sphere. The new approach here allows us to move the the starting point of the confined

polygon off the center of the sphere.

AMS classification scheme numbers: 92D20, 92B05, 46N30, 92C40
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1. Introduction

There have been numerous studies, both theoretical and numerical, on equilateral

random polygons (also known as ideal random polygons), which are often used to model

ring polymers under the θ-conditions where polymer segments that are not in a direct

contact neither attract nor repel each other. Many theoretical aspects of the equilateral

random polygons are now well understood. For example, the mean squared distance

between two vertices on an equilateral random polygon of length n that is k vertices

apart is k(n − k)/(n − 1) and the mean squared radius of gyration of such a random

polygon is (n+ 1)/12 [16]. Furthermore, certain measurements with a topological flavor

such as the mean ACN (average crossing number) of an equilateral random polygon

are also well researched [2, 4]. In the case of numerical studies, several well tested

and reliable algorithms have been developed for the purpose of generating equilateral

random polygons. These include the polygon folding [9, 10, 11], crankshaft rotation

[1, 9], the hedgehog algorithm [9, 12], and the generalized hedgehog algorithm [15].

A new approach using quaternions has been reported recently [3]. In this paper, we

continue our earlier research on equilateral random polygons that are confined inside a

sphere of fixed radius [5, 6]. The motivation of such an equilateral random polygon model

is the well known fact of the highly compact packing of genomic material (long DNA

chains) inside living organisms observed in macromolecular self-assembly processes in

the complex network of interactions that take place in every organism. Even in the case

of a simple organism such as viruses, the DNA packing is of high density. For example, in

the prototypic case of the P4 bacteriophage virus, the 3µm-long double-stranded DNA

is packed within a viral capsid with a caliper size of about 50nm, corresponding to a 70-

fold linear compaction [8]. Such tight confinement and how the DNA is packed inside the

capsid can greatly affect the topological structure of the DNA [14]. Unlike equilateral

random polygons without confinement, the confined equilateral random polygons have

not been thoroughly studied and there are many unanswered questions. The first issue

is how to define the models to reflect the various packing properties the DNA or polymer

chains may have. Once a confined random polygon model is defined, the next issue is

determining the probability distributions of the random polygons based on the model,

and the third issue is the actual generation of the random polygons in accordance with

these (theoretical) probability distributions. This line of study, combined with a careful

study of the specific knotting structures of the random polygons generated using these

probability distributions, can potentially identify the probability distributions and bias

preferred by certain topological structures (such as the torus knots), the main problem

studied in [14].

In [5] and [6], we have introduced and studied two models of confined equilateral

random polygons. In both models, the polygons are “rooted” at the center of the

confining sphere. There is no biological or other reason for the polygons to be rooted

this way. It is rather a choice for simplicity: as it turns out, equilateral random polygons

defined this way are much easier to generate due to the symmetry of the confining sphere
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(relative to the root) imposed on the equilateral random polygons. The ultimate goal

of this paper is to define and study confined equilateral random polygons that are not

rooted (at any particular point of the confining sphere). Let us keep in mind that one

basic premise on random polygons is that no vertex is more special than the other.

Under this premise, all vertices of a confined equilateral random polygon (that is not

rooted) should have the same distribution. This condition leads to two new challenging

questions: the first is to identify possible distributions of the vertices, and the second is

to find an algorithm to generate the polygons following this distribution. These seem to

be very hard questions and are the main focus of this paper. Here, we demonstrate that

it is possible to generate confined equilateral random walks such that all vertices of the

random walk follow the same distribution. This is relevant to our quest and turns out

to be very useful. We demonstrate how to use that generation process (of the confined

equilateral random walks) to obtain the confined equilateral random polygons with the

desired property, namely that their vertices share the same (pre-described) distribution.

The paper is organized as follows: In Section 2, we provide some necessary

theoretical background of the probability and conditional probability density

distributions needed. We also give an outline of the general idea in using the conditional

probability density functions of confined equilateral random walks (conditioned on that

its end points are fixed) to generate a confined equilateral random polygon. These results

are either well known results or have been established in [5, 6]. But they are essential

for this paper to be self-contained and are helpful for the reader to understand our

methods and arguments. In Section 3, we present an algorithm for generating confined

equilateral random walks such that all vertices of the generated random walk follow

the same probability distribution. We also present a case study where we generate the

confined random walks in such a way that all vertices of the random walk follow an

almost uniform distribution in the confining sphere. In Section 4, we discuss how to

adopt the algorithms developed in Section 3 to generate confined equilateral random

polygons such that at least most vertices of the generated random polygon follow the

desired probability approximately. We also address the problem of generated polygons

with starting vertices that are not at the center of the confinement sphere. In Section 5,

we discuss certain computational issues in the implementation of our algorithms. Finally,

in Section 6, we present some numerical evidence comparing the vertex distribution

of random walks with random polygons. We conclude in Section 7 with some open

questions and indications of future research.

