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ABSTRACT

SINA SABA. Tempered stable distributions and high frequency financial modeling.
(Under the direction of DR. MICHAEL GRABCHAK)

In this dissertation, we explore two applications of discrete tempered stable (DTS)
distributions, a flexible class of distributions well-suited for modeling heavy-tailed and
overdispersed data. DTS distributions are derived by tempering the tail of discrete
stable distributions. They can also be represented as Poisson mixtures, for which
the mixing distribution is a positive tempered stable (PTS) distribution. The first
application addresses challenges in simulating positive tempered stable (PTS) dis-
tributions. Except for a few cases, there is no known simulation method for these
distributions. We propose a novel simulation method using DTS distributions to ap-
proximate PTS simulations and establish a convergence rate for our estimation. This
will make working with P'T'S distributions easier in many simulation-based methods.
The second application focuses on modeling high-frequency financial data, also known
as tick data. One characteristic of tick data is the discreteness of price changes in
terms of tick size, which is the minimum price change allowed by an exchange. When
considering price changes over a long time horizon, tick size usually does not play
an important role and continuous models can be used for modeling. However, when
working with high-frequency data over a small time horizon, price changes take only
few values in term of tick size. This fact suggests the use of discrete distributions
for modeling such price changes. We will compare several standard discrete distribu-
tions, specifically Poisson and negative binomial with the class of DTS distributions
in modeling price changes in tick data. Additionally, we employ Monte Carlo methods
to approximate the future distribution of portfolio values, utilizing these insights for

risk assessment.
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CHAPTER 1: INTRODUCTION

A common practice in describing real world phenomena and modeling a popula-
tion is to use probability distributions. Choosing the right distribution is often the
most challenging part since, in most cases, just a sample, which is a small part of
the entire population, is available. The main characteristics of a population should
be reasonably explainable by the chosen distribution, e.g. , where the center of the
population is, how much variation it has, or how extreme observations behave.

In some cases, it will be more favorable if the chosen distribution has some well
behaved properties. For example, consider a study in which we are interested in
modeling the loss from an investment in a one year time horizon. If X is a random
variable that follows the specified chosen distribution, we can also model potential loss
from the same investment in the monthly or weekly bases X can be written as the sum
of 12 or 52 independent and identically distributed random variables. If one extends
this idea for any natural number, then the property is called infinite divisibility. To
name other preferable properties, we can refer to self-decomposability and stability,
for which, roughly speaking, a random variable with these properties has the same
distribution as a scaled copy of itself along with another distribution, and, has the
same distribution as a scaled sum of copies of itself, respectively.

The other important fact when choosing a distribution is the amount of variation.
Observing more variation in the sample suggests the use of distributions with heavier
tails, in which the decay in the tails is slower, so it will be more probable to have
observations farther from the center. This is the case in many real-world data sets,
e.g. in financial data. In such cases, a class of distributions with heavier tails can be

used.
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Stable distributions are often good candidates for modeling in these cases, since
they are infinitely divisible and heavy tailed. They are applicable to many fields,
including finance, physics, biology, medicine, computer science [17]. However, their
use is limited by two facts: 1) they have an infinite variance, i.e. their tails are
too heavy, which is unrealistic in many applications as there are various real-world
frictions preventing such heavy tails; and 2) they lack a closed form distribution
function in almost all cases.

To address the first obstacle, there are some distributions obtained by modifying
the tail behavior of a stable distribution. These modifications can be done by, for
example, truncation, or tilting, in which the tails of the probability distribution func-
tion (pdf) vanish to zero starting from some point, or multiplying the pdf by some
exponential function, respectively, and scaling the new pdf to integrate to one. These
modifications speed up the decay of the pdf in the tails.

Another way to obtain a finite variance is by modifying in the Lévy measure in the
characteristic function of a stable distribution. This leads to a subclass of infinitely
divisible distributions, which are called tempered stable distributions (TS distribu-
tions). Indeed, if v is the Lévy measure of a stable distribution on the real line, it

has the following form [20]:

1—

v(dz) = c_|z] 7 coo0) (T)da 4+ craT ¥ (g 00) (7)d,

where c_,c, > 0. Now, if we multiply this Lévy measure by a measurable, bounded,
non-negative function g, while preserving it as a Lévy measure, which will be discussed
soon, we get the Lévy measure of a TS distribution, which has lighter tails while
leaving them essentially unchanged in the central portion [8]. Tweedie distributions
are perhaps the first models developed in this way [23|, using g(x) = e~**, for some

a > 0 to modify the Lévy measure. By doing this, the tail of the heavy tailed stable



distribution decays faster but not too fast, i.e., it leads to exponential tails.

In the other hand, to compare TS distributions to Gaussian distributions, which
are popular in modeling in many fields, TS distributions have an advantage. It is well-
known that the Gaussian’s tails are too light to realistically describe the variability
in many real-world data sets, but T'S distributions have enough mass in their tails to
explain this variability.

Choosing the best distribution with some well-behaved properties is not just ap-
plicable for samples with observations from a fixed point in time. In many studies,
the sample consists of recorded observations of some quantity as it varies over time.
These are known as time series and can be seen as a sample from a stochastic process,
which is a sequence of random variables. One example of such a stochastic process
is a Lévy process. Some of the main properties of a Lévy process are independent
and stationary increments. If {X;,¢ > 0} is a stochastic process then, independent
increment means for any n > 0 and any 0 <ty < t; < --- < t,, the random variables
Xy, Xoy — Xy, -+ o, Xy, — Xy, are independent, and, stationary increment property
means the distribution of X ,; — X does not depend on s. Starting almost surly
at zero, i.e. Xy = 0 a.s., and stochastically continuity and having sample path to be
right continuous with the left limit with probability one, are other properties to define
a Lévy process. These processes are closely related to the infinitely divisible distri-
butions. One can refer to [20] for more details about Lévy processes and infinitely
divisible distributions.

An interesting property of TS distributions is when they are used to define a Lévy
process, i.e. Xj is a TS distribution in { X}, ¢ > 0}. Under some general conditions, the
behavior of Lévy processes with marginal TS distributions is similar to the Brownian
motion in a long time frame and more like the stable Lévy process in a short time
frame, thus it combines both Gaussian and stable trends [18§].

However, TS distributions still suffer from the lack of a closed form for the distri-
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bution function. This may discourage practitioners to use these distributions. Also,
except for a small number, there is not any well-developed way to simulate from TS
distributions.

All stable distributions, except for the degenerated ones, are absolutely continu-
ous and a subclass of infinitely divisible distributions and hence they have the nice
properties of this class of distributions. In the seminal paper of Steutel and et al.
[21], they introduced a discrete analogue of stable distributions which consists of a
two parameters class of distributions for o € (0,1) and n > 0. We denote these by
DS.(n). A representation of these distributions is by means of positive stable (PS)
distributions and Poisson processes, which are an example of Lévy process in which
N; follows a Poisson distribution with mean 1, see page 371 Theorem 6.7 in [22].
Indeed, let o € (0,1) and n > 0. If { N, ¢t > 0} is a Poisson process with rate 1, and
T ~ PS,(n) is independent of this process then Ny ~ DS, (n). In [§], an extension
of this idea was used to define discrete tempered stable (DTS) distributions. These
include many important integer-valued distributions, perhaps most prominently the
Poisson-Tweedie distributions, that were introduced by Hougaard et al. in [10].

In this dissertation, we are specifically focused on the important class of DTS
distributions. We consider two interesting applications of these discrete distributions.
First, we use them to address the problem in simulations from TS distributions. We
propose a simulation method based on DTS distributions to approximately simulate
from TS distributions. This will make working with TS distributions easier in many
simulation based methods. We also calculate a convergence rate for our estimation.

TS distribution that only take positive values are called positive tempered stable
distributions (PTS distributions). PTS distributions on which we will be focusing on
in our simulation study, are the building blocks from which almost all continuous TS
distributions can be built.

In the second application, we use DTS distributions in modeling high-frequency
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financial data, also known as tick-by-tick data. One characteristic of tick data is the
discreteness of price changes in terms of tick size, which is the minimum price change
allowed by the exchange. This fact suggests the use of discrete distributions for mod-
eling these price changes. We will compare some more standard discrete distributions,
specifically Poisson and negative binomial with the class of DTS distributions in mod-
eling price changes in tick data. These models can be used to simulate a sample path
for the portfolio value. Using Monte Carlo methods, we approximate the distribution
of the portfolio value for a future time horizon and use this approximation for risk

assessment purposes.



CHAPTER 2: PRELIMINARIES

The aim of this chapter is to provide a summary of the required concepts for the
following chapters. In this chapter, some concepts from probability theory, alongside
with more specific areas, i.e., tempered stable distributions and discrete tempered
stable distributions are discussed.

Throughout this writing, we use B(R) to denote the Borel o-algebra on R. This
is the smallest o-algebra that contains all of the open sets in R. We use (2, F,P)
to denote a probability space, in which ) is a set, F is a o-algebra on (), and P
is a probability measure. We use Pois, Pois;, U(a,b), Ga(a, 8) to denote Poisson,
zero-truncated Poisson, uniform and gamma distributions, respectively. For a set
A, 14 is the indicator function on A. We write B(z,s) = fol t*=1(1 — t)*~dt and
I'(z) = fooo e t*~1dt to denote beta function and gamma function, respectively. We

also use 2, B to denote equality and convergence in distribution, respectively. The

notation i.i.d. means independent and identically distributed. We also have (z Ay) =
min{z, y}.
2.1  Tempered Stable Distributions

One of the main results of this dissertation is to estimate a convergence rate for
a sequence of properly modified DTS distributions to a PTS distribution. The con-
vergence was proved in [8]. In this section, we recall some concepts from probability
theory that are needed to define tempered stable distributions and we also explore

some properties of these distributions.

Definition 2.1.1. Let (2, F,P) be a probability space. A mapping X from € into
R is a R-valued random variable if {w : X(w) € B} is in F for each B € B(R). A



probability measure Px defined on R using X,
Px(B)=P({w:X(w) € B}), BeBR),

1s called the distribution of X.

To study tempered stable distributions, we explore their characteristic functions,
as they are often characterized using these. First, we recall the definition of the

characteristic function of a distribution of a random variable.

Definition 2.1.2. The characteristic function of the distribution Px of a random

variable X on R is denoted by Py and it is defined as

A

Px(z) = Ble"™X] = / e Px(dz), z€R.
R

When working with non-negative real valued, or, non-negative integer valued ran-
dom variables, it is more preferable to use probability Laplace-Stieltjes transforms

(pLSt) and probability generating functions (pgf) [22], respectively.

Definition 2.1.3. Let X be a non-negative real-valued random variable with dis-
tribution Px. The probability Laplace-Stieltjes transform (pLSt) of X is a function

xRy — (0,00):

7x(2) == Ele™™X] = / e **Px(dx), z € [0, 00).

R4

Definition 2.1.4. Let X be a non-negative integer valued random variable with prob-
ability mass function (py), which means that X takes value k with the probability py.

The probability generating function (pgf) of X is a function ¥x : [0,1] — [0, 1]:

Vx(2) == E[z"] = Zpkzk, z € [0,1].
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We now give two important properties of characteristic functions, which are useful

in the study of stable distributions.
Proposition 2.1.5. Let X, Y be two random variables on R,

i) For anya >0 andbe R

A

P.xip(2) = €**Px(az), z€R.

ii) If X andY are independent, then

~ ~

px+y(z) = Px(Z>Py(Z), z € R.

Proof. 1) We have for z € R

~

PaX+b(Z> _ E[eiz(aX+b)] — E[eizaXeizb] — ez’zbE[eizaX] _ 67;prx<a2).

ii) We have for z € R

A A

pX+Y(Z) — E[eiz(XJrY)] — E[eizXJrizY] —_ E[eizX]E[eizY] — Px(z)Py(Z),

in which the third equality follows by the independence of X and Y. m

One important concept regarding to sum of two independent random variables is the
convolution of the distributions. We first recall the convolution of two distributions
on R, then we give a theorem about sum of independent random variables, in which,

its proof can be found in [2].

Definition 2.1.6. The convolution u of two distributions puy and ps on R, denoted



by 1 = py * g, 1s the distribution defined by

u(B) = [ tale s ptopetd), B e B®)

Theorem 2.1.7. If X and Y are independent, then X +Y has distribution Px x Py .

Now, we define infinitely divisible distributions, which are a rich and interesting
class of distributions. Stable and tempered stable distributions, on which we are
focused in this dissertation, are infinitely divisible. For more details about these

distributions, one can explore e.g. [20] or [22].

Definition 2.1.8. A probability measure p on R is infinitely divisible if, for any
positive integer n, there is a probability measure i, on R such that p = u, where p"

1s the n-fold convolution of the probability measure pu with itself.
The proof of the following theorem can be found in [20].
Theorem 2.1.9. A C walued function ¢ on R is the characteristic function of an

nfinitely divisible distribution p if and only if ¢ has the form

o(z) = exp (izb — 1,2202 + /(eizx —1- izml{x|§1}($))u(dw)) :
2 R

where b € R, 02 > 0, and v is a Borel measure on R satisfying

v({0}) =0, /R(l A 2*)v(dz) < oco.

The triple (b, 02, v) is uniquely determined by ¢.

Definition 2.1.10. We call (b, 02 v) in Theorem 2.1.9 the generating triplet of 1. v

is called the Lévy measure of u. When o = 0, u is called purely non-Gaussian.

Remark 2.1.11. In Theorem 2.1.9, if the additional condition f‘x|<1 |z|v(de) < oo
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18 satisfied, then we have

$(2) = exp (z’zb’ — %z%? + /R (e — 1)1/(dx)) :

where b = b — [, x1yz<13(x)v(dx) is called the drift of p. In this case we write

(b, 02, 1) to denote the generating triplet of pu.
Proof of the following theorem can be found in [20]
Theorem 2.1.12. If u is infinitely divisible, then [i has no zeros.

Infinitely divisible distributions are closely related to Lévy process. One can refer

to [20] for more information about Lévy processes and infinitely divisibility.

Definition 2.1.13. A stochastic process {X; :t > 0} on R is called a Lévy process if

the following conditions are satisfied:

1. Xog=0 a.s.

2. For any choice of n > 1 and 0 <ty < t; < --- < t,, random variables X,

Xy, — X4y, -, Xy, — Xy, _, are independent. (independent increments property)
3. The distribution of Xy — X does not depend on s. (stationary increments
property)

4. It is stochastically continuous, i.e. for everyt >0 and e > 0,
ImP[| Xy — X3| >¢] =0
s—t

5. There is Qo € F with P[] = 1 such that, for every w € Qo, X(w) is right

continuous it > 0 and has left limits in t > 0.

In what follows we first recall the definition of a stable distribution and discuss
how discrete stable distributions were defined. Then tempered stable distributions

are defined by modifying the Lévy measure of a stable distribution.
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Definition 2.1.14. A probability measure p on R is called stable if for any n and

any X, Xq1,... X, i W there is b, € R such that

X 207" X — by,
k=1

for some o € (0,2]. In this case the measure is called a-stable distribution.

Proposition 2.1.15. If p is an a-stable distribution with o € (0,2), then it is in-

finitely divisible with generating triplet (b, 0%, v) in which the Lévy measure is

1—

v(de) = n-lz| " o) ()dz + 1™ g 00 (x)dar,

where c_,cy. >0, 02 =0, and b € R.

We denote the a-stable distribution by S, (n-,74;b), and if b = 0 we denote it by
Sa(M—,n+) = Sa(n-,n+;0), and if it is defined on R, for which we will have « € (0, 1)
and b > 0, we denote it by PS,(n4;0) = S4(0,7:;b)

We note that stable distributions can not be defined by the above definition for
discrete cases, since the discreteness will be lost by the multiplication. An analogy
of stability in the case of discrete distributions was introduced in [21] by introducing
thinning operation ‘o’, for v € (0, 1] and a random variable X on non-negative integers

to be a random variable v o X with distribution:

X
yoX 23 g,
=1

where €1, €9, ... are i.i.d. random variables independent of X and follow a Bernoulli
distribution with P(¢;, = 1) = 1 — P(¢ = 0) = v and assuming Y._, &; = 0. Now, a

discrete stable distribution on non-negative integers can be defined as follow:

Definition 2.1.16. Let o € (0,1]. A probability measure pn on Zy is called discrete
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a-stable, if for any n € N, we have

XEZn Voo (X, +Xo+ 4+ X,

where X, X1, Xo,..., X, RS I

The pgf of the discrete stable distribution is

o) =ex (<nr e s), <1

where 7 > 0 is a parameter [8]. We denote this two parameter class of distributions
by DSa(n).

An interesting representation of a DS, (n) distribution is recalled from page 371 [22],
where it is defined as a mixture of a Poisson distribution. Here, a Poisson process is

a Lévy process {Ny,t > 0} for which Ny ~ Pois(1).

Proposition 2.1.17. Fiz o € (0,1) and n > 0. If {N; : t > 0} is a Poisson process

with rate 1 and T ~ PS,(n) is independent of this process, then Np ~ DS, (n).

Now, we define TS distributions by making some changes in the Lévy measure of

a stable distribution.

Definition 2.1.18. An infinitely divisible distribution p with generating triplet (b, o2, v)

is called a tempered stable (TS) distribution if c* = 0, and

v(de) = n_g(z)|z| "L pcoydr + nyg(@)a ™ " 1psgyde,

where a € (0,2), n—,ny > 0 and g : R — Ry is bounded, non-negative, Borel

functions satisfying

lim g() = 1, / (1 A |22)g(x) 2|~ *dz < oo.
z—> e
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We call g the tempering function and we write p = TS,(g,n,b). When b = 0, we
write TS,(g,m) = TSa(g,n,0)

The important special case of positive tempered stable distributions (PTS) is as
follow.
Definition 2.1.19. An infinitely divisible distribution p with generating triplet (b, o2, v)
is called positive tempered stable (PTS) distribution if it is tempered stable with b > 0

and

v(dz) = ng(x)z™" 1oy dr, (2.1.1)

where a € (0,1), n >0 and g : Ry — R, is a bounded, non-negative, Borel function
satisfying

liﬁ)lg(q;) =1, / (1A z)g(z)z™ ' dr < oo.
£ 0

We call g the tempering function and we write p = PTS,(g,n,b). When b = 0, we
write PTS,(g,1n) = PTS.(g,1,0).

Using the fact that PTS distributions are infinitely divisible and also (2.1.1), the

characteristic function of a PTS,(g,n) is in the following form.

7(2) = exp ( /0 " (exp(izz) — 1)ng(x)x_a_1dx) | (2.1.2)

In |8] discrete tempered stable distributions are defined in terms of PTS distribu-

tions as an analogy to the discrete stable distributions in 2.1.17.

Definition 2.1.20. Fiza € (0,1) andn > 0. Let T ~ PTS,(g,n) and let {N; : t > 0}
be a Poisson process with rate 1 and independent of T'. The distribution of Nt is called

a DTS distribution. We denote this distribution by DTS, (g,n).

If X ~DTS,(g,n) then the probability generating function of X is

E[z*] = exp {—n /000(1 — e_(l_z)x)g(x)m_l_ada:} , 2€(0,1]. (2.1.3)
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Indeed, if T' ~ PTS,(g,n) and let the conditional distribution of X given T" be Poisson
with mean 7', then the unconditional distribution of X is DTS, (g, 7). First note that,

since X given T follows a Pois(T") distribution, the pgf of X given T is
b's . T (1—2)T
Elz \T}:Zze T =¢ ,
k=0

and, since T~ PTS,(g,7n), and the Lévy measure of T is v(dx) = ng(z)x~'"*1,50dz,

we have

E[ZX] = E[E[ZX|T]] = E[e—(l—z)T] — exp {_77 /000(1 . e—(l—z)t)g(t>t_1_adt} 7

in which, we use this fact that, the probability Laplace Stieltjes transform (pLSt) of

a PTS,(g,n) with the Lévy measure of v(dz) = ng(z)x=171,5¢dz is

mx(2) = Ele™*] = exp {—n /O Ta- e”)g(x)a:lo‘dx} .



CHAPTER 3: SIMULATION AND ESTIMATION FOR DTS DISTRIBUTIONS

The aim of this chapter is to cover simulation methods for DTS distributions and
give two examples. These methods are discussed in more details in [9]. These two
examples are the two DTS distributions that will be used in the later sections for
approximate simulation from PTS distributions. Simulation from a zero-truncated
Poisson distribution is important for the simulation methods from DTS distributions,
so different simulation methods will be considered for this distribution. In the last
section, two different methods are discussed to estimate parameters of the DTS dis-

tributions from a sample.
3.1  Simulation from DTS Distributions

In this section, we review the simulation method in [9], which is based on rejection
sampling method to simulate from DTS distributions. We begin by explaining some
quantities.

Let X ~ DTS,(g,n). The sequence () is defined as

b, = / e g(x)a" e, k=1,2,...,
0

and £, is a quantity defined by

— li - . o
0y = Z i /o (1—e ™) g(z)z™* 'da.
i=1

From proposition 1 in [9] we have
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Proposition 3.1.1. 1. The pgf of DTS,(g,n) is

Ny
e "+ exp {nz k—k'sk} , s (0,1].
k=1

2. DTS(g,n) is infinitely divisible with the Lévy measure L, where L is concentrated
on {1,2,...} with

LUk = %gk, k=12 ...
and L((0,00)) = nl; < o0.

3. Let Ly be the probability measure on {1,2,...} with

Lk} b

LGkD = Zio ooy ~ e, K12

5 goee e

If N ~ Pois(nly) and Y1,Ys, . .. - Ly are independent of N, then

N
> Y ~ DTSa(g,m).
=1

Now, we restate the first part of Proposition 2 from [9):

Proposition 3.1.2. Let X ~ DTS,(g,n) and let pr, = P(X = k) for k=10,1,2,...

then py = e~ "+ and

e
—

Cr—i

Pk = mpiu

n
— k=1,2,.... 1.1
ki ) Y (3 )

Il
o

We use the following algorithm to simulate from a DTS distribution:

Algorithm DTS: Simulation from DTS, (g,7)

1. Simulate from N ~ Pois(nf,)

2. Simulate Y7,Y5,..., Yy "L, and return Zf;l Y;
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L, is a mixture of zero-truncated Poisson distribution [9]. Let Pois; (\) denote the
zero truncated Poisson distribution with parameter A\ and pmf

Aee=A

palk) = m;

then we have
n =4 [ T @1 — e
= — ——g(x)x —e ")dx
! 0 )y W —e=)?

—AWM%V@M%

where

Thus, to simulate from L;, we can use the following Algorithm.

Algorithm L: Simulation from L;.

1. Simulate A\ ~ f

2. Simulate Y ~ Pois; () and return Y

To simulate from Pois, (\), we use ‘rztpois’ method in the R package ‘actuar’, see
Dutand et al. [4], when A > 0.001. We develop a new method and use it when
A < 0.001. This method will be discussed in a later section. Simulation from f, can

be done using rejection sampling based on a trial distribution with pdf
go(z) =l —a)z "z A1), x>0,

where 0 < o < 1 is a parameter. This is a type of Log-Laplace distribution which we

denote by LL() and if Uy, Uy "< U(0,1) and Y = U0, then Y ~ LL(w).

Finally, we have

Lg@)1=c)
M =CrT T
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where C; = ess sup,>qg(z) < co. Now, we can use the following rejection sampling
algorithm.

Algorithm F1: Simulation from f.
1. Independently simulate U ~ U(0,1) and Y ~ LL(«)

2. f U < ¢(Y) return Y, otherwise go back to step 1

The probability of acceptance is ¢, a(1 — «)/C,. In a case that probability of accep-

tance is low we can use a different trial distribution, which has a pdf of the form

pgﬁ/p 1 ear
hjﬁapvc(aj) - F(B/p)mﬁ 16 ¢ )

x>0,

where (,p,( are parameters. We denote this parameter by GGa(3,p,(). If Y ~
Ga(B/p, ), then Y/ ~ GGa(B, p, (). We use this distribution for rejection sampling

whenever there exists p, C' > 0 such that, for Lebesgue a.e. x,

g(x) < Ce ™", (3.1.2)
For this case we have
_g(@)(1—e™)
$2() = Cre—6="

Thus, we use the following rejection sampling algorithm.

Algorithm F2: Simulation from f when (3.1.2) holds.

1. Independently simulate U ~ U(0,1) and Y ~ GGa(1 — «, p, ()

2. f U < ¢(Y) return Y, otherwise go back to step 1

1—a
On a given iteration, the probability of acceptance is %;LQ)
p

Remark 3.1.3. To enhance the speed of this method we vectorize the process. We
stmulate all the observations as a vector rather than simulate them one by one. How-

ever, in this method we always lose some of the observations due to rejection part of
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the method. To implement this method in a way that it can simulate a vector of a
specific size, we need to estimate the number of rejections and account for this loss.
To overcome this problem, we do as follow. If p is the probability of acceptance in
either of the Algorithm F1 or F2, and if we need to simulate k observation from the
DTS distribution, then we can estimate the number of simulations from U(0,1) and
LL or GGa in Algorithm F1 or F2 to start the simulation and end up with k simulated

DTS distribution after losing those rejected observations.

1. In Algorithm DTS simulate k observations Ny, N, ..., Ny from Pois(nl)

2.5 =Ny + Ny~ ---+ Ny, thus S 1s the number of observations we need from
POiS+()\>

3. let n = S/p, thus n is an approximate to the number of observations we need
to simulate from U(0,1) and LL or GGa in Algorithm F'1 or F2 to end up with
k simulated DTS distribution after rejecting some of these observations. (To
make sure we have enough observations, we can multiply n by some number

larger than 1, e.g. 1.02.)
3.2  Simulation From Poisson-Tweedie and Beta-Prime Distributions

In this section, we use the simulation method in previous section to simulate from
Poisson-Tweedie and Beta-Prime Tempering distributions.

Let X be a random variable that follows a Poisson-Tweedie distribution. This
means that X ~ DTS, (g,n) with g(z) =e *,a>0,7>0and a € (0,1).

To simulate from X, we also need to have ¢, which is the essential supremum of
the tempering function g, C' > 0 which is the constant in the Algorithm F2, and the

quantity ¢,. In this case ¢, k =1,2,3, ..., is of the form

b, =1 +a) " * 9Tk - a),

0, = MT_O‘)((@ +1) —a%).
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Now, we discuss the simulation method from previous section in more details and
illustrate it with some examples. To simulate from the Poisson-Tweedie distribution,
we consider the cases where a = 1.5, n=1,¢, =1, C =1 and a € {0.25,0.5,0.75}.
To start the simulation, we first calculate the probability of acceptance for Algorithms
F1 and F2 for different values of a. Table 3.1 shows these probabilities. As we can

see these probabilities are higher for Algorithm F2.

Table 3.1: Probability of acceptance in Algorithm F1 and F2 for a € {0.25,0.5,0.75}

Probability of Acceptance ‘ a=02 a=05 «a=0.75
Algorithm F1 0.1385501 0.3158459 0.5735478
Algorithm F2 0.8173162 0.8729833 0.9337058

To use Algorithm F2, first we need to simulate from U(0,1) and from GGa(l —
a,p, (). For this case of the Poisson-Tweedie distribution, we have C' =p =1, { = a,
thus, we need to simulate from Ga(l — «, a).

In this simulation study, our aim is to simulate 10° observations from Poisson-
Tweedie distribution. by Remark 3.1.3, we can estimate the number of observations
n, that we need to have from U(0, 1) and Ga(l —«, a) in Algorithm F2 to end up with
k = 10° simulated observations from Poisson-Tweedie distribution after losing some
of the observations due to rejections. The first row in Table 3.2 shows how many
observations from each U(0,1) and Ga(l — «,a) in Algorithm F2 we need to start
with for different values of a to end up with 10° observations. The second row in this
table shows the number of accepted observations in Algorithm F2, and the last row
shows the proportion of accepted observations, for which they are very close to the
probability of acceptance from Algorithm F2 in the Table 3.1.

Figure 3.1 shows the histogram of the simulated observation from the probability

density function f and compare it to its actual value. In this case we have
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Table 3.2: First row shows the number of observations we need to start with in Algo-
rithm F2. The second row shows the number of accepted observations in Algorithm
F2, and the last row shows the proportion of acceptance using Algorithm F2

Acceptance rate ‘ a=02 a=0>5 a=0.75

number of obs to start with in Algorithm F2 | 92865 147723 335418
number of accepted obs in Algorithm F2 75935 128813 312966
proportion of acceptance 0.8177  0.8720 0.9331

Y , ’|||"m ........................................

! Inﬂlmn-

Figure 3.1: Histograms for simulated observations from f

Once we have the accepted observations from f in Algorithm F2, we use them
as the mean of the zero-truncated Poisson distribution in Algorithm L to simulate
Y ~ Pois; (\), and then in the last step, in Algorithm DTS, we use each simulated
observation Ny, k = 1,2,...,10° from Pois(n/,) to see how many of Y's should be
added together to simulate an observation from Poisson-Tweedie distribution. Figure
3.2 compares the probability mass function and the histogram of simulated observa-
tions from Poisson-Tweedie distribution.

The second example in this section is to simulate from a Beta-Prime Tempering
distribution. If X be a random variable with Beta-Prime Tempering distribution, we

have X ~ DTS,(g,n) and the pgf of X is in the form of (2.1.3) with the tempering



22

Il.-, |III._

Figure 3.2: Probability mass function and histogram of simulated Poisson-Tweedie
distribution

function

g(x) = e s 1+ s Pds, B> a,p>0,
(@) B(p, B) Jo (1+3)

where, n >0, « € (0,1), f > « and p > 0, are the parameters.

To simulate from X, we also need to have ¢, which is the essential supremum of
the tempering function g, and the quantity ¢ [9]. We note that ¢, k =1,2,3,...,is

given by

by =T(k —a)B(p,+k —a)/B(p, ),

_I'(1-a)
by = W(B(Paﬁ—@) —Bla+p,8—a).

Now, we consider some examples by simulating from a Beta-Prime Tempering
where f=1,n=1,¢,=1, p=0.5 and o € {0.25,0.5,0.75}.

For Beta-Prime Tempering distribution, the condition in (3.1.2) does not hold.
Thus, we use Algorithm F1 to simulate from f. Table 3.3 shows the acceptance

probability for this algorithm.
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Table 3.3: Acceptance probability for Algorithm F1

Probability of Acceptance ‘ a=0.25 a=0.5 a=0.75
Algorithm F1 ‘ 0.3220412  0.5058543  0.6960968

||"”W’""”HIIlﬂllnnnrmmmmmm.wwm..mMm.. ’”mﬂ”ﬁﬂﬁwm . —

’”“Wmm

Figure 3.3: Histograms for simulated observations from f, for simulation from Beta-
Prime Tempering distributions

To use Algorithm F1, we first need to simulate from U(0, 1) and also from LL(«).
By Remark 3.1.3, we can estimate n, the number of observations from U(0,1) and
LL(«) in Algorithm F1 in order to simulate & = 10° observations from Beta-Prime
Tempering distribution. The first row of Table 3.2 shows n for different values of
«. Last two rows of Table 3.4 show the number of accepted observations and the

proportion of acceptance in Algorithm F1, respectively.

Table 3.4: First row shows the number of observations we need to start with in
Algorithm F1 from U(0,1) and also from LL(«) . The second row shows the number
of accepted observations in Algorithm F1, and the last row shows the proportion of
acceptance using Algorithm F1, to simulate form Beta-Prime Tempering distribution

Acceptance rate ‘ a=025 a=0>5 a=0.75

number of obs to start with in Algorithm F1 | 1065205 800353 1067613
number of accepted obs in Algorithm F1 342700 404717 742763
proportion of acceptance 0.3217  0.5057 0.6957

Figure 3.3 shows the histogram of the simulated observation from the probability
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density function f and compare it to its actual value. In this case we have

f(z) ! 3) /000 e s (1 +8) P Pds 7 (1 —e7"), x>0.

B €+B(pa

The last few steps are very similar to the previous example, where we use accepted
simulated observations from f and used them as the mean of a zero-truncated Poisson
distribution to simulate Y in Algorithm L, and then, summing these observations, Y's
in Algorithm DTS, to simulate from Beta-Prime Tempering distribution. Figure 3.4
compares the probability mass function and the histogram of simulated observations

from Beta-Prime Tempering distribution.

.........

Figure 3.4: Probability mass function and histogram of simulated Beta-Prime Tem-
pering distribution

3.3 Simulating From Zero-Truncated Poisson Distribution

Pois, distributions are used in the simulation method for DTS distributions we dis-
cussed before. They can also be used for simulations from a zero-truncated DTS. In
this section, we consider two algorithms for simulating from a zero-truncated Poisson
distribution with the parameter X i.e. Pois (A). Different implementations are avail-

able for simulating from a zero-truncated Poisson distribution. One is implemented
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in the ‘rztpois’ method of the R package ‘actuar’. The issue with this implementation
is that it is unstable when A is close to zero. We are interested in implementing a
more stable method to be used in this case.

In the first algorithm, we use the quantile function of a Pois, distribution. Let
F(z) be the distribution function of a random variable X, i.e. F(z) = P(X < z).

The quantile function can be defined as:
F(u) = inf{x : F(x) > u}.

In this method, one first simulates from U(0,1) and then uses the quantile function
of the Pois, distribution in a comparison to get a value from Pois,. A simple condi-
tioning can be used to find the probability mass function of the X ~ Poisy (). Let
Y ~ Pois(A). The pmf of YV is

)\k
= 6_)\—

o k=0123

P(Y = k)

and to find the pmf of X we can write for £k =1,2,3,...,

P(Y =kNY #0)

Px(k) =B(X = k) =B(Y =k[Y #0) = =55

P(Y = k) . \F
(1-P(Y =0))  kl(l—e?)

Now, the cdf and the quantile functions can be calculated to be used in the following
algorithm.

Algorithm 1: Simulation from Pois, using quantile function.
1. Simulate U ~ U(0,1)
2. Return Y = F<(U)

To implement Algorithm 1, for uniform observations close to 1, one may need to
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go far in the tail of the distribution to find a value z for which F(x) > u, so, this can
be computationally expensive.

The next algorithm uses a rejection sampling method for simulating from Pois
distribution. This method is more efficient when the parameter of the Pois, dis-
tribution is small. The method is based on this fact that if X ~ Pois()\) then
Y = X +1 can serve as the dominating distribution for Pois, (\). Indeed, let Px (k) =
e N /E(1 —e ), k=1,2,3,... and Py(k) = e )\ 1/(E— 1), k =1,2,3,... be
the probability mass functions of X ~ Pois; (\) and Y, respectively. We have

e ANF-1 A < e ANF-1 A
- k(l—e = =Dl (1l=e

Px(k) = = Pr(k)e,

in which ¢ = A\/(1 —e™*). This method can be implemented by the following algo-
rithm.

Algorithm 2: Simulation from Pois, using rejection sampling method.
1. Independently simulate U ~ U(0, 1) and X ~ Pois(\)
2. SetY =X +1
3. U < Px(Y)/(cPy(Y)) return Y, otherwise go back to step 1

The third step actually just needs to check if U < 1/k, if Y = k, since in this case,

we have
e—>\)\k2
Px(k) _ ®ae™
cPyr(k) =

(I =eMe M-\ 1
T (1 —eNe RNk
( )

To verify that a sample from Algorithm 2 follows a Pois, distribution, let Z be the



27

sample returned by the algorithm. Then

P(Z =Fk)=P(Y = k|U < Px(Y)/(cPy(Y)))
B(Y = kU < P (V)R (V)

P(U < Px(Y)/cPy(Y))
— P(Y = kU < Py(Y)/(cPy(Y)))

_ Px(k)
~ Py (k)

Py (k) = Px(k) = P(X = k),

in which the third equality follows from the fact that U is uniform, thus

Px(Y) Px(Y) &= Px(k)
¥ (U = ch(Y)) TR (Y) ; By () YR = e

Equation (3.3) also shows the probability of acceptance in a given iteration is

Px(Y) Cl—e?
cPy(Y) =le=—

which shows this method is more efficient when A is close to zero. The probability of
acceptance can also be used to estimate the number of observations to start the first
step. i.e. if n observations are needed one can start with n x ¢ in the first step and

then add more observations if needed to reach n accepted sample from Pois, .
3.4  Parameter Estimation

In this section, we consider different methods to estimate the parameters of a DTS
distribution given a sample. Regardless of the choice of the tempering function, a DTS
distribution always has at least two parameters. a which is the stability parameter
and 1 with is a constant in the corresponding Lévy measure. Additional parameters
may be present based on the tempering function that we choose. Here, we consider
two methods for estimation. In the first method, we use likelihood function which is

L(0|X,...X,) =11, p(Xi]0), given a sample X, ..., X,,. The idea is to numerically
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maximize likelihood function to estimate the parameters (MLE). The second method
is based on minimizing some distance between empirical and theoretical probability

generating functions.

e Parameter Estimation Based on MLE: The idea in this method is to numerically
maximizing the log likelihood function of a DTS given a sample Xi,..., X,,.
Let X ~ DTS be a random variable. The pmf of X can be calculated by the
recursive equation (3.1.1), thus by proposition 3.1.2, we have pp = p(k|0) =
P(X = k|#), k =0,1,2,... and € in the parameter vector. The log likelihood

function can be written in the following form:
InL(0|Xy,...X,) =1In (Hp(XZ-W))
i=1

~n (H njpme))
= In(n;p(jl6)),

7=0

B

where k£ = max(Xy,...,X,) and n; = > ", 1;(X;). In case when the sample
that is used for fitting is assumed to be from a zero-truncated distribution,
one can use the pmf of such a zero-truncated distribution, or change the log

likelihood function in the following form to be used in the zero-truncated case:

mL(e\Xl,...,Xn):ln( 1p_(X—(|§|)@>

p(X;]0)
= Z ( ow))
- Zln(p(XiW)) —nln(1 —p(0[6))

= an In(p(j]0)) — nIn(1 — p(0]6)),

=0
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Now, ‘optim’ method in statistical software R can be used to maximizing desired

log likelihood function to estimate 6.

e Parameter estimation based on pgf: parameter estimation for DTS distributions
given a sample can be done using probability generating functions (pgf)s. The
idea is to find the parameters at which the distance between the theoretical
and the empirical pgfs are minimized. This minimization can be done numeri-
cally, using e.g. the ‘optim’ method in the statistical software R. We recall from

equation (2.1.3) that the pgf of a random variable X ~ DTS,(g,7) is

Py = E[2X] = exp {—n /000(1 — e—@—z)f)g(x)x—l—adx} . 2€(0,1]. (3.4.1)

Here 6 is the parameter vector, including «, 17 and any other parameters specified

by ¢, and the empirical pgf given a sample X, X5,..., X,, is given by

. 1 —
P(z)=— i € (0,1]. 3.4.2
@)=y s (342
Now, one can consider a sequence of numbers z;, j = 1,2,,...,m in (0, 1],

and estimate parameter vector ¢ which minimizes 3 7", |Py(2;) — P(z)| or

S (Po(z) — Plz))%

To compare these estimation methods, we consider Poisson-Tweedie distribution.

Let X ~ DTS, (e~ n), for o € {0.25,0.5,0.75}, a € {0.5,1,2} and n € {0.5, 1, 2}.
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In this case the theoretical pgf can be write in terms of gamma function as:

Py(z) = E[zX] = exp {_n/ (1- 6—(1—z)x)6_a%_1_adx}
0

= exp {_n (/ e_axl‘_l_adl' _/ e—(l—z):c—a:cl,—l—oadl,)}
0 0

=exp{-—nl'(—a)(a® - (1—2+a)*)}, z € (0,1].

Table 3.5 compares the estimated parameters from a sample of size 10°, generated
from any combination of above values for parameters using above method. Error here
calculated by adding the absolute values of the difference between parameter values
and its estimate. Based on the results represent here, MLE method has the minimum

values of errors in most of the cases.
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Table 3.5: Parameter estimation for three parameters «, 17 and a in Poisson-Tweedie
distribution using different methods.

Actual Values MLE pef(L; norm) pgf(Lz norm)
o n o a & i a Error & i a Error & i a Error

025 0.5 0.5 0.259 0.491 0.491 0.027 | 0.343 0419 0.408 0.266 | 0.349 0.413 0.399 0.288
025 05 1 ||0.264 0478 0.951 0.085 | 0.358 0.38 0.788 0.439 |0.355 0.384 0.796 0.425
025 0.5 2 || 0202 0.587 2216 0.351 | 0.001 1.057 2922 1.728 | 0.001 1.038 2.864 1.652

025 1 050238 1.019 0.514 0.045 | 0.292 0.921 0.459 0.163 | 0.256 0.98 0.497 0.023
025 1 1 10259 0982 0.99 0.037 |0.533 048 0.515 1.287 | 0.347 0.792 0.836 0.469
025 1 0.236 1.034 2.011 0.059 | 0.489 0.463 1.184 1.591 | 0.486 0.474 1.237 1.525
025 2 050267 1952 049 0.076 |0.001 3.06 0.752 1.56 |0.001 3.055 0.75 1.554
025 2 1 || 0.243 2.025 1.005 0.037 |0.545 0.928 0.496 1.872 | 0.352 1.565 0.825 0.712
025 2 0.313 1.657 1.805 0.601 | 0.703 0.417 0.591 3.446 | 0.675 0.474 0.692 3.259

05 05 051 0483 0.521 0.525 0.063 | 0499 0499 0.5 0.003 | 0498 0499 0.5 0.003
05 05 1 | 0517 0476 0968 0.073 |0.518 0.484 1.016 0.05 | 0.512 0.483 0.981 0.049
05 05 2 |0492 0499 1922 0.088 |0.499 0.459 1.663 0.379 | 0.523 0.442 1.776 0.305

05 1 0510507 0989 05 0.018 |[0.505 0.988 0.494 0.023 | 0.497 1.016 0.514 0.033
05 1 1 10475 1.094 1.091 0.209 | 0.648 0.604 0.658 0.887 | 0.647 0.604 0.647 0.896
05 1 20387 151 2515 1.138 |0.752 0.318 0.702 2.233 | 0.763 0.309 0.782 2.172
05 2 05 049 2034 0506 0.05 |0.001 5995 1.212 5.206 | 0.001 6.006 1.214 5.219
05 2 1 0.5 2036 1.041 0.077 | 0.277 4.034 1.666 2924 | 0.367 3.054 1.38  1.566
05 2 20179 5795 3.281 5397 |0.742 0.665 0.735 2.842 | 0.719 0.767 0.923 2.529

075 0.5 0.5 0.772 0453 0.469 0.1 0.707 0.618 0.639 0.301 | 0.663 0.758 0.827 0.673
0.75 0.5 1 ||0.754 0.487 0.941 0.076 | 0.784 0.398 0.672 0.464 |0.759 047 0.9 0.14
0.75 05 2 || 0894 0.167 0.842 1.635 | 0.821 0.281 0.669 1.62 |0.843 0.261 1.066 1.265
075 1 050756 0972 0.493 0.041 | 0.353 4.409 1.76 5.066 |0.217 6.474 2.118 7.625
075 1 1 ] 0.715 1.194 1.143 0.372 | 0.507 3.097 2.399 3.739 | 0.503 3.117 2.381 3.744
075 1 0.808 0.686 1.537 0.835 | 0.719 1.206 2.36 0.598 | 0.601 2.243 3.482 2.874
075 2 050749 2.018 0.513 0.032 | 0.478 5581 1.209 4.562 | 0.366 7.798 1488 7.17
0.75 2 1 110623 3.579 1.499 2.205 | 0.572 4.622 1.926 3.725 | 0.448 7.472 2515 7.288
075 2 2 ||0.707 252 2233 0.796 | 0.668 2.885 2.045 1.012 |0.501 6.788 3.926 6.963




CHAPTER 4: CONVERGENCE OF DISCRETE TEMPERED STABLE
DISTRIBUTIONS

4.1  Main Results

In this chapter, we find a convergence rate for a sequence of properly scaled DTS
distributions to a PTS distribution. The convergence was proved in [8] and is given

in the following proposition.

Proposition 4.1.1. Let Y ~ PTS,(g,n) with E[Y] < co and X, ~ DTS, (g1/4,a7n)

where g1/q(x) = g(ax), a > 0. Then,

aXagY as al 0.

Let § be the space of all distribution functions on the real line. Some useful
distances on § are the L? metrics for p € [1, 00] and, the Lévy distance [3|. LP metric
where p = oo is known as the Kolmogorov distance and when p = 1, it is also called
the Kantorovich or Wasserstein distance. These metrics for two distribution functions

F and G are defined as follow.

Definition 4.1.2. Let F' and G be two distribution functions on R. The Lévy distance

between F' and G is defined as

d(F,G)=inf{h >0:G(x —h) —h < F(z) < G(x + h) + h,Vz € R}.

Definition 4.1.3. Let F' and G be two distribution functions on R. The LP distance
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between F and G s defined as

HF—sz(/wu%m—Guwm)wﬂ l<p<o

—00

and if p = 00,
|1F' = Glloe = sup [F(z) — G(x)|.

If F" and G are two distribution functions, then it is well-known that
dp(F,G) < [|[F = Gl <1,
and also, if GG is absolutely continuous we have
P~ Glle < (145w (6] ) du(F. ),

One can refer to 3] for more information about the relationships between these met-
rics. The main result of this section is the following theorem, in which we find a
convergence rate in LP, p € [1, 00| for a sequence of properly scaled DTS distributions
to a PTS distribution. To show the convergence rate we use O(a") notation which

means the expression divided by a" remains bounded as a — 0.

Theorem 4.1.4. Let Y ~ PTS,(g,n) with E[Y] < oo and X, ~ DTS,(g1/a,a"*n)
where g1/q(x) = g(ax), a > 0 and, let Py (y) and P,x,(x) be the distribution functions

of Y and aX, respectively. Then, for any a > 0,
||PY_PaXa||oo S O<aﬁ> y (411)
and if p € [2,00) and any a >0

1Py = Paxllp < O (a7 ). (4.1.2)
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If we also have E[X?] < oo, then for any p € [1,00) and any a > 0,
1Py = Pax i < 0 (a7 ). (4.1.3)

Theorem 4.1.4 gives a rate of convergence and measures the distance between two
distribution functions Py and P,x on the real line with respect to LP norms for

p € [1,00].

Lemma 4.1.5. If vy(z) is the characteristic function of a PTS,(g,n) distribution,

then there is A > 0 such that for any |z| > 1, z € R
[7(2)| < exp(—A[2]%).
Proof. Let v(z) be a characteristic function of a tempered stable distribution. i.e.
v(2) = exp </Ooo(exp(z'xz) — 1)779(:76):5_0‘_10[:76) :

Using Euler’s formula, exp(izz) = cos(zz)+isin(zz), we can write the absolute value

of v(z) as

1v(2)] = exp (9% ( /0 OO(COS(IZ) +isin(zz) — l)ng(x)x_a_ldx))
exp (m ( /0 " (cos(x2) — g(w)a=>"da + i /0 h sin(:pz)ng(x)x_a_ldm))
—exp ([ (contolzD = Dugla)ad )

by substituting u = z|z|, we have

[7(2)| = exp (W /Ooo(cos(w - 1)ng(u/]z|)ua1du>
—exp (letn [ (1= costugtulelu )
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Since lim, 0 g(u) = 1, there exists ¢ > 0 such that g(u) > 1 -9 if 0 < u < ¢, thus if

|z| > 1 we have

Now if ¢ = [;(1 — cos(u))u™""*du and A = (1 — 6)c, we have
[7(2)| < exp(—A[z[%).

]

To prove Theorem 4.1.4, we recall some useful results in the Lemma 4.1.6. See
[3] for a survey about these results. Before proceeding, let v be a characteristic
function of a PTS distribution. Lemma 4.1.5 proves an upper bound for the absolute

value of 7, and in particular it proves that it is integrable. It what follows we write

ro=Jfy [y(2)ldz.