2. The theoretical background

Let U1, U2, ... , Un be n independent random vectors uniformly distributed on S2 (so

the joint probability density function of the three coordinates of each Uj is simply 1
4π

on

the unit sphere). An equilateral random walk of n steps (rooted at the origin), denoted

by EWn, is defined as the polygon whose vertices are given (in a consecutive order along
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the polygon) by X0 = O, X1 = U1, X2 = U1+U2, ..., Xn = U1+U2+ · · ·+Un. If the last

vertex Xn of EWn is fixed at X, then we have a conditioned random walk EWn|Xn=X .

In particular, EWn becomes a polygon EPn if Xn = O. In this case, it is called an

equilateral random polygon and is denoted by EPn. It is a well known result that the

density function of Xk has the closed form [13]

fk(Xk) =
1

2π2rk

∫ ∞
0

x sin rkx

(
sinx

x

)k
dx, (1)

where rk = |Xk|. Notice that fk(Xk) is in fact a function of rk and k.

The following results provide some necessary theoretical background needed in this

paper. The proofs can be found in [5].

Lemma 1 Let Y be uniformly distributed on the unit sphere centered at a fixed point

Y0 6= O and let r = |Y |. Then the probability density function p(r) of r is given by

(r0 = |Y0|):

p(r) =

{
r/(2r0), r ∈ [|r0 − 1|, r0 + 1]

0, otherwise

Theorem 1 Let X0(= O), X1, ..., Xn be the vertices of an EWn and rj = |Xj| for

1 ≤ j ≤ n. Let gj(rj) be the probability density function of rj. Then

(a) gj(rj) = 4πr2jfj(Xj) where fj is given in (1);

(b) In case that rk+1 is fixed, then the conditional probability density function of rk
is given by

hk(rk|rk+1) =
rk+1

2rk

gk(rk)

gk+1(rk+1)
, (2)

where rk ∈ [rk+1 − 1, rk+1 + 1] if rk+1 ≥ 1 and rk ∈ [1− rk+1, 1 + rk+1] if rk+1 < 1.

(c) In case that rk+1 = τ is relatively small compared to k, hk(rk|rk+1) can

be approximated by rk/(2τ). In fact, hk(rk|rk+1) = rk/(2τ)(1 + O(τ 20 /k)) for rk ∈
[|τ − 1|, τ + 1] (and it equals 0 otherwise), where τ0 = max{τ, 1}. Furthermore, under

these conditions

fk(Xk) =

(√
3

2πk

)3

(1 +O(
τ 20
k

)).

In theory, an equilateral random walk with fixed ends can be generated using the

conditional probability distribution functions hk(rk|rk+1). In particular, an equilateral

random polygon of given length n (≥ 3) can be generated using such conditional

probability distribution functions. This has been described in [5, 6]. For the convenience

of our reader, we repeat it here.

Initial step: The starting and ending point of the polygon are set to be the origin

by default. Xn−1 is chosen uniformly on the unit sphere centered at the origin. Once

Xn−1 is chosen, we are left with an equilateral random walk (of n − 1 edges) with end

points fixed at O and Xn−1.



Generating equilateral random polygons in confinement III 5

Recursive steps: Starting with j = 2, choose rn−j according to its distribution

(with the condition that rn−j+1 has been chosen in the prior step). Specifically, if

Hn−j(rn−j|rn−j+1) is the cumulative probability distribution of rn−j (under the condition

that rn−j+1 is fixed), then rn−j is chosen to be the solution of the equation

Hn−j(rn−j|rn−j+1) = u, (3)

where u is a random number uniformly chosen from [0, 1]. Once rn−j = |Xn−j| is chosen,

Xn−j is chosen uniformly on the intersection circle of the unit sphere centered at Xn−j+1

and the sphere centered at O with radius rn−j. The last value for j is n− 2.