Lemma 4.1.6. Let F' and G be two probability distribution functions and F has
deriwative [ for which has essential superimum m and G is with vanishing expectation
and characteristic function G. Also, let F has a continuously differentiable charac-
teristic function F with F(0) = 1 and F'(0) = 0, and let 7o = I |F(2)|dz < .
Then for any T > 0, we have

1 T
IF =Gl < —/ (4.1.4)
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and for any T > 0 and any p € [1,00)

R o, 1/2
TVE(2) - G(z
iF-clp<ir-chs | [ [H22E)
T z
T|dp d Ao |? 12
N / P (z) — £G(2) @
-T z
) 1/2
T F(z) — G(z) 4
_ — 4.1.
+ /_T = dz + T (4.1.5)
and, forp € [2,00), if ¢ = p%l, then for any T > 0
N N 1/q
L[ (T Ee) -G Alp — 1)
|F -G, < 5 (/_T — dz + T (4.1.6)

Proof. First, we show (4.1.4). From Esseen’s smooting lemma, page 538 in [6], we

1 T
|W—mug—/
TJ-T

in which m is the essential supremum of f = F’. Now to prove (4.1.4), we just need

have,

24m
— 4.1.
dz + T (4.1.7)

F(z) — G(2)

to use the fact that m is upper bounded by 7¢/27. Indeed, using the fact that ro < oo

and the inversion formula for characteristic functions, see section 26 in [2], we have

1 o0 A
f@Z%leww@%

and thus

1 e —izx|| L
f@] < 5 [ e IFE: = ro/2m
T Jo

and hence m can be upper bounded by r9/2m. To show (4.1.5), by corollary 8.3 in
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[3], and also theorem 1.5.4 in [11], we have

i o\ g i —eel T
IF -Gl < /T7 iz| o+ /TE . a| o+
(4.1.8)
Now, using quotient rule gives,
1/2 9 1/2

iﬁ’(z) - G(2)

dz z

dz ,

T 2 T
/ =) =\
-T =T

and now by Minkowski’s inequality, the right hand side of the above inequality is less

than or equal to
. 1/2 ol R ) 1/2
F(z)-G
/ dz + / M dz ,
-T =T

2
From here, (4.1.5) follows by combining these results. The last equation, i.e., (4.1.6)

F(z) - G(2)|

is given in Corollary 7.1 of [3]. O

In the following two lemmas, we review some useful upper bounds related to com-

plex numbers, that we use later in our proofs.
Lemma 4.1.7. Fiz z € C. We have

1. |e* — 1| < |z|eF;

2. if |z] <1, then |e* — 1] < 2|z|;

3. if Rz <0 then |e* — 1| < 2min{|z|, 1}.

Proof. We have
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. o 2" |2[" — |2
=1 =D < TSI
n=1 n=1 n=1
— =" — |2
B Bl S
—~ (n+1)! o
If |z] <1, then
2 2" = 2| =1
e” = 1| = Zm SZWS|Z|ZEZ|Z|(€—1)§2|Z|32-
’ n=1 ’ n=1

n=1

This gives the second part and the third part for |z| < 1. Now assume that |z| > 1
and R(z) < 0. We have z = —a + ib, where a = —R(z) and b = J(z). We have

e =1 = e —e ™| < e+ e <2 < 2[2.

From here the third part follows.

A proof of the following lemma can be found in section 26 of [2].

Lemma 4.1.8.

, 1
e — (14 iz)| < min {ﬁxz,Q\xl} .

Lemma 4.1.9. Let X ~ PTS,(g,n). For anyn > 1,

/ g(x)a" 1 "%xr < oo if and only if E[X"] < oo.
0

Proof. Let f(x) =2a™V 1, z > 0, by Theorem 25.3 in [20] we have

E[f(z)] < o0 iff /100 f(x)v(dr) < oc.



where v(dz) = ng(x)xz~1%dz is the Lévy measure of the X. Thus

E[f(x)] < oo iff /100 ng(z)z" ' *dx < oo.

Now, let [ g(z)a™'~*dx < oo In this case we have

/ g(x)x" ' dr < .
1

so, we have

Now, let E[X"] < co. We have
/ z" Px(dz) < E[X"] < o0,
1

thus

E[f(X)] :/01 PX(dx)Jr/loosc"PX(daz) < 0.

Now, from (4.1.9) we have

/ g(x)x" 1 "%dr < oo,
1

39

(4.1.9)
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. 1 e
and since [ g(z)z"'"*dz < co, we have

/ g(x)ax" 1 "%dr < .
0

O

Lemma 4.1.10. Let Y ~ PTS,(g,n) with E[Y] < oo and X ~ DTS,(g1/a,a"n)

where g1/ = g(ax). Then,

1. For any a >0

~ A

|Py(2) — Pox(2)] < |Py(2)naCyz? exp(naCyz?), (4.1.10)

2. If E[Y?] < oo, then for any a > 0

—Py(2) — —Pox(2)| < |Py(2)]an (2C12 + Cy2” + CF 2% exp(naCiz?))
(4.1.11)

where Cy = [~ g(x)a~dx and Cy = [ g(x)z'~*dz.

Proof. To prove part 1, we first recall that

A

By(z) = exp {— | a- em>ng<x>x”dx} ,
Pox(2) = exp {— /O h (1 - e—“—e"”)ﬁf) a_ang(ax)x_l_adx} .

~

By substitution of u = ax, P,x(z) can be written in the following form:

P.x(z) = exp {—/ (1 — e_<1_iza)$> ng(x)x_l_adx} .
0
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By Theorem 2.1.12, we have

A

1— AX(Z)
Py(Z)

~

Py (2) = Pax(2)] = | Py (2)]

Now, the properties of the exponential can be used to write

= '1 — exp (/ ng(z)z~ (e~ e — em)dx>
0

L (4.112)

_ (1761'“1)

/ Ug(l‘)l'ilia(e T eiz:z:)dx
0

[t
0
exp { / ng(x)z =~ dx},
0

now, since e =£ (), |e***| = 1 we have

12T

dz

1_etza
_(=ei®a)

e o o eizx

/ T]Q(ZU)I'_I_Q 6_7(1_2 )x_eizm dx
0
/Oo —1l-a —7(176iza)z i2x }
exp ng(x)x e o T —e®dry,
0
— = —l-a | jizx (&—zz)x
= [ ng(z)a™ 7| |1 - a dx
0
exp{/ ng(z)z~ " || |1 _ teioe da:}, (4.1.13)
0

since ?ﬁ((@ —iz)r) = (cosza — 1)x/a < 0, by Lemma 4.1.7, (4.1.13) can be



upper bound by

o iza __ 1
/ ng(x)r "2 min { (6 —iz)z|, 1} dx
0 a
o Cw ) etza _ 1 .
exp ng(x)x™" ~*2min < |( —iz)x|,1 ¢ dx
0 a

= / ng(x)r "2 min {E ’eiz“ —1- iza‘ , 1} dx
0 a

exp {/ ng(z)x~'~*2min {f e — 1 —izal 1} d:n} :
0 a

Now, by Lemma 4.1.8, (4.1.14) can be upper bounded by

% 2
/ ng(x)r "2 min {:Ua; , 22|, 1} dx
0

o0 2
exp {/ ng(a)z™ "2 min {H;Z , 2 |z|, 1} dm}
0

o0 2
< / ng(x)m_l_O‘Q(xC;Z Ydx
0

exp {/Ooo ng(w)x‘l‘C’?(%zz)dx}

Snazz/ g(x)x™%dx
0

exp {naz2/ g(:c)a:_o‘dx}
0

< naz2C’1 exp {nazQC’l} ,
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(4.1.14)

where Cy = [ 27 %g(z)dz < oo by Lemma 4.1.9. Thus (4.1.10) follows. Now, we



prove (4.1.11).

d » d - d > , Cw
EPY(Z) — %PGX(Z) = ‘£ exp {—/O (1 — e )ng(x)x! dx}
d > —(178iza>z 11—«
— —expy — (1—e""a ")ng(x)x dx
dz 0
= ‘ (/ izeizxng(x)x_l_adx) Py (z)
0
- (/ e g (a)a! “d”f) Pux(2)
0
= |K(2) Py (2) = Ka(2)Pax (2)],
where

If we use following inequality

|Ko(2)Pox — K(2)Py| = |Ku(2)Pox — K(2)Py + Ko(2) Py — Ku(2)Py|

< |Ka(2) = K()||Py| + [Ka(2)|| Py — Pax],

we have

A

~Fux (2) < [Ka(2) = K()||Py| + [Ka(2)]| Py = Pax].
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Now, we find an upper bound for |K, — K|.

[Ka(z) = K(2)] =

/ imeizxng(m)x_l_o‘dm—/ ixeiz“_(l_em)fng(w)x_l_o‘dx

0 0

< / ng(a)z™®
0

= / ng(a)a™ ||
0

. . _(1_ptza\x
el _ piza (1—e9) dr

1 — eiza—izac— (1—eizm)Z

dx,

Now, since [e”**| = 1 and R(iza —izz — (1 — €**)L) = £(cosaz — 1) < 0, by part (3)

of Lemma 4.1.7, we have

dx

iza —izx — (1 — ei“‘)E
a

UQ@)—K@HS2nAmd@r”

< ana/ g(x)x™%dx + 277/ g(w):zc_o‘E {eiza — (1 +iza)|dx
0 0 a

o0

< 2772@/ g(x)x™ %z + 277/ g(aj)x_aﬁzzamﬁc
0 0 2a

< 277za/ g(x)r*dx + naz2/ g(x)r'~*dx
0 0

< 2nzaCy + naz*Cy,
where Cy = [;° g(z)z~dz and Cy =[] g(x)x'*dz. We also have

[Ka(2)] =

/ imeiza—(l—eiz“)%ng(w)l,—l—adx
0
< [ et gy s
0
=17 / === g(2)a o < nC,
0

in which the last inequality follows from the fact that R(e*** — 1) = cos(za) — 1 < 0,

indeed

’eiza—(l—ei“)i‘ _ ’e%((eiza_l)f)‘|6i(2a+3((eiza)%)| < 1.
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Now, by results from part (1) we have

EPY(Z) — Epax(z) < (2nzaC’1 + nazQC’g) |py(Z)| + nC’1|]5y(z)|naC’122 exp(naClzg)

< |Py(2)]an (2C1z + Cy2” + Ci2*nexp(naCy2?)) .

O
Now, we give a proof for Theorem 4.1.4.
Proof of Theorem /.1.J.
First we note that by Lemma 4.1.10 for any ¢ > 1 we have
1/q

py(Z) — pax<z)

dz

A q
q )”q © (1B () 1aC |=[2 exp(naCy =)
dz < /

-T ||

(/

T 1/q
< naCy ( / \Py<z>rq|z\qexp(qnaqw)dz) .
T

Now, since |Py(2)| < 1 and Minkowski’s inequality and Lemma 4.1.5, we have

T 1/q
</ |Py(z)\q\z|qexp(qnaClzz)dz)
1 1/q T 1/q
<2 (/ 21 exp(qnaClzZ)dz) +2 (/ 2% exp(—Aqz®) exp(qnaC’lzzazo‘)dz>
0 1
1 1/q T 1/q
<2 (/ 21 exp(qna0122)dz) +2 (/ 2% exp(—Aqz®) exp(qnaC’lzZ_azO‘)dz>
0 1
1/q

T
< 2exp(naCy) + 2 (/ 2% exp(—Aqz®) exp(qnaC’lTQ_o‘za)dz>
1

1/q

< 2exp(naCy) + 2 (/ 2% exp(—Aqz®) exp(AqnaC’lTQon‘/A)dz> . (4.1.15)
1
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Thus we have

T q 1/q
/ dz <
-T

o0 1/q
2naCl <exp(77aC’1) + (/ 2% exp(—Aqz®) exp(AqnaC’lTQ—aza/A)dz) ) .
1

Py(z) — Pyx(2)

(4.1.16)
Now, to prove (4.1.1), be Lemma 4.1.6 and take ¢ = 1, we have
1 (T |Py(z)— P, 12
1Py = Pax,|loc < —/ v(e) ~Fox(@)| —
T J_p z T
2naC o 12
< 2 (exp(na01)+/ zeXp(—Aza)exp(AnaCHTQazo‘/A)dz) + 2—29
T 1 7r
2nC'
<a Ut exp(naCh)
2nCy [ A
+ a% 1 zexp(—Az%) exp (AnaC’l (M) zo‘/A) dz
127‘0
4 gl/2-a)
7T2(2n%1)1/(2_a)
2nC
< o2 exp(naCh)
7r
27701 o @ 1/(2—a) 12710 1/(2—«
+a—— zexp(—Az%/2)dz + a ARy O (a /( )) ’

where in the third inequality 7" = (MLCH)U (2=0),

To prove (4.1.2), from Lemma 4.1.6 and (4.1.16), we have



1 T
1Py~ Paxallp < 5 ( /
-7
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py(Z) — an(Z>

z

q 1/q
4(p—1)
dz) + Ti/p

00 1/q
< anCyexp(naCy) + anCh (/ 2% exp(—Az%) exp(AqnaClTQO‘zo‘/A)dz)
1
4p—1)
* T1/p
oo 1/q
< anCyexp(naCy) + anCh (/ 2% exp(—Az%) exp(AgnaCh za/A)dz)
1 aq2nCh
Alp—1)
T L e
2aqnC1
o0 1/q
< anCyexp(naCy) + anCh (/ 21 exp(—Azo‘/Q)dz)
1
- Alp—1) -
1/(p(2—a)) - 1/p(2—a)
+a A 1/p(2—a) 0 (a ) )
<2q7701)
where in the third inequality T' = (aq;?‘? o Y/ @=a),
To prove (4.1.3), from Lemma 4.1.6 we have
O NETAN
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Now, we find upper bounds for second and third terms in the right hand side of
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the above inequality. First, by Lemma 4.1.10, we have
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where fourth inequality is by Lemma 4.1.5 and last one is by (4.1.15). Now, by similar
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calculations we have
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Now, by taking ¢ = 2 in (4.1.16), and combining these upper bounds we have
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Now, the result follows by taking T" = (m—cl> : 0

4.2  Simulation Method for PTS Based on DTS

In this section, we propose a method for approximate simulation from PTS distri-
butions based on the idea suggested in [8]. In this method, we simulate from a PTS
distribution by modifying a simulation from a DTS distribution.

We focus on two examples, specifically simulating from Tweedie and Power-Tempering

distributions, as PTS distributions, by modifying simulations from Poisson-Tweedie
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and Beta-Prime Tempering distributions as DTS cases, respectively, to show how this
approach works.

In Section 3.1, we reviewed the simulation method for DTS distribution in [9].
In Section 3.2, we recalled Poisson-Tweedie and Beta-Prime Tempering distributions
and, we use the method described in Section 3.1 to simulate from these two dis-
tributions. In Section 4.2.1, we describe our simulation method to simulate from
PTS distributions, i.e. how to modify a simulation from a DTS distribution to ap-
proximate a simulation from a PTS distribution, then, we focus on Tweedie and
Power-Tempering distributions and, show the results of approximating simulations

from these two distributions.
4.2.1  Simulation From Tweedie and Power-Tempering Distributions

In this section, we propose a method to approximate a simulation from a PTS
distribution. The idea is based on Proposition 2 in [8], which we have already restated
in Proposition 4.1.1. Indeed, let Y ~ PTS,(g,7n). We approximate a simulation from
Y by simulating from X, ~ DTS, (g1/4,a”*n), and then scale it by multiplying this
simulation by a > 0 to get aX,. Here ¢;/,(z) = g(az) and a > 0 should be small
enough to have a reasonable approximation.

We provide two examples to show how this method works. We consider several
choices of a and compare the scaling of modified Poisson-Tweedie distributions with
Tweedie distribution and also different scaling of modified Beta-Prime Tempering
distributions with Power Tempering distribution. To show how well these approxi-
mations work, we compare the kernel density estimators of these simulations with the
probability density function of Tweedie and Power Tempering distributions. These
pdfs are implemented in the ‘SymTS’ package for R. We also consider g-q plots, and
perform Kolmogorov-Smirinov and Cramer-Von Mises tests.

As the first example, we show how we can approximately simulate from a Tweedie

distribution. They have g(z) = e~**, for some a > 0, as the tempering function in
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their Lévy measure. Indeed, If X is a PTS,(g,n) distribution in which g(z) = e=**
for some a > 0, n > 0 and a € (0,1), then X has a Tweedie distribution. Here,
we can observe the similarity in the tempering functions of Tweedie and Poisson-
Tweedie distributions. Tweedie distributions are well known and there are some well
studied algorithms for simulation. For many other PTS distributions there is no
known simulation method. In these cases, our method can be used for approximate
simulation.

We use symmetric CTS (classical tempered stable) distribution in ‘SymTS’ package
in statistical software R for Tweedie distribution. The method to evaluate the pdf of
this distribution is

dCTS(z, a, ¢, l, ),

with the Lévy measure of
M(dz) = ¢ Ko‘e’l%\xrl’o‘dx.

These are a symmetrical class of distributions and coincide with Tweedie distributions
when defined on the non-negative real numbers.

In what follows, we approximate a simulation from a Tweedie distribution and
then symmetrize it to compare it to the CTS distribution. For this study we choose
a € {0.25,0.5,0.75}, c=1, £ = 0.5 and p = 0. By comparing the Lévy measure of a

CTS distribution to the Lévy measure of a TS distribution,
M(dz) = ng(z)a™" " Lsode,

we choose the following values for parameters in a DTS distribution

n=cl°, g(xz) =e"t,

~[8
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which is a Poisson-Tweedie distribution for the discrete case. We can get the desired
Tweedie distribution by modifying this simulation and then to be able to compare it
to the CTS distribution we symmetrize it, i.e., we subtract half of the observations
from the other half.

Let Y be the Tweedie distribution with g(z) = e 7 and n = ¢ £*, ie. Y ~
PTS(g,n) = PTS(e™7,cf*). We need to simulate from a Poisson-Tweedie distri-
bution X, ~ DTSu(91/4,a°n), g1/a(x) = g(azx) and then scale it by multiplying it
by a to approximate a simulation from Y. By our choice of parameters for Tweedie

distribution, we first simulate from
Xo ~DTSu(91/4,0"n) = DTSa(e_%, a %) = DTSa(e_Q‘”, a=*(0.5)%),

where « € {0.25,0.5,0.75} and a € {0.5,0.1,0.01,0.0001}. Then we multiply it by
a to get aX,. Finally, we symmetrize it and compare it to the CTS distribution to
show how a X, will converge to the Tweedie distribution as a — 0 for different values
for a.

Table 4.1 shows probability of acceptance in F1 and F2 algorithms for different
values of o and a. Table 4.2 shows the total number of observations to start with,
accepted observations and the proportion of accepted observations in which algorithm
that was used.

Figure 4.1 compares the pdf of the CTS distribution with the kernel density esti-
mation of the simulated scaled Poisson-Tweedie distributions for different values for
a and a after symmetrization. In each of these plots, the kernel density estimations
of these simulations get closer to the CTS distribution as a — 0.

Figure 4.2 compares the g-q plots from CTS and symmetrized scaled Poisson-
Tweedie distributions. Table 4.3 shows the average of p-values of Kolmogorov-Smirinov

and Cramer-Von Mises tests from 100 simulations for any choice of @ and « in which
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Table 4.1: Probability of acceptance in F1 and F2 algorithms for different values of
a and a.

a a | Algorithm F1 | Algorithm F2
0.5 0.1739 0.7568
0.25 | 107! 0.3473 0.4521
1072 0.5780 0.1338
1074 0.8098 0.0059
0.5 0.3671 0.8284
0.50 | 107! 0.5745 0.5798
1072 0.7697 0.2457
1074 0.8738 0.0279
0.5 0.6180 0.9091
0.75 | 107! 0.7681 0.7556
1072 0.8718 0.4822
1074 0.9050 0.1583

Table 4.2: Number of observations to start the simulation, number of accepted ob-
servations and the proportion of accepted observation for different values of o and a

« a observations to start with | accepted observations | proportion
0.5 12299 9382 0.7628
0.25 | 1071 62777 28515 0.4542
1072 144953 83425 0.5755
1074 458218 371112 0.8099
0.5 17707 14589 0.8239
0.50 | 1071 90669 52619 0.5803
1072 288777 222379 0.7701
1074 2888714 2524964 0.8741
0.5 37013 33567 0.9069
0.75 | 1071 181852 139535 0.7673
1072 1022948 891319 0.8713
1074 32338742 29261959 0.9049
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Figure 4.1: Solid black curves show the pdf of the Tweedie distribution for o = 0.25,
a = 0.5 and o = 0.75. Long-dash red, two-dash blue, dotdash green and dotted
orange curves show the density estimation of the scaled Poisson-Tweedie distribution
with the scaled value a = 0.0001,0.01, 0.1, 0.5 respectively.
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Figure 4.2: Black circles show g-q plot of CTS distribution for o = 0.25, a = 0.5
and a = 0.75 . Red squares, blue asterisks, green crosses and orange pluses show

g-q plots for symmetrized scaled Poisson-Tweedie distributions with the scaled value
a = 0.0001,0.01, 0.1, 0.5 respectively.
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Table 4.3: P-values for Kolmogorov-Smirinov and Cramer-Von Mises test for different
values of o and a in approximating a simulation from Tweedie distribution by Poisson-
Tweedie distribution.

a a | Kolmogorov-Smirinov | Cramer-Von Mises

0.5 0 0

0.25 | 1071 <107t <10°°
102 0.2620 0.4019
1074 0.4722 0.4643
0.5 0 0

0.50 | 107! <1077 0
1072 0.2221 0.3773
1074 0.4644 0.4626
0.5 0 0

0.75 ] 107! 0 0
1072 0.0564 0.0800
1074 0.5113 0.5125

each has 5000 observations. Since under the null hypothesis the p-value has U(0, 1)
distribution, we expect to see these average values close to 0.5, and this happens when
a is small enough, in this case a = 10~*. This shows that the scaled simulation from
Poisson-Tweedie is well approximating a simulation from Tweedie distribution.

As the second example, we approximate a simulation from Power-Tempering dis-

tribution. The Lévy measure of this distribution is
M(dz) = c_g(|z|P, —1)|z| " *1pcodz + cpg(a?, 1) a1 psoda, (4.2.1)

where

o0

(r,=1)=p~ U1 A Py (e el gy

=p e U 1+U_1/p) vy—1 —(1+a )/p— 1du

A
(0.9]

e

Here we consider the case when p = 1. For more information about this class of

distributions, one can refer to [7]. We use a modification of Beta-Prime Tempering
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distribution to approximate a simulation from Power-Tempering distribution, since
the tempering functions, g, are similar in both cases. To evaluate our method, we
compare the kernel density estimations of simulations from different modifications
of Beta-Prime Tempering distributions with the probability density function of the
Power-Tempering distribution, already available in ‘SymTS’ package in R, we also
consider the g-q plots, and run Kolmogorov-Smirinov and Cramer-Von Mises tests.

We use symmetric PowTS distribution in ‘SymTS’ package in statistical software R
for Power Tempering distribution. The method to evaluate the pdf of this distribution
is

dPowTS(z, a, ¢, ¢, p).

The implementation of this distribution in this package uses a different parametriza-
tion, which uses the Rosinski measure. For more informations about Rosinski measure
one can refer to [18] or |7]. Section 6.2.1 in |7] discusses this measure and how it re-
lates to the Lévy measure. Here, we mostly interested in the Lévy measure, so we
mention how the desired parameters can be calculated to be used based on the Lévy
measure.

The Rosinski measure of the Power Tempering distribution in the package is

R(dz) = c(la+ £+ 1)(a+0)(1 + |z)) 27> (dz). (4.2.2)

By comparing (4.2.2) to the Rosinski measure of a p-tempering a-stable distribution,

section 6.2.1 in [7],

R(dz) = c_ (14 |2]) ™ HMpcodr + cy (1 4+ 2) 7+ Hpsoda, (4.2.3)

where c_,cy > 0 and v_,v, > a V0, the Lévy measure of this distribution can

be calculated from its Rosinski measure. Thus, we have the Lévy measure of this
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distribution as (4.2.1).
Let Y be a Power-Tempering distribution, i.e. Y ~ PTS(g,n). Since we are using
PowTS method from ‘SymTS’ package for Power-Tempering distribution, we need to
first find 7 and g(x) in terms of parameters in PowTS method, which are «, ¢, ¢ and

w. To find g(z), from (4.2.1) since we consider p = 1, we have

g(z,1) :/ e 4 )T Ty Tty
0

= / e (1 4+ u) Yty et dy,
0
and by comparing (4.2.3) with (4.2.2) we have

vy —1=-2—-a-—1,

vy =a+ 0+ 1.
Thus g, the tempering function in terms of parameters from ‘SymTS’ package is
g(x) = /00 e (1 + u) "2t du.
0
Now, we can find 7 in the same way by comparing the (4.2.3) with (4.2.2). We have
n=cla+l+1)(a+7?).
Given g and 1 we can write
Y ~ PTS,(g9,n) = PTS, (/000 e (1 4+ u) " 2uldu, e(a + £+ 1) (o + 6)) .

By [8], we know that if Y ~ PTS,(g,7n) and X, ~ DTS, (g(az),a*n) then a X, i
PTSa(g,m)
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Now, we find the parameters required to simulate from a scaled Beta-Prime Tem-

pering distribution. We have X, in terms of ‘SymTS’ package parameters

Xy ~ DTSQ(/ e st (1 + 5)7 " ds, cla + £ + 1)(a + €)a_°‘). (4.2.4)
0

After we simulate from X,, we get an approximation of a simulation from Y by
multiplying X, by a. In our case, since Power-Tempering distribution in ‘SymTS’
package is symmetric, we need to also symmetrize aX, by subtracting half of the
observations from the other half.