Final step: X2 is already chosen. At this point X1 is simply chosen uniformly from

the intersection circle of the unit sphere centered at X2 and the unit sphere centered at

O. This allows the random walk to return to the origin.

In [6] the effects of different confinement enforcement strategies on the

Hn−j(rn−j|rn−j+1) functions were discussed. Specifically, whether rn−j is chosen given

that rn−k ≤ R for k ≤ j or for just k = j. The former can be seen to treat the

confinement sphere as an absorbing boundary, and the latter treats the confinement

sphere as a reflective one. In this latter case we follow an accept/reject approach in our

algorithm. That is, we generate rn−j without considering confinement, and if rn−j > R

we generate a new u and hence a new rn−j until a confined point is found. The advantage

to the reflective boundary approach is the great simplicity in its implementation in the

algorithm. Furthermore, we can easily incorporate other types of boundaries than a

confinement sphere centered at the origin of the polygon. Of note is a confinement sphere

centered away from the origin. This simulates the generation of unrooted polygons, see

Section 4.2.

3. The case of confined equilateral random walks

As we pointed out in Section 1, our main interest is to develop a method to generate

confined equilateral random polygons such that all vertices of the polygon follow the

same distribution. Of course, the first question one needs to answer is whether such

equilateral random polygons exist. That is, if R is the radius of the confining sphere

and f(r) is a probability distribution for 0 ≤ r ≤ R, is it possible to define an

equilateral random polygon confined in the sphere of radius R such that the probability

density function of each vertex Xj of the random polygon is of the form f(r)/(4πr2)

(where r = |Xj|). And if so, how do we generate such a polygon? Notice also that

there is an additional hidden condition here: the generating algorithm must generate

the regular equilateral random polygons when the confining condition does not apply.

More specifically, suppose that we have chosen the starting point of the polygon (using

the pre-described density function) and that the point is close to the center of the

confining sphere and the confining sphere has a large radius compared to the length

of the polygon. In this case the polygon has no chance of getting out of the confining

sphere, hence the confining condition does not apply. Thus the rest of the vertices



Generating equilateral random polygons in confinement III 6

must follow the distribution of a regular unconfined equilateral random polygon and

the generating algorithm has to follow this distribution in this case. As we pointed out

in the introduction section, this is a very difficult problem. In Subsection 3.1, we show

that at least in the case of equilateral random walks, this is possible for some specially

chosen density function f(r). In Subsection 3.2 we demonstrate numerically that this is

possible for a special density function f(r) that is very close to the uniform distribution

in the confining sphere. In the next section, we use these results to demonstrate that

we can at least generate confined equilateral random polygons in which most vertices

follow a distribution that is approximately uniform in the confining sphere, which sheds

some light on the main question of our concern in this paper.

3.1. A confined equilateral random walk whose vertices have a simple distribution

function in the confining sphere

Let S be the confining sphere with radius R ≥ 1 and consider an equilateral random

walk Wk of length k confined in S. Let X0, X1, ..., Xk be the (consecutive) vertices

of the random walk. Here, the random walk is defined as a Markov chain: each Xj+1

depends only on Xj in the following way: once Xj is chosen, Xj+1 is chosen uniformly

over the portion of the unit sphere centered at Xj that is contained within S. Notice

that this algorithm generates the regular equilateral random walks when the confining

condition vanishes. We have the following theorem.

Theorem 2 Let f(r) be a probability density function defined by

f(r) =

{
ar2, 0 < r ≤ R− 1;
ar
4

(R2 − (r − 1)2), R− 1 < r ≤ R;

where a = 48/(16R3 − 12R2 + 1) = 48/((2R− 1)2(4R + 1)). If the initial vertex X0 of

Wk is chosen with the distribution f(|X0|)/(4π|X0|2), then each vertex Xj of Wk follows

the same distribution f(|Xj|)/(4π|Xj|2).

Proof. Given the way Wk is defined, it suffices to prove the following: Let X and

Y be two random points in S that are a unit distance apart (think of X = Xj and

Y = Xj+1) such that X follows the probability distribution f(|X|)/(4π|X|2) and that

Y is uniformly distributed over the portion of the unit sphere centered at X that is

contained in S, then Y follows the probability distribution f(|Y |)/(4π|Y |2).

Let g(u) be the probability density function of u = |Y |, f(r) be the probability

density function of r = |X| defined in (1) and let g(u|r) be the conditional probability

density function of |Y | = u under the condition that |X| = r. We have:

g(u) =

∫ R

0

g(u|r)f(r)dr.

Let θ be the angle between
−−→
XO and

−−→
XY , where O is the center of S. It is a well

known fact that cos θ ∼ U [−1, 1] if r ≤ R − 1 (hence the confining condition does not
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apply to Y ) and that cos θ ∼ U [(1 + r2 − R2)/(2r), 1] if R − 1 < r ≤ R. Notice that

|Y |2 = 1 + r2 − 2r cos θ.