We now perform a small simulation study. We choose a € {0.25,0.5,0.75}, ¢ = 1,
¢ =1 and p = 0 to use PowTS method in the ‘SymTS’ package to get the pdf of the
Power-Tempering distribution. Then, we compare this distribution with a.X,, which
is a scaled Beta-Prime Tempering distribution.

Figure 4.3 compares the pdf of Power-Tempering distribution with the kernel den-
sity estimation of the simulated scaled Beta-Prime Tempering distribution for dif-
ferent values for a. In each of these figures, we can see these scaled Beta-Prime

Tempering distributions converge to the Power-Tempering distribution as a — 0.

Figure 4.3: Solid black curves show the pdf of the Power-Tempering distribution with
a=0.25 a= 0.5 amd a = 0.75. Long-dash red, two-dash blue, dotdash green and
dotted orange curves show the density estimation of the scaled Beta-Prime Tempering
distribution with the scaled value a = 0.0001,0.01,0.1, 0.5 respectively.
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Figure 4.4: Black circles show g-q plot of Power-Tempering distribution for a = 0.25,
a = 0.5 and a = 0.75 . Red squares, blue asterisks, green crosses and orange pluses
show q-q plots for scaled Beta-Prime Tempering distributions with the scaled value
a = 0.0001,0.01,0.1, 0.5 respectively.

Figure 4.4 considers g-q plots for Power-Tempering distribution and compare it
to the scaled Beta-Prime Tempering distribution. Table 4.4 shows the average of
p-values of Kolmogorov-Smirinov and Cramer-Von Mises tests from 100 simulations
for any choice of @ and « in which each has 5000 observations. Here, again a = 10~*
gives the best approximation based on these tests as the average of p-values is close

to 0.5.
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Table 4.4: P-values for Kolmogorov-Smirinov and Cramer-Von Mises test for different
values of @ and a in approximating a simulation from power-tempering distribution
by Beta-Prime Tempering distributions

o a | Kolmogorov-Smirinov | Cramer-Von Mises

0.5 0 0

0.25 | 107! <10™* 0.0005
1072 0.3797 0.4506
10~ 0.5142 0.5057
0.5 0 0

0.50 | 1071 <107° <1073
1072 0.3918 0.4664
10~ 0.4805 0.4887
0.5 0 0

0.75 | 1071 <107 <1078
1072 0.3484 0.4026
1074 0.4886 0.4853




CHAPTER 5: HIGH FREQUENCY FINANCIAL MODELING

An important application of DTS and TS distributions is to the modeling of finan-
cial data. The aim of this chapter is to show how these distributions can be used to
model tick data in the context of high-frequency financial data.

By high frequency we mean that the records in the data set are mostly within
fractions of a second and they are in terms of a unit that is called the tick size. Tick
size is the minimum price change allowed by an exchange on a given market.

The emergence of new technologies provides easier access to high-frequency data.
Some characteristics of these data are irregular temporal property and discreteness of
price changes. Irregular temporal property here refers to the fact that the recorded
observations are not equally spaced in time. These add more challenges in modeling
while it can help to understand more about microstructure behavior of price changes

and also help to enhance decision making. [16]
5.1  High Frequency Financial Data

In this section, we consider high-frequency financial data readily available on Dukas-
copy Swiss Banking Group!.

We mainly consider the currency exchange rate between Euro and Dollar in Forex
which is an foreign exchange market for the trading of currencies. One can also
consider different instruments e.g. crypto currency exchange rate for Bitcoin and
Dollar, USA 500 Index, etc. In each of these data sets there are five variables, time
of the record that can be in local time or GMT, bid and ask prices and volumes.

Figure 5.1 shows ask prices for July 2024 in currency exchange rate between Euro

'The data can be downloaded from  historical data feed provided at
https://www.dukascopy.com /swiss/english /marketwatch /historical /.
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o1 Jul0s 15 ul22

Figure 5.2: Ask and bid prices from currency exchange rate between Euro and Dollar.
Left figure shows one hour of the data from 6:00 to 7:00 in GMT and the right figure
show the same data from 21:00 to 22:00 GMT.

and Dollar. This marker is active 24 hours a day except on weekends. The intensity
of market activity is not uniform during a given day. Figure 5.2 shows ask and bid
prices for two different hours during the first day of July 2024. It is clear that during
some hours in a given day the intensity of trades is higher than at other times. Ask-
bid spread is the difference between ask and bid prices in a given time and one can
observe that how intensity of the trades and the ask-bid spread can be related.
Before exploring more about the activity of the market, we follow the instructions
in [16] to calculate pure-mid prices, which is a price between ask and bid prices,

calculated in a way to keep changes in prices to a minimum.
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Figure 5.3: One minute of ask, bid and pure-mid prices.

Tick size in this data set is 0.00001 of a unit, thus we get integer ask and bid
prices if we divide these prices by the tick size. Choosing the average of ask and bid
prices, mid price, results in integer and half integers and thus adds complexities to
the modeling of price changes [16]. Pure-mid price however, is defined in a way to
allow just half integers and hence, the price changes will be always integers. Indeed,
if we show pure-mid and the mid (average of ask and bid) prices by ppurets Pmid.t

respectively, then

e I'ind the initial value ppuret; = Pmidt, = Iw.
o If Phid,t; 11 < Ppuret; < Pask,t;1 15 then Poure,t; 11 = Ppure,t; -
o If DPpure,t; < Pbid,t;y 1 then ppure,ti.H = pbid,ti_H +0.5.

o If Pask,t;q < Ppure,t; then Ppuret; 11 = Pask,tivq — 0.5 .

Figure 5.3 shows 1 minute of ask, bid and pure-mid prices. We will just consider
pure-mid price for the rest of the analysis, since it simplifies modeling and also, shows
a fair price of the exchange rate at the time.

As we noticed before, the market activity is not uniform during a given day. Just

like the ask price, changes in pure-mid prices vary during the day. The two upper
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pictures in Figure 5.4 show the number of changes in pure-mid price during a month
and a week in an hourly basis, respectively. The bottom figure shows the standard
deviation of the pure-mid prices during a week in an hourly basis. A repeated pattern
like a seasonal effect is obvious in the intensity of price changes. Here, we do not see
a peak as large as other days in 4th of July, which is a holiday in the United State,
and maybe, this is the reason. Other peaks might be explained based on the times

when different markets open and close from east Asia to Europe and America.
5.2 Modeling High Frequency Financial Data

In this section, we consider different approaches in modeling high-frequency finan-
cial data. As was discussed earlier, one of the main characteristics of these data is
that they are in nature irregular time series, i.e. the times between observations are
not equally spaced. This may be the first obstacle in modeling high-frequency data,
and one should decide if this characteristic should be a part of the modeling or not.
One can always use interpolation to filter the data and extract a regular time series
from it. There are pros and cons in deciding to work with either one. If we choose to
work with irregular time series, then we must also model these times, which makes
modeling more challenging. It gets even more complicated when modeling a com-
plex portfolio is in interest, because of the time synchronization issues coming from
the fact that observations in each data set are recorded at different times. However,
these times duration contain useful information about the micro-structure properties
of high-frequency data sets and modeling these times make the final model more
informative. In the other hand, if regular time series are chosen for modeling, one
should decide on a fixed time interval to be used and also decide on how interpolation
should be done for the time points when there are no recorded observations. There
are some well-developed mathematical models to be used in this case [5].

The other aspect of high-frequency financial data is the discreteness of price changes

based on the tick size. When considering price changes over a long time horizon,
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Figure 5.4: Upper and middle: number of price changes in an hourly basis during
July 24 and the first week on July 24, respectively. Bottom: standard deviation of
pure-mid prices in an hourly basis during a week.
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tick size usually do not play an important role and by some degree of smoothness,
continuous models can be used for modeling. However, when working with high-
frequency data over a small time horizon, price changes take only few values in term
of tick size. This fact suggest the use of discrete distributions for modeling such
price changes [5]. Poisson, negative binomial and DTS distributions are the discrete
distributions that we consider for the modeling these price changes. Since these
distributions are positive, some mixture or subtraction of the distributions can be
used to model positive and negative jumps.

Modeling jumps with the specific assumption of i.i.d. exponentially distributed
observations for interarrival times, will let us to use Lévy processes for modeling, since
in this case, a compound Poisson process with innovations from the given discrete
distribution, which is a Lévy process, can be used. As we can see in the following
sections, these assumptions are far from the reality of the tick data. However, these
assumptions make modeling much simpler. In the last section, we consider modeling
with these assumptions and we evaluate the models.

In the next two sections, we first compare different models for jumps and then we
model the interarrival times. In each section, we show how the modeling works by
considering the exchange rate between Euro and Dollar data set from the first day of
July 2024. The data that we use to estimate the parameters of the distributions is
nine hours from 03:00 to 12:00 GMT.

5.2.1  Modeling Jumps

In this section, we consider the price changes, i.e. jumps, for modeling. These are
integer valued and discrete distributions like Poisson, negative binomial and DTS
distributions can be used. Figure 5.5 shows price changes in the pure-mid price for 1
minute period.

High-frequency financial data can be seen as a sample in random times from a

continuous process. In this regard, one can model this process by considering the
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Figure 5.5: Jumps in 1 minute of high-frequency data.

recorded observations as innovations in which the innovations can be zero when there
is no change in the price, some models that use compound Poisson process with such
a innovations are explained in [16] and [14]. In another method, one can model the
observed changes in the prices and just consider non-zero innovations for modeling.

In the first technique, Skellam, ANB (delta negative binomial) and delta Poisson
tempered stable distributions, which are the difference of independent Poisson, nega-
tive binomial and Poisson tempered stable distributions which coincide with the class
of Poisson-Tweedie distributions, respectively, can be used for modeling [16].

Here, we use the second technique and we model non-zero jumps or price changes
as a mixture of zero-truncated discrete distributions as follow:

Xy w.p.pm
J2

—X5 W. p.po

where X; and X, are zero-truncated discrete distributions, and p; and py are propor-
tion of positive and negative jumps. We will consider zero truncated Poisson, negative
binomial and some DTS distributions specifically, Poisson-Tweedie and Pareto tem-

pering distributions, which is also a special case of beta-prime tempering where p = 1,
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Figure 5.6: Distribution of positive and negative jumps

discussed in the previous sections. To see how these distributions are related one can
observe that the class of DS, (n) distributions coincides with the class of Pois(n) distri-
butions when a = 1, and Poisson-Tweedie distributions, i.e. DTS, (e~**,n), coincides
with the class of negative binomial distributions when a = 0. One can refer to [1] for
more information about the relations between these distributions. On the other hand,
Poisson-Tweedie and Pareto tempering are DTS distributions, i.e. they are obtained
by tempering a DS, (n) distribution by tempering functions, g(x) = e~ *, a > 0 and
g(z) = Be*zT (=B, ), B > a, respectively. For more details one can refer to [9].
Given the training data, one can estimate the parameters of these distributions for
positive and negative jumps and use them to simulate the jumps for future time hori-
zons. Figure 5.6 compares some fitted discrete distributions on the training data with
the frequency of empirical positive and negative jumps on the training data. These
are zero-truncated versions of Poisson, negative binomial, DT'S(Poisson-Tweedie) and
DTS(Pareto tempering) and also discrete stable (with no tempering i.e. g(x) = 1) dis-
tributions. One can see that tempering generally improves the performance in the

case of DTS distributions.
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5.2.2  Modeling Interarrival Times

In this section, we consider modeling the interarrival times, which are continuous
and non-negative. Some continuous distributions like exponential, gamma or positive
tempered stable distributions can be used for modeling. One can also use bootstrap
sampling to sample from historical observations.

Figure 5.7 shows the first 150 interarrival times in the train data from the exchange
rate between Euro and Dollar. This figure shows the variability in the interarrival
times. Although most of these interarrival times are less than a second, there are
some that are more than one minute.

One of the common characteristics of these times is a persistent dependency with a
long memory. Figure 5.7 shows the auto correlation function (Acf) for the interarrival
times in exchange rate between Euro and Dollar interarrival times and also it shows
a kernel density estimation and a frequency histogram.

To account for dependencies in interarrival times, we use a GARCH model. To
model the innovations in the GARCH model one can use a continuous distribution
or it can be done by bootstrap sampling from historical observations.

A GARCH(p,q) model is a time series model defined as follow:
Sn = Onén,

where
p q
2 _ 2 2
o, = oo+ E a;S,_; + E Bioy_j-
i=1 j=1

The interarrival times are denoted by .S,,, and we use some continuous distributions
to model the innovations &,. The inference from a GARCH model is based on a
Maximum Likelihood Estimation (MLE) with the conditional Gaussian assumption
on the innovation distribution. However, many empirical studies suggest heavy-tailed

distributions for €,, and this may lead to inconsistency of the parameter estimations



71

.00 L ILHNAANTHANAATHRAT IR nATTann o --

vvvvvvvvvvvvvvvvv

Figure 5.7: The top figure shows the first 150 interarrival times in the train data from
exchange rate between Euro and Dollar. Bottom left one is the Acf and the right one
is a kernel density estimation and the frequency histogram for these observations.
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when the innovations models are misspecified. Gaussian Quasi-Maximum Likelihood
Estimator (GQMLE) was introduced to account for this problem. It requires a finite
fourth moment for innovations and also holds when innovation distribution is far from
the Gaussian. One can find more details in [12] and the references there in.

When fitting this GARCH model, The standardize residuals, £ are the residuals
divided by its estimated conditional standard deviation &, and it estimates ¢,,. If the
model fits well, there should be no serial correlation in the standardize residuals or
in the squared standardize residuals [19].

For modeling, we fit a GARCH(1,1) model to the interarrival times with the
assumption that the standardized residuals follow a continuous distribution, e.g.
gamma, exponential or Tweedie distributions. Figure 5.8 shows a the qg-plot and
Acf for the standard residuals from a GARCH(1,1) model fitted on the interarrival
times. One can observe that the standardized residual distribution is far from Gaus-
sian. Also fitting a GARCH(1,1) model explained the dependencies in the interarrival
times.

In the context of counting process, e.g. the Poisson process, there is a well know
relationship between these processes and the exponential distribution. Indeed, the
interarrival times in this case are i.i.d exponential. Here, we have already observed
that these interarrival times are highly correlated, for which a GARCH model was
fitted to account for this dependency. Also, we observed that the distribution of
innovations in the GARCH model is far from the Gaussian distribution. Here, we fit
exponential, gamma and Tweedie distributions to the standardized residuals, and this
finalizes modeling for interarrival times. Figure 5.8 also compares a kernel density
estimation of interarrival times with the fitted exponential, gamma and the Tweedie

distributions.
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Figure 5.8: Top: Acf for standard residuals and square of standardized residuals
from the GARCH(1,1) model. Bottom left: q-q plot that compares the standardized
residuals to the standard normal distribution. Bottom right: solid black line is a
kernel density estimation of standardized residuals. Dotted, dashed and dot-dashed
lines are pdf of fitted exponential, gamma and the Tweedie distributions.
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5.2.3  Simulating Sample Paths

The aim for this section is to show how a sample path can be simulated for tick
data for a time horizon H. First, we need to simulate a sequence of interarrival times
until the sum of these is larger than H. This will give us the number of jumps. For
each jump, a Bernoulli distribution can be used to decide if it should be a positive
or a negative jump. To simulate the GARCH model for interarrival times one need
to simulate from the non-negative continuous distribution to be used as standardized
residuals. The parameters of this distribution can be estimated from the standardized
residuals from the fitted GARCH model on interarrival times in the train data. The
GARCH model can be simulated in the following way. Let Sy, Si,...,Sy be the
interarrival times from the train data. We want to simulate Sy.1, Snia,... for the
next H minutes. If £1,e,,... are simulated observations from the distribution of

residuals, then

SN+1 = Ony1€1,  Sniy2 = Onj2€,

where

2 2 9
Ony1 = Qo+ 1Sy + Bioy

2 _ 2 2
Onyo = Qo+ 1Sy 1 + B0y

and, g, o and f; are estimated by fitting the GARCH model on the interarrival times
in the train data. To simulate a sample path, let {Sny1, Snio,.-.}, {P1, Ps,...} and
{N1, Ny, ...}, be simulated interarrival times, simulated positive jumps and simulated
negative jumps, respectively. We simulate from jumps with the estimated parameters
from the train data. To estimate the parameters for positive jumps and negative
jumps, we use estimation method based on MLE separately on these jumps in the

training data.
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Now, we start with the last observed value in the train data and consider the time
Sni1 to be the time for the first jump. To decide for each jump to be a positive or
negative, we use a Bernoulli distribution with proportion of positives jumps in the
train data to be the probability of a positive jump.

We continue this process until we exceed H minutes as the sum of interarrival
times. Figure 5.9 compares different sample paths simulated from different distribu-
tions for jumps, while bootstrap sampling was used to simulate interarrival times.
By bootstrap sampling here we mean sampling with replacement from the standard
residuals from the GARCH model. One can observe that discrete stable and DTS
(Pareto tempering) are more prone to produce large jumps since these are distribu-
tions with heavier tails. Tempering the tail of these distributions will results smaller
jumps, like the ones in the DTS (Poisson-Tweedie).

Figure 5.10 shows different sample paths for which DTS (Poisson-Tweedie) distri-
bution used to simulate jumps. Here, using gamma and exponential distributions
generated more interarrival times and consequently more jumps. On the other hand,

Tweedie distribution is more similar to the bootstrap sampling.
5.3 Risk Measurements and Backtesting

In this section, we use our model for risk assessment purposes. Most of the risk
measures are depending on probabilistic properties of the loss distribution of a port-
folio. Value at risk (VaR) and expected shortfall (ES) are some examples of risk
measures that are depending on the quantiles of the loss distribution.

VaR has two parameters, the time horizon H and the confidence level 1 — . If Ly
is the loss over the holding period H, then VaR(a, H) is the ath upper quantile of

L. Thus, for any loss distribution

VaR(a, H) = inf{z : P(Ly > z) < a}
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Figure 5.9: Solid black line is the observed path and two other colored and thin-
ner ones are simulated paths using bootstrap sampling for standard residuals in the
GARCH model for interarrival times and different distributions for jumps as follow;
top left: negative binomial, top right: DTS (Poisson-Tweedie) middle left: discrete
stable, middle right: DTS (Pareto tempering), bottom: Poisson.

Figure 5.10: Solid black line is the observed path and two other colored and thinner
ones are simulated paths using DTS (Poisson-Tweedie) distribution for jumps and
different distributions for standard residuals in the GARCH model for interarrival
times as follow; top left: bootstrap sampling, top right: gamma, bottom left: Tweedie,
Bottom right: exponential.
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ES is another important and widely used risk measure. It is the expected loss given
that the loss exceeds VaR. It can be calculated by

Jy VaR(u, H)du

«

ES(a, H) =

Proposition 8.13 in [15] gives alternative expressions for ES(a, H) and it can be use

in cases where the loss distribution is discrete.
1
ES(@v H) = EE< (£H7 ‘CH > q1foz<£H)) + q1fa(£H)(a - P(‘CH > q17a(£H>)

in which ¢.(Ly) = Ff (¢) = inf{z : L(x) > ¢} For more details about VaR and ES
one can refer to [19] or [15].

VaR can be estimated using different methods, e.g., using historical data to find the
sample quantile of the losses, or using the parametric method on which a proposed
distribution for the loss can be used to find the upper a quantile. On the other
hand, VaR can be used to test the performance of a proposed model. This is called
backtesting and the idea is to compare any model with the historical behavior of the
portfolio price to test its performance. For example, if one is interested in testing
the performance of the parametric method, the proposed distribution can be used to
estimate the VaR for a given time horizon (e.g. one day) for a period of time (one
year) and compare it to the historical losses and count the exceptions, which are the
events on which the historical loss is greater than the estimated VaR value from the
parametric method. For example, if we calculate the parametric VaR(0.05, one day),
and the historical losses for a period of one year, we will have 252 loss values, each
for every day. The exceptions will be those days on which the loss is greater than
the estimated VaR values. If the parametric model works well, then the proportion
of exceptions, which we call exception rate, should be close to 0.05, so the number of

exceptions should be about 13 days. After reporting the exception rate, one should
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also consider two facts, one is to test if the difference between exception rate and
« is statistically significant, and the other is how random is the occurrence of these
exceptions, in other word, to test for exception clustering.

A hypothesis test can be performed to check the significance of the difference be-
tween exception rate and a. Let T" be the total number of time horizons for a period,
e.g. T = 252 for one day horizon in a year, and N be the number of exceptions,
then, N follows a binomial distribution with parameter T" and «, B(T, «) to be the
total number of times the trial is repeated and the probability of success, respectively.

Then, if 7" is large (one rule of thumb is Taw > 5 and T'(1 — «) > 5) then

N —
7=-—=""% <N(®,1)
no(l — «)

Now, one can set up a test in which the null hypothesis is that the model works
well and the alternative hypothesis is that the model has too many or too few excep-
tions. So, a small p-value here means the model does not work well, or the difference
between the exception rate and « is statistically significant. This test is called the
unconditional coverage test. A more powerful test can be performed based on the
following test statistics which is based on likelihood ratio test, and under the null

hypothesis when T is large, follow a x? chi-squared with 1-degree of freedom.
LRy = —2In (1 — )" o) +2In (1 — N/T)"N(N/T)V)

The other test is to check the randomness of occurrence of the exceptions. In
other word we want to check the independence of these exceptions’ occurrence. The
exceptions should be spread over time. If there is some clustering in the exceptions
during time, the model is not working well in estimating VaR. This is the test of
independence of exception occurrence. We consider two states of 0 and 1, on which

1 shows an exception. Let m; be the probability of observing an exception in the
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next move, conditional on being in state 7. If the model works well, we should have
Ty = T1.

Let T;; be the number of times that state j occurred after state i, and, 7' =

T()() + T01 + T10 + TH. We can estimate 0 and 1 by

__Tn
Tor + Too’

__Tu
T+ T

~

o

A~

Uy

If the model is working well, we should have my = my, for which can be estimated by

Ty + T
T

P
Now, a hypothesis test can be set up. The test statistic is
LR = “921n ((1 o ﬁ)Too-i-Tm,ﬁTm-i-Tu)) +21In ((1 _ ﬁO)TOOﬁgM(l o ,ﬁl)Tmﬁ.fn) ’

which follows asymptotically a x? distribution as T' gets large.

Finally, the conditional coverage test can be performed by to following test statis-
tics, which follows a x3 distribution, using the fact that LRy, and LRj,q are asymp-
totically independent.

LR.. = LRy + LRina-

For more details about conditional coverage test one can refer to [13]

Here, we consider VaR not as an upper a quantile of the loss distribution £ cal-
culated from pure-mid price, but as the lower a quantile of the distribution of the
pure-mid price value itself. We do this since, in the context of the tick data, price
changes are calculated rather than returns or log returns, and we model these price
changes by integer-valued probability models. Thus, the exceptions for us will be
when the pure-mid price drops under the estimated lower o quantile if the distribu-

tion of the pure-mid price.
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Figure 5.11: Solid black line is the observed path and gray paths are simulated ones
from Tweedie and Poisson Tweedie distribution for interarrival times and jumps, re-
spectively. Black square and red circle are observed value and VaR value, respectively.

We use Monte Carlo method to estimate the distribution of pure-mid price or more
specifically, the lower o quantile of this distribution. For any choice of distribution
for modeling the jumps (these are negative binomial, Poisson, discrete stable, DTS
(Pareto tempering) and DTS (Poisson-Tweedie)) and standardized residuals in the
GARCH model for interarrival times (these are exponential, gamma and Tweedie), we
simulate 5000 sample paths for a given time horizon (these are 10, 20 and 60 minutes),
then we estimate VaR for different confidence levels (o € {0.01,0.025,0.05,0.1}) by
sample quantiles.

Figure 5.11 shows 15 sample path out of 5000 ones, and also shows the estimated
VaR(10,0.05). Figure 5.12 shows a kernel density estimation of simulated pure-mid
prices on which the observed value and VaR are marked. On the right hand side, one
can see how pure-mid price, VaR and ES are changing during a day.

To test our proposed models, we consider 3rd and 4th weeks of July 2024, for which
we will have 10 days. For any combination of distributions for jumps and standard

residuals in the GARCH model for interarrival times, time horizon and confidence
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Figure 5.12: Left figure shows a kernel density estimation of simulated pure-mid
prices on which the observed value, VaR and ES are marked. Right figure shows
the observed values, VaR and ES for one day on July 1st 2024. One can see when
exceptions occurred.

level, we perform conditional coverage test. Figure 5.13 shows VaR(10, «) for three
cases in which discrete stable, Poisson and Poisson-Tweedie was used for jumps, boot-
strap sampling was used for standard residuals in the GARCH model for interarrival
times, and « € {0.01,0.025,0.05,0.1}. One can also see where the exceptions oc-
curred. Tables 5.1, 5.2, 5.3 and 5.4 show the results from exceptions counting and
conditional coverage tests for all combinations of models and time horizons for differ-
ent values of . In most cases, negative binomial has the most satisfactory results.
However, exception rates from DTS (Poisson-Tweedie) have an acceptable results for
which in most of the cases the the reported p-values are high enough, thus we fail to
reject the null hypothesis in those cases. In general, one can see discrete stable distri-
butions may not be reliable in modeling jumps in the tick data, however tempering
these distributions will result in a much better distributions for modeling jumps in
the tick data.

In some cases, mostly for discrete stable and DTS (Pareto tempering) the rates
of exceptions are zero. In those cases, we will not be interested in checking the

dependency of the occurrences since there are no exceptions. However, the p-values
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are high, but these models do not possess a good rate of exceptions to be interesting
models.

Figures 5.14 and 5.15 show box plots of the maximum values of the log-likelihood
functions fitted on standard residuals of the GARCH model and also on the positive
and negative jumps using different distributions. In Figure 5.15 Tweedie distribution
has a higher value for log-likelihood function during all 10 days of our analysis and
also for different time horizons 10, 20 and 60 minutes. Refering to Figure 5.15 negative
binomial has the best performance followed by DTS (poisson-Tweedie) and Poisson

in fitting the jumps as we have the same performance base on the Tables 5.1 to 5.4.
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Figure 5.13: VaR(10,«) values during 10 days in 3rd and 4th weeks of July 2024,
from up to bottom, for discrete stable, Poisson and Poisson-Tweedie used for jumps,
bootstrap sampling for standard residuals in the GARCH model for interarrival times,
and a € {0.01,0.025,0.05,0.1}. The occurrence of exceptions are marked for any

confidence level.
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Figure 5.14: Box plots of maximum values of log-likelihood functions in fitting
Tweedie, exponential and gamma distributions on standard residuals in the GARCH
model for 10 days. Three figures are for different time horizons, 10, 20 and 60 minutes
from top to bottom, respectively.
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Figure 5.15: Box plots of maximum values of log-likelihood functions in fitting dis-
crete stable, negative binomial, DTS (Pareto tempering), Poisson and DTS (Poisson
Tweedie) on positive (left figures) and negative (right figures) for 10 days. Three
figures on each side are for different time horizons, 10, 20 and 60 minutes from top
to bottom, respectively.
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To test how stable the results from Monte Carlo simulations are, these simulations
were repeated 50 times for negative binomial and DTS (Poisson Tweedie) distributions
for modeling jumps and Tweedie, exponential and gamma distributions for modeling
standard residuals in the GARCH model for interarrival times. Table 5.5 shows the
results from these simulations in which the average and standard deviations were
reported in each case. Standard deviations are small which indicate stable results.
The results from exception counting and conditional coverage tests in Tables 5.1
to 5.4 show that the negative binomial and Poisson-Tweedie distributions followed by
Poisson distribution have a good performance in terms of exception rates. In almost
all of the cases we have some combination of these distribution with large p-values,
thus these models are acceptable based on exception rates. However, in independent
tests, especially when « is 0.01 or 0.025, we can observe that 7y, is zero, which shows
that it is very unlikely to see two consecutive exceptions. This is not very surprising
since, especially when the sample size is small, we expect to see few exceptions. In
these cases if we accept that 771" = 0° = 1 then p-values are more meaningful. In
other cases, when « is 0.05 or 0.10, we have much more satisfactory results. We have
many cases where 7; is not zero and it is very close to 7y and the p-values from
conditional coverage now are more reliable. Thus, we can say in these cases, we have

a good exception rate, for which the exceptions are well spread.



86

Table 5.1: Results from exception counting and conditional coverage tests for o = 0.01

Jump Time Horizon a  Exception p-value for o Lot T p-value for p-value for
Distribution Distribution | (in minutes) rates LRy LRina for LR
Discrete Stable bootstrap 10 0.01  0.00e+00 9.86e-04 (**¥) [ 0.00e+00 0.00e+00 0.00e-+00 1.00e+00 4.40e-03  (**)
Discrete Stable Tweedie 10 0.01  0.00e+00  9.86e-04 (***) || 0.00e+00 0.00e+00 0.00e-+00 1.00e+00 4.40e-03  (**)
Discrete Stable exponential 10 0.01  0.00e+00 9.86e-04 (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 4.40e-03  (**)
Discrete Stable gamma 10 0.01  0.00e+00 9.86e-04 (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 4.40e-03  (**)
Discrete Stable bootstrap 20 0.01  0.00e+00 1.98¢-02 (*) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 6.63e-02
Discrete Stable Tweedie 20 0.01  0.00e+00 1.98¢-02 (*) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 6.63e-02
Discrete Stable exponential 20 0.01  0.00e+00 1.98e-02  (*) | 0.00e4+00 0.00e+00 0.00e-+00 1.00e+00 6.63e-02
Discrete Stable gamma, 20 0.01 0.00e+00 1.98¢-02  (*) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 6.63e-02
Discrete Stable bootstrap 60 0.01  0.00e+00 1.79e-01 0.00e400  0.00e+00 0.00e+00 1.00e+00 4.05e-01
Discrete Stable Tweedie 60 0.01  0.00e+00 1.79e-01 0.00e400  0.00e+00 0.00e+00 1.00e+00 4.05e-01
Discrete Stable exponential 60 0.01  0.00e+00 1.79e-01 0.00e400  0.00e+00 0.00e+00 1.00e+00
Discrete Stable gamma 60 0.01  0.00e+00 1.79e-01 0.00e400  0.00e+00 0.00e+00 1.00e+00
Negative Binomial bootstrap 10 0.0l  2.04e-02 3.37¢-02 (%) 2.08e-02  0.00e+00 2.04e-02  4.98e-01
Negative Binomial Tweedie 10 0.01  2.78e-02  6.51e-04 (***) || 2.86e-02 0.00e+00 2.78e-02  3.54e-01
Negative Binomial exponential 10 0.01 1.11e-02 7.99e-01 1.13e-02  0.00e+00 1.11e-02  7.13e-01 9.05¢e-01
Negative Binomial gamma, 10 0.01  1.48e-02  2.94e-01 1.51e-02  0.00e+00 1.48e-02  6.23e-01 5.11e-01
Negative Binomial bootstrap 20 0.01  1.85e-02  2.09e-01 1.89e-02  0.00e+00 1.86e-02  6.63e-01 4.12e-01
Negative Binomial Tweedie 20 0.01  3.33¢-02  2.39¢-03  (**) || 3.46e-02 0.00e+00 3.35¢-02  4.30e-01 7.28¢-03  (**)
Negative Binomial exponential 20 0.01 1.11e-02 8.57e-01 1.13e-02  0.00e+00 1.12e-02  7.95e-01 9.51e-01
Negative Binomial gamma, 20 0.01  1.48e-02  4.58e-01 1.51e-02  0.00e+00 1.49e-02  7.28e-01 7.15e-01
Negative Binomial bootstrap 60 0.01  2.22e-02 3.15e-01 2.30e-02  0.00e+00 2.25e-02  7.62e-01 5.77e-01
Negative Binomial Tweedie 60 0.01  3.33e-02  7.96e-02 3.49¢-02  0.00e+00 3.37e-02  6.47e-01 1.94e-01
Negative Binomial exponential 60 0.01 1.11e-02 9.17e-01 1.14e-02  0.00e+00 1.12e-02  8.80e-01 9.83e-01
Negative Binomial gamma 60 0.01  2.22e-02  3.15e-01 2.30e-02  0.00e+00 2.25e-02  7.62e-01 5.77e-01
DTS (Pareto Tempering) | bootstrap 10 0.01  0.00e+00 9.86e-04 (**¥) [ 0.00e+-00 0.00e+00 0.00e-+00 1.00e+00 4.40e-03  (*%)
DTS (Pareto Tempering) Tweedie 10 0.01  0.00e+00 9.86e-04 (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 4.40e-03  (**)
DTS (Pareto Tempering) | exponential 10 0.01  0.00e+00 9.86e-04 (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 4.40e-03  (**)
DTS (Pareto Tempering) gamma 10 0.01  0.00e+00 9.86e-04 (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 4.40e-03  (**)
DTS (Pareto Tempering) | bootstrap 20 0.01  0.00e+00 1.98¢-02  (*) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 6.63e-02
DTS (Pareto Tempering) Tweedie 20 0.01  0.00e+00 1.98¢-02 (*) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 6.63e-02
DTS (Pareto Tempering) | exponential 20 0.01  0.00e4+00 1.98e-02  (*) 0.00e+00  0.00e+00 0.00e+00 1.00e-+00 6.63e-02
DTS (Pareto Tempering) gamma, 20 0.01  0.00e+00 1.98e¢-02  (*) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 6.63e-02
DTS (Pareto Tempering) | bootstrap 60 0.01  0.00e+00 1.79e-01 0.00e+00 0.00e+00 0.00e4-00 1.00e+00 4.05e-01
DTS (Pareto Tempering) Tweedie 60 0.01  0.00e+00 1.79e-01 0.00e400  0.00e+00 0.00e+00 1.00e+00 4.05¢-01
DTS (Pareto Tempering) | exponential 60 0.01  0.00e+00 1.79e-01 0.00e400  0.00e+00 0.00e+00 1.00e+00 4.05e-01
DTS (Pareto Tempering) gamma 60 0.01  0.00e+00 1.79e-01 0.00e400  0.00e+00 0.00e+00 1.00e+00 4.05e-01
Poisson bootstrap 10 0.0l  2.78¢-02 6.5le-04 (¥**) || 2.86e-02 0.00e+00 2.78¢-02  3.54e-01 1.95¢-03  (*¥)
Poisson Tweedie 10 0.01  2.96e-02  2.07e-04 (*¥**) || 3.06e-02 0.00e+00 2.97e-02  3.22¢-01 6.27e-04  (**¥)
Poisson exponential 10 0.01 1.11e-02 7.99e-01 1.13e-02  0.00e+00 1.11e-02  7.13e-01 9.05e-01
Poisson gamma 10 0.01 22202 1.39-02 (%) 2.28¢-02  0.00e+00 2.23e-02  4.60e-01 3.70e-02  (*)
Poisson bootstrap 20 0.01  2.22e-02  8.21e-02 2.28¢-02  0.00e+00 2.23e-02  6.01e-01 1.92e-01
Poisson Tweedie 20 0.01  2.96e-02 8.69¢-03 (**) || 3.07e-02 0.00e+00 2.97e-02  4.84e-01 2.50e-02  (¥)
Poisson exponential 20 0.01 1.11e-02 8.57e-01 1.13e-02  0.00e+00 1.12e-02  7.95e-01 9.51e-01
Poisson gamma, 20 0.01  1.48e-02  4.58e-01 1.51e-02  0.00e+00 1.49e-02  7.28e-01 7.15e-01
Poisson bootstrap 60 0.01  2.22e-02  3.15e-01 2.30e-02  0.00e+00 2.25e-02  7.62e-01 5.77e-01
Poisson Tweedie 60 0.01  3.33e-02  7.96e-02 3.49¢-02  0.00e+00 3.37e-02  6.47e-01 1.94e-01
Poisson exponential 60 0.01 1.11e-02 9.17e-01 1.14e-02  0.00e+00 1.12e-02  8.80e-01 9.83e-01
Poisson gamma 60 0.01  2.22e-02  3.15e-01 2.30e-02  0.00e+00 2.25e-02  7.62e-01 5.77e-01
DTS (Poisson Tweedie) bootstrap 10 0.0l 2.78¢-02 6.5le-04 (¥**) || 2.86e-02 0.00e+00 2.78¢-02  3.54e-01 1.95¢-03  (*¥)
DTS (Poisson Tweedie) Tweedie 10 0.0l 2.96e-02  2.07e-04 (*¥**) || 3.06e-02 0.00e+00 2.97e-02  3.22¢-01 6.27e-04  (**¥*)
DTS (Poisson Tweedie) | exponential 10 0.01 1.11e-02  7.99e-01 1.13e-02  0.00e+00 1.11e-02  7.13e-01 9.05e-01
DTS (Poisson Tweedic) gamma 10 0.01  241e-02  537e-03 (**) || 2.47e-02  0.00e+00 2.41e-02  4.23e-01 1.50e-02 (%)
DTS (Poisson Tweedie) bootstrap 20 0.01  1.85e-02  2.09e-01 1.89¢-02  0.00e+00 1.86e-02  6.63e-01 4.12e-01
DTS (Poisson Tweedie) Tweedie 20 0.01  3.33e-02  2.39e-03  (**) || 3.46e-02 0.00e+00 3.35e-02  4.30e-01 7.28¢-03  (**)
DTS (Poisson Tweedie) | exponential 20 0.01 1.11e-02 8.57e-01 1.13e-02  0.00e+00 1.12e-02  7.95e-01 9.51e-01
DTS (Poisson Tweedie) gamma 20 0.01  1.48e-02 4.58¢-01 1.51e-02  0.00e+00 1.49¢-02  7.28¢-01 7.15e-01
DTS (Poisson Tweedie) bootstrap 60 0.01  2.22e-02  3.15e-01 2.30e-02  0.00e+00 2.25e-02  7.62e-01 5.77e-01
DTS (Poisson Tweedie) Tweedie 60 0.01  3.33e-02  7.96e-02 3.49¢-02  0.00e+00 3.37e-02  6.47e-01 1.94e-01
DTS (Poisson Tweedie) | exponential 60 0.01 1.11e-02 9.17e-01 1.14e-02  0.00e+00 1.12e-02  8.80e-01 9.83e-01
DTS (Poisson Tweedie) gamma 60 0.01 22202  3.15e-01 2.30e-02  0.00e+00 2.25¢-02  7.62¢-01 5.77e-01
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Table 5.2: Results from exception counting and conditional coverage tests for a =
0.025

Jump Time Horizon o Exception p-value for To et T p-value for p-value for
Distribution Distribution | (in minutes) rates LRy LRina for LR
Discrete Stable bootstrap 10 0.025 0.00e+00 1.70e-07 (***) [| 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.15e-06  (**¥)
Discrete Stable Tweedie 10 0.025  0.00e+00  1.70e-07  (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.15e-06  (***)
exponential 10 0.025  0.00e+00  1.70e-07  (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.15e-06  (***)
gamma 10 0.025 0.00e+00 1.70e-07 ~ (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.15e-06  (***)
bootstrap 20 0.025 0.00e+00 2.18e-04  (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.07e-03  (**)
Discrete Stable Tweedie 20 0.025 0.00e+00 2.18e-04  (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.07e-03  (**)
Discrete Stable exponential 20 0.025 0.00e+00 2.18e-04  (***) || 0.00e+00 0.00e+00 0.00e+-00 1.00e+00 1.07e-03  (*¥)
Discrete Stable gamma 20 0.025 0.00e+00 2.18e-04 (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.07e-03  (**)
Discrete Stable bootstrap 60 0.025 0.00e+00 3.28e-02  (*) || 0.00e+00 0.00e+00 0.00e+-00 1.00e+00 1.02e-01
Discrete Stable Tweedie 60 0.025 0.00e+00 3.28e-02  (*) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.02e-01
Discrete Stable exponential 60 0.025 0.00e+00 3.28e-02  (*) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.02e-01
Discrete Stable gamma 60 0.025 0.00e+00 3.28e-02  (*) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.02e-01
Negative Binomial bootstrap 10 0.025 4.26e-02 1.71e-02 (%) 4.46¢-02  0.00e+00  4.27¢-02  1.52e-01 2.09e-02  (¥)
Negative Binomial Tweedie 10 0.025  4.63e-02 e-03  (**) || 4.86e-02  0.00e+00 4.64e-02  1.19e-01 5.26e-03  (**)
Negative Binomial exponential 10 0.025 2.96e-02 5.03¢-01 3.06e-02  0.00e+00 2.97e-02  3.22¢-01 4.90e-01
Negative Binomial gamma 10 0.025  3.70e-02  9.41e-02 3.85e-02  0.00e+00 3.71e-02  2.14e-01 1.14e-01
Negative Binomial bootstrap 20 0.025  4.07e-02  1.28e-01 4.26e-02  0.00e+00  4.09¢-02  3.33¢-01 1.97¢-01
Negative Binomial Tweedie 20 0.025  5.93e-02  2.12e-03 (**) | 5.93e-02 6.25e-02  5.95e-02  9.58¢-01 8.87¢-03  (*¥)
Negative Binomial exponential 20 0.025  1.48e-02  2.47e-01 1.51e-02  0.00e+00 1.49e-02  7.28e-01 4.81e-01
Negative Binomial gamma 20 0.025 2.59e-02 9.23e-01 2.67e-02  0.00e+00 2.60e-02  5.41e-01 8.26e-01
Negative Binomial bootstrap 60 0.025  4.44e-02  2.86e-01 4.71e-02  0.00e+00  4.49e-02  5.39e-01 4.69e-01
Negative Binomial Tweedie 60 0.025  6.67e-02  3.53e-02  (¥) 7.23e-02  0.00e+00  6.74e-02  3.51e-01 7.06e-02
Negative Binomial exponential 60 0.025 1.11e-02  3.44e-01 1.14e-02  0.00e+00 1.12e-02  8.80e-01 6.32e-01
Negative Binomial gamma 60 0.025 2.22e-02  8.63¢-01 2.30e-02  0.00e+00  2.25e-02  7.62e-01 9.41e-01
DTS (Pareto Tempering) | bootstrap 10 0.025 1.85e-03  7.39e-06 (**¥) || 1.86e-03 0.00e+00 1.86e-03  9.5le-01 4.33e-05 (¥*%)
DTS (Pareto Tempering) Tweedie 10 0.025 1.85e-03  7.39e-06 (***) || 1.86e-03 0.00e+00 1.86e-03  9.5le-01 4.33e-05  (*¥**)
DTS (Pareto Tempering) | exponential 10 0.025 1.85e-03  7.39e-06 (***) || 1.86e-03 0.00e+00 1.86e-03  9.5le-01 4.33e-05  (*¥**)
DTS (Pareto Tempering) gamma 10 0.025  1.85¢-03  7.39e-06 (***) || 1.86e-03 0.00e+00 1.86e-03  9.51e-01 4.33¢-05  (***)
DTS (Pareto Tempering) | bootstrap 20 0.025 0.00e+00 2.18e-04 (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.07e-03  (**)
DTS (Pareto Tempering) Tweedie 20 0.025 0.00e+00 2.18e-04  (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.07e-03  (**)
DTS (Pareto Tempering) | exponential 20 0.025  0.00e+00 2.18e-04 (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.07e-03  (*¥)
DTS (Pareto Tempering) gamma 20 0.025 0.00e+00 2.18e-04 (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.07e-03  (**)
DTS (Pareto Tempering) | bootstrap 60 0.025 0.00e+00 3.28e-02  (*) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.02¢-01
DTS (Pareto Tempering) Tweedie 60 0.025 0.00e+00 3.28e-02  (*) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.02e-01
DTS (Pareto Tempering) | exponential 60 0.025 0.00e+00 3.28e-02  (*) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.02e-01
DTS (Pareto Tempering) gamma 60 0.025 0.00e+00 3.28e-02  (*) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.02e-01
Poisson bootstrap 10 0.025  4.44e-02  8.97¢-03  (**) [ 4.66e-02 0.00e+00 4.45¢-02  1.35¢-01 1.07e-02 (%)
Poisson Tweedie 10 0.025  5.19e-02  4.64e-04 (***) || 548e-02  0.00e+00 5.19e-02  7.97e-02 4.70e-04  (*¥**)
Poisson exponential 10 0.025  3.15e-02 3.26e-02  0.00e+00  3.15e-02  2.93e-01 3.74e-01
Poisson gamma 10 0.025  3.89e-02 4.05e-02  0.00e+00  3.90e-02  1.92e-01 6.83e-02
Poisson bootstrap 20 0.025  4.44e-02  6.46e-02 4.67e-02  0.00e+00 4.46e-02  2.90e-01 1.04e-01
Poisson Tweedie 20 0.025  6.30e-02  7.71e-04 (***) || 6.35e-02  5.88e-02  6.32e-02  9.38¢-01 3.49¢-03  (*¥)
Poisson exponential 20 0.025 1.85e-02 4.75e-01 1.89e-02  0.00e+00 1.86e-02  6.63e-01 7.05e-01
Poisson gamma 20 0.025  2.96e-02  6.36¢-01 3.07¢-02  0.00e+00 2.97¢-02  4.84e-01 6.99¢-01
Poisson bootstrap 60 0.025  5.56e-02  1.09e-01 5.95e-02  0.00e+00 5.62e-02  4.40e-01 2.05e-01
Poisson Tweedie 60 0.025  6.67e-02  3.53e-02  (¥) 7.23e-02  0.00e+00  6.74e-02  3.51e-01 7.06e-02
Poisson exponential 60 0.025 1.11e-02 1.14e-02  0.00e+00 1.12e-02  8.80e-01 6.32e-01
Poisson gamma 60 0.025  2.22e-02 2.30e-02  0.00e+00  2.25¢-02  7.62¢-01 9.41e-01
DTS (Poisson Tweedie) bootstrap 10 0.025  4.63e-02 (**) || 4.86e-02 0.00e+00 4.64e-02  1.19e-01 5.26e-03  (**)
DTS (Poisson Tweedie) Tweedie 10 0.025  4.81e-02 (**) || 5.07e-02  0.00e+00 4.82e-02  1.04e-01 2.46e-03  (**)
DTS (Poisson Tweedie) | exponential 10 0.025  3.52¢-02 3.65¢-02  0.00e+00  3.53¢-02  2.39¢-01 1.80e-01
DTS (Poisson Tweedie) gamma 10 0.025  3.89e-02 e-02 4.05e-02  0.00e+00  3.90e-02  1.92e-01 6.83e-02
DTS (Poisson Tweedie) bootstrap 20 0.025  4.81e-02  3.03e-02  (¥) 4.69e-02  7.69¢-02  4.83e-02  6.47e-01 8.63e-02
DTS (Poisson Tweedie) Tweedie 20 0.025  7.04e-02  8.68e-05 (***) || 6.80e-02 1.05e-01  7.06e-02  5.65e-01 3.83e-04  (*F¥)
DTS (Poisson Tweedie) | exponential 20 0.025  1.85¢-02  4.75¢-01 1.89¢-02  0.00e+00 1.86e-02  6.63¢-01 7.05e-01
DTS (Poisson Tweedie) gamma 20 0.025  3.70e-02  2.37e-01 3.86e-02  0.00e+00 3.72e-02  3.79e-01 3.37e-01
DTS (Poisson Tweedie) bootstrap 60 0.025  4.44e-02  2.86e-01 4.71e-02  0.00e+00  4.49¢-02  5.39e-01 4.69e-01
DTS (Poisson Tweedie) Tweedie 60 0.025  7.78¢-02  9.91e-03  (**) || 8.54e-02 0.00e+00 7.87e-02  2.74e-01 1.98¢-02  (¥)

(
DTS (Poisson Tweedie) | exponential 60 0.025  1.11e-02  3.44e-01 1.14e-02  0.00e+00 1.12e-02  8.80e-01 6.32¢-01
DTS (Poisson Tweedie) gamma 60 0.025 2.22e-02  8.63e-01 2.30e-02  0.00e+00  2.25e-02  7.62e-01 9.41e-01
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Table 5.3: Results from exception counting and conditional coverage tests for o = 0.05