For a fixed r such that r ≤ R− 1 it follows that

P (|Y | ≤ u|r) = P (1 + r2 − 2r cos θ ≤ u2)

= P (cos θ ≥ 1 + r2 − u2

2r
)

=
1

2

(
1− 1 + r2 − u2

2r

)
.

Differentiating with respect to u yields

g(u|r) = u/(2r), (4)

where |r − 1| ≤ u ≤ r + 1.

On the other hand, for a fixed r such that R− 1 < r ≤ R it follows that

P (|Y | ≤ u|r) = P (1 + r2 − 2r cos θ ≤ u2)

= P (cos θ ≥ 1 + r2 − u2

2r
)

=
2r

R2 − (r − 1)2

(
1− 1 + r2 − u2

2r

)
.

It follows that if R− 1 < r ≤ R, then

g(u|r) =
2u

R2 − (r − 1)2
(5)

where |r − 1| ≤ u ≤ R.

Let us now consider 3 cases: |u − R| ≥ 2, 2 > |R − u| ≥ 1, and |R − u| < 1.

The first two cases cover all situations where 0 < u ≤ R − 1 and we need to show

that g(u) = au2 and the third case is for R − 1 < u ≤ R and we need to show that

g(u) = au
4

(R2 − (u− 1)2).

Case 1. |u − R| ≥ 2 (of course this can only occur if R ≥ 2). It follows that

|u − 1| ≤ r ≤ u + 1 ≤ R − 1 hence g(u|r) = u
2r

for |u − 1| ≤ r ≤ u + 1 and g(u|r) = 0

otherwise. Thus we have

g(u) =

∫ u+1

|u−1|

u

2r
f(r)dr =

∫ u+1

|u−1|

u

2r
ar2dr = au2.

Case 2. 2 > |R − u| ≥ 1. For |u− 1| ≤ r ≤ R − 1, we have g(u|r) = u/2r, but for

R− 1 < r ≤ u+ 1 (≤ R) we have g(u|r) = 2u
R2−(r−1)2 . It follows that

g(u) =

∫ R−1

|u−1|

u

2r
ar2dr +

∫ u+1

R−1

2u

R2 − (r − 1)2
ar(R2 − (r − 1)2)

4
dr

=

∫ u+1

|u−1|

aur

2
dr = au2.
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For |u− 1| > R− 1, we only obtain one integral and it follows that

g(u) =

∫ u+1

|u−1|

2u

R2 − (r − 1)2
ar(R2 − (r − 1)2)

4
dr

=

∫ u+1

|u−1|

aur

2
dr = au2.

Case 3. |R − u| < 1. For |u − 1| ≤ r ≤ R − 1, again we have g(u|r) = u/2r, but

for R− 1 < r ≤ R (since now u+ 1 > R cannot be the upper bound for r anymore) we

have g(u|r) = 2u
R2−(r−1)2 . It follows that

g(u) =

∫ R−1

|u−1|

u

2r
ar2dr +

∫ R

R−1

2u

R2 − (r − 1)2
ar(R2 − (r − 1)2)

4
dr

=

∫ R

|u−1|

aur

2
dr = au(R2 − (u− 1)2)/4.

For |u− 1| > R− 1, we only obtain one integral and it follows that

g(u) =

∫ R

|u−1|

2u

R2 − (r − 1)2
ar(R2 − (r − 1)2)

4
dr

=

∫ R

|u−1|

aur

2
dr = au(R2 − (u− 1)2)/4.

This finishes the proof.

Note that the vertex distribution of the random walk generated by the probability

density function of Theorem 2 is non-uniform. The density declines for r-values in the

range R− 1 < r < R, see Figure 1.

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

Figure 1. For a confinement radius R = 3 the probability density function of Theorem

2 is shown together with the uniform distribution function 3r2/R3 (dashed line).

Now that Theorem 2 has confirmed the existence of at least one way to generate

confined equilateral random walks whose vertices have the same distribution, we may ask

the next question: is it possible for us to select a distribution ahead of time (presumably

some distribution with properties that we desire)? For example, is it possible to generate
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confined equilateral random walks whose vertices all follow the uniform distribution in

S? We address this special case in the next subsection.