Jump Time Horizon «  Exception p-value for o sl T p-value for p-value for
Distribution Distribution | (in minutes) rates LRy LRina for LR,
Discrete Stable bootstrap 10 0.05 1.85e-03  8.25e-12  (***) || 1.86e-03 0.00e+00 1.86e-03  9.51e-01 7.20e-11 (%)
Discrete Stable Tweedie 10 0.05 1.85e-03  8.25e-12  (***) || 1.86e-03  0.00e+00 1.86e-03  9.51e-01 7.20e-11  (**¥)
exponential 10 0.05 0.00e+00  9.85e-14  (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 9.35e-13  (**¥)
gamma 10 0.05 1.85e-03  825e-12  (***) || 1.86e-03 0.00e+00 1.86e-03  9.51e-01 7.20e-11  (¥*¥)
bootstrap 20 0.05 0.00e+00  1.42e-07  (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e-+00 9.67e-07  (**¥)
Discrete Stable Tweedie 20 0.05 0.00e+00  1.42e-07  (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 9.67e-07  (**¥)
Discrete Stable exponential 20 0.05 0.00e+00  1.42e-07  (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 9.67e-07  (**¥)
Discrete Stable gamma 20 0.05 0.00e+00  1.42e-07  (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e-+00 9.67e-07  (**¥)
Discrete Stable bootstrap 60 0.05 0.00e+00  2.38¢-03  (**) | 0.00e+00 0.00e+00 0.00e+00 1.00e-+00 9.89¢-03  (*¥)
Discrete Stable Tweedie 60 0.05 0.00e+00  2.38¢-03  (**) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 9.89e-03  (*¥)
Discrete Stable exponential 60 0.05 0.00e+00  2.38¢-03  (**) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 9.89e-03  (*¥)
Discrete Stable gamma 60 0.05 0.00e+00  2.38¢-03  (**) | 0.00e+00 0.00e+00 0.00e+00 1.00e-+00 0.89¢-03  (**)
Negative Binomial bootstrap 10 0.05 6.30e-02  1.83e-01 6.34e-02  5.88e-02  6.31e-02  9.15e-01 4.10e-01
Negative Binomial Tweedie 10 0.05 7.41e-02  1.62e-02  (*) 7.62¢-02  5.00e-02  7.42¢-02  5.22¢-01 4.54e-02 (%)
Negative Binomial exponential 10 0.05 4.44e-02  5.46e-01 4.66e-02  0.00e+00  4.45e-02  1.35e-01 2.72¢-01
Negative Binomial gamma 10 0.05 6.11e-02  2.52e-01 6.13e-02  6.06e-02  6.12¢-02  9.88e-01 5.18e-01
Negative Binomial bootstrap 20 0.05 7.04e-02  1.47e-01 7.17e-02  5.56e-02  7.06e-02  7.89e-01 3.37e-01
Negative Binomial Tweedie 20 0.05 1.07e-01 1.56e-04  (***) || 1.04e-01  1.43e-01  1.08e-01  5.43e-01 6.51e-04  (**¥)
Negative Binomial exponential 20 0.05 3.70e-02  3.07e-01 3.85e-02  0.00e+00  3.72e-02  4.05e-01 4.19e-01
Negative Binomial gamma 20 0.05 5.93e-02 4.97e-01 5.91e-02  6.67e-02  5.95e-02  9.05e-01 7.88e-01
Negative Binomial bootstrap 60 0.05 6.67e-02  4.89e-01 7.23¢-02  0.00e+00  6.74e-02  3.51e-01 5.10e-01
Negative Binomial Tweedie 60 0.05 1.33¢-01  2.40e-03  (**) | 1.30e-01  1.67e-01  1.35¢-01  7.35e-01 9.41e-03  (*¥)
Negative Binomial exponential 60 0.05 22202  1.76e-01 2.30e-02  0.00e+00  2.25e-02  7.62e-01 3.83e-01
Negative Binomial gamma 60 0.05 3.33e-02  4.41e-01 3.49¢-02  0.00e+00  3.37e-02  6.47e-01 6.69¢-01
DTS (Pareto Tempering) | bootstrap 10 0.05 1.85e-03  8.25e-12  (***) || 1.86e-03 0.00e+00 1.86e-03  9.51e-01 7.20e-11 (%)
DTS (Pareto Tempering) Tweedie 10 0.05 1.85e-03  8.25e-12  (***) || 1.86e-03  0.00e+00 1.86e-03  9.51e-01 7.20e-11  (**¥)
DTS (Pareto Tempering) | exponential 10 0.05 1.85e-03  8.25e-12  (***) || 1.86e-03  0.00e+00 1.86e-03  9.51e-01 7.20e-11  (**¥)
DTS (Pareto Tempering) gamma 10 0.05 1.85e-03  8.25e-12  (***) || 1.86e-03  0.00e+00 1.86e-03  9.51e-01 7.20e-11  (**¥)
DTS (Pareto Tempering) | bootstrap 20 0.05 0.00e+00  1.42e-07  (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 9.67e-07  (**¥)
DTS (Pareto Tempering) Tweedie 20 0.05 0.00e+00  1.42e-07  (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e-+00 9.67e-07  (**¥)
DTS (Pareto Tempering) | exponential 20 0.05 0.00e+00  1.42e-07  (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 9.67e-07  (**¥)
DTS (Pareto Tempering) gamma 20 0.05 0.00e+00  1.42e-07  (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e-+00 9.67e-07  (**¥)
DTS (Pareto Tempering) | bootstrap 60 0.05 0.00e+00  2.38¢-03  (**) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 9.89e-03  (*¥)
DTS (Pareto Tempering) Tweedie 60 0.05 0.00e+00  2.38¢-03  (**) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 9.89e-03  (*¥)
DTS (Pareto Tempering) | exponential 60 0.05 0.00e+00  2.38¢-03  (**) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 9.89e-03  (*¥)
DTS (Pareto Tempering) gamma 60 0.05 0.00e+00 2.38¢-03  (**) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 9.89e-03  (*¥)
Poisson bootstrap 10 0.05 7.22e-02  2.59%-02 *) 7.00e-02  1.03e-01  7.24e-02  4.73e-01 6.45e-02
Poisson Tweedie 10 0.05  7.59e-02  9.97¢-03  (**) | 8.03e-02 2.44e-02 7.6le-02 1.38e-01 1.20e-02 (%)
Poisson exponential 10 0.05 4.63e-02  6.89e-01 4.86e-02  0.00e+00  4.64e-02  1.19e-01 2.74e-01
Poisson gamma 10 0.05 6.11e-02  2.52e-01 6.13e-02  6.06e-02  6.12e-02  9.88e-01 5.18e-01
Poisson bootstrap 20 0.05 8.52e-02  1.54e-02 (*) 7.69¢-02  1.82e-01  8.55e-02  1.32¢-01 1.71e-02  (¥)
Poisson Tweedie 20 0.05 1.15e-01  2.50e-05  (**¥) || 1.13e-01  1.33e-01  1.15e-01  7.47e-01 1.32e-04  (¥*%)
Poisson exponential 20 0.05 3.70e-02  3.07e-01 3.85e-02  0.00e+00  3.72e-02  4.05e-01 4.19e-01
Poisson gamma 20 0.05 6.67e-02  2.31e-01 6.75e-02  5.88e-02  6.69e-02  8.88e-01 4.83e-01
Poisson bootstrap 60 0.05 8.89e-02  1.25¢-01 8.64¢-02  1.25e-01  8.99e-02  7.28¢-01 2.91e-01
Poisson Tweedie 60 0.05 1.33¢-01  2.40e-03  (*¥) 1.30e-01  1.67e-01  1.35e-01  7.35e-01 9.41e-03  (*¥)
Poisson exponential 60 0.05 3.33e-02  4.41e-01 3.49¢-02  0.00e+00  3.37e-02  6.47e-01 6.69¢-01
Poisson gamma 60 0.05 5.56e-02  8.12e-01 5.95e-02  0.00e+00  5.62e-02  4.40e-01 7.22¢-01
DTS (Poisson Tweedie) bootstrap 10 0.05  6.67e-02  9.01e-02 6.76e-02  5.56e-02  6.68e-02  7.74e-01 2.28e-01
DTS (Poisson Tweedie) Tweedie 10 0.05 7.78e-02  5.98e-03  (**) | 7.85¢-02 7.14e-02  7.79¢-02  8.69e-01 2.25e-02 (%)
DTS (Poisson Tweedie) | exponential 10 0.05 5.00e-02  1.00e+00 5.08e-02  3.70e-02  5.01e-02  7.39e-01 9.46e-01
DTS (Poisson Tweedie) gamma 10 0.05  5.93e-02  3.37e-01 5.92e-02  6.25e-02  5.94e-02  9.39¢-01 6.29¢-01
DTS (Poisson Tweedie) bootstrap 20 0.05  9.26e-02  3.89e-03  (**) | 8.57e-02 1.67e-01  9.29e-02  2.31e-01 7.56e-03  (**)
DTS (Poisson Tweedie) Tweedie 20 0.05 1.15e-01  2.50e-05  (**¥) || 1.09e-01  1.67e-01  1.15e-01  3.73e-01 9.34e-05  (**¥)
DTS (Poisson Tweedie) | exponential 20 0.05 4.07e-02  4.71e-01 4.25e-02  0.00e+00  4.09¢-02  3.56e-01 5.04e-01
DTS (Poisson Tweedie) gamma 20 0.05 6.67¢-02  2.31e-01 6.75e-02  5.88¢-02  6.69¢-02  8.88¢-01 4.83¢-01
DTS (Poisson Tweedie) bootstrap 60 0.05 8.89-02  1.25¢-01 8.64e-02  1.25e-01  8.99e-02  7.28e-01 2.91e-01
DTS (Poisson Tweedie) Tweedie 60 0.05 1.33¢-01  2.40e-03  (**) | 1.30e-01  1.67e-01  1.35¢-01  7.35e-01 9.41e-03  (*¥)
DTS (Poisson Tweedie) | exponential 60 0.05  3.33e-02  4.41e-01 3.49e-02  0.00e+00  3.37e-02  6.47e-01 6.69e-01
DTS (Poisson Tweedie) gamma 60 0.05  3.33e-02  4.41e-01 3.49e-02  0.00e+00  3.37e-02  6.47e-01 6.69e-01
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Table 5.4: Results from exception counting and conditional coverage tests for « = 0.10

Jump Time Horizon o  Exception p-value for 7o st s p-value for p-value for
Distribution Distribution | (in minutes) rates LRy LRina for LR,
Discrete Stable gamma 10 0.1  3.70e-03  0.00e+00 (***) [ 3.72e-03 0.00e+00 3.71e-03  9.03e-01 0.00e+00  (**¥)
Discrete Stable bootstrap 20 0.1 3.70e-03  4.06e-12  (***) || 3.73e-03  0.00e+00 3.72e-03  9.31e-01 3.58e-11  (**¥)
Discrete Stable Tweedie 20 0.1 7.41e-03  8.77e-11  (***) || 7.49e-03 0.00e+00 7.43e-03  8.63e-01 7.19e-10  (**¥)
Discrete Stable exponential 20 0.1  3.70e-03  4.06e-12  (***) || 3.73e-03  0.00e+00 3.72e-03  9.31e-01 3.58e-11  (***)
te Stable gamma 20 0.1  3.70e-03  4.06e-12  (***) || 3.73e-03  0.00e+00 3.72e-03  9.31e-01 3.58e-11  (***)
Discrete Stable bootstrap 60 0.1 0.00e+00  1.33e-05  (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 7.62e-05  (**)
Discrete Stable Tweedie 60 0.1 0.00e+00 1.33¢-05 (***) | 0.00e+00 0.00e+00 0.00e+00 1.00e+00 7.62e-05  (***)
Discrete Stable exponential 60 0.1 0.00e+00  1.33e-05  (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 7.62e-05  (**¥)
Discrete Stable gamma 60 0.1 0.00e+00 1.33e-05 (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 7.62e-05  (**)
Negative Binomial bootstrap 10 0.1 1.24e-01  7.12e-02 1.23e-01  1.34e-01  1.24e-01  7.92e-01 1.90e-01
Negative Binomial Tweedie 10 0.1 1.37e-01  6.29¢-03  (**) || 1.33e-01  1.62e-01 1.37e-01  5.12e-01 1.93e-02 (%)
Negative Binomial exponential 10 0.1  8.52e-02  2.40e-01 8.32¢-02  1.09e-01  8.53e-02  5.67e-01 4.26e-01
Negative Binomial gamma, 10 0.1 1.07e-01  5.70e-01 1.06e-01  1.21e-01  1.08e-01  7.37e-01 .05e
Negative Binomial bootstrap 20 0.1  1.56e-01  4.53e-03  (**) | 1.49e-01  1.95¢-01  1.56e-01  4.66e-01 1.36e-02 (%)
Negative Binomial Tweedie 20 0.1 1.70e-01  3.97e-04  (***) || 1.56e-01 2.44e-01 1.71e-01  1.68e-01 7.29e-04  (**¥)
Negative Binomial exponential 20 0.1  7.41e-02  1.38e-01 7.20e-02  1.05e-01  7.43e-02  6.13e-01 2.94e-01
Negative Binomial gamma 20 0.1 1.26e-01 1.70e-01 1.14e-01  2.12e-01  1.26e-01  1.39e-01 1.30e-01
Negative Binomial bootstrap 60 0.1  2.00e-01  4.70e-03  (**) || 1.69e-01  3.33¢-01  2.02e-01  1.38e-01 6.13e-03  (**)
Negative Binomial Tweedie 60 0.1 2.22e-01  6.93e-04 (***) | 1.88¢-01 3.50e-01  2.25¢-01  1.41e-01 1.07¢-03  (**)
Negative Binomial exponential 60 0.1 8.89e-02  7.21e-01 6.17e-02  3.75e-01  8.99e-02  1.71e-02 5.47e-02
Negative Binomial gamma 60 0.1 1.11e-01  7.29e-01 8.86e-02  3.00e-01  1.12e-01  8.10e-02 2.05e-01
DTS (Pareto Tempering) | bootstrap 10 0.1  5.56e-03  0.00e+00 (***) [| 5.60e-03 0.00e+00 5.57e-03  8.55e-01 0.00e+00  (**%)
DTS (Pareto Tempering) Tweedie 10 0.1 5.56e-03  0.00e+00 (***) || 5.60e-03 0.00e+00 5.57e-03  8.55e-01 0.00e+00  (***)
DTS (Pareto Tempering) | exponential 10 0.1  1.85e-03  0.00e+00 (***) || 1.86e-03 0.00e+00 1.86e-03  9.51e-01 0.00e+00  (***)
DTS (Pareto Tempering) gamma 10 0.1 5.56e-03  0.00e+00 (***) || 5.60e-03 0.00e+00 5.57e-03  8.55e-01 0.00e+00  (***)
DTS (Parcto Tempering) | bootstrap 20 01  1.11e-02  1.11e-09 (¥**) | 1.13e-02 0.00e+00 1.12e-02  7.95e-01 8.44e-09  (**¥)
DTS (Pareto Tempering) Tweedie 20 0.1  1.11e-02  1.11e-09  (***) | 1.13e-02 0.00e+00 1.12e-02  7.95e-01 8.44e-09  (**¥)
DTS (Pareto Tempering) | exponential 20 0.1 3.70e-03  4.06e-12  (***) || 3.73e-03  0.00e+00 3.72e-03  9.31e-01 3.58e-11  (**%¥)
DTS (Pareto Tempering) gamma 20 0.1 7.41e-03  8.77e-11  (***) || 7.49e-03 0.00e+00 7.43e-03  8.63e-01 7.19e-10  (**¥)
DTS (Pareto Tempering) | bootstrap 60 0.1  0.00e+00  1.33e-05 (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 7.62e-05  (**¥)
DTS (Pareto Tempering) Tweedie 60 0.1 0.00e+00 1.33¢-05 (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 7.62e-05  (***)
DTS (Pareto Tempering) | exponential 60 0.1 0.00e+00 1.33¢-05 (***) | 0.00e+00 0.00e+00 0.00e+00 1.00e+00 7.62e-05  (***)
DTS (Pareto Tempering) gamma 60 0.1 0.00e+00 1.33e-05 (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 7.62e-05 (**)
Poisson bootstrap 10 0.1  1.30e-01  2.74e-02 * 1.24e-01  1.71e-01  1.30e-01  2.84e-01 4.95¢-02 (%)
Poisson Tweedie 10 0.1  1.39e-01  4.20e-03  (**) 1.36e-01  1.60e-01  1.39e-01  5.80e-01 1.42¢-02 (*)
Poisson exponential 10 0.1 8.89¢-02  3.8le-01 8.76e-02  1.04e-01  8.91e-02  7.06e-01 6.35e-01
Poisson gamma, 10 0.1 1.09¢-01  4.79¢-01 1.08e-01  1.19¢-01  1.09¢-01  8.13c-01 7.57e-01
Poisson bootstrap 20 0.1  1.56e-01  4.53e-03  (**) | 1.45e-01  2.20e-01  1.56e-01  2.43e-01 8.98¢-03  (**)
Poisson Tweedie 20 0.1  1.8le-01  4.97e-05 (***) | 1.58¢-01 2.7le-01  1.78e-01  7.72e-02 5.59e-05  (***)
Poisson exponential 20 0.1  7.41e-02  1.38e-01 7.20e-02  1.05e-01  7.43e-02  6.13e-01 2.94e-01
Poisson gamma, 20 0.1 1.30e-01 1.19¢-01 1.19e-01  2.06e-01  1.30e-01  1.85e-01 1.23e-01
Poisson bootstrap 60 0.1  2.00e-01  4.70e-03  (**) || 1.69e-01  3.33e-01  2.02e-01  1.38e-01 6.13e-03  (**)
Poisson Tweedie 60 0.1 22201  6.93e-04 (***) | 1.88e-01 3.50e-01  2.25e-01  1.41e-01 1.07e-03  (*¥*)
Poisson exponential 60 0.1 8.89e-02  7.21e-01 6.17e-02  3.75e-01  8.99e-02  1.71e-02 5.47e-02
Poisson gamma 60 0.1  1.22¢-01  4.96e-01 1.03e-01  2.73e-01  1.24e-01  1.47e-01 2.77e-01
DTS (Poisson Tweedie) bootstrap 10 0.1 1.28e-01  3.82e-02 *) 1.21e-01  1.74e-01  1.28e-01  2.39e-01 5.85e-02
DTS (Poisson Tweedie) Tweedie 10 0.1 1.35e-01  9.28e-03  (**) || 1.31e-01  1.64e-01  1.35e-01  4.48e-01 2.54e-02 (%)
DTS (Poisson Tweedie) | exponential 10 0.1 85202  2.40e-01 8.32¢-02  1.09e-01  8.53e-02  5.67e-01 4.26¢-01
DTS (Poisson Tweedie) gamma 10 0.1 1L.1le-01  3.97e-01 1.11e-01  1.17e-01  1.11e-01  8.90e-01 6.92e-01
DTS (Poisson Tweedie) bootstrap 20 0.1 1.52e-01  7.81e-03  (**) | 1.44e-01  2.00e-01  1.52e-01  3.79e-01 1.97e-02  (*)
DTS (Poisson Tweedie) Tweedie 20 0.1  1.78e-01  1.02e-04 (***) | 1.58e-01  2.55e-01  1.75e-01  1.24e-01 1.60e-04  (*¥**)
DTS (Poisson Tweedie) | exponential 20 0.1 8.15e-02  2.96e-01 8.06e-02  9.52e-02  8.18e-02  8.19e-01 5.64e-01
DTS (Poisson Tweedie) gamma 20 0.1 1.30e-01  1.19e-01 1.19e-01  2.06e-01  1.30e-01  1.85e-01 1.23e-01
DTS (Poisson Tweedie) bootstrap 60 0.1 2.00e-01  4.70e-03  (**) || 1.69e-01  3.33e-01  2.02e-01  1.38e-01 6.13e-03  (*¥)
DTS (Poisson Tweedie) Tweedie 60 0.1 22201  6.93e-04 (***) | 1.88e-01 3.50e-01  2.25e-01  1.41e-01 1.07e-03  (*¥*)
DTS (Poisson Tweedie) | exponential 60 0.1  8.8%-02  7.2le-01 6.17e-02  3.75e-01  8.99e-02  1.71e-02 5.47e-02
DTS (Poisson Tweedie) gamma 60 0.1  1.22¢-01  4.96e-01 1.03e-01  2.73e-01  1.24e-01  1.47e-01 2.77e-01
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Table 5.5: Testing stability of the Monte Carlo simulations for different distributions
for jumps and interarrival times. For each value of «, 5 days were selected (these
days are: July 15th, 18th, 19th, 23rd and 25th) and for each day, the simulation
were repeated 50 times. The mean values of exception rates along with the standard
deviations are reported in each case.

Jump Time day «  Standard  mean o Standard  mean «  Standard  mean «  Standard  mean
distribution distribution 0.01 Deviation 0.025 Deviation 0.05 Deviation 0.10 Deviation
DTS (Poisson Tweedie) Tweedie 1 {[0.01 0.0092 0.0481 || 0.025  0.0093  0.0844 || 0.05 ~ 0.0103  0.1233 || 0.1 0.0026 0.2041
DTS (Poisson Tweedie) Tweedie 2 ]/ 0.01 0 0.0556 || 0.025 0 0.0556 || 0.05 0.013 0.0667 || 0.1 0 0.1852
DTS (Poisson Tweedie) Tweedie 3 ] 0.01 0 0 0.025 0 0.0185 || 0.05  0.0037  0.0733 || 0.1 0.0108 0.1326
DTS (Poisson Tweedie) Tweedie 4 1/ 0.01 0 0 0.025  0.0026  0.0181 || 0.05 0 0.0185 || 0.1 0.013 0.0319
DTS (Poisson Tweedie) Tweedie 5 | 0.01 0 0.037 || 0.025  0.0077  0.0596 || 0.05  0.0081  0.1089 || 0.1 0.0069 0.1881
Negative Binomial Tweedie 1 {[0.01 0.0082 0.0419 || 0.025  0.0083  0.0748 || 0.05 ~ 0.0082  0.1159 || 0.1 0 0.2037
Negative Binomial Tweedie 2 0.01 0.0026  0.0552 || 0.025 0 0.0556 || 0.05 0.0084  0.0607 || 0.1 0.0065 0.1826
Negative Binomial Tweedie 3 0.01 0 0 0.025 0 0.0185 || 0.05 0.0056  0.0722 || 0.1 0.0122 0.1263
Negative Binomial Tweedie 4 0.01 0 0 0.025 0.0069 0.0156 || 0.05 0 0.0185 || 0.1 0.0051 0.02
Negative Binomial Tweedie 5 || 0.01 0.0086  0.0352 || 0.025 0 0.0556 || 0.05  0.0065  0.0952 || 0.1 0 0.1852
DTS (Poisson Tweedie) Expponential | 1 0.01 0 0.037 || 0.025  0.0037  0.0733 || 0.05 0.009 0.0941 || 0.1 0 0.1481
DTS (Poisson Tweedie) Expponential | 2 0.01 0.0026 4e-4 0.025 0 0.0556 || 0.05 0 0.0556 || 0.1 0 0.0556
DTS (Poisson Tweedie) Expponential | 3 || 0.01 0 0 0.025  0.0072  0.0033 || 0.05  0.0037  0.0193 || 0.1 0.0026 0.1107
DTS (Poisson Tweedie) Expponential | 4 || 0.01 0 0 0.025 0 0 0.05  0.0093  0.0085 || 0.1 0 0.0185
DTS (Poisson Tweedie) Expponential | 5 ]| 0.01  0.0044  0.0174 || 0.025  0.0086  0.0315 || 0.05 0 0.037 || 0.1 0 0.0926
Negative Binomial Expponential | 1 | 0.01 0 0.037 || 0.025  0.0075  0.0704 || 0.05  0.0072  0.0893 || 0.1 0 0.1481
Negative Binomial Expponential | 2 | 0.01 0 0 0.025 0 0.0556 || 0.05 0 0.0556 || 0.1 0 0.0556
Negative Binomial Expponential | 3 0.01 0 0 0.025 0.0056 0.0019 || 0.05 0 0.0185 || 0.1 0.009 0.1063
Negative Binomial Expponential | 4 0.01 0 0 0.025 0 0 0.05 0.0065  0.0026 || 0.1 0 0.0185
Negative Binomial Expponential | 5 0.01 0.0084  0.0133 || 0.025 0 0.0185 || 0.05 0 0.037 || 0.1 0.0072 0.10780
DTS (Poisson Tweedie) Gamma 1 {[0.01 0.0026  0.0374 || 0.025 0 0.0741 || 0.05  0.0061  0.0948 || 0.1 0.0026 0.1848
DTS (Poisson Tweedie) Gamma 2 ] 0.01  0.0092  0.0504 || 0.025 0 0.0556 || 0.05 0 0.0556 || 0.1 0.0103 0.1341
DTS (Poisson Tweedic) Gamma 3 ] 0.01 0 0 0.025  0.0056  0.0167 || 0.05 0 0.0556 || 0.1 0 0.1111
DTS (Poisson Tweedie) Gamma 4 1] 0.01 0 0 0.025 0 0 0.05 0 0.0185 || 0.1 0 0.0185
DTS (Poisson Tweedie) Famma 5 0.01 0.0061 0.0207 || 0.025 0 0.037 || 0.05 0.0111 0.0859 || 0.1 0.0106 0.1322
Negative Binomial Gamma 1 0.01 0 0.037 || 0.025  0.0044 0.073 || 0.05  0.0044  0.0937 || 0.1 0.0037 0.1844
Negative Binomial Gamma 2 0.01 0.011 0.0404 || 0.025 0 0.0556 || 0.05 0 0.0556 || 0.1 0.012 0.1267
Negative Binomial Gamma 3 0.01 0 0 0.025 0.0086 0.013 || 0.05 0.0069  0.0526 || 0.1 0 0.1111
Negative Binomial Gamma 4 0.01 0 0 0.025 0 0 0.05 0 0.0185 || 0.1 0 0.0185
Negative Binomial Gamma 5 ] 0.01 0 0.0185 || 0.025 0 0.037 || 0.05  0.0086 0.087 || 0.1 0.0093 0.1215

5.4  Simplifying Assumptions

In this section, we consider a model which is simpler than the one proposed in the
previous section. To evaluate this model, we again rely on exception counting and
VaR estimation.