3.2. A confined equilateral random walk whose vertices are almost uniformly

distributed in the confining sphere

Let X be a random point uniformly distributed in S and assume that S is centered at the

origin as before. Let f(r) be the corresponding probability density function of r = |X|,
that is, f(r) = 3r2/R3 for 0 ≤ r ≤ R and 0 otherwise. To generate a confined equilateral

random walk in S such that all vertices of the polygon follow the uniform distribution

in S, the starting point X0 has to be chosen uniformly in S. Since X1 is selected

conditioned on the choice of X0, in order for it to have a uniform distribution in S, its

conditional probability distribution h(X1|X0) has to satisfy certain conditions. Keep in

mind that X1 can be determined in two steps (as we explained earlier towards the end

of Section 2), first choosing u = |X1| (conditioned on the already chosen r = |X0|), then

choosing X1 uniformly from the intersection circle of the spheres centered at O and X0

with radii r and 1 respectively. Let g(u|r) be the corresponding conditional probability

distribution of |X1| = u under the fixed r = |X0|. Since g vanishes if u < |r − 1| or

u > min{R, r + 1}, we must have

1 =

∫ min{R,r+1}

|r−1|
g(u|r)du.

On the other hand, the overall probability distribution of u is given by
∫ R
0
g(u|r)f(r)dr.

In order for X1 to have the same uniform distribution as X0 in S, we have to have

f(u) =

∫ R

0

g(u|r)f(r)dr.

If we can determine the function g(u|r) satisfying the above two conditions, then we

are done: the generation of X2 can be repeated (by repeated use of the function g(u|r))
since X1 follows the uniform distribution, and so on. Unfortunately we have not been

able to find an analytic solution to above equations. However we have been able to come

up with a function g(u|r) that - at least numerically - comes close. The idea is that we

use the same probability density function as in section 3.1 as long as we are at least one

unit step away from the boundary of S, but modify the function once we are within one

unit of the boundary of S. More specifically, let X be the current position with |X| = r

and we take a step to Y with |Y | = u. Recall that u2 = 1 + r2 − 2r cos θ where θ is the

angle between
−−→
XO and

−−→
XY . As in 3.1 we choose cos θ with uniform probability density

whenever possible. That means if r ≤ R − 1 we choose cos θ with uniform probability

of 1/2 as before. If r > R− 1 then the unit sphere S(X, 1) centered at X with |X| = r

intersects not only the confinement sphere S(O,R) but also the sphere S(O,R − 1) of

radius R− 1 centered at the origin. On the part of the sphere S(X, 1) that is contained

within S(O,R − 1) we choose any point with uniform probability as before, but for its

part between S(O,R) and S(O,R − 1) the point is chosen with a different probability
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density function. So we need to determine which values of − cos θ will result in a point

on the circular sector between S(O,R) and S(O,R− 1) in the next step for r > R− 1.

Solving u2 = 1 + r2 − 2r cos θ with u = R − 1 for − cos θ shows that for the next point

to be outside of S(O,R − 1), − cos θ needs to be at least a = R2−r2−2R
2r

if S(X, 1) and

S(O,R− 1) intersect. Otherwise S(O,R− 1) is contained in S(X, 1) (this may happen

for R values less than 1.5) and the next point will be outside S(O,R − 1). Similarly,

solving the above equation with u = R for − cos θ shows that the maximal value of

− cos θ is b = R2−r2−1
2r

.

A complete specification of a and b is as follows:

a(r, R) =


R2−r2−2R

2r
, r > R− 1 and R− 1 > Min(r, |r − 1|);

−1, r > R− 1 and R− 1 ≤Min(r, |r − 1|);
1, r ≤ R− 1,

b(r, R) =

{
R2−r2−1

2r
, r > R− 1;

1, r ≤ R− 1,

We now define the pdf for − cos θ to have uniform density 1/2 for values −1 ≤
− cos θ ≤ a and to be linearly increasing for values of a < − cos θ ≤ b. To obtain a pdf

function we fix the slope of the linear part as shown below:

pdf(− cos θ) =

{
1
2
, −1 ≤ − cos θ ≤ a;

1
2
(1 + c(− cos θ − a)), a < − cos θ ≤ b,

where

c =
4r((r + 1)2 −R2)

(2R− 1)2
.

Of course, for values r ≤ R−1 our probability density function remains the constant 1/2.

Figure 2 shows the result using this modified conditional probability density function

with a confinement radius R = 2. We see that the vertex distribution of the vertices in

the random walk matches the uniform vertex density function very well. We believe that

this is enough evidence that one could indeed generate confined equilateral random walks

with uniformly distributed vertices, although the formulation of the required conditional

probability distribution function may be convoluted.

4. Confined equilateral random polygons: an asymptotic distribution

approximation approach

We apply the results obtained in the last section to try to obtain models of confined

equilateral random polygons with a “desired” vertex distribution. A random polygon is

a special case of a random walk with fixed end points. In general, the condition that the

end points are fixed greatly affects the distributions of the vertices of the random walk.

Consequently, the vertex distribution of a random polygon is generally very different

from the vertex distribution of a random walk (from the corresponding random walk
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Figure 2. For a confinement radius R = 2 the vertex distribution is shown together

with the dashed uniform distribution function 3r2/R3. The random walk sample

consists of 300 walks of a length of 3, 000 vertices each.

model). However, in the case of confinement, the vertices are close to the origin. In the

case that the radius of the confining sphere is much less than the length of the polygon,

we say that the polygon is “strongly confined”. In the case that the confining sphere

behaves like a reflective boundary rather than an absorbing boundary (which is the

case in the way we generated the equilateral random walks in the last section), there

is strong evidence that the vertices of a “strongly confined” polygon behave much like

the vertices of a random walk (from which the polygon model is derived), see Theorem

1(c). Furthermore, even if the starting vertex of the polygon is rooted at a fixed point

(not necessarily the center of the confining sphere), the polygon quickly “forgets” where

it started, meaning that the distributions of the vertices that are reasonably far away

from the starting vertex (in terms of the distance measured along the polygon) behave

similarly to the vertices from a random walk of corresponding model. In the following

we describe two approaches used to convert a generation process for random walks to a

process for random polygons.

4.1. Approach 1: the polygon is rooted at the center of the confining sphere

A model of a confined random walk (like the ones described in the previous section) is

given by conditional probability density functions p(t|s) which describe the distance

s = rk+1 = |Xk+1| of the vertex Xk+1 given that we are currently at distance

t = rk = |Xk| away from the origin. The functions p(t|s) can now be used to construct

conditional probability density functions hk(t|s) that can be used to construct equilateral

random polygons as follows:

hk(t|s) =
p(t|s)
C(k, s)

s2

t2
gk(t)

gk+1(s)
, (6)
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where

C(k, s) =

∫ min{R,s+1}

|s−1|
p(u|s) s

2

u2
gk(u)

gk+1(s)
du

and the functions gk are given by Theorem 1(b). The purpose of the constant C is to

normalize hk(r|s) to ensure it is a probability density function. We have the following

Lemma.

Lemma 2 lim
k→∞

hk(t|s) = p(t|s)

Proof. From Theorem 1(a) and (c) we have

gk(t)

gk+1(s)
=

4πt2fk(t)

4πs2fk+1(s)

=
t2

s2

(√
3

2πk

)3
(1 +O(

τ20
k

))(√
3

2π(k+1)

)3
(1 +O(

τ20
k

))

=
t2

s2

(
1 +O(

τ 20
k

)

)
.

Thus

lim
k→∞

s2

t2
gk(t)

gk+1(s)
= 1.

The result now follows since limk→∞C(k, s) = 1 by the fact that∫ min{R,s+1}

|s−1|
p(t|s)dt = 1.

We have the following theorem:

Theorem 3 For large n, the joint vertex distribution of the random walks EWn

generated using the conditional probability density functions p(t|s) is the same as the

joint vertex distribution of the random polygons EPn generated using the conditional

probability density functions h(t|s).

This suggests that we can generate random polygons with different joint vertex

distributions by experimenting with the much simpler problem of generating randoms

walks with different joint vertex distributions. Of course one of the key steps is to find

an efficient method of computing the much more complicated conditional probability

density functions h(t|s) which is addressed in the next section.

Lemma 2 can be used to explain the connection with the simple model of a random

walk in Section 3.1 and the equilateral polygon model used in [5]. Recall that the random

walk model in Section 3.1 has the following conditional probability density functions,

see equation (4) and (5):

p(t|s) =

{
t/(2s), s ≤ R− 1;

t/(2sc), R− 1 < s ≤ R,
(7)
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where c = R2−(s−1)2
4s

is a scaling factor to preserve the probability density function

property. Putting this conditional probability density function (7) into equation (6)

results in the following equations for conditional probability density functions for a

random polygon: For s ≤ R− 1 we get the equation (2) of Theorem 1

hk(t|s) =
s

2t

gk(t)

gk+1(s)
, (8)

For R− 1 < s ≤ R we get the following

hk(t|s) =
1

cC

s

2t

gk(t)

gk+1(s)
,

which simplifies slightly to

hk(t|s) =
1

C ′
s

2t

gk(t)

gk+1(s)
, (9)

where

C ′ =

∫ min(R,s+1)

s−1

s

2u

gk(u)

gk+1(s)
du.

Equations (8) and (9) are exactly the method that was implemented in [5].