To simplify the proposed model, one can assume that the interarrival times of price
changes are i.i.d. This assumption is not realistic, since we have already observed a
strong dependence in these interarrival times. However, by this assumption, the
model will be simpler and can be used for other purposes, e.g. option pricing, in an
easier way.

For this simplified model, we assume that the price changes or jumps are following
one of the discrete distributions that we also consider previously. These distributions
are Poisson, negative binomial, discrete stable, DTS (Pareto tempering) and DTS

(Poisson-Tweedie). Simulations from jumps are similar to the previous model. The
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Figure 5.16: Solid black line is the observed path and two other colored and thinner
ones are simulated paths using bootstrap sampling for interarrival times and different
distributions for jumps as follow; top left: negative binomial, top right: DTS (Poisson-
Tweedie) middle left: discrete stable, middle right: DTS (Pareto tempering), bottom:
Poisson.

main difference here is in the modeling of interarrival times. In this new model, the
interarrival times for the jumps are assumed to be i.i.d. and a continuous distribution
e.g. gamma, exponential or Tweedie can be used for modeling.

To simulate a sample path for a time horizon H, n observations from the continuous
distribution are simulated in a way that they add up to a number that is greater or
equal to H and the sum of n — 1 observations is less than H. Next, the price changes
or jumps will be simulated in a similar way as in the previous sections.

Figure 5.16 shows some examples of simulated sample paths for a 10 minute time
horizon from different distributions for jumps and bootstrap sampling for interarrival
times. One can see how tempering the tail of a heavy tailed distribution, e.g. discrete

stable, can result in a more similar sample path to the observed one.
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Figure 5.17: Solid black line is the observed path and two other colored and thinner
ones are simulated paths using DTS (Poisson-Tweedie) distribution for jumps and
different distributions for interarrival times as follow; top left: bootstrap sampling,
top right: gamma, bottom left: Tweedie, Bottom right: exponential.

Figure 5.17 compares different distributions for simulating interarrival times. In
these cases the Poisson-Tweedie distribution is used to simulate jumps. Figure 5.18
compares the box plots of maximum values of log-likelihood functions in fitting dif-
ferent distributions to interarrival times.

To evaluate this method, we consider the rate and independence of exceptions. Fig-
ure 5.19 shows VaR value estimations for different levels and different time horizons,
for 10 days in third and fourth weeks of July 2024 using different distributions for
modeling. The exceptions are marked when they happened.

Tables 5.6 to 5.9 compare the results from exception counting and conditional
coverage tests. In general, the Poisson-Tweedie distribution is doing a better job
then other distributions if one considers exception counting. The exception rates are
generally higher than when the GARCH model was used in the proposed model in
the previous sections. Thus, one can observe that removing the GARCH model and
instead using an i.i.d. assumption for interarrival times will simplifies the modeling,

but it increases the cost of performance in exception counting.
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Figure 5.18: Box plots of maximum values of log-likelihood functions in fitting
Tweedie, exponential and gamma distributions on interarrival times for 10 days.
Three figures are for different time horizons, 10, 20 and 60 minutes from top to
bottom, respectively.
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Figure 5.19: VaR(10,«) values during 10 days in 3rd and 4th weeks of July 2024,
from up to bottom, for discrete stable, Poisson and Poisson-Tweedie used for jumps,
bootstrap sampling for interarrival times, and o € {0.01,0.025,0.05,0.1}. The occur-
rence of exceptions are marked for any confidence level.
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Table 5.6: Results from exception counting and conditional coverage tests for o = 0.01

Jump Time Horizon a Exception p-value for o fus) T p-value for p-value for
Distribution Distribution | (in minutes) rates LRy LRina for LR
Discrete Stable bootstrap 10 0.01 0.00e+00 9.86e-04 (**¥) [ 0.00e+00 0.00e-+00 0.00e+00 1.00e+00 4.40e-03  (*¥)
Discrete Stable Tweedie 10 0.01 0.00e4+00 9.86e-04 (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 4.40e-03  (*¥)
Discrete Stable exponential 10 0.01 0.00e+00 9.86e-04 (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 4.40e-03  (*¥)
Discrete Stable gamma 10 0.01 0.00e+00 9.86e-04 (***) || 0.00e+00 0.00e-+00 0.00e+00 1.00e+00 4.40e-03  (*¥)
Discrete Stable bootstrap 20 0.01 0.00e+00 1.98e-02 (*) | 0.00e+00 0.00e+00 0.00e+00 1.00e+00 6.63e-02
Discrete Stable Tweedie 20 0.01 0.00e+00 1.98e-02 (*) | 0.00e+00 0.00e+00 0.00e+00 1.00e+00 6.63e-02
Discrete Stable exponential 20 0.01 0.00e+00 1.98¢-02  (*) | 0.00e+00 0.00e+00 0.00e+00 1.00e-+00 6.63¢-02
Discrete Stable gamma 20 0.01 0.00e+00 1.98¢-02 (*) 0.00e+00  0.00e+00 0.00e+00 1.00e-+00 6.63e-02
Discrete Stable bootstrap 60 0.01 0.00e+00  1.79¢-01 0.00e+00 0.00e+00 0.00e+00 1.00e+00 4.05e-01
Discrete Stable Tweedie 60 0.01 0.00e+4-00  1.79e-01 0.00e+00  0.00e-+00  0.00e+00 1.00e+00 4.05e-01
Discrete Stable exponential 60 0.01 0.00e+400 1.79¢-01 0.00e+00 0.00e+00 0.00e+00 1.00e+00 4.05e-01
Discrete Stable gamma 60 0.01 0.00e+400 1.79¢-01 0.00e+00 0.00e+00 0.00e+00 1.00e+00 4.05e-01
Negative Binomial bootstrap 10 0.01  3.15e-02  6.18e-05 (***) || 3.07e-02 5.88e-02 3.15e-02  5.57e-01 2.76e-04  (¥*¥)
Negative Binomial Tweedie 10 0.01  2.96e-02  2.07e-04 (***) || 2.87e-02  6.25e-02  2.97¢e-02 8.07c-04  (**¥)
Negative Binomial exponential 10 0.01  3.15e-02  6.18e-05 (***) || 3.07e-02  5.88e-02  3.15e-02 2.76e-04  (**¥)
Negative Binomial gamma 10 0.01  3.15e-02  6.18e-05 (***) || 3.07e-02  5.88e-02  3.15e-02 . 2.76e-04  (**¥)
Negative Binomial bootstrap 20 0.01 3.33e-02 2.39e-03  (*¥) 3.08e-02  1.11e-01  3.35e-02  2.90e-01 5.68e-03  (**)
Negative Binomial Tweedie 20 0.01 3.33e-02 2.39e-03  (*%) 3.08e-02  1.11e-01  3.35e-02  2.90e-01 5.68¢-03  (**)
Negative Binomial exponential 20 0.01  3.33e-02  2.39e-03  (**) | 3.08e-02 1.11e-01  3.35e-02  2.90e-01 5.68¢-03  (**)
Negative Binomial gamma 20 0.01 3.33e-02 2.39e-03  (**) 3.08¢-02  1.11e-01  3.35e-02  2.90e-01 5.68¢-03  (**)
Negative Binomial bootstrap 60 0.01 2.22e-02 3.15e-01 2.30e-02  0.00e+00  2.25e-02  7.62e-01 5.77e-01
Negative Binomial Tweedie 60 0.01 2.22e-02 3.15e-01 2.30e-02  0.00e+00  2.25¢-02  7.62¢-01 5.77e-01
Negative Binomial exponential 60 0.01 2.22e-02 3.15e-01 2.30e-02  0.00e+00  2.25e-02  7.62e-01 5.77e-01
Negative Binomial gamma 60 0.01 3.33e-02 7.96e-02 3.49¢-02  0.00e+00  3.37e-02  6.47e-01 1.94e-01
DTS (Parcto Tempering) | bootstrap 10 0.01 0.00e+00  9.86e-04 (**¥) [[ 0.00e+00 0.00e-+00 0.00e+00 1.00e+00 4.40e-03  (*¥)
DTS (Pareto Tempering) Tweedie 10 0.01 0.00e+00  9.86e-04 (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 4.40e-03  (*¥)
DTS (Pareto Tempering) | exponential 10 0.01 0.00e+00 9.86e-04 (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 4.40e-03  (**)
DTS (Pareto Tempering) gamma 10 0.01 0.00e+00 9.86e-04 (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 4.40e-03  (**)
DTS (Pareto Tempering) | bootstrap 20 0.01 0.00e+00 1.98e-02 (*) 0.00e+00  0.00e+00 0.00e+00 1.00e+00 6.63e-02
DTS (Pareto Tempering) Tweedie 20 0.01 0.00e+00 1.98e-02 (¥) 0.00e+00  0.00e+00 0.00e+00 1.00e-+00 6.63e-02
DTS (Pareto Tempering) | exponential 20 0.01 0.00e+00 1.98-02 (¥) 0.00e+00  0.00e+00 0.00e+00 1.00e+00 6.63e-02
DTS (Pareto Tempering) gamma 20 0.01 0.00e+00 1.98¢-02 (*) | 0.00e+00 0.00e+00 0.00e+00 1.00e+00 6.63e-02
DTS (Pareto Tempering) | bootstrap 60 0.01 0.00e+00 1.79e-01 0.00e+00 0.00e+00 0.00e+00 1.00e+00 4.05e-01
DTS (Pareto Tempering) Tweedie 60 0.01 0.00e+00  1.79e-01 0.00e+00  0.00e+00  0.00e+00  1.00e+00 4.05e-01
DTS (Pareto Tempering) | exponential 60 0.01 0.00e4-00  1.79e-01 0.00e+00  0.00e-+00  0.00e+00 1.00e+00 4.05e-01
DTS (Pareto Tempering) gamma 60 0.01 0.00e4-00  1.79¢-01 0.00e+00  0.00e+00  0.00e+00 1.00e+00 4.05e-01
Poisson bootstrap 10 0.01  3.15e-02  6.18e-05 (***) || 3.07e-02 5.88¢-02 3.15e-02  5.57e-01 2.76e-04  (¥*¥)
Poisson Tweedie 10 0.01  3.15e-02  6.18e-05 (***) || 3.07e-02  5.88e-02  3.15¢-02 2.76e-04  (¥*%)
Poisson exponential 10 0.01  3.15e-02  6.18e-05 (***) || 3.07e-02  5.88e-02  3.15e-02 2.76e-04  (**¥)
Poisson gamma 10 0.01  3.15e-02  6.18e-05 (***) || 3.07e-02  5.88e-02  3.15e-02 5. 2.76e-04  (**¥)
Poisson bootstrap 20 0.01  3.33e-02  2.39e-03 (**) || 3.08¢e-02 1.11e-01  3.35e-02  2.90e-01 5.68e-03  (**)
Poisson Tweedie 20 0.01 3.33e-02 2.39e-03  (*¥) 3.08e-02  1.11e-01  3.35e-02  2.90e-01 5.68e-03  (**)
Poisson exponential 20 0.01 3.33e-02 2.39e-03  (*¥) 3.08e-02  1.11e-01  3.35e-02  2.90e-01 5.68¢-03  (**)
Poisson gamma 20 0.01  3.33e-02  2.39e-03 (**) || 3.08¢e-02 1.11e-01  3.35e-02  2.90e-01 5.68¢-03  (**)
Poisson bootstrap 60 0.01 3.33¢-02 7.96¢-02 3.49¢-02  0.00e+00  3.37e-02  6.47e-01 1.94e-01
Poisson Tweedie 60 0.01 2.22e-02 3.15e-01 2.30e-02  0.00e+00  2.25e-02  7.62e-01 5.77e-01
Poisson exponential 60 0.01 3.33e-02 7.96e-02 3.49¢-02  0.00e+00  3.37e-02  6.47e-01 1.94e-01
Poisson gamma 60 0.01 2.22e-02 3.15e-01 2.30e-02  0.00e+00  2.25e-02  7.62e-01 5.77e-01
DTS (Poisson Tweedie) bootstrap 10 0.01  2.59e-02  1.93e-03 (*¥) || 2.67e-02 0.00e+00 2.60e-02  3.88¢-01 5.63e-03  (*F)
DTS (Poisson Tweedie) Tweedie 10 0.01  24le-02  5.37e-03  (**) || 2.47e-02 0.00e+00 2.4le-02  4.23e-01 1.50e-02  (*)
DTS (Poisson Tweedie) | exponential 10 0.01  259e-02  1.93e-03  (**) || 2.67e-02  0.00e+00 2.60e-02  3.88¢-01 5.63e-03  (*¥)
DTS (Poisson Tweedie) gamma 10 0.01  2.41e-02  5.37¢-03 (**) || 2.47¢-02 0.00c+00 2.41e-02  4.23c-01 1.50e-02  (*)
DTS (Poisson Tweedie) bootstrap 20 0.01  2.96e-02  8.69e-03 (**) || 2.68e-02 1.25e-01  2.97e-02  2.20e-01 1.51e-02  (¥)
DTS (Poisson Tweedie) Tweedie 20 0.01  2.96e-02  8.69e-03 (**) || 2.68e-02 1.25e-01  2.97e-02  2.20e-01 1.51e-02  (¥)
DTS (Poisson Tweedie) | exponential 20 0.01 2.96e-02 8.69e-03  (**) 2.68e-02  1.25e-01  2.97e-02  2.20e-01 1.51e-02 (%)
DTS (Poisson Tweedie) gamma 20 0.01  2.96e-02  8.69e-03 (**) || 2.68e-02 1.25e-01  2.97e-02  2.20e-01 1.51e-02 (%)
DTS (Poisson Tweedie) bootstrap 60 0.01 2.22e-02 3.15e-01 2.30e-02  0.00e+00  2.25e-02  7.62e-01 5.77e-01
DTS (Poisson Tweedie) Tweedie 60 0.01  2.22e-02  3.15e-01 2.30e-02  0.00e+00  2.25e-02  7.62e-01 5.77e-01
DTS (Poisson Tweedie) | exponential 60 0.01  2.22e-02  3.15e-01 2.30e-02  0.00e+00  2.25e-02  7.62e-01 5.77e-01
DTS (Poisson Tweedie) gamma 60 0.01  3.33e-02  7.96e-02 3.49¢-02  0.00e+00  3.37e-02  6.47e-01 1.94e-01
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Table 5.7: Results from exception counting and conditional coverage tests for a =
0.025

Jump Time Horizon @ Exception p-value for To et T p-value for p-value for
Distribution Distribution | (in minutes) rates LRy LRina for LR,
Discrete Stable bootstrap 10 0.00e+00  1.70e-07  (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e-+00 1.15e-06  (**¥)
Discrete Stable Tweedie 10 0.00e+00  1.70e-07  (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e-+00 1.15e-06  (***)
Discrete Stable exponential 10 0.00e+00  1.70e-07  (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e-+00 1.15e-06  (***)
Discrete Stable gamma 10 0.00e+00  1.70e-07  (***) || 0.00e-+00 0.00e-+00 0.00e+00 1.00e-+00 1.15e-06  (¥*%*)
Discrete Stable bootstrap 20 0.00e+00  2.18¢-04  (***) || 0.00e-+00 0.00e-+00 0.00e+00 1.00e-+00 1.07e-03  (**)
Discrete Stable Tweedie 20 0.00e+00  2.18¢-04 (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e-+00 1.07e-03  (**)
Discrete Stable exponential 20 0.00e+00  2.18¢-04 (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e-+00 1.07e-03  (**)
Discrete Stable gamma 20 0.00e+00  2.18¢-04 (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e-+00 1.07e-03  (**)
Discrete Stable bootstrap 60 0.00e+00  3.28¢-02  (*) || 0.00e+00 0.00e+00 0.00e+00 1.00e-+00 1.02e-01
Discrete Stable Tweedie 60 0.00e+00  3.28¢-02  (*) || 0.00e+00 0.00e+00 0.00e+00 1.00e-+00 1.02e-01
Discrete Stable exponential 60 0.00e+00  3.28¢-02  (*) || 0.00e+00 0.00e+00 0.00e+00 1.00e-+00 1.02e-01
Discrete Stable gamma 60 0.00e+00  3.28e-02 *) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.02e-01
Negative Binomial bootstrap 10 4.63¢-02  4.52¢-03  (**) || 4.09¢-02  1.60e-01  4.64e-02  2.61e-02 1.50e-03  (*¥)
Negative Binomial Tweedie 10 4.63e-02  4.52e-03  (**) || 4.09¢-02  1.60e-01  4.64e-02  2.61e-02 1.50e-03  (**)
Negative Binomial exponential 10 4.63e-02  4.52e-03  (**) || 4.09¢-02  1.60e-01  4.64e-02  2.61e-02 1.50e-03  (**)
Negative Binomial gamma 10 4.63 4.52e-03  (**) || 4.09e-02  1.60e-01  4.64e-02  2.61e-02 1.50e-03  (*¥*)
Negative Binomial bootstrap 20 4.81e-02  3.03e-02  (*) 4.69¢-02  7.69¢-02  4.83e-02  6.47e-01 8.63e-02
Negative Binomial Tweedie 20 4.81e-02  3.03e-02  (*) 4.69e-02  7.69e-02  4.83e-02  6.47e-01 8.63e-02
Negative Binomial exponential 20 4.81e-02  3.03e-02  (*) 4.69e-02  7.69e-02  4.83e-02  6.47e-01 8.63e-02
Negative Binomial gamma 20 4.81e-02  3.03e-02  (*) 4.69e-02  7.69e-02  4.83e-02  6.47e-01 8.63e-02
Negative Binomial bootstrap 60 2.86e-01 4.71e-02  0.00e+00  4.49e-02  5.39¢-01 4.69¢-01
Negative Binomial Tweedie 60 2.86e-01 4.71e-02  0.00e+00  4.49e-02  5.39e-01 4.69¢-01
Negative Binomial exponential 60 2.86e-01 4.71e-02  0.00e+00  4.49¢-02 4.69e-01
Negative Binomial gamma 60 2.86e-01 4.71e-02  0.00e+00  4.49¢-02 4.69e-01
DTS (Pareto Tempering) | bootstrap 10 0.025 7.39e-06  (**¥) || 1.86e-03  0.00e+00 1.86e-03 4.33e-05 (¥**)
DTS (Pareto Tempering) Tweedie 10 0.025 7.39e-06  (***) || 1.86e-03  0.00e+00  1.86e-03 4.33¢-05  (*¥**)
DTS (Pareto Tempering) | exponential 10 0.025 7.39e-06  (***) || 1.86e-03  0.00e+00  1.86e-03 2 (**¥)
DTS (Parcto Tempering) gamma 10 0.025 7.39¢-06  (***) || 1.86¢-03  0.00e+00 1.86e-03 (***)
DTS (Pareto Tempering) | bootstrap 20 0.025 2.18¢-04  (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.07e-03  (**)
DTS (Pareto Tempering) | Tweedie 20 0.025 218e-04 (%) | 0.00e£00 0.00e+00 0.00e+00 1.00e+00 | 1.07e-03  (**)
DTS (Pareto Tempering) | exponential 20 0.025 2.18¢-04  (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.07e-03  (**)
DTS (Pareto Tempering) gamma 20 0.025 2.18e-04  (***) || 0.00e+00 0.00e-+00 0.00e+00 1.00e+00 1.07e-03  (**)
DTS (Parcto Tempering) | bootstrap 60 0.025  0.00e+00 3.28¢-02  (*) || 0.00e+00 0.00¢+00 0.00e+00 1.00e+00 1.02e-01
DTS (Pareto Tempering) Tweedie 60 0.025  0.00e+00 3.28e-02  (*) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.02e-01
DTS (Pareto Tempering) | exponential 60 0.025  0.00e+00 3.28¢-02  (*) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.02e-01
DTS (Pareto Tempering) gamma 60 0.025 0.00e+00 3.28e-02  (*) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.02e-01
Poisson bootstrap 10 0.025  4.81e-02  2.19¢-03 (**) || 4.29e-02 1.54e-01  4.82¢-02  3.52¢-02 1.00e-03  (*%)
Poisson Tweedie 10 0.025  4.63e-02  4.52¢-03  (**) || 4.09e-02  1.60e-01  4.64e-02  2.61e-02 1.50e-03  (**)
Poisson exponential 10 0.025  4.63e-02  4.52e-03  (**) || 4.09e-02  1.60e-01  4.64e-02  2.61e-02 1.50e-03  (*¥*)
Poisson gamma 10 0.025  4.81e-02  2.19e-03  (**) || 4.29e-02  1.54e-01  4.82e-02  3.52e-02 1.00e-03  (*%*)
Poisson bootstrap 20 0.025 4.81e-02  3.03e-02  (¥) 4.69e-02  7.69e-02  4.83e-02  6.47e-01 8.63e-02
Poisson Tweedie 20 0.025 4.81e-02  3.03e-02  (¥) 4.69e-02  7.69e-02  4.83e-02  6.47e-01 8.63e-02
Poisson exponential 20 0.025 4.81e-02  3.03e-02  (¥) 4.69e-02  7.69e-02  4.83e-02  6.47e-01 8.63e-02
Poisson gamma 20 0.025  4.81e-02  3.03e-02  (*) 4.69¢-02  7.69e-02  4.83¢-02  6.47c-01 8.63¢-02
Poisson bootstrap 60 0.025  5.56e-02  1.09e-01 5.95e-02  0.00e+00 5.62e-02  4.40e-01 2.05e-01
Poisson Tweedie 60 0.025 4.44e-02  2.86e-01 4.71e-02  0.00e+00  4.49e-02  5.39e-01 4.69¢-01
Poisson exponential 60 0.025  5.56e-02  1.09e-01 5.95e-02  0.00e+00  5.62e-02  4.40e-01 2.05e-01
Poisson gamma 60 0.025 4.44e-02  2.86e-01 4.71e-02  0.00e+00  4.49¢-02  5.39e-01 4.69¢-01
DTS (Poisson Tweedie) bootstrap 10 0.025 4.07e-02 3.15e-02 (*) 3.68e-02  1.36e-01  4.08e-02  6.23e-02 1.74e-02 (%)
DTS (Poisson Tweedie) Tweedie 10 0.025 4.07e-02  3.15e-02  (¥) 3.68e-02  1.36e-01  4.08e-02  6.23e-02 1.74e-02  (*)
DTS (Poisson Tweedie) | exponential 10 0.025  4.26e-02  1.71e-02  (*) 3.68¢-02  1.74c-01  4.27¢-02  1.36e-02 2.78¢-03  (*¥)
DTS (Poisson Tweedie) gamma 10 0.025 4.07e-02  3.15¢-02  (*) 3.68¢-02  1.36e-01  4.08¢-02  6.23e-02 1.74e-02  (¥)
DTS (Poisson Tweedie) bootstrap 20 0.025 4.07e-02  1.28e-01 3.88e-02  9.09e-02  4.09e-02  4.55e-01 2.38e-01
DTS (Poisson Tweedie) Tweedie 20 0.025 4.44e-02  6.46e-02 4.28e-02  8.33e-02  4.46e-02  5.49e-01 1.52e-01
DTS (Poisson Tweedie) | exponential 20 0.025  4.44e-02  6.46¢-02 4.28e-02  8.33¢-02  4.46e-02  5.49¢-01 1.52¢-01
DTS (Poisson Tweedie) gamma 20 0.025  4.44e-02  6.46e-02 4.28e-02  8.33e-02  4.46e-02  5.49e-01 1.52e-01
DTS (Poisson Tweedie) bootstrap 60 0.025 4.44e-02  2.86e-01 4.71e-02  0.00e+00  4.49e-02  5.39e-01 4.69e-01
DTS (Poisson Tweedie) Tweedie 60 0.025 4.44e-02  2.86e-01 4.71e-02  0.00e+00  4.49e-02  5.39e-01 4.69e-01
DTS (Poisson Tweedie) | exponential 60 0.025 4.44e-02  2.86e-01 4.71e-02  0.00e+00  4.49¢-02  5.39¢-01 4.69¢-01
DTS (Poisson Tweedie) gamma 60 0.025 4.44e-02  2.86e-01 4.71e-02  0.00e+00  4.49e-02  5.39e-01 4.69e-01
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Table 5.8: Results from exception counting and conditional coverage tests for o = 0.05