4.2. Approach 2: polygon is obtained through induced closure of a random walk

The last approach used equation (6) to obtain a given polygon distribution. This result

only works for a confinement sphere centered at origin or root of the polygon. In this

second approach we no longer require this condition, but we use the assumption that

the polygon is relatively long. Given any root X0 in the confinement sphere we generate

the polygon as if we are generating a confined random walk as we discussed in Section

3. We do this for all the vertices except, say, the last k = b4Rc vertices. At that

point, what remains would be a confined equilateral random walk with fixed end points

starting at Xn−k and ending in X0 = Xn. Since there are relative few vertices left, we

can use the accept/rejection method here. That is, we generate (unconfined) random

walks with these fixed end points Xn−k and X0 until we find one that is confined in S.

More specifically we use the algorithm in Section 2 with the unmodified hk functions as

in equation (2). Here we are using a translated coordinate system such that X0 is the

origin since otherwise we cannot apply the functions given in equation (2). Of course,

in doing so, we lose the control of the distribution of the last k vertices. However,

since this only happens to a few vertices (even these few are not biased in any obvious

way), we may argue that polygons so generated may possess similar geometric and

topological characteristics of their counterparts (where all vertices share exactly the

same distribution). One big advantage of this approach is the easy implementation of

it. This allows fast and easy generation of long, unrooted polygons.
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4.3. Approach 3: polygon is obtained through accept/ reject method

There is another rather obvious approach to generated unrooted polygons assuming the

the conditional probability density functions given by equation (6) are available and

computable. Note that these probability density functions assume that the polygon is

rooted at the origin and this cannot be changed since the functions gj(rj) of Theorem 1

need this assumption. So instead of shifting the root of the polygon we shift the center

of the confinement sphere along the positive z axis using a randomly generated shift

that is equivalent to choosing the root according to a desired probability distribution

for the vertex density. Now we generate our polygon step-by-step, implementing an

accept/reject method on each step. In more detail, assuming that Xn−j+1 is fixed,

we construct Xn−j ignoring the confinement sphere. If Xn−j is not in confinement

then we reject Xn−j and start the process over. We repeat this until a point Xn−j is

constructed that is in confinement. This method also allows the generation of long,

unrooted polygons however it is not as fast as the method described in the previous

subsection.

5. On the computation of the needed probability density functions

The direct application of the algorithms outlined in the last section, unfortunately, is not

so easy. Although the density functions gj(rj) = 4πr2jfj(Xj) have an explicit formula as

given in (1), the formula involves an improper integral. For any value of n, we can in

principle compute the integral exactly using a software package like Mathematica. Thus

we have an exact expression for the functions hk(rk|rk+1) in Theorem 1. However the

length of these expressions increases very quickly and their size and the computation

time involved makes it difficult to increase the size of k arbitrarily. In this section we

replace the improper integral with a summation formula and thus make our algorithm

much more suited to a direct computation.

Recall that:

hk(t|s) =
p(t|s)
C(k, s)

s2

t2
gk(t)

gk+1(s)
, (10)

where

C(k, s) =

∫ min{R,s+1,k}

|s−1|
p(u|s) s

2

u2
gk(u)

gk+1(s)
du,

and

gk(t) =
2t

π

∫ ∞
0

x sin(tx)

(
sinx

x

)k
dx.

By [7], for k ≥ 2 there is an explicit expression for gk(t):

gk(t) =
t

2k−1(k − 2)!

k∑
j=0

(−1)j
(
k

j

)
(t+ k − 2j)k−2χ(0,∞)(2j − k − t), (11)



Generating equilateral random polygons in confinement III 15

where χ(0,∞) is the characteristic function over (0,∞):

χ(0,∞)(t) =

{
0, t ≤ 0

1, 0 < t.

Thus if we rewrite hk(t|s) in the following way

hk(t|s) =
1
t2
p(t|s)gk(t)∫ min{R,s+1,k}

|s−1|
1
u2
p(u|s)gk(u)du

, (12)

we might obtain exact summation formulae for several classes of p(t|s)-functions. Recall

that the key step of the algorithm is given in equation (3). Thus for a given random

value u we need to compute the inverse cumulative probability density function Hk(t|s).
The previous equation only give a formula for hk(t|s) and needs to be integrated with

respect to t to obtain a formula for Hk(t|s). If the function p(t|s) is simple enough then

this can be done easily. For example, assuming that s < R − 1 in case of the random

walk model in Section 3.1 the equation (12) simplifies to

hk(t|s) =
Ik(t)∫ min{R,s+1,k}

|s−1| Ik(u)du
,

where

Ik(t) =
k∑
j=0

(−1)j
(
k

j

)
(t+ k − 2j)k−2χ(0,∞)(2j − k − t).

Since Ik(t) is polynomial it is no problems to compute the integral in the denominator

and to integrate hk(t|s) with respect to t. The computation of the inverse (Hk(t|s))−1(u)

then needs to be handled numerically.

6. Numerical results

The convergence of vertex distributions given by Theorem 3 is slow due to the fact that

even in confinement the root of the random polygon influences the distribution of its

vertices. In Figure 3 we illustrate this for the random walk model described in Section 3.

The distribution shown is from 10, 000 polygons for each length all of which are rooted

at the origin. Clearly we can see that the vertex distribution of the 150-step polygons

is closer to the distribution of the random walks than the vertex distribution of the

100-step polygons. However it is also obvious that they are still quite different.

In Figure 4 we illustrate this for the random walk model described in Section 3.2.

Again we can see that the vertex distribution of the 150-step polygons is closer to the

distribution of the random walks than the vertex distribution of the 100-step polygons.

To discount the effect of the root of the polygon we show in Figure 5 the distribution of

the middle 20 vertices only. It can be seen that the vertex distribution approximates the

uniform distribution much better. However it is also obvious that even for the middle

20 vertices they are still quite different.
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Figure 3. For a confinement radius R = 2.5 the vertex distribution function for a

random walk is shown together with vertex distributions of 10, 000 polygons of length

100 and length 150. The distribution of the 150-step polygons is in the front on the left

while the distribution of the 100-step polygons is in the front on the right. Note the

distribution data excludes the first and the last three vertices of the rooted polygons.
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Figure 4. For a confinement radius R = 2.5 the uniform vertex distribution function is

shown together with vertex distributions of 10, 000 polygons of length 100 and length

150. The distribution of the 150-step polygons is in the front on the left while the

distribution of the 100-step polygons is in the front on the right. Note the distribution

data excludes the first and the last three vertices of the rooted polygons.

The convergence to the limit vertex distribution can be improved if we vary the

starting vertex according to the limit vertex distribution. Figure 6 shows the same size

sample of the 100 and 150 steps polygons when the method to generated unrooted

polygons via a random walk described in section 4.2 is implemented. The vertex

distribution of the polygons is much closer to the target distribution when compared

with the rooted polygons.

Finally, Figure 7 shows the three different vertex distributions of the two methods

described in Subsections 4.2 and 4.3 together with the polygons of Figure 3. Note we

only use the 150 step polygons and that the vertex distribution generated by the method

of Subsections 4.3 is between the other two.
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Figure 5. For a confinement radius R = 2.5 the uniform vertex distribution function

is shown together with vertex distributions of the middle 20 vertices of the polygons

used for Figure 4. The distribution of the 150-step polygons is in the front on the left

while the distribution of the 100-step polygons is in the front on the right.
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Figure 6. For a confinement radius R = 2.5 the vertex distribution function for

a random walk is shown together with vertex distributions of 10, 000 polygons of

length 100 and length 150 generated using the method described in section 4.2. The

distribution of the 150-step polygons is in the front on the left while the distribution

of the 100-step polygons is in the front on the right. Note the distribution data still

excludes the first and the last three vertices of the rooted polygons so that we have

the same sample size for the vertices as in Figure 3.

7. Ending remarks

In this section we raise several questions stemming from our work. Given a vertex

distribution function y = f(r) with
∫ R
0
f(r)dr = 1 is it possible to derive a conditional

probability density function p(t|s) that describes the next position t given that we are

in position s, such that the vertex distribution of a random walk generated by p(t|s) is

f(r)? What are the effects of these vertex distributions on the geometric/topological

properties of the random polygons? For example while it seems obvious that if we

generate “stiff” random polygons (i.e. polygons with a relatively small curvature at each

vertex) then the vertex distribution of these polygons should have most vertices close to

the boundary of the confining sphere. However the converse is not so clear, do polygons
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Figure 7. For a confinement radius R = 2.5 the vertex distribution function for a

random walk is shown together with three vertex distributions of 10, 000 polygons of

length 150. Two vertex distributions are generated using the two methods described in

Subsections 4.2 and 4.3 (orange). The third vertex distribution represents the rooted

polygons of Figure 3.

with a vertex distribution that is denser at the boundary have smaller curvature? One

can ask similar question for torsion. Furthermore our approach based on probability

density functions might make it possible to write down integral expressions for curvature

and torsion.

One can speculate that random polygons with vertex density functions that are

denser close to the center of the sphere have a higher complexity of knotting than

random polygons with vertex density functions that are denser close to the boundary

of the confining sphere. Does the vertex density function have any effect on how many

prime knots or composite knots appear? A similar question has already been explored

in [14] and the authors plan to investigate some of these questions in their future work.
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