Jump Time Horizon «  Exception p-value for o et T p-value for p-value for
Distribution Distribution | (in minutes) rates LRy LRina for LRec
Discrete Stable bootstrap 10 0.05 1.85e-03  8.25e-12 (***) || 1.86e-03 0.00e+00 1.86e-03  9.51e-01 7.20e-11  (F¥%¥)
Discrete Stable Tweedie 10 0.05 1.85e-03  8.25e-12 (***) | 1.86e-03 0.00e+00 1.86e-03  9.51e-01 7.20e-11  (**¥)
Discrete Stable exponential 10 0.05 1.85e-03  8.25e-12  (***) || 1.86e-03 0.00e+00 1.86e-03  9.51e-01 7.20e-11  (**¥)
Discrete Stable gamma 10 0.05 1.85e-03  8.25e-12  (***) || 1.86e-03 0.00e+00 1.86e-03 ~ 9.51e-01 7.20e-11  (**¥)
Discrete Stable bootstrap 20 0.05  0.00e+00 1.42e-07 (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 9.67e-07  (***)
Discrete Stable Tweedie 20 0.05  0.00e+00 1.42e-07 (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 9.67e-07  (***)
Discrete Stable exponential 20 0.05  0.00e+00 1.42¢-07 (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e-+00 9.67e-07  (***)
Discrete Stable gamma 20 0.05 0.00e+00 1.42e-07 (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e-+00 9.67e-07  (**¥)
Discrete Stable bootstrap 60 0.05 0.00e+00 2.38¢-03  (**) | 0.00e+00 0.00e+00 0.00e+00 1.00e-+00 9.89¢-03  (*¥)
Discrete Stable Tweedie 60 0.05  0.00e+00  2.38¢-03  (**) | 0.00e+00 0.00e+00 0.00e+00 1.00e-+00 9.89e-03  (*¥)
Discrete Stable exponential 60 0.05  0.00e+00  2.38¢-03  (**) | 0.00e+00 0.00e+00 0.00e+00 1.00e-+00 9.89e-03  (*¥)
Discrete Stable gamma 60 0.05 0.00e+00 2.38¢-03  (**) || 0.00e+00 0.00e+00 0.00e+00 1.00e-+00 9.89e-03  (*¥)
Negative Binomial bootstrap 10 0.05 6.85e-02  6.09e-02 6.37e-02  1.35e-01  6.86e-02  1.36e-01 5.68e-02
Negative Binomial Tweedie 10 0.05  7.04e-02  4.02e-02 (*) 6.59¢-02  1.32¢-01  7.05¢-02  1.66e-01 4.66c-02  (*)
Negative Binomial exponential 10 0.05  6.85e-02  6.09e-02 6.37e-02  1.35e-01  6.86e-02  1.36e-01 5.68e-02
Negative Binomial gamma 10 0.05  7.22e-02  2.59e-02  (¥*) 6.80e-02  1.28e-01  7.24e-02  2.00e-01 3.67e-02 (%)
Negative Binomial bootstrap 20 0.05  9.26e-02  3.89e-03  (**) 9.02e-02  1.20e-01  9.29e-02  6.37e-01 1.39e-02 *
Negative Binomial Tweedie 20 0.05  9.26e-02  3.89e-03  (**) || 8.61e-02  1.60e-01  9.29e-02  2.62e-01 8.26e-03  (**)
Negative Binomial exponential 20 0.05 9.63e-02  1.84e-03 (**) 9.05e-02  1.54e-01  9.67e-02  3.30e-01 4.87¢-03  (*¥)
Negative Binomial gamma 20 0.05  9.26e-02  3.89e-03  (*¥) 8.61e-02  1.60e-01  9.29e-02  2.62e-01 8.26e-03  (**)
Negative Binomial bootstrap 60 0.05 8.8%-02 1.25e-01 9.88¢-02  0.00e+00  8.99e-02  2.08e-01 1.40e-01
Negative Binomial Tweedie 60 0.05 7.78e-02  2.62¢-01 8.54¢-02  0.00e+00  7.87e-02  2.74e-01 2.93e-01
Negative Binomial exponential 60 0.05 8.8%-02 1.25e-01 9.88¢-02  0.00e+00  8.99e-02  2.08e-01 1.40e-01
Negative Binomial gamma 60 0.05 8.8%-02 1.25e-01 9.88¢-02  0.00e+00  8.99e-02  2.08e-01 1.40e-01
DTS (Pareto Tempering) | bootstrap 10 0.05 1.85e-03  8.25e-12 (***) || 1.86e-03 0.00e+00 1.86e-03  9.51e-01 7.20e-11  (**¥)
DTS (Pareto Tempering) Tweedie 10 0.05 1.85e-03  8.25e-12 (***) || 1.86e-03 0.00e+00 1.86e-03  9.51e-01 7.20e-11  (**%¥)
DTS (Pareto Tempering) | exponential 10 0.05 1.85e-03  8.25e-12 (***) | 1.86e-03 0.00e+00 1.86e-03  9.51e-01 7.20e-11  (**%)
DTS (Pareto Tempering) gamma 10 0.05 1.85e-03  8.25e-12 (***) || 1.86e-03 0.00e+00 1.86e-03 ~ 9.51e-01 7.20e-11  (**¥)
DTS (Pareto Tempering) | bootstrap 20 0.05  3.70e-03  6.30e-06 (***) || 3.73¢-03  0.00e+00 3.72¢-03  9.31e-01 3.71e-05  (**¥)
DTS (Pareto Tempering) Tweedie 20 0.05  3.70e-03  6.30e-06 (***) || 3.73e-03 0.00e+00 3.72e-03  9.31e-01 (*¥*%)
DTS (Pareto Tempering) | exponential 20 0.05  3.70e-03  6.30e-06 (***) || 3.73e-03 0.00e+00 3.72e-03  9.31e-01 (*¥*%)
DTS (Pareto Tempering) gamma 20 0.05  3.70e-03  6.30e-06 (***) || 3.73¢-03  0.00e+00 3.72¢-03  9.31e-01 (***)
DTS (Pareto Tempering) | bootstrap 60 0.05 0.00e+00 2.38¢-03  (**) | 0.00e+00 0.00e+00 0.00e+00 1.00e-+00 (**)
DTS (Parcto Tempering) Tweedie 60 0.05  0.00e+00  2.38¢-03  (**) | 0.00e+00 0.00e+00 0.00e+00 1.00e-+00 (**)
DTS (Pareto Tempering) | exponential 60 0.05  0.00e+00  2.38¢-03  (**) | 0.00e+00 0.00e+00 0.00e+00 1.00e-+00 (**)
DTS (Pareto Tempering) gamma 60 0.05 0.00e+00 2.38¢-03 (**) || 0.00e+00 0.00e+00 0.00e+00 1.00e-+00 (**)
Poisson bootstrap 10 0.05  7.22e-02  2.59e-02 * 6.80e-02  1.28e-01  7.24e-02 *
Poisson Tweedie 10 0.05  7.59e-02  9.97¢-03 (**) || 7.23¢-02 1.22e-01  7.61le-02 *
Poisson exponential 10 0.05 7.78e-02  5.98e-03 (**) || 7.44e-02 1.19e-01  7.79e-02 *)
Poisson gamma 10 0.05 7.4le-02 1.62e-02 (*) 7.01e-02  1.25e-01  7.42e-02 *)
Poisson bootstrap 20 0.05  9.26e-02  3.89e-03  (**) || 8.61e-02  1.60e-01  9.29e-02 (**)
Poisson Tweedie 20 0.05  9.26e-02  3.89e-03  (**) || 8.61e-02  1.60e-01  9.29¢-02 (**)
Poisson exponential 20 0.05  9.63e-02  1.84e-03  (**) || 9.05¢-02 1.54e-01  9.67e-02 (**)
Poisson gamma 20 0.05  9.26e-02  3.89¢-03  (**) || 8.6le-02  1.60e-01  9.29¢-02 (**)
Poisson bootstrap 60 0.05 8.89%-02 1.25¢-01 9.88¢-02  0.00e+00  8.99¢-02
Poisson Tweedie 60 0.05 8.8%-02  1.25e-01 9.88¢-02  0.00e+00  8.99e-02  2.08e-01
Poisson exponential 60 0.05 8.8%-02 1.25e-01 9.88¢-02  0.00e+00  8.99e-02  2.08e-01
Poisson gamma 60 0.05  1.00e-01  5.38e-02 1.13e-01  0.00e+00 1.01e-01  1.54e-01
DTS (Poisson Tweedie) bootstrap 10 0.05 6.11e-02  2.52e-01 5.73e-02  1.21e-01  6.12e-02  1.83e-01
DTS (Poisson Tweedie) Tweedie 10 0.05  6.30e-02  1.83e-01 5.94e-02  1.18e-01  6.31e-02  2.20e-01
DTS (Poisson Tweedie) | exponential 10 0.05 6.11e-02  2.52e-01 5.73e-02  1.21e-01  6.12e-02  1.83e-01
DTS (Poisson Tweedic) gamma 10 0.05 6.11e-02  2.52¢-01 5.73e-02  1.21e-01  6.12e-02  1.83e-01
DTS (Poisson Tweedie) bootstrap 20 0.05 8.52e-02 1.54e-02 (¥) 8.13e-02  1.30e-01  8.55e-02  4.48e-01 (*)
DTS (Poisson Tweedie) Tweedie 20 0.05 8.52e-02 1.54e-02 (¥) 8.13e-02  1.30e-01  8.55e-02  4.48e-01 *)
DTS (Poisson Tweedie) | exponential 20 0.05 8.52e-02 1.54e-02 (¥) 8.13e-02  1.30e-01  8.55e-02  4.48e-01 *)
DTS (Poisson Tweedie) gamma 20 0.05 8.52e-02 1.54e-02 (¥) 8.13e-02  1.30e-01  8.55e-02  4.48e-01 (*)
DTS (Poisson Tweedie) bootstrap 60 0.05 7.78-02  2.62e-01 8.54e-02  0.00e+00  7.87e-02  2.74e-01
DTS (Poisson Tweedie) Tweedie 60 0.05  7.78e-02  2.62e-01 8.54e-02  0.00e+00  7.87e-02  2.74e-01
DTS (Poisson Tweedie) | exponential 60 0.05 6.67e-02  4.89¢-01 7.23e-02  0.00e+00  6.74e-02  3.51e-01
DTS (Poisson Tweedie) gamma 60 0.05 6.67e-02  4.89e-01 7.23¢-02  0.00e+00  6.74e-02  3.51e-01 5.10e-01
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Table 5.9: Results from exception counting and conditional coverage tests for o = 0.10

Jump Time Horizon «  Exception p-value for o et T p-value for p-value for
Distribution Distribution | (in minutes) rates LRy LRina for LR,
Discrete Stable bootstrap 10 0.1 1.85¢-03  0.00e+00 (***) [ 1.86e-03 0.00e+00 1.86e-03  9.51e-01 0.00e+00  (***)
Discrete Stable Tweedie 10 0.1 1.85e-03  0.00e+00 (***) || 1.86e-03 0.00e+00 1.86e-03  9.51e-01 0.00e4+00  (***)
Discrete Stable exponential 10 0.1 3.70e-03  0.00e+00 (***) | 3.72e-03  0.00e+00 3.71e-03  9.03e-01 0.00e+00  (***)
Discrete Stable gamma 10 0.1 3.70e-03  0.00e+00 (***) || 3.72e-03  0.00e+00 3.71e-03  9.03e-01 0.00e+00  (*¥**)
Discrete Stable bootstrap 20 0.1  3.70e-03  4.06e-12  (***) || 3.73e-03  0.00e+00 3.72e-03  9.31e-01 3.58e-11  (**¥)
Discrete Stable Tweedie 20 0.1 3.70e-03  4.06e-12  (***) || 3.73e-03  0.00e+00 3.72e-03  9.31e-01 3.58e-11  (¥*¥)
Discrete Stable exponential 20 0.1  3.70e-03  4.06e-12  (***) || 3.73e-03  0.00e+00 3.72¢-03  9.31e-01 3.58e-11  (**¥)
Discrete Stable gamma 20 0.1  3.70e-03  4.06e-12  (***) || 3.73e-03  0.00e+00 3.72e-03  9.31e-01 3.58e-11  (¥*¥)
Discrete Stable bootstrap 60 0.1 0.00e+00  1.33e-05 (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 7.62e-05  (¥*¥)
Discrete Stable Tweedie 60 0.1 0.00e+00  1.33e-05 (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 7.62e-05  (**¥)
Discrete Stable exponential 60 0.1 0.00e+00  1.33e-05 (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 7.62e-05  (**¥)
Discrete Stable gamma 60 0.1 0.00e+00  1.33e-05 (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 7.62e-05 (**)
Negative Binomial bootstrap 10 0.1  1.19e-01 1.62e-01 1.12e-01  1.72e-01  1.19e-01  1.82e-01 1.54e-01
Negative Binomial Tweedie 10 0.1 1.17¢-01 2.07e-01 1.11e-01  1.59¢-01  1.17e-01  2.90e-01 2.58¢-01
Negative Binomial exponential 10 0.1 1.15e-01 2.61e-01 1.09e-01  1.61e-01  1.15e-01  2.45e-01 2.71e-01
Negative Binomial gamma 10 0.1 1.19¢-01 1.62¢-01 1.12e-01  1.72¢-01  1.19e-01  1.82¢-01 1.54e-01
Negative Binomial bootstrap 20 0.1 1.33e-01 8.07e-02 1.20e-01  1.94e-01  1.30e-01  2.41e-01 1.09e-01
Negative Binomial Tweedie 20 0.1  1.33e-01  8.07e-02 1.24e-01  1.67e-01  1.30e-01  4.97e-01 1.73e-01
Negative Binomial exponential 20 0.1 1.33e-01 8.07e-02 1.20e-01  1.94e-01  1.30e-01  2.41e-01 1.09e-01
Negative Binomial gamma, 20 0.1  1.33e-01  8.07e-02 1.20e-01  1.94e-01  1.30e-01 ~ 2.41e-01 1.09e-01
Negative Binomial bootstrap 60 0.1  1.56e-01  1.01e-01 1.47e-01  2.14e-01  1.57e-01  5.38e-01 2.16e-01
Negative Binomial Tweedie 60 0.1  1.67e-01 5.18e-02 1.49¢-01  2.67e-01  1.69¢-01  2.89e-01 8.61e-02
Negative Binomial exponential 60 0.1  1.67e-01 5.18e-02 1.49e-01  2.67e-01  1.69e-01  2.89e-01 8.61e-02
Negative Binomial gamma 60 0.1  1.67e-01 5.18e-02 1.49e-01  2.67e-01  1.69e-01  2.89e-01 8.61e-02
DTS (Parcto Tempering) | bootstrap 10 0.1  7.41e-03  0.00e+00 (***) || 7.48¢-03  0.00e+00 7.42e-03  8.07e-01 0.00e4+00  (**%)
DTS (Pareto Tempering) Tweedie 10 0.1 7.41e-03  0.00e+00 (*¥**) || 7.48¢-03 0.00e+00 7.42e-03  8.07e-01 0.00e400  (***)
DTS (Pareto Tempering) | exponential 10 0.1 9.26e-03  0.00e+00 (***) | 9.36e-03  0.00e+00 9.28e-03  7.60e-01 0.00e+00  (***)
DTS (Pareto Tempering) gamma 10 0.1 7.41e-03  0.00e+00 (***) | 7.48e-03 0.00e+00 7.42e-03  8.07e-01 0.00e4+00  (***)
DTS (Pareto Tempering) | bootstrap 20 0.1  3.70e-03  4.06e-12  (***) || 3.73e-03  0.00e+00 3.72¢-03  9.31e-01 3.58¢-11  (**¥)
DTS (Pareto Tempering) Tweedie 20 0.1  3.70e-03  4.06e-12  (***) || 3.73e-03  0.00e+00 3.72e-03  9.31e-01 3.58e-11  (*¥*¥)
DTS (Pareto Tempering) | exponential 20 0.1 3.70e-03  4.06e-12  (***) || 3.73e-03  0.00e+00 3.72e-03  9.31e-01 3.58e-11  (*¥*¥)
DTS (Pareto Tempering) gamma 20 0.1  3.70e-03  4.06e-12  (***) || 3.73e-03  0.00e+00 3.72e-03  9.31e-01 3.58e-11  (¥*¥)
DTS (Pareto Tempering) | bootstrap 60 0.1 1.11e-02  4.36e-04 (***) | 1.14e-02 0.00e+00 1.12e-02  8.80e-01 2.04e-03  (*¥)
DTS (Pareto Tempering) Tweedie 60 0.1 0.00e+00  1.33e-05 (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 7.62e-05  (**¥)
DTS (Pareto Tempering) | exponential 60 0.1 1.11e-02  4.36e-04 (***) | 1.14e-02 0.00e+00 1.12e-02  8.80e-01 2.04e-03  (*%)
DTS (Pareto Tempering) gamma 60 0.1 0.00e+00  1.33e-05 (***) || 0.00e+00 0.00e+00 0.00e+00 1.00e+00 7.62e-05 ()
Poisson bootstrap 10 0.1  1.19e-01 1.62e-01 1.12e-01  1.72e-01  1.19e-01  1.82e-01 1.54e-01
Poisson Tweedie 10 0.1 1.20e-01 1.25¢-01 1.14e-01  1.69¢-01  1.21e-01  2.19e-01 5
Poisson exponential 10 0.1 1.20e-01 1. 01 1.14e-01  1.69¢-01  1.21e-01  2.19e-01
Poisson gamma 10 0.1 1.15e-01 2.61e-01 1.09e-01  1.61e-01  1.15e-01  2.45e-01
Poisson bootstrap 20 0.1 1.33e-01 8.07¢-02 1.20e-01  1.94e-01  1.30e-01  2.41e-01
Poisson Tweedie 20 0.1  1.37e-01  5.33e-02 1.25e-01  1.89e-01  1.34e-01  3.07e-01
Poisson exponential 20 0.1  1.37e-01  5.33e-02 1.16e-01  2.43e-01  1.34e-01  5.05e-02 (*)
Poisson gamma 20 0.1  1.37e-01 5.33e-02 1.25e-01  1.89e-01  1.34e-01  3.07e-01
Poisson bootstrap 60 0.1  1.67e-01  5.18e-02 1.49e-01  2.67e-01  1.69e-01  2.89e-01
Poisson Tweedie 60 0.1 1.67e-01  5.18e-02 1.49e-01  2.67e-01  1.69e-01  2.89e-01
Poisson exponential 60 0.1  1.67e-01 5.18e-02 1.49e-01  2.67e-01  1.69e-01  2.89e-01
Poisson gamma 60 0.1  1.67e-01 5.18e-02 1.49e-01  2.67e-01  1.69e-01  2.89e-01
DTS (Poisson Tweedie) bootstrap 10 0.1 1.07e-01  5.70e-01 9.98¢-02  1.72e-01  1.08e-01  1.14e-01
DTS (Poisson Tweedie) Tweedie 10 0.1 1.07e-01  5.70e-01 9.98¢-02  1.72e-01  1.08e-01  1.14e-01
DTS (Poisson Tweedie) | exponential 10 0.1 1.07e-01  5.70e-01 1.02e-01  1.55e-01  1.08e-01  2.39e-01
DTS (Poisson Tweedic) gamma 10 0.1 1.07e-01  5.70e-01 9.98e-02  1.72¢-01  1.08¢-01  1.14e-01
DTS (Poisson Tweedie) bootstrap 20 0.1 1.19e-01  3.23e-01 1.10e-01  1.56e-01  1.15e-01 ~ 4.57e-01
DTS (Poisson Tweedie) Tweedie 20 0.1 1.15e-01  4.27e-01 1.05e-01  1.61e-01  1.12e-01  3.73e-01 4.90e-01
DTS (Poisson Tweedie) | exponential 20 0.1 1.19e-01  3.23e-01 1.10e-01  1.56e-01  1.15e-01  4.57e-01 4.65e-01
DTS (Poisson Tweedie) gamma 20 0.1 1.15e-01  4.27¢-01 1.05e-01  1.61e-01  1.12e-01  3.73e-01 4.90e-01
DTS (Poisson Tweedie) bootstrap 60 0.1 1.44e-01  1.84e-01 1.32e-01  2.31e-01  1.46e-01  3.75e-01 2.80e-01
DTS (Poisson Tweedie) Tweedie 60 0.1 1.44e-01  1.84e-01 1.32e-01  2.31e-01  1.46e-01  3.75e-01 2.80e-01
DTS (Poisson Tweedie) | exponential 60 0.1 1.44e-01  1.84e-01 1.32e-01  2.31e-01  1.46e-01  3.75e-01 2.80e-01
DTS (Poisson Tweedie) gamma 60 0.1 1.44e-01  1.84e-01 1.32¢-01  2.31e-01  1.46e-01  3.75¢-01 2.80e-01
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APPENDIX A: Figures from High-Frequency Financial Data Modeling

In this section, we include all of the VaR estimations for different models. In any
of these cases, exceptions are labeled for different values of a. The first 5 figures are
for models for which a GARCH model was used for modeling interarrival times, and

in the last 5 figures the interarrival times are assumed to be i.i.d.
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Figure A.1: VaR(T, «) for discrete stable distribution. Columns show different time
horizons 10, 20, 60 minutes from left to right, respectively. Rows show different
distributions for modeling standard residuals in the GARCH model for interarrival
times which are from top to bottom, bootstrap sampling, Tweedie, exponential and
gamma, respectively.
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Figure A.2: VaR(T,«) for negative binomial distribution. Columns show different
time horizons 10, 20, 60 minutes from left to right, respectively. Rows show different
distributions for modeling standard residuals in the GARCH model for interarrival
times which are from top to bottom, bootstrap sampling, Tweedie, exponential and
gamma, respectively.
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Figure A.3: VaR(T,«a) for DTS (Pareto tempering) distribution. Columns show
different time horizons 10, 20, 60 minutes from left to right, respectively. Rows
show different distributions for modeling standard residuals in the GARCH model
for interarrival times which are from top to bottom, bootstrap sampling, Tweedie,

exponential and gamma, respectively.
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Figure A.4: VaR(T), «) for Poisson distribution. Columns show different time horizons
10, 20, 60 minutes from left to right, respectively. Rows show different distributions
for modeling standard residuals in the GARCH model for interarrival times which are
from top to bottom, bootstrap sampling, Tweedie, exponential and gamma, respec-
tively.
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Figure A.5: VaR(T,«) for DTS (Poisson Tweedie) distribution. Columns show dif-
ferent time horizons 10, 20, 60 minutes from left to right, respectively. Rows show
different distributions for modeling standard residuals in the GARCH model for inter-
arrival times which are from top to bottom, bootstrap sampling, Tweedie, exponential
and gamma, respectively.
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Figure A.6: VaR(T, «) for discrete stable distribution. Columns show different time
horizons 10, 20, 60 minutes from left to right, respectively. Rows show different
distributions for modeling interarrival times which are from top to bottom, bootstrap
sampling, Tweedie, exponential and gamma, respectively.
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Figure A.7: VaR(T,«) for negative binomial distribution. Columns show different
time horizons 10, 20, 60 minutes from left to right, respectively. Rows show different

distributions for interarrival times which are from top to bottom, bootstrap sampling,
Tweedie, exponential and gamma, respectively.



109

5% /EK | ,
EEA g
_ |
Dy A
M m\ﬂ“" —
”R#N\ ‘ =
, AN ==
] i \\/ SN m\,—v\)/y’v\‘ -
- [~
: = ’\/(\k\m L~
i - =2 S AV

Figure A.8: VaR(T,«a) for DTS (Pareto tempering) distribution. Columns show
different time horizons 10, 20, 60 minutes from left to right, respectively. Rows show
different distributions for interarrival times which are from top to bottom, bootstrap
sampling, Tweedie, exponential and gamma, respectively.
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Figure A.9: VaR(T, «) for Poisson distribution. Columns show different time horizons
10, 20, 60 minutes from left to right, respectively. Rows show different distributions
for modeling interarrival times which are from top to bottom, bootstrap sampling,
Tweedie, exponential and gamma, respectively.
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Figure A.10: VaR(T,«a) for DTS (Poisson Tweedie) distribution. Columns show
different time horizons 10, 20, 60 minutes from left to right, respectively. Rows show
different distributions for interarrival times which are from top to bottom, bootstrap
sampling, Tweedie, exponential and gamma, respectively.




